1
|
Cogan PS. A cautionary tale of paradox and false positives in cannabidiol research. Expert Opin Drug Discov 2025; 20:5-15. [PMID: 39663751 DOI: 10.1080/17460441.2024.2441359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Decades of research on cannabidiol (CBD) have identified thousands of purported cellular effects, and many of these have been proposed to correlate with a vast therapeutic potential. Yet despite the large volume of findings fueling broad optimism in this regard, few have translated into any demonstrable clinical benefit or even notable side effects. Therein resides the great paradox of CBD: a drug that appears to affect almost everything in vitro does not clearly do much of anything in a clinical setting. AREAS COVERED Comparative critical evaluation of literature searched in PubMed and Google Scholar discovers multiple instances of inconsistent and contradictory findings regarding the pharmacology and clinical effects of CBD, as well as several uncelebrated reports that suggest potential explanations for these observations. Many of those effects attributed to the ostensible pharmacologic activity of cannabidiol are almost certainly the product of false-positive experimental results and artifactual findings that are unlikely to be realized under physiologic conditions. EXPERT OPINION Concerns regarding the physiological relevance and translational potential of in vitro findings across the field of cannabinoid research are both far-reaching and demanding of attention in the form of appropriate experimental controls that remain almost universally absent.
Collapse
Affiliation(s)
- Peter S Cogan
- School of Pharmacy, Regis University, Denver, CO, USA
| |
Collapse
|
2
|
Santillo MF, Glenn IS, Paris L, Sprando RL. In Vitro Biological Target Screening and Colloidal Aggregation of Minor Cannabinoids. JOURNAL OF NATURAL PRODUCTS 2024; 87:2881-2886. [PMID: 39563095 DOI: 10.1021/acs.jnatprod.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
There is limited information on interactions between cannabinoids and many pharmacologically and toxicologically relevant targets in humans (e.g., receptors, ion channels, enzymes, and transporters). To address this data gap, seven cannabinoids were screened against a panel of 44 safety-related biological targets in competitive ligand binding or enzymatic activity assays. Diverse binding profiles were observed among the cannabinoids; however, colloidal aggregates were detected by dynamic light scattering and a detergent-sensitive enzyme inhibition assay. These aggregates may nonspecifically inhibit targets, yielding false positives. Although screening identified aggregates, additional testing is required to confirm cannabinoid aggregation in individual in vitro assays.
Collapse
Affiliation(s)
- Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration (FDA), Laurel, Maryland 20708, United States
| | - Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Lu Paris
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration (FDA), Laurel, Maryland 20708, United States
| |
Collapse
|
3
|
Hu H, Yi X, Xue L, Baell JB. A Collection of Useful Nuisance Compounds (CONS) for Interrogation of Bioassay Integrity. JACS AU 2024; 4:4883-4891. [PMID: 39735938 PMCID: PMC11672131 DOI: 10.1021/jacsau.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/31/2024]
Abstract
High-throughput screening (HTS) is a crucial technique for identifying potential hits to fuel drug discovery pipelines. However, this process naturally concentrates nuisance compounds that are not optimizable yet signal positively in a convincing manner. To be able to understand what types of nuisance compounds a particular assay is sensitive to, would be of great utility in being able to prioritize progressable over nonprogressable screening hits. In this study, we present a carefully compiled set of over 100 nuisance compounds that are known to interfere with assay readouts in either phenotypic or target-based screenings. Readily accessible in an assay-ready screening plate, we believe this nuisance compound set will be of great interest to the research community, helping to establish high-quality HTS assays and identify promising, optimizable hits.
Collapse
Affiliation(s)
- Huabin Hu
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, Uppsala SE-751 24, Sweden
| | - Xiangyan Yi
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lian Xue
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Srivastava P, Rütter M, Antoniraj G, Ventura Y, David A. Dendritic Cell-Targeted Nanoparticles Enhance T Cell Activation and Antitumor Immune Responses by Boosting Antigen Presentation and Blocking PD-L1 Pathways. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53577-53590. [PMID: 39344665 DOI: 10.1021/acsami.4c12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dendritic cells (DCs) within the tumor microenvironment (TME) have an insufficient capacity to activate T cells through antigen presentation. Furthermore, the programmed cell-death ligand 1 (PD-L1), abundantly expressed on tumor-associated DCs, binds the programmed cell-death 1 (PD-1)-positive T cells and suppresses their immune function. The binding of PD-L1 to CD80 (B7.1) on the same DC via cis-interactions further prevents T cell costimulation through CD28. Here, we present a strategy to simultaneously promote antigen cross-presentation and block the inhibitory interactions of PD-L1 on DCs to amplify T cell-mediated antitumor responses within the TME. Mesoporous silica nanoparticles (MSNPs) were loaded with clotrimazole (CLT) to boost MHC II-mediated antigen presentation by DCs, surface-modified with mannose to target CD206 on DCs, and then decorated with PD-L1 binding peptide (PDL1bp) to block PD-L1-mediated interactions. PDL1bp was cleaved from the mannosylated and CLT-loaded MSNPs (MSNP-MaN/CLT) under conditions simulating the TME and tethered to PD-L1 to reverse CD80 sequestration on DC2.4 cells. The blocking of PD-L1 by PDL1bp-decorated NPs (MSNP-MaN-PDL1bp) increased the cellular interactions between DC2.4 and EL4 T cells and the amount of IL-2 secretion. The MSNP-MaN/CLT were taken up rapidly by DC2.4 cells, promoted MHC II presentation of hen egg lysozyme (HEL), and increased IL-2 production from HEL antigen-primed 3A9 T cells, which was further enhanced by PDL1bp. In vivo investigation revealed that administration of the CLT-loaded and PDL1bp-functionalized MSNPs remarkably inhibited subcutaneous B16-F10 melanoma tumor growth when compared with anti-PD-L1 therapy. MSNP-MaN-PDL1bp/CLT treatment upregulated the levels of effector molecules such as granzyme B and proinflammatory cytokines (IFNγ and INFα) in the tumor tissue, indicating antitumoral T cell responses. This strategy of utilizing nanoparticles to trigger DC activation while promoting T cell stimulation can be used to amplify the antitumor T cell responses and represents a promising alternative to anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Prateek Srivastava
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Gover Antoniraj
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yvonne Ventura
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
5
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal Aggregation Confounds Cell-Based Covid-19 Antiviral Screens. J Med Chem 2024; 67:10263-10274. [PMID: 38864383 PMCID: PMC11236530 DOI: 10.1021/acs.jmedchem.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Colloidal aggregation is one of the largest contributors to false positives in early drug discovery. Here, we consider aggregation's role in cell-based infectivity assays in Covid-19 drug repurposing. We investigated the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate the impact of aggregation on antiviral efficacy in cells, we presaturated the colloidal drug suspensions with BSA or spun them down by centrifugation and measured the effects on spike pseudovirus infectivity. Antiviral potencies diminished by at least 10-fold following both BSA and centrifugation treatments, supporting a colloid-based mechanism. Aggregates induced puncta of the labeled spike protein in fluorescence microscopy, consistent with sequestration of the protein on the colloidal particles. These observations suggest that colloidal aggregation is common among cell-based antiviral drug repurposing and offers rapid counter-screens to detect and eliminate these artifacts.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| |
Collapse
|
6
|
Lyu J, Kapolka N, Gumpper R, Alon A, Wang L, Jain MK, Barros-Álvarez X, Sakamoto K, Kim Y, DiBerto J, Kim K, Glenn IS, Tummino TA, Huang S, Irwin JJ, Tarkhanova OO, Moroz Y, Skiniotis G, Kruse AC, Shoichet BK, Roth BL. AlphaFold2 structures guide prospective ligand discovery. Science 2024; 384:eadn6354. [PMID: 38753765 PMCID: PMC11253030 DOI: 10.1126/science.adn6354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.
Collapse
Affiliation(s)
- Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
- The Evnin Family Laboratory of Computational Molecular Discovery, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Kapolka
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ryan Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Manish K. Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ximena Barros-Álvarez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Kensuke Sakamoto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yoojoong Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeffrey DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Isabella S. Glenn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Tia A. Tummino
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Sijie Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | - Yurii Moroz
- Chemspace LLC, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
- Enamine Ltd., Kyiv 02094, Ukraine
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Tummino TA, Iliopoulos-Tsoutsouvas C, Braz JM, O'Brien ES, Stein RM, Craik V, Tran NK, Ganapathy S, Liu F, Shiimura Y, Tong F, Ho TC, Radchenko DS, Moroz YS, Rosado SR, Bhardwaj K, Benitez J, Liu Y, Kandasamy H, Normand C, Semache M, Sabbagh L, Glenn I, Irwin JJ, Kumar KK, Makriyannis A, Basbaum AI, Shoichet BK. Large library docking for cannabinoid-1 receptor agonists with reduced side effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530254. [PMID: 38328157 PMCID: PMC10849508 DOI: 10.1101/2023.02.27.530254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Large library docking can reveal unexpected chemotypes that complement the structures of biological targets. Seeking new agonists for the cannabinoid-1 receptor (CB1R), we docked 74 million tangible molecules, prioritizing 46 high ranking ones for de novo synthesis and testing. Nine were active by radioligand competition, a 20% hit-rate. Structure-based optimization of one of the most potent of these (Ki = 0.7 uM) led to '4042, a 1.9 nM ligand and a full CB1R agonist. A cryo-EM structure of the purified enantiomer of '4042 ('1350) in complex with CB1R-Gi1 confirmed its docked pose. The new agonist was strongly analgesic, with generally a 5-10-fold therapeutic window over sedation and catalepsy and no observable conditioned place preference. These findings suggest that new cannabinoid chemotypes may disentangle characteristic cannabinoid side-effects from their analgesia, supporting the further development of cannabinoids as pain therapeutics.
Collapse
|
8
|
Wang Q, Fu X, Yan Y, Liu T, Xie Y, Song X, Zhou Y, Xu M, Wang P, Fu P, Huang J, Huang N. Structure-Based Identification of Organoruthenium Compounds as Nanomolar Antagonists of Cannabinoid Receptors. J Chem Inf Model 2024; 64:761-774. [PMID: 38215394 DOI: 10.1021/acs.jcim.3c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Metal complexes exhibit a diverse range of coordination geometries, representing novel privileged scaffolds with convenient click types of preparation inaccessible for typical carbon-centered organic compounds. Herein, we explored the opportunity to identify biologically active organometallic complexes by reverse docking of a rigid, minimum-size octahedral organoruthenium scaffold against thousands of protein-binding pockets. Interestingly, cannabinoid receptor type 1 (CB1) was identified based on the docking scores and the degree of overlap between the docked organoruthenium scaffold and the hydrophobic scaffold of the cocrystallized ligand. Further structure-based optimization led to the discovery of organoruthenium complexes with nanomolar binding affinities and high selectivity toward CB2. Our work indicates that octahedral organoruthenium scaffolds may be advantageous for targeting the large and hydrophobic binding pockets and that the reverse docking approach may facilitate the discovery of novel privileged scaffolds, such as organometallic complexes, for exploring chemical space in lead discovery.
Collapse
Affiliation(s)
- Qing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xuegang Fu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuting Yan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yuting Xie
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiaoqing Song
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yu Zhou
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Min Xu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Ping Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Peng Fu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Niu Huang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
9
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal aggregation confounds cell-based Covid-19 antiviral screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564435. [PMID: 37961552 PMCID: PMC10634915 DOI: 10.1101/2023.10.27.564435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Colloidal aggregation is one of the largest contributors to false-positives in early drug discovery and chemical biology. Much work has focused on its impact on pure-protein screens; here we consider aggregations role in cell-based infectivity assays in Covid-19 drug repurposing. We began by investigating the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal-particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate antiviral efficacy of the drugs in cells we used spike pseudotyped lentivirus and pre-saturation of the colloids with BSA. The antiviral potency of the aggregators was diminished by at least 10-fold and often entirely eliminated in the presence of BSA, suggesting antiviral activity can be attributed to the non-specific nature of the colloids. In confocal microscopy, the aggregates induced fluorescent puncta of labeled spike protein, consistent with sequestration of the protein on the colloidal particles. Addition of either non-ionic detergent or of BSA disrupted these puncta. These observations suggest that colloidal aggregation is common among cell-based anti-viral drug repurposing, and perhaps cell-based assays more broadly, and offers rapid counter-screens to detect and eliminate these artifacts, allowing the community invest resources in compounds with true potential as a Covid-19 therapeutic.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
10
|
Rosdah AA, Abbott BM, Langendorf CG, Deng Y, Truong JQ, Waddell HMM, Ling NXY, Smiles WJ, Delbridge LMD, Liu GS, Oakhill JS, Lim SY, Holien JK. A novel small molecule inhibitor of human Drp1. Sci Rep 2022; 12:21531. [PMID: 36513726 PMCID: PMC9747717 DOI: 10.1038/s41598-022-25464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation. Herein, we sought to identify a novel small molecule inhibitor of Drp1. From an initial virtual screening, we identified DRP1i27 as a compound which directly bound to the human isoform 3 of Drp1 via surface plasmon resonance and microscale thermophoresis. Importantly, DRP1i27 was found to have a dose-dependent increase in the cellular networks of fused mitochondria but had no effect in Drp1 knock-out cells. Further analogues of this compound were identified and screened, though none displayed greater affinity to human Drp1 isoform 3 than DRP1i27. To date, this is the first small molecule inhibitor shown to directly bind to human Drp1.
Collapse
Affiliation(s)
- Ayeshah A. Rosdah
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.108126.c0000 0001 0557 0975Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Belinda M. Abbott
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | | | - Yali Deng
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Jia Q. Truong
- grid.1017.70000 0001 2163 3550School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001 Australia
| | - Helen M. M. Waddell
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Naomi X. Y. Ling
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - William J. Smiles
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - Lea M. D. Delbridge
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Guei-Sheung Liu
- grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.410670.40000 0004 0625 8539Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Jonathan S. Oakhill
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.411958.00000 0001 2194 1270Australian Catholic University, Fitzroy, VIC Australia
| | - Shiang Y. Lim
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia ,grid.419385.20000 0004 0620 9905National Heart Centre, National Heart Research Institute Singapore, Singapore, Singapore
| | - Jessica K. Holien
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1017.70000 0001 2163 3550School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001 Australia
| |
Collapse
|
11
|
Optical control of Class A G protein-coupled receptors with photoswitchable ligands. Curr Opin Pharmacol 2022; 63:102192. [DOI: 10.1016/j.coph.2022.102192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022]
|
12
|
Kevin RC, Cairns EA, Boyd R, Arnold JC, Bowen MT, McGregor IS, Banister SD. Off-target pharmacological profiling of synthetic cannabinoid receptor agonists including AMB-FUBINACA, CUMYL-PINACA, PB-22, and XLR-11. Front Psychiatry 2022; 13:1048836. [PMID: 36590635 PMCID: PMC9798004 DOI: 10.3389/fpsyt.2022.1048836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances that have been associated with multiple instances and types of toxicity. Some SCRAs appear to carry a greater toxicological burden than others, or compared to the prototypical cannabis-derived agonist Δ9-tetrahydrocannabinol (Δ9-THC), despite a common primary mechanism of action via cannabinoid 1 (CB1) receptors. "Off-target" (i.e., non-CB1 receptor) effects could underpin this differential toxicity, although there are limited data around the activity of SCRAs at such targets. METHODS A selection of 7 SCRAs (AMB-FUBINACA, XLR11, PB-22, AKB-48, AB-CHMINICA, CUMYL-PINACA, and 4F-MDMB-BUTINACA), representing several distinct chemotypes and toxicological profiles, underwent a 30 μM single-point screen against 241 G protein-coupled receptor (GPCR) targets in antagonist and agonist mode using a cellular β-arrestin recruitment assay. Strong screening "hits" at specific GPCRs were followed up in detail using concentration-response assays with AMB-FUBINACA, a SCRA with a particularly notable history of toxicological liability. RESULTS The single-point screen yielded few hits in agonist mode for any compound aside from CB1 and CB2 receptors, but many hits in antagonist mode, including a range of chemokine receptors, the oxytocin receptor, and histamine receptors. Concentration-response experiments showed that AMB-FUBINACA inhibited most off-targets only at the highest 30 μM concentration, with inhibition of only a small subset of targets, including H1 histamine and α2B adrenergic receptors, at lower concentrations (≥1 μM). AMB-FUBINACA also produced concentration-dependent CB1 receptor signaling disruption at concentrations higher than 1 μM, but did not produce overt cytotoxicity beyond CP55,940 or Δ9-THC in CB1 expressing cells. DISCUSSION These results suggest that while some "off-targets" could possibly contribute to the SCRA toxidrome, particularly at high concentrations, CB1-mediated cellular dysfunction provides support for hypotheses concerning on-target, rather than off-target, toxicity. Further investigation of non-GPCR off-targets is warranted.
Collapse
Affiliation(s)
- Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Jonathon C Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Michael T Bowen
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Using filters in virtual screening: A comprehensive guide to minimize errors and maximize efficiency. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Discovery of Highly Potent Fusion Inhibitors with Potential Pan-Coronavirus Activity That Effectively Inhibit Major COVID-19 Variants of Concern (VOCs) in Pseudovirus-Based Assays. Viruses 2021; 14:v14010069. [PMID: 35062273 PMCID: PMC8780828 DOI: 10.3390/v14010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
We report the discovery of several highly potent small molecules with low-nM potency against severe acute respiratory syndrome coronavirus (SARS-CoV; lowest half-maximal inhibitory concentration (IC50: 13 nM), SARS-CoV-2 (IC50: 23 nM), and Middle East respiratory syndrome coronavirus (MERS-CoV; IC50: 76 nM) in pseudovirus-based assays with excellent selectivity index (SI) values (>5000), demonstrating potential pan-coronavirus inhibitory activities. Some compounds showed 100% inhibition against the cytopathic effects (CPE; IC100) of an authentic SARS-CoV-2 (US_WA-1/2020) variant at 1.25 µM. The most active inhibitors also potently inhibited variants of concern (VOCs), including the UK (B.1.1.7) and South African (B.1.351) variants and the Delta variant (B.1.617.2) originally identified in India in pseudovirus-based assay. Surface plasmon resonance (SPR) analysis with one potent inhibitor confirmed that it binds to the prefusion SARS-CoV-2 spike protein trimer. These small-molecule inhibitors prevented virus-mediated cell-cell fusion. The absorption, distribution, metabolism, and excretion (ADME) data for one of the most active inhibitors, NBCoV1, demonstrated drug-like properties. An in vivo pharmacokinetics (PK) study of NBCoV1 in rats demonstrated an excellent half-life (t1/2) of 11.3 h, a mean resident time (MRT) of 14.2 h, and oral bioavailability. We expect these lead inhibitors to facilitate the further development of preclinical and clinical candidates.
Collapse
|
15
|
Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA, Balius TE, Carlsson J, Irwin JJ, Shoichet BK. A practical guide to large-scale docking. Nat Protoc 2021; 16:4799-4832. [PMID: 34561691 PMCID: PMC8522653 DOI: 10.1038/s41596-021-00597-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Structure-based docking screens of large compound libraries have become common in early drug and probe discovery. As computer efficiency has improved and compound libraries have grown, the ability to screen hundreds of millions, and even billions, of compounds has become feasible for modest-sized computer clusters. This allows the rapid and cost-effective exploration and categorization of vast chemical space into a subset enriched with potential hits for a given target. To accomplish this goal at speed, approximations are used that result in undersampling of possible configurations and inaccurate predictions of absolute binding energies. Accordingly, it is important to establish controls, as are common in other fields, to enhance the likelihood of success in spite of these challenges. Here we outline best practices and control docking calculations that help evaluate docking parameters for a given target prior to undertaking a large-scale prospective screen, with exemplification in one particular target, the melatonin receptor, where following this procedure led to direct docking hits with activities in the subnanomolar range. Additional controls are suggested to ensure specific activity for experimentally validated hit compounds. These guidelines should be useful regardless of the docking software used. Docking software described in the outlined protocol (DOCK3.7) is made freely available for academic research to explore new hits for a range of targets.
Collapse
Affiliation(s)
- Brian J Bender
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Andreas Luttens
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Chase M Webb
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Reed M Stein
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Elissa A Fink
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
RNase P Inhibitors Identified as Aggregators. Antimicrob Agents Chemother 2021; 65:e0030021. [PMID: 33972249 DOI: 10.1128/aac.00300-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNase P is an essential enzyme responsible for tRNA 5'-end maturation. In most bacteria, the enzyme is a ribonucleoprotein consisting of a catalytic RNA subunit and a small protein cofactor termed RnpA. Several studies have reported small-molecule inhibitors directed against bacterial RNase P that were identified by high-throughput screenings. Using the bacterial RNase P enzymes from Thermotoga maritima, Bacillus subtilis, and Staphylococcus aureus as model systems, we found that such compounds, including RNPA2000 (and its derivatives), iriginol hexaacetate, and purpurin, induce the formation of insoluble aggregates of RnpA rather than acting as specific inhibitors. In the case of RNPA2000, aggregation was induced by Mg2+ ions. These findings were deduced from solubility analyses by microscopy and high-performance liquid chromatography (HPLC), RnpA-inhibitor co-pulldown experiments, detergent addition, and RnpA titrations in enzyme activity assays. Finally, we used a B. subtilis RNase P depletion strain, whose lethal phenotype could be rescued by a protein-only RNase P of plant origin, for inhibition zone analyses on agar plates. These cell-based experiments argued against RNase P-specific inhibition of bacterial growth by RNPA2000. We were also unable to confirm the previously reported nonspecific RNase activity of S. aureus RnpA itself. Our results indicate that high-throughput screenings searching for bacterial RNase P inhibitors are prone to the identification of "false positives" that are also termed pan-assay interference compounds (PAINS).
Collapse
|
17
|
Lu Y, Liu H, Yang D, Zhong L, Xin Y, Zhao S, Wang MW, Zhou Q, Shui W. Affinity Mass Spectrometry-Based Fragment Screening Identified a New Negative Allosteric Modulator of the Adenosine A 2A Receptor Targeting the Sodium Ion Pocket. ACS Chem Biol 2021; 16:991-1002. [PMID: 34048655 DOI: 10.1021/acschembio.0c00899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Allosteric ligands provide new opportunities to modulate G protein-coupled receptor (GPCR) function and present therapeutic benefits over orthosteric molecules. Negative allosteric modulators (NAMs) can inhibit the activation of a receptor and downstream signal transduction. Screening NAMs for a GPCR target is particularly challenging because of the difficulty in distinguishing NAMs from antagonists bound to the orthosteric site as they both show inhibitory effects in receptor signaling assays. Here we report an affinity mass spectrometry (MS)-based approach tailored to screening potential NAMs of a GPCR target especially from fragment libraries. Compared to regular surface plasmon resonance or NMR-based methods for fragment screening, our approach features a reduction of the protein and compound consumption by 2-4 orders of magnitude and an increase in the data acquisition speed by 2-3 orders of magnitude. Our affinity MS-based fragment screening led to the identification of a new NAM of the adenosine A2A receptor (A2AAR) bearing an unprecedented azetidine moiety predicted to occupy the allosteric sodium binding site. Molecular dynamics simulations, ligand structure-activity relationship (SAR) studies, and in-solution NMR analyses further revealed the unique binding mode and antagonistic property of this compound that differs considerably from HMA (5-(N,N-hexamethylene)amiloride), a well-characterized NAM of A2AAR. Taken together, our work would facilitate fragment-based screening of allosteric modulators, as well as guide the design of novel NAMs acting at the sodium ion pocket of class A GPCRs.
Collapse
Affiliation(s)
- Yan Lu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyue Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Yang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Zhong
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ye Xin
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ming-Wei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
18
|
Allen SJ, Dower CM, Liu AX, Lumb KJ. Detection of Small-Molecule Aggregation with High-Throughput Microplate Biophysical Methods. ACTA ACUST UNITED AC 2021; 12:e78. [PMID: 32150343 DOI: 10.1002/cpch.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Small-molecule drug discovery can be hindered by the formation of aggregates that act as non-selective inhibitors of drug targets. Such aggregates appear as false positives in high-throughput screening campaigns and can bedevil structure-activity relationships during compound optimization. Protocols are described for resonant waveguide grating (RWG) and dynamic light scattering (DLS) as microplate-based high-throughput approaches to identify compound aggregation. Resonant waveguide grating and dynamic light scattering give equivalent results for the compound test set, as assessed with Bland-Altman analysis. © 2019 The Authors. Basic Protocol 1: Resonant waveguide grating (RWG) in 384-well or 1536-well plate format to detect compound aggregation Basic Protocol 2: Dynamic light scattering (DLS) in 384-well plate format to detect compound aggregation.
Collapse
Affiliation(s)
- Samantha J Allen
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, Pennsylvania
| | - Corey M Dower
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, Pennsylvania
| | - Annie X Liu
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, Pennsylvania
| | - Kevin J Lumb
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, Pennsylvania
| |
Collapse
|
19
|
Dahlin JL, Auld DS, Rothenaigner I, Haney S, Sexton JZ, Nissink JWM, Walsh J, Lee JA, Strelow JM, Willard FS, Ferrins L, Baell JB, Walters MA, Hua BK, Hadian K, Wagner BK. Nuisance compounds in cellular assays. Cell Chem Biol 2021; 28:356-370. [PMID: 33592188 PMCID: PMC7979533 DOI: 10.1016/j.chembiol.2021.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/02/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer number of targets, but rather nuisance compounds, due to their ability to waste significant resources and erode scientific trust. In this review, we summarize our collective academic, government, and industry experiences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact of nuisance compounds and suggest best practices to efficiently address these compounds in complex biological settings.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Steve Haney
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jarrod Walsh
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park SK10 4TG, UK
| | | | | | | | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02140, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA
| |
Collapse
|
20
|
Mayasich SA, Korte JJ, Denny JS, Hartig PC, Olker JH, DeGoey P, O'Flanagan J, Degitz SJ, Hornung MW. Xenopus laevis and human type 3 iodothyronine deiodinase enzyme cross-species sensitivity to inhibition by ToxCast chemicals. Toxicol In Vitro 2021; 73:105141. [PMID: 33713820 DOI: 10.1016/j.tiv.2021.105141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
Deiodinase enzymes are critical for tissue-specific and temporal control of activation or inactivation of thyroid hormones during vertebrate development, including amphibian metamorphosis. We previously screened ToxCast chemicals for inhibitory activity toward human recombinant Type 3 iodothyronine deiodinase enzyme (hDIO3) and subsequently produced Xenopus laevis recombinant dio3 enzyme (Xldio3) with the goals to identify specific chemical inhibitors of Xldio3, to evaluate cross-species sensitivity and explore whether the human assay results are predictive of the amphibian. We identified a subset of 356 chemicals screened against hDIO3 to test against Xldio3, initially at a single concentration (200 μM), and further tested 79 in concentration-response mode. Most chemicals had IC50 values lower for hDIO3 than for Xldio3 and many had steep Hill slopes (a potential indication of non-specific inhibition). However, eight of the most potent chemicals are likely specific inhibitors, with IC50 values of 14 μM or less, Hill slopes near -1 and curves not significantly different between species likely due to conservation of catalytically active amino acids. Controlling for assay conditions, human in vitro screening results can be predictive of activity in the amphibian assay. This study lays the groundwork for future studies using recombinant non-mammalian proteins to test cross-species sensitivity to chemicals. DISCLAIMER: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Collapse
Affiliation(s)
- Sally A Mayasich
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Joseph J Korte
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Jeffrey S Denny
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Phillip C Hartig
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jennifer H Olker
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Philip DeGoey
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Joseph O'Flanagan
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA; Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Sigmund J Degitz
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Michael W Hornung
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA.
| |
Collapse
|
21
|
Cogan PS. Regarding the Mechanisms of Promiscuous Cannabinoid Pharmacology: An Elephant Has Entered the Room. Cannabis Cannabinoid Res 2021; 6:457-461. [PMID: 33998883 DOI: 10.1089/can.2020.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decades of research have discovered a broad variety of interesting in vitro activities resulting from cannabinoid exposure. Recent investigations of cannabidiol, however, present a potential explanation for these findings, which relies on the nonspecific effects of colloidal dispersions as opposed to those of specific drug interactions with macromolecular targets. This perspective raises the question of how false-positive assay results arising from such colloidal interference may permeate the field of cannabinoid pharmacology. It further suggests a direction for future research with the intent of identifying true pharmacological interactions that might be more efficiently developed into therapeutic targets.
Collapse
Affiliation(s)
- Peter S Cogan
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, Colorado, USA
| |
Collapse
|
22
|
García‐Marín J, Griera M, Sánchez‐Alonso P, Di Geronimo B, Mendicuti F, Rodríguez‐Puyol M, Alajarín R, Pascual‐Teresa B, Vaquero JJ, Rodríguez‐Puyol D. Pyrrolo[1,2‐
a
]quinoxalines: Insulin Mimetics that Exhibit Potent and Selective Inhibition against Protein Tyrosine Phosphatase 1B. ChemMedChem 2020; 15:1788-1801. [DOI: 10.1002/cmdc.202000446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/29/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Javier García‐Marín
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Instituto de Investigación Química Andrés M. del Río Facultad de Farmacia Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Mercedes Griera
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Departamento de Biología de Sistemas Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Patricia Sánchez‐Alonso
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Bruno Di Geronimo
- Departamento de Química y Bioquímica Facultad de Farmacia Universidad San Pablo CEU 28925 Alcorcón Spain
| | - Francisco Mendicuti
- Departamento de Química Analítica Química Física e Ingeniería Química Universidad de Alcalá 28805 Alcalá de Henares Spain
- Instituto de Investigación Química Andrés M. del Río Facultad de Farmacia Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Manuel Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Departamento de Biología de Sistemas Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Instituto de Investigación Química Andrés M. del Río Facultad de Farmacia Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Beatriz Pascual‐Teresa
- Departamento de Química y Bioquímica Facultad de Farmacia Universidad San Pablo CEU 28925 Alcorcón Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Instituto de Investigación Química Andrés M. del Río Facultad de Farmacia Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Diego Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Departamento de Biología de Sistemas Universidad de Alcalá 28805 Alcalá de Henares Spain
| |
Collapse
|
23
|
Ghattas MA, Al Rawashdeh S, Atatreh N, Bryce RA. How Do Small Molecule Aggregates Inhibit Enzyme Activity? A Molecular Dynamics Study. J Chem Inf Model 2020; 60:3901-3909. [PMID: 32628846 DOI: 10.1021/acs.jcim.0c00540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small molecule compounds which form colloidal aggregates in solution are problematic in early drug discovery; adsorption of the target protein by these aggregates can lead to false positives in inhibition assays. In this work, we probe the molecular basis of this inhibitory mechanism using molecular dynamics simulations. Specifically, we examine in aqueous solution the adsorption of the enzymes β-lactamase and PTP1B onto aggregates of the drug miconazole. In accordance with experiment, molecular dynamics simulations observe formation of miconazole aggregates as well as subsequent association of these aggregates with β-lactamase and PTP1B. When complexed with aggregate, the proteins do not exhibit significant alteration in protein tertiary structure or dynamics on the microsecond time scale of the simulations, but they do indicate persistent occlusion of the protein active site by miconazole molecules. MD simulations further suggest this occlusion can occur via surficial interactions of protein with miconazole but also potentially by envelopment of the protein by miconazole. The heterogeneous polarity of the miconazole aggregate surface seems to underpin its activity as an invasive and nonspecific inhibitory agent. A deeper understanding of these protein/aggregate systems has implications not only for drug design but also for their exploitation as tools in drug delivery and analytical biochemistry.
Collapse
Affiliation(s)
| | - Sara Al Rawashdeh
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
24
|
Kramer J, Himmel HM, Lindqvist A, Stoelzle-Feix S, Chaudhary KW, Li D, Bohme GA, Bridgland-Taylor M, Hebeisen S, Fan J, Renganathan M, Imredy J, Humphries ESA, Brinkwirth N, Strassmaier T, Ohtsuki A, Danker T, Vanoye C, Polonchuk L, Fermini B, Pierson JB, Gintant G. Cross-site and cross-platform variability of automated patch clamp assessments of drug effects on human cardiac currents in recombinant cells. Sci Rep 2020; 10:5627. [PMID: 32221320 PMCID: PMC7101356 DOI: 10.1038/s41598-020-62344-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingzhou Li
- Drug Safety Research & Development, Pfizer, Groton, CT, USA
| | - Georg Andrees Bohme
- Integrated Drug Discovery, High Content Biology Unit, Sanofi R&D, Vitry-Sur-Seine, France
| | | | | | - Jingsong Fan
- Discovery Toxicology, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | | | | | | | | | | | | | - Timm Danker
- Natural and Medical Science Institute at the University of Tübingen, Reutlingen, Germany
| | - Carlos Vanoye
- Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Liudmila Polonchuk
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | |
Collapse
|
25
|
Wágner G, Mocking TAM, Arimont M, Provensi G, Rani B, Silva-Marques B, Latacz G, Da Costa Pereira D, Karatzidou C, Vischer HF, Wijtmans M, Kieć-Kononowicz K, de Esch IJP, Leurs R. 4-(3-Aminoazetidin-1-yl)pyrimidin-2-amines as High-Affinity Non-imidazole Histamine H 3 Receptor Agonists with in Vivo Central Nervous System Activity. J Med Chem 2019; 62:10848-10866. [PMID: 31675226 PMCID: PMC6912857 DOI: 10.1021/acs.jmedchem.9b01462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Despite the high diversity of histamine H3 receptor (H3R) antagonist/inverse agonist structures, partial or full H3R agonists have typically been imidazole derivatives. An in-house screening campaign intriguingly afforded the non-imidazole 4-(3-azetidin-1-yl)pyrimidin-2-amine 11b as a partial H3R agonist. Here, the design, synthesis, and structure-activity relationships of 11b analogues are described. This series yields several non-imidazole full agonists with potencies varying with the alkyl substitution pattern on the basic amine following the in vitro evaluation of H3R agonism using a cyclic adenosine monophosphate response element-luciferase reporter gene assay. The key compound VUF16839 (14d) combines nanomolar on-target activity (pKi = 8.5, pEC50 = 9.5) with weak activity on cytochrome P450 enzymes and good metabolic stability. The proposed H3R binding mode of 14d indicates key interactions similar to those attained by histamine. In vivo evaluation of 14d in a social recognition test in mice revealed an amnesic effect at 5 mg/kg intraperitoneally. The excellent in vitro and in vivo pharmacological profiles and the non-imidazole structure of 14d make it a promising tool compound in H3R research.
Collapse
Affiliation(s)
- Gábor Wágner
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Tamara A. M. Mocking
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Marta Arimont
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gustavo Provensi
- Department of Neuroscience, Psychology,
Drug Research and Child Health,
Section of Pharmacology and Toxicology and Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, CAP 50139 Florence, Italy
| | - Barbara Rani
- Department of Neuroscience, Psychology,
Drug Research and Child Health,
Section of Pharmacology and Toxicology and Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, CAP 50139 Florence, Italy
| | - Bruna Silva-Marques
- Department of Neuroscience, Psychology,
Drug Research and Child Health,
Section of Pharmacology and Toxicology and Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, CAP 50139 Florence, Italy
- Department
of Physiotherapy, Federal University of
São Carlos, Washington
Luís, km 235, SP-310 São Carlos, Brazil
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Cracow, Poland
| | - Daniel Da Costa Pereira
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Christina Karatzidou
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F. Vischer
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Katarzyna Kieć-Kononowicz
- Department
of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Cracow, Poland
| | - Iwan J. P. de Esch
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
26
|
Gramec Skledar D, Tvrdý V, Kenda M, Zega A, Pour M, Horký P, Mladěnka P, Sollner Dolenc M, Peterlin Mašič L. Applicability of the OECD 455 in-vitro assay for determination of hERa agonistic activity of isoflavonoids. Toxicol Appl Pharmacol 2019; 386:114831. [PMID: 31756431 DOI: 10.1016/j.taap.2019.114831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/30/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
The Organisation for Economic Co-operation and Development (OECD)-validated transactivation assay using the human estrogen receptor alpha (hERα) Hela9903 cell line is used for activity evaluation of hERα agonists and antagonists. Due to many advantages, this assay is broadly used as an initial screening process. However, response significantly higher from that of 17-β estradiol (E2) was observed with phytoestrogens for concentrations commonly above 1 μM in previous studies. The main aim of this study was thus to ascertain the applicability of OECD protocol 455 for evaluation of estrogenic activity of natural flavonoids, including known phytoestrogens. The estrogenic activities of aglycones as well as of O-methylated and glycosylated flavonoids were evaluated. Supra-maximal luciferase activity was seen for most of the flavonoids tested at concentrations even below 1 μM. hERα-mediated luciferase expression was confirmed with the competition assay specified in OECD protocol 455. However, at concentrations above 1 μM, non-specific interactions were also observed. Instead of EC50 values, which could not be determined for most of the isoflavonoids tested, the concentrations corresponding to 10% (PC10) and 50% (PC50) of the maximum activity of the positive control, E2, were used for quantitative determination of estrogenic activities. Appropriate evaluation of the data obtained with the current OECD protocol 455 validated assay represents a valuable tool for initial screening of natural flavonoids for estrogenic activity.
Collapse
Affiliation(s)
- Darja Gramec Skledar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Maša Kenda
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Pavel Horký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | | | - Lucija Peterlin Mašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Tres F, Posada MM, Hall SD, Mohutsky MA, Taylor LS. The Effect of Promiscuous Aggregation on in Vitro Drug Metabolism Assays. Pharm Res 2019; 36:170. [PMID: 31654151 DOI: 10.1007/s11095-019-2713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/09/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Many bioactive molecules show a type of solution phase behavior, termed promiscuous aggregation, whereby at micromolar concentrations, colloidal drug-rich aggregates are formed in aqueous solution. These aggregates are known to be a major cause of false positives and false negatives in select enzymatic high-throughput screening assays. The goal of this study was to investigate the impact of drug-rich aggregates on in vitro drug screening metabolism assays. METHODS Cilnidipine was selected as an aggregate former and its impact on drug metabolism was evaluated against rCYP2D6, rCYP1A2, rCYP2C9 and human liver microsomes. RESULTS The cilnidipine aggregates were shown to non-specifically inhibit multiple cytochrome P450 enzymes with an IC50 comparable with the IC50 of potent model inhibitors. CONCLUSIONS This newly demonstrated mode of "promiscuous inhibition" is of great importance as it can lead to false positives during drug metabolism evaluations and thus it needs to be considered in the future to better predict in vivo drug-drug interactions.
Collapse
Affiliation(s)
- Francesco Tres
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Maria M Posada
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, 46285, USA
| | - Stephen D Hall
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, 46285, USA
| | - Michael A Mohutsky
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, 46285, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
28
|
Abstract
Small-molecule aggregates are a leading cause of artifacts in early drug discovery, but little is known about their interactions with proteins, nor why some proteins are more susceptible to inhibition than others. A possible reason for this apparent selectivity is that aggregation-based inhibition, as a stoichiometric process, is sensitive to protein concentration, which varies across assays. Alternatively, local protein unfolding by aggregates may lead to selectivity since stability varies among proteins. To deconvolute these effects, we used differentially stable point mutants of a single protein, TEM-1 β-lactamase. Broadly, destabilized mutants had higher affinities for and were more potently inhibited by aggregates versus more stable variants. The addition of the irreversible inhibitor moxalactam destabilized several mutants, and these typically bound tighter to a colloidal particle, while the only mutant it stabilized bound weaker. These results suggest that less-stable enzymes are more easily sequestered and inhibited by colloidal aggregates.
Collapse
Affiliation(s)
- Hayarpi Torosyan
- Department of Pharmaceutical Chemistry , University of California, San Francisco , 1700 Fourth Street , San Francisco , California 94143-2550 , United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry , University of California, San Francisco , 1700 Fourth Street , San Francisco , California 94143-2550 , United States
| |
Collapse
|
29
|
Bunally SB, Luscombe CN, Young RJ. Using Physicochemical Measurements to Influence Better Compound Design. SLAS DISCOVERY 2019; 24:791-801. [PMID: 31429385 DOI: 10.1177/2472555219859845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During the past decade, the physicochemical quality of molecules under investigation at all stages of the drug discovery process has come under particular scrutiny. The issues associated with excessive lipophilicity and poor solubility in particular are many and varied, ranging from poor outcomes in screening campaigns to promiscuity, limited and/or poorly predictable pharmacokinetic exposure, and, ultimately, greater chances of clinical failure. In this review, contemporary methods to secure key measurements are described along with their relevance to understanding the behavior of molecules in environments pertinent to pharmacological activity. Together, the various measurements contribute to predictive models of both the physicochemical properties themselves and the outcomes they influence.
Collapse
Affiliation(s)
| | | | - Robert J Young
- 1 GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| |
Collapse
|
30
|
Yu X, Huang XP, Kenakin TP, Slocum ST, Chen X, Martini ML, Liu J, Jin J. Design, Synthesis, and Characterization of Ogerin-Based Positive Allosteric Modulators for G Protein-Coupled Receptor 68 (GPR68). J Med Chem 2019; 62:7557-7574. [PMID: 31298539 DOI: 10.1021/acs.jmedchem.9b00869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptor 68 (GPR68) is an understudied orphan G protein-coupled receptor (GPCR). It is expressed most abundantly in the brain, potentially playing important roles in learning and memory. Pharmacological studies with GPR68 have been hindered by lack of chemical tools that can selectively modulate its activity. We previously reported the first small-molecule positive allosteric modulator (PAM), ogerin (1), and showed that 1 can potentiate proton activity at the GPR68-Gs pathway. Here, we report the first comprehensive structure-activity relationship (SAR) study on the scaffold of 1. Our lead compound resulted from this study, MS48107 (71), displayed 33-fold increased allosteric activity compared to 1. Compound 71 demonstrated high selectivity over closely related proton GPCRs and 48 common drug targets, and was bioavailable and brain-penetrant in mice. Thus, our SAR study has resulted in an improved GPR68 PAM for investigating the physiological and pathophysiological roles of GPR68 in vitro and in vivo.
Collapse
Affiliation(s)
- Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | | | | | | | - Xin Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Michael L Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
31
|
Ganesh AN, Aman A, Logie J, Barthel BL, Cogan P, Al-awar R, Koch TH, Shoichet BK, Shoichet MS. Colloidal Drug Aggregate Stability in High Serum Conditions and Pharmacokinetic Consequence. ACS Chem Biol 2019; 14:751-757. [PMID: 30840432 PMCID: PMC6474797 DOI: 10.1021/acschembio.9b00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colloidal drug aggregates have been a nuisance in drug screening, yet, because they inherently comprise drug-rich particles, they may be useful in vivo if issues of stability can be addressed. As the first step toward answering this question, we optimized colloidal drug aggregate formulations using a fluorescence-based assay to study fulvestrant colloidal formation and stability in high (90%) serum conditions in vitro. We show, for the first time, that the critical aggregation concentration of fulvestrant depends on media composition and increases with serum concentration. Excipients, such as polysorbate 80, stabilize fulvestrant colloids in 90% serum in vitro for over 48 h. Using fulvestrant and an investigational pro-drug, pentyloxycarbonyl-( p-aminobenzyl) doxazolidinylcarbamate (PPD), as proof-of-concept colloidal formulations, we demonstrate that the in vivo plasma half-life for stabilized colloids is greater than their respective monomeric forms. These studies demonstrate the potential of turning the nuisance of colloidal drug aggregation into an opportunity for drug-rich formulations.
Collapse
Affiliation(s)
- Ahil N. Ganesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Jennifer Logie
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Ben L. Barthel
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Peter Cogan
- School of Pharmacy, Regis University, 3333 Regis Boulevard, Denver, Colorado 80221-1099, United States
| | - Rima Al-awar
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Tad H. Koch
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
32
|
Reker D, Bernardes GJL, Rodrigues T. Computational advances in combating colloidal aggregation in drug discovery. Nat Chem 2019; 11:402-418. [PMID: 30988417 DOI: 10.1038/s41557-019-0234-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
Small molecule effectors are essential for drug discovery. Specific molecular recognition, reversible binding and dose-dependency are usually key requirements to ensure utility of a novel chemical entity. However, artefactual frequent-hitter and assay interference compounds may divert lead optimization and screening programmes towards attrition-prone chemical matter. Colloidal aggregates are the prime source of false positive readouts, either through protein sequestration or protein-scaffold mimicry. Nevertheless, assessment of colloidal aggregation remains somewhat overlooked and under-appreciated. In this Review, we discuss the impact of aggregation in drug discovery by analysing select examples from the literature and publicly-available datasets. We also examine and comment on technologies used to experimentally identify these potentially problematic entities. We focus on evidence-based computational filters and machine learning algorithms that may be swiftly deployed to flag chemical matter and mitigate the impact of aggregates in discovery programmes. We highlight the tools that can be used to scrutinize libraries, and identify and eliminate these problematic compounds.
Collapse
Affiliation(s)
- Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
33
|
Ortega JT, Parmar T, Jastrzebska B. Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation. J Biol Chem 2019; 294:8101-8122. [PMID: 30944172 DOI: 10.1074/jbc.ra119.007808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin (Rho) is a visual G protein-coupled receptor expressed in the rod photoreceptors of the eye, where it mediates transmission of a light signal into a cell and converts this signal into a nerve impulse. More than 100 mutations in Rho are linked to various ocular impairments, including retinitis pigmentosa (RP). Accordingly, much effort has been directed toward developing ligands that target Rho and improve its folding and stability. Natural compounds may provide another viable approach to such drug discovery efforts. The dietary polyphenol compounds, ubiquitously present in fruits and vegetables, have beneficial effects in several eye diseases. However, the underlying mechanism of their activity is not fully understood. In this study, we used a combination of computational methods, biochemical and biophysical approaches, including bioluminescence resonance energy transfer, and mammalian cell expression systems to clarify the effects of four common bioactive flavonoids (quercetin, myricetin, and their mono-glycosylated forms quercetin-3-rhamnoside and myricetrin) on rod opsin stability, function, and membrane organization. We observed that by directly interacting with ligand-free opsin, flavonoids modulate its conformation, thereby causing faster entry of the retinal chromophore into its binding pocket. Moreover, flavonoids significantly increased opsin stability, most likely by introducing structural rigidity and promoting receptor self-association within the biological membranes. Of note, the binding of flavonoids to an RP-linked P23H opsin variant partially restored its normal cellular trafficking. Together, our results suggest that flavonoids could be utilized as lead compounds in the development of effective nonretinoid therapeutics for managing RP-related retinopathies.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
34
|
Wang R, Wang J, Liu Y, Zhang X, Liang X. Resonant waveguide grating based assays for colloidal aggregate detection and promiscuity characterization in natural products. RSC Adv 2019; 9:38055-38064. [PMID: 35541809 PMCID: PMC9075791 DOI: 10.1039/c9ra06466d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
Small molecules, including natural compounds, in aqueous buffer that self-associate into colloidal aggregates is the main cause of false results in the early stage of drug discovery. Here we reported resonant waveguide grating (RWG) based assays to identify natural compound aggregation and characterize its influence on membrane receptors in living cells. We first applied a cell-free aggregation assay to determine compound critical aggregation concentration (CAC) values. Then we characterized the aggregators' influence on membrane receptors using three types of dynamic mass redistribution (DMR) assays. Results showed that colloidal aggregates may cause false activity in DMR desensitization assays; some of the false activities can be implied by the large response in DMR agonism assays and can further be identified by DMR antagonism assays. Furthermore, the aggregation mechanism was confirmed by addition of 0.025% tween-80, with cell signals attenuated and potency decreased. Finally, these observations were used for aggregate examination and promiscuity investigation of a traditional herbal medicine, Rhodiola rosea, which ultimately led to the revealing of the true target and reduced the risk of a bioactivity tracking process at the very first stage. This study highlights that the RWG based assays can be used as practical tools to distinguish between real and false hits to provide reliable results in the early stage of drug discovery. Resonant waveguide grating based assays to eliminate colloidal aggregate induced false activity involving natural products.![]()
Collapse
Affiliation(s)
- Rong Wang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiuli Zhang
- College of Pharmaceutical Science
- Soochow University
- Suzhou 215123
- China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
35
|
Weiss D, Karpiak J, Huang XP, Sassano MF, Lyu J, Roth BL, Shoichet BK. Selectivity Challenges in Docking Screens for GPCR Targets and Antitargets. J Med Chem 2018; 61:6830-6845. [PMID: 29990431 PMCID: PMC6105036 DOI: 10.1021/acs.jmedchem.8b00718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 12/14/2022]
Abstract
To investigate large library docking's ability to find molecules with joint activity against on-targets and selectivity versus antitargets, the dopamine D2 and serotonin 5-HT2A receptors were targeted, seeking selectivity against the histamine H1 receptor. In a second campaign, κ-opioid receptor ligands were sought with selectivity versus the μ-opioid receptor. While hit rates ranged from 40% to 63% against the on-targets, they were just as good against the antitargets, even though the molecules were selected for their putative lack of binding to the off-targets. Affinities, too, were often as good or better for the off-targets. Even though it was occasionally possible to find selective molecules, such as a mid-nanomolar D2/5-HT2A ligand with 21-fold selectivity versus the H1 receptor, this was the exception. Whereas false-negatives are tolerable in docking screens against on-targets, they are intolerable against antitargets; addressing this problem may demand new strategies in the field.
Collapse
Affiliation(s)
- Dahlia
R. Weiss
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Joel Karpiak
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Xi-Ping Huang
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Maria F. Sassano
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jiankun Lyu
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Bryan L. Roth
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| |
Collapse
|
36
|
Gómez-Santacana X, de Munnik SM, Vijayachandran P, Da Costa Pereira D, Bebelman JPM, de Esch IJP, Vischer HF, Wijtmans M, Leurs R. Photoswitching the Efficacy of a Small-Molecule Ligand for a Peptidergic GPCR: from Antagonism to Agonism. Angew Chem Int Ed Engl 2018; 57:11608-11612. [PMID: 29926530 DOI: 10.1002/anie.201804875] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/29/2023]
Abstract
For optical control of GPCR function, we set out to develop small-molecule ligands with photoswitchable efficacy in which both configurations bind the target protein but exert distinct pharmacological effects, that is, stimulate or antagonize GPCR activation. Our design was based on a previously identified efficacy hotspot for the peptidergic chemokine receptor CXCR3 and resulted in the synthesis and characterization of five new azobenzene-containing CXCR3 ligands. G protein activation assays and real-time electrophysiology experiments demonstrated photoswitching from antagonism to partial agonism and even to full agonism (compound VUF16216). SAR evaluation suggests that the size and electron-donating properties of the substituents on the inner aromatic ring are important for the efficacy photoswitching. These compounds are the first GPCR azo ligands with a nearly full efficacy photoswitch and may become valuable pharmacological tools for the optical control of peptidergic GPCR signaling.
Collapse
Affiliation(s)
- Xavier Gómez-Santacana
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sabrina M de Munnik
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Prashanna Vijayachandran
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Daniel Da Costa Pereira
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Jan Paul M Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Gómez-Santacana X, de Munnik SM, Vijayachandran P, Da Costa Pereira D, Bebelman JPM, de Esch IJP, Vischer HF, Wijtmans M, Leurs R. Photoswitching the Efficacy of a Small-Molecule Ligand for a Peptidergic GPCR: from Antagonism to Agonism. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xavier Gómez-Santacana
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Sabrina M. de Munnik
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Prashanna Vijayachandran
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Daniel Da Costa Pereira
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Jan Paul M. Bebelman
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Henry F. Vischer
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
38
|
Be Aware of Aggregators in the Search for Potential Human ecto-5'-Nucleotidase Inhibitors. Molecules 2018; 23:molecules23081876. [PMID: 30060466 PMCID: PMC6222861 DOI: 10.3390/molecules23081876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
Promiscuous inhibition due to aggregate formation has been recognized as a major concern in drug discovery campaigns. Here, we report some aggregators identified in a virtual screening (VS) protocol to search for inhibitors of human ecto-5′-nucleotidase (ecto-5′-NT/CD73), a promising target for several diseases and pathophysiological events, including cancer, inflammation and autoimmune diseases. Four compounds (A, B, C and D), selected from the ZINC-11 database, showed IC50 values in the micromolar range, being at the same time computationally predicted as potential aggregators. To confirm if they inhibit human ecto-5′-NT via promiscuous mechanism, forming aggregates, enzymatic assays were done in the presence of 0.01% (v/v) Triton X-100 and an increase in the enzyme concentration by 10-fold. Under both experimental conditions, these four compounds showed a significant decrease in their inhibitory activities. To corroborate these findings, turbidimetric assays were performed, confirming that they form aggregate species. Additionally, aggregation kinetic studies were done by dynamic light scattering (DLS) for compound C. None of the identified aggregators has been previously reported in the literature. For the first time, aggregation and promiscuous inhibition issues were systematically studied and evaluated for compounds selected by VS as potential inhibitors for human ecto-5′-NT. Together, our results reinforce the importance of accounting for potential false-positive hits acting by aggregation in drug discovery campaigns to avoid misleading assay results.
Collapse
|
39
|
Tres F, Hall SD, Mohutsky MA, Taylor LS. Monitoring the Phase Behavior of Supersaturated Solutions of Poorly Water-Soluble Drugs Using Fluorescence Techniques. J Pharm Sci 2018; 107:94-102. [DOI: 10.1016/j.xphs.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 01/11/2023]
|
40
|
Abstract
Over the past few decades, NMR spectroscopy has become an established tool in drug discovery. This communication will highlight the potential of NMR spectroscopy as a method for identification of problematic compounds and as a valuable aid toward revealing some mechanisms of promiscuous behavior. NMR methods for detecting false positives will be analyzed on the basis of their performance, strengths, limitations, and potential pitfalls. Additionally, this communication aims to provide an insight into the limitations of NMR-based methodologies applied to ligand screening in the context of false-positive hits.
Collapse
Affiliation(s)
- Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
41
|
Ghattas MA, Bryce RA, Al Rawashdah S, Atatreh N, Zalloum WA. Comparative Molecular Dynamics Simulation of Aggregating and Non-Aggregating Inhibitor Solutions: Understanding the Molecular Basis of Promiscuity. ChemMedChem 2017; 13:500-506. [PMID: 29058775 DOI: 10.1002/cmdc.201700654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/08/2022]
Abstract
The presence of false positives in enzyme inhibition assays is a common problem in early drug discovery, especially for compounds that form colloid aggregates in solution. The molecular basis of these aggregates could not be thoroughly explored because of their transient stability. In this study we conducted comparative molecular dynamics (MD) simulations of miconazole, a strong aggregator, and fluconazole, a known non-aggregator. Interestingly, miconazole displays full aggregation within only 50 ns, whilst fluconazole shows no aggregation over the 500 ns simulation. The simulations indicate that the center of the aggregate is densely packed by the hydrophobic groups of miconazole, whereas polar and nonpolar groups comprise the surface to form a micelle-like colloid. The amphiphilic moment and planar nature of the miconazole structure appear to promote its aggregating behavior. The simulations also predict rapid aggregate formation for a second known promiscuous inhibitor, nicardipine. Thus, MD appears to be a useful tool to characterize aggregate-prone inhibitors at molecular-level detail and has the potential to provide useful information for drug discovery and formulation design.
Collapse
Affiliation(s)
- Mohammad A Ghattas
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, 64141, UAE
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, UK
| | - Sara Al Rawashdah
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, 64141, UAE
| | - Noor Atatreh
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, 64141, UAE
| | - Waleed A Zalloum
- Faculty of Health Sciences, American University of Madaba, Amman, Jordan
| |
Collapse
|
42
|
Nguyen T, Decker AM, Langston TL, Mathews KM, Siemian JN, Li JX, Harris DL, Runyon SP, Zhang Y. Discovery of Novel Proline-Based Neuropeptide FF Receptor Antagonists. ACS Chem Neurosci 2017; 8:2290-2308. [PMID: 28737888 DOI: 10.1021/acschemneuro.7b00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The neuropeptide FF (NPFF) system has been implicated in a number of physiological processes including modulating the pharmacological activity of opioid analgesics and several other classes of drugs of abuse. In this study, we report the discovery of a novel proline scaffold with antagonistic activity at the NPFF receptors through a high throughput screening campaign using a functional calcium mobilization assay. Focused structure-activity relationship studies on the initial hit 1 have resulted in several analogs with calcium mobilization potencies in the submicromolar range and modest selectivity for the NPFF1 receptor. Affinities and potencies of these compounds were confirmed in radioligand binding and functional cAMP assays. Two compounds, 16 and 33, had good solubility and blood-brain barrier permeability that fall within the range of CNS permeant candidates without the liability of being a P-glycoprotein substrate. Finally, both compounds reversed fentanyl-induced hyperalgesia in rats when administered intraperitoneally. Together, these results point to the potential of these proline analogs as promising NPFF receptor antagonists.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M. Decker
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L. Langston
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Kelly M. Mathews
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Justin N. Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14214, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14214, United States
| | - Danni L. Harris
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Scott P. Runyon
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
43
|
de Souza AS, de Oliveira MT, Andricopulo AD. Development of a pharmacophore for cruzain using oxadiazoles as virtual molecular probes: quantitative structure–activity relationship studies. J Comput Aided Mol Des 2017; 31:801-816. [DOI: 10.1007/s10822-017-0039-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
|
44
|
Bongard RD, Lepley M, Thakur K, Talipov MR, Nayak J, Lipinski RAJ, Bohl C, Sweeney N, Ramchandran R, Rathore R, Sem DS. Serendipitous discovery of light-induced (In Situ) formation of an Azo-bridged dimeric sulfonated naphthol as a potent PTP1B inhibitor. BMC BIOCHEMISTRY 2017; 18:10. [PMID: 28569147 PMCID: PMC5452347 DOI: 10.1186/s12858-017-0083-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 05/10/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results. RESULTS Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5. CONCLUSION We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common mechanism of inhibitory action for these scaffolds.
Collapse
Affiliation(s)
- Robert D. Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, WI 53097 USA
| | - Michael Lepley
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Children’s Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226 USA
| | - Khushabu Thakur
- Department of Chemistry, Marquette University, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street, Milwaukee, WI 53201 USA
| | - Marat R. Talipov
- Department of Chemistry, Marquette University, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street, Milwaukee, WI 53201 USA
| | - Jaladhi Nayak
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Children’s Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226 USA
| | - Rachel A. Jones Lipinski
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Children’s Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226 USA
- Department of Chemistry, Marquette University, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street, Milwaukee, WI 53201 USA
| | - Chris Bohl
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, WI 53097 USA
| | - Noreena Sweeney
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, WI 53097 USA
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Children’s Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226 USA
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street, Milwaukee, WI 53201 USA
| | - Daniel S. Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, WI 53097 USA
| |
Collapse
|
45
|
Ganesh AN, Logie J, McLaughlin CK, Barthel BL, Koch TH, Shoichet BK, Shoichet MS. Leveraging Colloidal Aggregation for Drug-Rich Nanoparticle Formulations. Mol Pharm 2017; 14:1852-1860. [PMID: 28502177 DOI: 10.1021/acs.molpharmaceut.6b01015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While limited drug loading continues to be problematic for chemotherapeutics formulated in nanoparticles, we found that we could take advantage of colloidal drug aggregation to achieve high loading when combined with polymeric excipients. We demonstrate this approach with two drugs, fulvestrant and pentyl-PABC doxazolidine (PPD; a prodrug of doxazolidine, which is a DNA cross-linking anthracycline), and two polymers, polysorbate 80 (UP80) and poly(d,l-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-graft-poly(ethylene glycol) (PLAC-PEG; a custom-synthesized, self-assembling amphiphilic polymer). In both systems, drug-loaded nanoparticles had diameters < 200 nm and were stable for up to two days in buffered saline solution and for up to 24 h in serum-containing media at 37 °C. While colloidal drug aggregates alone are typically unstable in saline and serum-containing media, we attribute the colloid stability observed herein to the polymeric excipients and consequent decreased protein adsorption. We expect this strategy of polymer-stabilized colloidal drug aggregates to be broadly applicable in delivery formulations.
Collapse
Affiliation(s)
- Ahil N Ganesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario, Canada M5S 3E5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto , 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Jennifer Logie
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario, Canada M5S 3E5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto , 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Christopher K McLaughlin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario, Canada M5S 3E5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto , 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Benjamin L Barthel
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Tad H Koch
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco , 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario, Canada M5S 3E5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto , 164 College Street, Toronto, Ontario, Canada M5S 3G9.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
46
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS Infect Dis 2017; 3:259-262. [PMID: 28244723 DOI: 10.1021/acsinfecdis.7b00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS Med Chem Lett 2017; 8:379-382. [PMID: 28435522 DOI: 10.1021/acsmedchemlett.7b00056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Ganesh AN, McLaughlin CK, Duan D, Shoichet BK, Shoichet MS. A New Spin on Antibody-Drug Conjugates: Trastuzumab-Fulvestrant Colloidal Drug Aggregates Target HER2-Positive Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12195-12202. [PMID: 28319364 PMCID: PMC5486225 DOI: 10.1021/acsami.6b15987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
While the formation of colloidal aggregates leads to artifacts in early drug discovery, their composition makes them attractive as nanoparticle formulations for targeted drug delivery as the entire nanoparticle is composed of drug. The typical transient stability of colloidal aggregates has inhibited exploiting this property. To overcome this limitation, we investigated a series of proteins to stabilize colloidal aggregates of the chemotherapeutic, fulvestrant, including the following: bovine serum albumin, a generic human immunoglobulin G, and trastuzumab, a therapeutic human epidermal growth factor receptor 2 antibody. Protein coronas reduced colloid size to <300 nm and improved their stability to over 48 h in both buffered saline and media containing serum protein. Unlike colloids stabilized with other proteins, trastuzumab-fulvestrant colloids were taken up by HER2 overexpressing cells and were cytotoxic. This new targeted formulation reimagines antibody-drug conjugates, delivering mM concentrations of drug to a cell.
Collapse
Affiliation(s)
- Ahil N. Ganesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Christopher K. McLaughlin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Da Duan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
- Corresponding Authors: (M.S.S.) ., (B.K.S.)
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
- Corresponding Authors: (M.S.S.) ., (B.K.S.)
| |
Collapse
|
49
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS CENTRAL SCIENCE 2017; 3:143-147. [PMID: 28386587 PMCID: PMC5364449 DOI: 10.1021/acscentsci.7b00069] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
50
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS Chem Biol 2017; 12:575-578. [PMID: 28244728 DOI: 10.1021/acschembio.7b00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|