1
|
Kaniewska K, Mackiewicz M, Smutok O, Gonchar M, Katz E, Karbarz M. Enzymatically Triggered Drug Release from Microgels Controlled by Glucose Concentration. ACS Biomater Sci Eng 2024; 10:6415-6424. [PMID: 39356930 PMCID: PMC11480938 DOI: 10.1021/acsbiomaterials.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx). TEM images revealed that the sizes of air-dried p(AA-BIS)-GOx microgels were approximately 130 nm. DLS measurements showed glucose-triggered microgel size changes upon glucose addition, which depended on buffer concentration. Enzymatically triggered drug release experiments using doxorubicin-loaded microgels with immobilized GOx demonstrated that drug release is strongly dependent on glucose and buffer concentration. The highest differences in release triggered by 5 and 25 mM glucose were observed in HEPES buffer at concentrations of 3 and 9 mM. Under these conditions, 80 and 52% of DOX were released with 25 mM glucose, while 47 and 28% of DOX were released with 5 mM glucose. The interstitial glucose concentration in a tumor ranges from ∼15 to 50 mM. Normal fasting blood glucose levels are about 5.5 mM, and postprandial (2 h after a meal) glucose levels should be less than 7.8 mM. The obtained results highlight the microgel's potential for drug delivery using the enhanced permeability and retention (EPR) effect, where drug release is controlled by enzymatically generated pH changes in response to elevated glucose concentrations.
Collapse
Affiliation(s)
- Klaudia Kaniewska
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, Warsaw, PL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| | - Marcin Mackiewicz
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| | - Oleh Smutok
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam 13699, New York, United States
| | - Mykhailo Gonchar
- Institute
of Cell Biology, National Academy of Sciences
of Ukraine, Lviv 79005, Ukraine
| | - Evgeny Katz
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam 13699, New York, United States
| | - Marcin Karbarz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, Warsaw, PL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| |
Collapse
|
2
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
3
|
Zhou S, Chino Y, Kasama T, Miyake R, Mitsuzawa S, Luan Y, Ahmad NB, Hibino H, Takai M. Biocompatible Core-Shell Microneedle Sensor Filled with Zwitterionic Polymer Hydrogel for Rapid Continuous Transdermal Monitoring. ACS NANO 2024; 18:26541-26559. [PMID: 39297515 PMCID: PMC11447902 DOI: 10.1021/acsnano.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 10/02/2024]
Abstract
Microneedle (MN)-based electrochemical biosensors hold promising potential for noninvasive continuous monitoring of interstitial fluid biomarkers. However, challenges, such as instability and biofouling, exist. This study proposes a design employing hollow MN to encapsulate a zwitterionic polymer hydrogel sensing layer with excellent biocompatibility and antifouling properties to address these issues. MN shell isolates the internal microporous sensing layer from subcutaneous friction, and the hydrogel filling leverages the MNs' three-dimensional structures, enabling high-dense loading of biorecognition elements. The hollow MNs are successfully fabricated from high-molecular-weight polylactic acid via drawing lithography, exhibiting sufficient strength for effective epidermis penetration. Additionally, a high-performance gold nanoconductive layer is successfully deposited inside the MN hollow channel, establishing a stable electrical connection between the polymer MN and the hydrogel sensing layer. To support the design, numerical simulations of position-based diffusive analyte solutes reveal fast-responsive electrochemical signals attributed to the high diffusion coefficient of the hydrogel and the concentrated structure of the hollow channel encapsulation. Experimental results and numerical simulations underscore the advantages of this design, showcasing rapid response, high sensitivity, long-term stability, and excellent antifouling properties. Fabricated MN sensors exhibited biosafety, feasibility, and effectiveness, with accurate and rapid in vivo glucose monitoring ability. This study emphasizes the significance of rational design, structural utilization, and micro-nanofabrication to unlock the untapped potential of MN biosensors.
Collapse
Affiliation(s)
- Shicheng Zhou
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yutaro Chino
- Sanyo
Chemical Industries, Ltd., Kyoto 605-0995, Japan
| | - Toshihiro Kasama
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society,
Nagoya University, Nagoya 236-0027, Japan
| | - Ryo Miyake
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | | | - Yinan Luan
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Norzahirah Binti Ahmad
- Division
of Glocal Pharmacology, Department of Pharmacology, Graduate School
of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Hibino
- Division
of Glocal Pharmacology, Department of Pharmacology, Graduate School
of Medicine, Osaka University, Osaka 565-0871, Japan
- AMED-CREST,
AMED, Osaka 565-0871, Japan
| | - Madoka Takai
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
4
|
Kim M, Kang DH, Choi JH, Choi DG, Lee J, Lee J, Jung JY. Highly sensitive and label-free protein immunoassay-based biosensor comprising infrared metamaterial absorber inducing strong coupling. Biosens Bioelectron 2024; 260:116436. [PMID: 38824701 DOI: 10.1016/j.bios.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
A mid-infrared label-free immunoassay-based biosensor is an effective device to help identify and quantify biomolecules. This biosensor employs a surface-enhanced infrared absorption spectroscopy, which is a highly potent sensing technique for detecting minute quantities of analytes. In this study, a biosensor was constructed using a metamaterial absorber, which facilitated strong coupling effects. For maximum coupling effect, it is necessary to enhance the near-field intensity and the spatial and spectral overlap between the optical cavity resonance and the vibrational mode of the analyte. Due to significant peak splitting, conventional baseline correction methods fail to adequately analyze such a coupling system. Therefore, we employed a coupled harmonic oscillation model to analyze the spectral distortion resulting from the peak splitting induced by the strong coupling effect. The proposed biosensor with a thrombin-binding aptamer-based immunoassay could achieve a limit of detection of 267.4 pM, paving the way for more efficient protein detection in clinical practice.
Collapse
Affiliation(s)
- Mingyun Kim
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Do Hyun Kang
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jun-Hyuk Choi
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Dae-Geun Choi
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jihye Lee
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jongwon Lee
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Joo-Yun Jung
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea.
| |
Collapse
|
5
|
Csányi E, Hammond DB, Bower B, Johnson EC, Lishchuk A, Armes SP, Dong Z, Leggett GJ. XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment-Polymer Antenna Complexes Using a Gas Cluster Ion Source. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14527-14539. [PMID: 38954522 PMCID: PMC11256746 DOI: 10.1021/acs.langmuir.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6-9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.
Collapse
Affiliation(s)
- Evelin Csányi
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
- Institute
of Materials Research and Engineering, A*STAR
(Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Deborah B. Hammond
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Benjamin Bower
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Anna Lishchuk
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Zhaogang Dong
- Institute
of Materials Research and Engineering, A*STAR
(Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
6
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Yin C, Zhao X, Liu Z, Ma L, Sun P, He L, Huang H, Bai P. Highly sensitive "off-on" sensor based on MXene and magnetic microspheres for simultaneous detection of lung cancer biomarkers - Neuron specific enolase and carcinoembryonic antigen. Talanta 2024; 274:126022. [PMID: 38574538 DOI: 10.1016/j.talanta.2024.126022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
In this work, a highly sensitive lung cancer biomarkers detection probe was developed based on Ag and MXene co-functionalized magnetic microspheres. By using carboxyl magnetic microspheres as carrier, MXene was coated repeatedly by Poly (allylamine hydrochloride) (PAH) as interlayer adhesive, and silver particles grown on the surface of MXene in situ can efficiently improve the sensitivity of the probe. The detection of neuron specific enolase (NSE) is mainly through the formation of a specific complex between NSE antigen and antibody, and the release of antibody labeled with amino carbon quantum dots (CQDs) from the surface of Ag nanoparticles (AgNPs), so that the fluorescence is restored and "OFF-ON" is formed. The biosensor exhibits excellently wide linear range (0.0001-1500 ng/mL) and the limit of detection (LOD) is up to 0.03 pg/mL, which is superior to most tumor marker probes based on fluorescence mechanism. Furthermore, we constructed dual detection strategy for NSE and carcinoembryonic antigen (CEA) simultaneously.
Collapse
Affiliation(s)
- Chenyu Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China; College of Mechanics and Materials, Hohai University, 8 Focheng West Road, Nanjing, 210098, People's Republic of China
| | - Xiang Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China; College of Mechanics and Materials, Hohai University, 8 Focheng West Road, Nanjing, 210098, People's Republic of China
| | - Zhizhou Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China
| | - Le Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China; College of Mechanics and Materials, Hohai University, 8 Focheng West Road, Nanjing, 210098, People's Republic of China
| | - Pengyun Sun
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China; College of Mechanics and Materials, Hohai University, 8 Focheng West Road, Nanjing, 210098, People's Republic of China
| | - Liang He
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China; Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong, 250013, People's Republic of China.
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, 8 Focheng West Road, Nanjing, 210098, People's Republic of China.
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China.
| |
Collapse
|
8
|
Wang H, Tang H, Qiu X, Li Y. Solid-State Glass Nanopipettes: Functionalization and Applications. Chemistry 2024; 30:e202400281. [PMID: 38507278 DOI: 10.1002/chem.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Solid-state glass nanopipettes provide a promising confined space that offers several advantages such as controllable size, simple preparation, low cost, good mechanical stability, and good thermal stability. These advantages make them an ideal choice for various applications such as biosensors, DNA sequencing, and drug delivery. In this review, we first delve into the functionalized nanopipettes for sensing various analytes and the methods used to develop detection means with them. Next, we provide an in-depth overview of the advanced functionalization methodologies of nanopipettes based on diversified chemical kinetics. After that, we present the latest state-of-the-art achievements and potential applications in detecting a wide range of targets, including ions, molecules, biological macromolecules, and single cells. We examine the various challenges that arise when working with these targets, as well as the innovative solutions developed to overcome them. The final section offers an in-depth overview of the current development status, newest trends, and application prospects of sensors. Overall, this review provides a comprehensive and detailed analysis of the current state-of-the-art functionalized nanopipette perception sensing and development of detection means and offers valuable insights into the prospects for this exciting field.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
9
|
Broumidis E, Paradisi F. Engineering a Dual-Functionalized PolyHIPE Resin for Photobiocatalytic Flow Chemistry. Angew Chem Int Ed Engl 2024; 63:e202401912. [PMID: 38507522 DOI: 10.1002/anie.202401912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges, including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits, such as integrated processes, reusability, easier product separation, and potential for scalability, can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this study, we employed a photosensitizer-containing porous emulsion-templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material, which enables the bromination of four aromatic substrates, including rutin-a natural occurring flavonol-under blue light (456 nm) irradiation and continuous flow conditions.
Collapse
Affiliation(s)
- Emmanouil Broumidis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH3012, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH3012, Bern, Switzerland
| |
Collapse
|
10
|
Ansari MA, Mohd-Naim NF, Ahmed MU. Electrochemical Nanoaptasensor Based on Graphitic Carbon Nitride/Zirconium Dioxide/Multiwalled Carbon Nanotubes for Matrix Metalloproteinase-9 in Human Serum and Saliva. ACS APPLIED BIO MATERIALS 2024; 7:1579-1587. [PMID: 38386014 DOI: 10.1021/acsabm.3c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this study, a nanocomposite was synthesized by incorporating graphitic carbon nanosheets, carboxyl-functionalized multiwalled carbon nanotubes, and zirconium oxide nanoparticles. The resulting nanocomposite was utilized for the modification of a glassy carbon electrode. Subsequently, matrix metalloproteinase aptamer (AptMMP-9) was immobilized onto the electrode surface through the application of ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride-N-hydroxysuccinimide (EDC-NHS) chemistry. Morphological characterization of the nanomaterials and the nanocomposite was performed using field-emission scanning electron microscopy (FESEM). The nanocomposite substantially increased the electroactive surface area by 205%, facilitating enhanced immobilization of AptMMP-9. The efficacy of the biosensor was evaluated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimal conditions, the fabricated sensor demonstrated a broad range of detection from 50 to 1250 pg/mL with an impressive lower limit of detection of 10.51 pg/mL. In addition, the aptasensor exhibited remarkable sensitivity, stability, excellent selectivity, reproducibility, and real-world applicability when tested with human serum and saliva samples. In summary, our developed aptasensor exhibits significant potential as an advanced biosensing tool for the point-of-care quantification of MMP-9, promising advancements in biomarker detection for practical applications.
Collapse
Affiliation(s)
- Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| |
Collapse
|
11
|
Wang J, Zhang L, Yan G, Cheng L, Zhang F, Wu J, Lei Y, An Q, Qi H, Zhang C, Gao Q. Modified exfoliated graphene functionalized with carboxylic acid-group and thionine on a screen-printed carbon electrode as a platform for an electrochemical enzyme immunosensor. Mikrochim Acta 2024; 191:143. [PMID: 38368295 DOI: 10.1007/s00604-024-06212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
An enzyme immunoassay was developed based on the coulometric measurement of immunoglobulin M (IgM) against Hantaan viruses (HTNV) by using virus-like particles (VLPs) as recognition molecules. The surface functionalization of screen-printed carbon electrodes (SPCEs) was achieved through paste-exfoliated graphene that was modified with a COOH group and a thionine mediator through supramolecular-covalent scaffolds, on SPCEs by using the binder contained in the ink. After the covalent immobilization of the antibody, the sensor was used for the sandwich enzyme immunoassay of IgM against HTNV. By using HTNV VLPs as the second recognization molecules, the resulting sensor efficiently monitored the reaction of IgM against HTNV and anti-IgM antibody with high specificity. By attaching HTNV nucleocapsid protein antibody conjugate with horseradish peroxidase (HRP) onto VLPs, the signal response of the assay was derived from the coulometric measurement of H2O2 reduction mediated by thionine on the electrode surface after the application of a potential (- 0.2 V vs. Ag/AgCl). The ratio of charges measured before or after H2O2 addition was used to quantify IgM because these charges could be used as background charges or total charges, respectively. The ratio exhibited good agreement with IgM concentration within a range 0.1 to 1000 pg mL-1, and a detection limit of 0.06 pg mL-1 was obtained. The assay demonstrated high sensitivity and specificity toward HTNV-specific IgM in serum.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Liang Zhang
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Guanrong Yan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Linfeng Cheng
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jialin Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yingfeng Lei
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Qunxing An
- Department of Transfusion Medicine, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
12
|
Younes HM, Kadavil H, Ismail HM, Adib SA, Zamani S, Alany RG, Al-Kinani AA. Overview of Tissue Engineering and Drug Delivery Applications of Reactive Electrospinning and Crosslinking Techniques of Polymeric Nanofibers with Highlights on Their Biocompatibility Testing and Regulatory Aspects. Pharmaceutics 2023; 16:32. [PMID: 38258043 PMCID: PMC10818558 DOI: 10.3390/pharmaceutics16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Traditional electrospinning is a promising technique for fabricating nanofibers for tissue engineering and drug delivery applications. The method is highly efficient in producing nanofibers with morphology and porosity similar to the extracellular matrix. Nonetheless, and in many instances, the process has faced several limitations, including weak mechanical strength, large diameter distributions, and scaling-up difficulties of its fabricated electrospun nanofibers. The constraints of the polymer solution's intrinsic properties are primarily responsible for these limitations. Reactive electrospinning constitutes a novel and modified electrospinning techniques developed to overcome those challenges and improve the properties of the fabricated fibers intended for various biomedical applications. This review mainly addresses reactive electrospinning techniques, a relatively new approach for making in situ or post-crosslinked nanofibers. It provides an overview of and discusses the recent literature about chemical and photoreactive electrospinning, their various techniques, their biomedical applications, and FDA regulatory aspects related to their approval and marketing. Another aspect highlighted in this review is the use of crosslinking and reactive electrospinning techniques to enhance the fabricated nanofibers' physicochemical and mechanical properties and make them more biocompatible and tailored for advanced intelligent drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Husam M. Younes
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hana Kadavil
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hesham M. Ismail
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Charles River Laboratories, Montreal, QC H9X 3R3, Canada
| | - Sandi Ali Adib
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Somayeh Zamani
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Raid G. Alany
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT2 7LB, UK
| | - Ali A. Al-Kinani
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
| |
Collapse
|
13
|
Passos J, Lopes LB, Panitch A. Collagen-Binding Nanoparticles for Paclitaxel Encapsulation and Breast Cancer Treatment. ACS Biomater Sci Eng 2023; 9:6805-6820. [PMID: 37982792 PMCID: PMC10716849 DOI: 10.1021/acsbiomaterials.3c01332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
In this study, we developed a novel hybrid collagen-binding nanocarrier for potential intraductal administration and local breast cancer treatment. The particles were formed by the encapsulation of nanostructured lipid carriers (NLCs) containing the cytotoxic drug paclitaxel within a shell of poly(N-isopropylacrylamide) (pNIPAM), and were functionalized with SILY, a peptide that binds to collagen type I (which is overexpressed in the mammary tumor microenvironment) to improve local retention and selectivity. The encapsulation of the NLCs in the pNIPAM shell increased nanoparticle size by approximately 140 nm, and after purification, a homogeneous system of hybrid nanoparticles (∼96%) was obtained. The nanoparticles exhibited high loading efficiency (<76%) and were capable of prolonging paclitaxel release for up to 120 h. SILY-modified nanoparticles showed the ability to bind to collagen-coated surfaces and naturally elaborated collagen. Hybrid nanoparticles presented cytotoxicity up to 3.7-fold higher than pNIPAM-only nanoparticles on mammary tumor cells cultured in monolayers. In spheroids, the increase in cytotoxicity was up to 1.8-fold. Compared to lipid nanoparticles, the hybrid nanoparticle modified with SILY increased the viability of nontumor breast cells by up to 1.59-fold in a coculture model, suggesting the effectiveness and safety of the system.
Collapse
Affiliation(s)
- Julia
Sapienza Passos
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Department
of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Luciana B. Lopes
- Department
of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Alyssa Panitch
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Nallamothu B, Kuche K, Ghadi R, Chaudhari D, Jain S. Enhancing oral bioavailability of insulin through bilosomes: Implication of charge and chain length on apical sodium-dependent bile acid transporter (ASBT) uptake. Int J Biol Macromol 2023; 252:126565. [PMID: 37640185 DOI: 10.1016/j.ijbiomac.2023.126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This study investigates the impact of charge and chain length of bile salts in the bilosomes on the oral bioavailability of insulin (IN) by examining their uptake via the apical sodium-dependent bile acid transporter (ASBT). Deoxycholic acid bile salt was conjugated with different amino acids to create conjugates with varying charge and chain length, which were then embedded in liposomes. The resulting bilosomes had a particle size <400 nm, a PDI of 0.121 ± 0.03, and an entrapment efficiency of ∼70 %, while maintaining the chemical and conformational integrity of the loaded IN. Bilosomes also provided superior protection in biological fluids without compromising their biophysical attributes. Quantitative studies using the Caco-2 cell line demonstrated that anionic bilosomes were taken up more efficiently through ASBT than cationic bilosomes with 4- and 1.3-fold increase, respectively. Ex-vivo permeability studies corroborated these findings. In-vivo efficacy studies revealed a 1.6-fold increase in the AUC of IN with bilosomes compared to subcutaneous IN. The developed bilosomes were able to reduce blood glucose levels by ∼65 % at 6 h, with a cumulative hypoglycemic value of 35 % and a BAR of ∼30 %. These results suggest that ASBT can be a suitable target for improving the oral bioavailability of bilosomes containing IN.
Collapse
Affiliation(s)
- Bhargavi Nallamothu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India.
| |
Collapse
|
15
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
16
|
Li Y, Liu J, Lian C, Yang H, Zhang M, Wang Y, Dai H. Bioactive citrate-based polyurethane tissue adhesive for fast sealing and promoted wound healing. Regen Biomater 2023; 11:rbad101. [PMID: 38173771 PMCID: PMC10761209 DOI: 10.1093/rb/rbad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024] Open
Abstract
As a superior alternative to sutures, tissue adhesives have been developed significantly in recent years. However, existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces, bond weakly in wet environments and lack bioactivity. In this study, a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion. The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments, which can effectively improve the wet bonding strength. This citrate-based polyurethane adhesive provides rapid, non-invasive, liquid-tight and seamless closure of skin incisions, overcoming the limitations of sutures and commercial tissue adhesives. In addition, it exhibits biocompatibility, biodegradability and hemostatic properties. The degradation product citrate could promote the process of angiogenesis and accelerate wound healing. This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - He Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Mingjiang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
| |
Collapse
|
17
|
Calvo R, Rodriguez Mariblanca I, Pini V, Dias M, Cebrian V, Thon A, Saad A, Salvador-Matar A, Ahumada Ó, Manso Silván M, Saunders AE, Wang W, Stassinopoulos A. Novel Characterization Techniques for Multifunctional Plasmonic-Magnetic Nanoparticles in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2929. [PMID: 37999283 PMCID: PMC10675523 DOI: 10.3390/nano13222929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
In the rapidly emerging field of biomedical applications, multifunctional nanoparticles, especially those containing magnetic and plasmonic components, have gained significant attention due to their combined properties. These hybrid systems, often composed of iron oxide and gold, provide both magnetic and optical functionalities and offer promising avenues for applications in multimodal bioimaging, hyperthermal therapies, and magnetically driven selective delivery. This paper focuses on the implementation of advanced characterization methods, comparing statistical analyses of individual multifunctional particle properties with macroscopic properties as a way of fine-tuning synthetic methodologies for their fabrication methods. Special emphasis is placed on the size-dependent properties, biocompatibility, and challenges that can arise from this versatile nanometric system. In order to ensure the quality and applicability of these particles, various novel methods for characterizing the magnetic gold particles, including the analysis of their morphology, optical response, and magnetic response, are also discussed, with the overall goal of optimizing the fabrication of this complex system and thus enhancing its potential as a preferred diagnostic agent.
Collapse
Affiliation(s)
| | | | | | - Monica Dias
- Mecwins S.A., Tres Cantos, 28760 Madrid, Spain
| | | | | | - Asis Saad
- Mecwins S.A., Tres Cantos, 28760 Madrid, Spain
| | | | | | - Miguel Manso Silván
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - Wentao Wang
- QuidelOrtho™, San Diego, CA 92121, USA (A.S.)
| | | |
Collapse
|
18
|
Mostafa MM, Sedik GA, Elzanfaly ES, Nadim AH. Development of potentiometric immunosensor for determination of live attenuated Varicella Vaccine: Potency and stability studies. Anal Biochem 2023; 683:115367. [PMID: 39492542 DOI: 10.1016/j.ab.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Determination of Varicella vaccine's potency; containing live attenuated strain (Oka) of Varicella Zoster virus, has been limited to in vitro cell culture methods. In this study, a label free potentiometric biosensor has been developed for the first time and optimized to determine the content of varicella zoster virus. A passive ion-flux sensing platform has been developed using an anti-varicella monoclonal antibody and tetrabutyl ammonium bromide as a marker ion. The immunosensor has been optimized with respect to membrane diameter and concentration of the immobilized antibody. Linearity was achieved over a concentration range of 2.5-3.2 log PFU/dose with a LOD of 1.9 log PFU/dose. Potentiometric results were compared to the plaque-forming assay using the cell culture technique. The developed immunosensor was superior with respect to analysis time and cost without affecting critical analytical performance characteristics. Furthermore, in order to evaluate the stability indicating ability of the immunosensor, the effect of pH and temperature was investigated. Vaccine samples were subjected to forced degradation conditions; pH and elevated temperatures. Stability results showed the ability of immunosensor to differentiate between intact and degraded viral content. This would demonstrate the reliability of the immunosensor for evaluating the efficacy and stability of the vaccine.
Collapse
Affiliation(s)
| | - Ghada A Sedik
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Eman S Elzanfaly
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Egypt
| | - Ahmed H Nadim
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
19
|
de Barros NR, Gangrade A, Elsebahy A, Chen R, Zehtabi F, Ermis M, Falcone N, Haghniaz R, Khosravi S, Gomez A, Huang S, Mecwan M, Khorsandi D, Lee J, Zhu Y, Li B, Kim H, Thankam FG, Khademhosseini A. Injectable Nanoengineered Adhesive Hydrogel for Treating Enterocutaneous Fistulas. Acta Biomater 2023; 173:S1742-7061(23)00634-7. [PMID: 39491155 PMCID: PMC10919932 DOI: 10.1016/j.actbio.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 03/12/2024]
Abstract
Enterocutaneous fistula (ECF) is a severe medical condition where an abnormal connection forms between the gastrointestinal tract and skin. ECFs are, in most cases, a result of surgical complications such as missed enterotomies or anastomotic leaks. The constant leakage of enteric and fecal contents from the fistula site leads to skin breakdown and increases the risk of infection. Despite advances in surgical techniques and postoperative management, ECF accounts for significant mortality rates, estimated between 15-20%, and causes debilitating morbidity. Therefore, there is a critical need for a simple and effective method to seal and heal ECF. Injectable hydrogels with combined properties of robust mechanical properties and cell infiltration/proliferation have the potential to block and heal ECF. Herein, we report the development of an injectable nanoengineered adhesive hydrogel (INAH) composed of a synthetic nanosilicate (Laponite®) and a gelatin-dopamine conjugate for treating ECF. The hydrogel undergoes fast cross-linking using a co-injection method, resulting in a matrix with improved mechanical and adhesive properties. INAH demonstrates appreciable blood clotting abilities and is cytocompatible with fibroblasts. The adhesive properties of the hydrogel are demonstrated in ex vivo adhesion models with skin and arteries, where the volume stability in the hydrated internal environment facilitates maintaining strong adhesion. In vivo assessments reveal that the INAH is biocompatible, supporting cell infiltration and extracellular matrix deposition while not forming fibrotic tissue. These findings suggest that this INAH holds promising translational potential for sealing and healing ECF. STATEMENT OF SIGNIFICANCE: This research manuscript presents a groundbreaking injectable nanoengineered adhesive hydrogel (INAH) for treating Enterocutaneous Fistula (ECF). The INAH, composed of a synthetic nanosilicate and gelatin-dopamine conjugate, offers versatile implications in tissue regeneration and localized drug delivery. Acting as a scaffold, the shear-thinning hydrogel enables easy injection, forming a stable structure that supports tissue regeneration and integrates with surrounding tissues. By incorporating bioactive cues, it guides cell behavior and promotes functional tissue regeneration. The INAH also demonstrates potential for localized drug delivery, releasing therapeutic agents over time to enhance efficacy and minimize side effects. This research showcases INAH as a promising solution for ECF, with applications in tissue engineering and regenerative medicine, marking a significant advancement in the field.
Collapse
Affiliation(s)
- Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Ahmad Elsebahy
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA; College of Pharmacy, Korea University, Sejong, Republic of Korea, 30019
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
20
|
Harsányi A, Kardos A, Varga I. Preparation of Amino-Functionalized Poly( N-isopropylacrylamide)-Based Microgel Particles. Gels 2023; 9:692. [PMID: 37754373 PMCID: PMC10530052 DOI: 10.3390/gels9090692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Responsive cationic microgels are a promising building block in several diagnostic and therapeutic applications, like transfection and RNA or enzyme packaging. Although the direct synthesis of cationic poly(N-isopropylacrylamide) (PNIPAm) microgel particles has a long history, these procedures typically resulted in low yield, low incorporation of the cationic comonomer, increased polydispersity, and pure size control. In this study, we investigated the possibility of the post-polymerization modification of P(NIPAm-co-acrylic acid) microgels to prepare primary amine functionalized microgels. To achieve this goal, we used 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) mediated coupling of a diamine to the carboxyl groups. We found that by controlling the EDC excess in the reaction mixture, the amine functionalization of the carboxyl functionalized microgel could be varied and as much as 6-7 mol% amine content could be incorporated into the microgels. Importantly, the reaction was conducted at room temperature in an aqueous medium and it was found to be time efficient, making it a practical and convenient approach for synthesizing primary amine functionalized PNIPAm microgel particles.
Collapse
Affiliation(s)
- Anna Harsányi
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary (A.K.)
| | - Attila Kardos
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary (A.K.)
- Department of Chemistry, J. Selye University, 945 01 Komárno, Slovakia
| | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary (A.K.)
- Department of Chemistry, J. Selye University, 945 01 Komárno, Slovakia
| |
Collapse
|
21
|
Amestoy A, Rangra A, Mansard V, Saya D, Pouget E, Mazaleyrat E, Severac F, Bergaud C, Oda R, Delville MH. Highly Stable Low-Strain Flexible Sensors Based on Gold Nanoparticles/Silica Nanohelices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39480-39493. [PMID: 37556291 DOI: 10.1021/acsami.3c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Flexible strain sensors based on nanoparticle (NP) arrays show great potential for future applications such as electronic skin, flexible touchscreens, healthcare sensors, and robotics. However, even though these sensors can exhibit high sensitivity, they are usually not very stable under mechanical cycling and often exhibit large hysteresis, making them unsuitable for practical applications. In this work, strain sensors based on silica nanohelix (NH) arrays grafted with gold nanoparticles (AuNPs) can overcome these critical aspects. These 10 nm AuNPs are functionalized with mercaptopropionic acid (MPA) and different ratios of thiol-polyethylene glycol-carboxylic acid (HS-PEG7-COOH) to optimize the colloidal stability of the resulting NH@AuNPs nanocomposite suspensions, control their aggregation state, and tune the thickness of the insulating layer. They are then grafted covalently onto the surface of the NHs by chemical coupling. These nanomaterials exhibit a well-defined arrangement of AuNPs, which follows the helicity of the silica template. The modified NHs are then aligned by dielectrophoresis (DEP) between interdigitated electrodes on a flexible substrate. The flexibility, stability, and especially sensitivity of these sensors are then characterized by electromechanical measurements and scanning electron microscopy observations. These strain sensors based on NH@AuNPs nanocomposites are much more stable than those containing only nanoparticles and exhibit significantly reduced hysteresis and high sensitivity at very slight strains. They can retain their sensitivity even after 2 million consecutive cycles with virtually unchanged responsiveness. These improved performances come from their mechanical stability and the use of nanohelices as stable mechanical templates.
Collapse
Affiliation(s)
- Antoine Amestoy
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, 33607 Pessac, France
| | - Aarushee Rangra
- Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Vincent Mansard
- Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Daisuke Saya
- Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Emilie Pouget
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, 33607 Pessac, France
| | | | - Fabrice Severac
- NANOMADE LAB, 3 rue des Satellites, Toulouse F-31400, France
| | - Christian Bergaud
- Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Reiko Oda
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, 33607 Pessac, France
| | - Marie-Hélène Delville
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France
| |
Collapse
|
22
|
Zhang Y, Wang L, Ma N, Wan Y, Zhu X, Qian W. Ordered Porous Layer Interferometry for Dynamic Observation of Non-Specific Adsorption Induced by 1-Ethyl-3-(3-(dimethylamino)propyl) Carbodiimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11406-11413. [PMID: 37542713 DOI: 10.1021/acs.langmuir.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Nonspecific adsorption (NSA) seems to be an impregnable obstacle to the progress of the biomedical, diagnostic, microelectronic, and material fields. The reaction path of bioconjugation can alter the surface charge distribution on products and the interaction of bioconjugates, an ignored factor causing NSA. We monitored exacerbated NSA introduced by a 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) addition reaction, which cannot be resistant to bovine serum albumin (BSA) or polyethylene glycol (PEG) antifouling coating and Tween-20. And the negative effects can be minimized by adding as low as 7.5 × 10-6 M N-hydroxysulfosuccinimide (sulfo-NHS). We applied ordered porous layer interferometry (OPLI) to sensitively evaluate the NSA that is difficult to measure on individual particles. Using the silica colloidal crystal (SCC) film with Fabry-Perot fringes as in situ and real-time monitoring for the NSA, we optimized the surface chemistry to yield a conjugate surface without variational charge distribution. In this work, we propose a novel approach from the perspective of the reaction pathway to minimize the NSA of solely EDC-induced chemistry.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueyi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
23
|
Ghosh TN, Rotake D, Kumar S, Kaur I, Singh SG. Tear-based MMP-9 detection: A rapid antigen test for ocular inflammatory disorders using vanadium disulfide nanowires assisted chemi-resistive biosensor. Anal Chim Acta 2023; 1263:341281. [PMID: 37225335 DOI: 10.1016/j.aca.2023.341281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/02/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
A sensitive, non-invasive, and biomarker detection in tear fluids for inflammation in potentially blinding eye diseases could be of great significance as a rapid diagnostic tool for quick clinical decisions. In this work, we propose a tear-based MMP-9 antigen testing platform using hydrothermally synthesized vanadium disulfide nanowires. Also, various factors contributing to baseline drifts of the chemiresistive sensor including nanowire coverage on the interdigitated microelectrode of the sensor, sensor response duration, and effect of MMP-9 protein in different matrix solutions were identified. The drifts on the sensor baseline due to nanowire coverage on the sensor were corrected using substrate thermal treatment providing a more uniform distribution of nanowires on the electrode which brought the baseline drift to 18% (coefficient of variations, CV = 18%). This biosensor exhibited sub-femto level limits of detection (LODs) of 0.1344 fg/mL (0.4933 fmoL/l) and 0.2746 fg/mL (1.008 fmoL/l) in 10 mM phosphate buffer saline (PBS) and artificial tear solution, respectively. For a practical tear MMP-9 detection, the proposed biosensor response was validated with multiplex ELISA using tear samples from five healthy controls which showed excellent precision. This label-free and non-invasive platform can serve as an efficient diagnostic tool for the early detection and monitoring of various ocular inflammatory diseases.
Collapse
Affiliation(s)
- Tanmoya Nemai Ghosh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Dinesh Rotake
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Saurabh Kumar
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, 500034, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, 500034, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
24
|
Gao T, Zhao X, Hao J, Tian Y, Ma H, Liu W, An B, Sun F, Liu S, Guo B, Niu S, Li Z, Wang C, Wang Y, Feng G, Wang L, Li W, Wu J, Guo M, Zhou Q, Gu Q. A scalable culture system incorporating microcarrier for specialised mesenchymal stem cells from human embryonic stem cells. Mater Today Bio 2023; 20:100662. [PMID: 37214547 PMCID: PMC10196860 DOI: 10.1016/j.mtbio.2023.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) derived from human embryonic stem cells (hESCs) are a desirable cell source for cell therapy owing to their capacity to be produced stably and homogeneously in large quantities. However, a scalable culture system for hPSC-derived MSCs is urgently needed to meet the cell quantity and quality requirements of practical clinical applications. In this study, we developed a new microcarrier with hyaluronic acid (HA) as the core material, which allowed scalable serum-free suspension culture of hESC-derived MSCs (IMRCs). We used optimal microcarriers with a coating collagen concentration of 100 μg/mL or concave-structured surface (cHAMCs) for IMRC amplification in a stirred bioreactor, expanding IMRCs within six days with the highest yield of over one million cells per milliliter. In addition, the harvested cells exhibited high viability, immunomodulatory and regenerative therapeutic promise comparable to monolayer cultured MSCs while showing more increased secretion of extracellular matrix (ECM), particularly collagen-related proteins. In summary, we have established a scalable culture system for hESC-MSCs, providing novel approaches for future cell therapies.
Collapse
Affiliation(s)
- Tingting Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiyuan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huike Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Liu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin An
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Faguo Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baojie Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaishuai Niu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Savitha KS, Senthil Kumar M, Jagadish RL. Systematic approach in enhancing the selectivity of titanium tetrabutoxide towards high molecular weight poly(butylene succinate) synthesis. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- K. S. Savitha
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| | - M. Senthil Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - R. L. Jagadish
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| |
Collapse
|
26
|
Magdziarz S, Boguń M, Frączyk J. Coating Methods of Carbon Nonwovens with Cross-Linked Hyaluronic Acid and Its Conjugates with BMP Fragments. Polymers (Basel) 2023; 15:polym15061551. [PMID: 36987331 PMCID: PMC10054264 DOI: 10.3390/polym15061551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The cross-linking of polysaccharides is a universal approach to affect their structure and physical properties. Both physical and chemical methods are used for this purpose. Although chemical cross-linking provides good thermal and mechanical stability for the final products, the compounds used as stabilizers can affect the integrity of the cross-linked substances or have toxic properties that limit the applicability of the final products. These risks might be mitigated by using physically cross-linked gels. In the present study, we attempted to obtain hybrid materials based on carbon nonwovens with a layer of cross-linked hyaluronan and peptides that are fragments of bone morphogenetic proteins (BMPs). A variety of cross-linking procedures and cross-linking agents (1,4-butanediamine, citric acid, and BDDE) were tested to find the most optimal method to coat the hydrophobic carbon nonwovens with a hydrophilic hyaluronic acid (HA) layer. Both the use of hyaluronic acid chemically modified with BMP fragments and a physical modification approach (layer-by-layer method) were proposed. The obtained hybrid materials were tested with the spectrometric (MALDI-TOF MS) and spectroscopic methods (IR and 1H-NMR). It was found that the chemical cross-linking of polysaccharides is an effective method for the deposition of a polar active substance on the surface of a hydrophobic carbon nonwoven fabric and that the final material is highly biocompatible.
Collapse
Affiliation(s)
- Sylwia Magdziarz
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Maciej Boguń
- Łukasiewicz-Lodz Institute of Technology, Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Justyna Frączyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
27
|
Cao D, Martinez JG, Anada R, Hara ES, Kamioka H, Jager EWH. Electrochemical control of bone microstructure on electroactive surfaces for modulation of stem cells and bone tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2183710. [PMID: 36926200 PMCID: PMC10013253 DOI: 10.1080/14686996.2023.2183710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Controlling stem cell behavior at the material interface is crucial for the development of novel technologies in stem cell biology and regenerative medicine. The composition and presentation of bio-factors on a surface strongly influence the activity of stem cells. Herein, we designed an electroactive surface that mimics the initial process of trabecular bone formation, by immobilizing chondrocyte-derived plasma membrane nanofragments (PMNFs) on its surface for rapid mineralization within 2 days. Moreover, the electroactive surface was based on the conducting polymer polypyrrole (PPy), which enabled dynamic control of the presentation of PMNFs on the surface via electrochemical redox switching, further resulting in the formation of bone minerals with different morphologies. Furthermore, bone minerals with contrasting surface morphologies had differential effects on the differentiation of human bone marrow-derived stem cells (hBMSCs) cultured on the surface. Together, this electroactive surface showed multifunctional characteristics, not only allowing dynamic control of PMNF presentation but also promoting the formation of bone minerals with different morphologies within 2 days. This electroactive substrate could be valuable for more precise control of stem cell growth and differentiation, and further development of more suitable microenvironments containing bone apatite for housing a bone marrow stem cell niche, such as biochips/bone-on-chips.
Collapse
Affiliation(s)
- Danfeng Cao
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Jose G. Martinez
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Risa Anada
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Edwin W. H. Jager
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Liao Q, Guo M, Mao M, Gao R, Meng Z, Fan X, Liu W. Construction and optimization of a photo−enzyme coupled system for sustainable CO2 conversion to methanol. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
29
|
Development of a palm-sized bioelectronic sensing device for protein detection in milk samples. Int J Biol Macromol 2023; 230:123132. [PMID: 36610567 DOI: 10.1016/j.ijbiomac.2022.123132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
The present study relates a portable optical sensing device supported by a small single-board (SBC) computer. The electronic architectural avenue connects the SBC with a camera, LED lights and a monitor. A 'sensor integration unit' has been linked with the device where the biological reactions were performed and assessed based on the concentration-dependent optical signal outputs. This setup can detect the generation of colors and distinguish their changes in the RGB intensity scale with an accuracy of a single pixel unit. A predefined range of values was obtained and fed to the device that can quantitatively sense the molecule of interest on the sensing matrix. The device has a touchscreen interactive panel that allows users to manually set experimental conditions and connect the entire measurement process to the cloud storage for backup information. We have considered detecting Alkaline Phosphatase (ALP) quantitatively from standard solutions as well as in milk samples as a proof-of-concept protein molecule. The device has shown exceptional analytical performance for lower and higher concentration ranges (0-100 U/mL and 100-1000 U/mL) with correlation coefficient values of 0.99. The detection limit of ALP was determined to be 0.1 U/mL, and the average time of a sample assessment was recorded to be 15 s. The device has also been tested against ALP-spiked milk samples to check its effectiveness and commercial viability. The outcome of the real-time assessment was sensitive and efficient, indicating its direct commercial and clinical importance towards colorimetric detection for diverse macromolecules.
Collapse
|
30
|
Pu R, Zhan Q, Peng X, Liu S, Guo X, Liang L, Qin X, Zhao ZW, Liu X. Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion. Nat Commun 2022; 13:6636. [PMID: 36333290 PMCID: PMC9636245 DOI: 10.1038/s41467-022-33726-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Nonlinear depletion of fluorescence states by stimulated emission constitutes the basis of stimulated emission depletion (STED) microscopy. Despite significant efforts over the past decade, achieving super-resolution at low saturation intensities by STED remains a major technical challenge. By harnessing the surface quenching effect in NaGdF4:Yb/Tm nanocrystals, we report here high-efficiency emission depletion through surface migration. Using a dual-beam, continuous-wave laser manipulation scheme (975-nm excitation and 730-nm de-excitation), we achieved an emission depletion efficiency of over 95% and a low saturation intensity of 18.3 kW cm-2. Emission depletion by surface migration through gadolinium sublattices enables super-resolution imaging with sub-20 nm lateral resolution. Our approach circumvents the fundamental limitation of high-intensity STED microscopy, providing autofluorescence-free, re-excitation-background-free imaging with a saturation intensity over three orders of magnitude lower than conventional fluorophores. We also demonstrated super-resolution imaging of actin filaments in Hela cells labeled with 8-nm nanoparticles. Combined with the highly photostable lanthanide luminescence, surface-migration emission depletion (SMED) could provide a powerful mechanism for low-power, super-resolution imaging or biological tracking as well as super-resolved optical sensing/writing and lithography.
Collapse
Affiliation(s)
- Rui Pu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- National Center for International Research on Green Optoelectronics, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Normal University, Guangzhou, 510006, P. R. China.
- MOE Key laboratory & Guangdong Provincial Key laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xingyun Peng
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Siying Liu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xin Guo
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Liangliang Liang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
31
|
Tang Y, Wang J, Cao Q, Chen F, Wang M, Wu Y, Chen X, Zhu X, Zhang X. Dopamine/DOPAC-assisted immobilization of bone morphogenetic protein-2 loaded Heparin/PEI nanogels onto three-dimentional printed calcium phosphate ceramics for enhanced osteoinductivity and osteogenicity. BIOMATERIALS ADVANCES 2022; 140:213030. [PMID: 36027668 DOI: 10.1016/j.bioadv.2022.213030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, the three-dimensional (3D) printed calcium phosphate (CaP) ceramics have well-designed geometric structure, but suffer from relative weak osteoinductivity. Surface modification by incorporating bone morphogenetic protein-2 (BMP2) onto scaffolds is considered as an efficient approach to improve their bioactivity. However, high dose and uncontrolled burst release of BMP2 may cause undesired side effect. In the present study, porous BCP ceramics with inverse face-centred cube structure prepared by digital light processing (DLP)-based 3D printing technique were used as the substrates. BMP2 proteins were loaded in the self-assembled Heparin/PEI nanogels (NP/BMP2), and then immobilized onto BCP substrates through the intermediate mussel-derived bioactive dopamine and dihydroxyphenylacetic acid (DA/DOPAC) coating layers to construct functional BCP/layer/NP/BMP2 scaffolds. Our results showed that Heparin/PEI nanogel was a potent delivery system for BMP2, and BCP/layer/NP/BMP2 scaffolds exhibited the high loading capacity, controlled release rate, and sustained local delivery of BMP2. In vitro cell experiments with bone marrow stromal cells (BMSCs) found that BCP/layer/NP/BMP2 could promote cell proliferation, facilitate cell spreading, accelerate cell migration, up-regulate expression of osteogenic genes, and improve synthesis of osteoblast-related proteins. Moreover, the murine intramuscular implantation model suggested that BCP/layer/NP/BMP2 had a superior osteoinductive capacity, and the rat femoral condyle defect repair model showed that BCP/layer/NP/BMP2 could enhance in situ bone repair and regeneration. These findings demonstrate that the incorporation of BMP2 loaded Heparin/PEI nanogels to 3D printed scaffolds holds great promise in fabricating bone graft with a superior biological performance for orthopedic application.
Collapse
Affiliation(s)
- Yitao Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fuying Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yonghao Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
32
|
Zhou J, Wu X, Zhao C. Optimization of decellularized liver matrix-modified chitosan fibrous scaffold for C3A hepatocyte culture. J Biomater Appl 2022; 37:903-917. [PMID: 35834434 DOI: 10.1177/08853282221115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hepatocyte scaffold is an essential part in bioartificial liver device. We have designed a novel hepatocyte scaffold based on porcine liver extracellular matrix (ECM) and chitosan (CTS) fabrics. This CTS-ECM scaffold can improve cell adhesion and proliferation. In the present study, an orthogonal test was designed to optimize the CTS/ECM composite scaffold, in which ECM concentration, EDC concentration and EDC to NHS ratio were taken as factors, proportion of nitrogen element and hydroxyproline content as indicators. The cytocompatibility of the novel scaffold for C3A hepatocytes was analyzed in vitro. The orthogonal test demonstrated that the optimal scaffold should be based on ECM concentration of 5 mg/mL, EDC concentration of 5 mg/mL, and EDC to NHS ratio 1:1. C3A hepatocytes cultured on the optimized CTS-ECM scaffolds showed stronger proliferation and functionality than those on Cytodex3 microcarriers (p < 0.05). The CTS/ECM composite scaffold may be widely used as a promising hepatocyte culture carrier, especially in bioartificial liver support systems.
Collapse
Affiliation(s)
- Junjing Zhou
- Department of Hepatobiliary Surgery, 199193Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xinglian Wu
- Department of pharmacy, 117969The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chaochen Zhao
- Department of Hepatobiliary Surgery, 117969The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Liu S, Zhang M, Lai Z, Tian H, Qiu Y, Li Z. Coral-like Magnetic Particles for Chemoselective Extraction of Anionic Metabolites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32890-32900. [PMID: 35819264 DOI: 10.1021/acsami.2c06922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, advanced chemical biology tools for chemoselective extraction of metabolites are limited. In this study, unique coral-like polymer particles were synthesized via high concentrations of 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS), which are usually used as condensation agents. The polymers can wrap or adhere Fe3O4 nanoparticles (Fe3O4-NPs) to form polymer magnetic microparticles (PMMPs). With abundant NHS-activated moieties on their surface, the coral-like PMMPs could be modified by cystamine for the chemoselective extraction of phosphate/carboxylate anion metabolites from complex biological samples. Finally, 97 metabolites including nucleotides, phosphates, phosphate sugars, carboxylate sugars, and organic acids were extracted and identified from serum, tissues, and cells. These metabolites are involved in four major metabolic pathways including glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and nucleotide metabolism. This study has provided a cost-effective and easy-to-implement preparation of PMMPs with a robust chemoselective extraction ability and versatile applications.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| |
Collapse
|
34
|
Gao Z, Wu G, Song Y, Li H, Zhang Y, Schneider MJ, Qiang Y, Kaszas J, Weng Z, Sun H, Huey BD, Lai RY, Zhang Y. Multiplexed Monitoring of Neurochemicals via Electrografting-Enabled Site-Selective Functionalization of Aptamers on Field-Effect Transistors. Anal Chem 2022; 94:8605-8617. [PMID: 35678711 DOI: 10.1021/acs.analchem.1c05531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurochemical corelease has received much attention in understanding brain activity and cognition. Despite many attempts, the multiplexed monitoring of coreleased neurochemicals with spatiotemporal precision and minimal crosstalk using existing methods remains challenging. Here, we report a soft neural probe for multiplexed neurochemical monitoring via the electrografting-assisted site-selective functionalization of aptamers on graphene field-effect transistors (G-FETs). The neural probes possess excellent flexibility, ultralight mass (28 mg), and a nearly cellular-scale dimension of 50 μm × 50 μm for each G-FET. As a demonstration, we show that G-FETs with electrochemically grafted molecular linkers (-COOH or -NH2) and specific aptamers can be used to monitor serotonin and dopamine with high sensitivity (limit of detection: 10 pM) and selectivity (dopamine sensor >22-fold over norepinephrine; serotonin sensor >17-fold over dopamine). In addition, we demonstrate the feasibility of the simultaneous monitoring of dopamine and serotonin in a single neural probe with minimal crosstalk and interferences in phosphate-buffered saline, artificial cerebrospinal fluid, and harvested mouse brain tissues. The stability studies show that multiplexed neural probes maintain the capability for simultaneously monitoring dopamine and serotonin with minimal crosstalk after incubating in rat cerebrospinal fluid for 96 h, although a reduced sensor response at high concentrations is observed. Ex vivo studies in harvested mice brains suggest potential applications in monitoring the evoked release of dopamine and serotonin. The developed multiplexed detection methodology can also be adapted for monitoring other neurochemicals, such as metabolites and neuropeptides, by simply replacing the aptamers functionalized on the G-FETs.
Collapse
Affiliation(s)
- Zan Gao
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Guangfu Wu
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yang Song
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Huijie Li
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yuxuan Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael J Schneider
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yingqi Qiang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jackson Kaszas
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhengyan Weng
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - He Sun
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bryan D Huey
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
35
|
Quantum Dot-Induced Blue Shift of Surface Plasmon Spectroscopy. NANOMATERIALS 2022; 12:nano12122076. [PMID: 35745413 PMCID: PMC9230993 DOI: 10.3390/nano12122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
We experimentally demonstrate the spectral blue shift of surface plasmon resonance through the resonant coupling between quantum dots (QDs) and surface plasmons, surprisingly in contrast to the conventionally observed red shift of plasmon spectroscopy. Multimode optical fibers are used for extended resonant coupling of surface plasmons with excited states of QDs adsorbed to the plasmonic metal surface. The long-lived nature of excited QDs permits QD-induced negative change in the local refractive index near the plasmonic metal surface to cause such a blue shift. The analysis utilizes the physical causality-driven optical dispersion relation, the Kramers-Kronig (KK) relation, attempting to understand the abnormal behavior of the QDs-induced index dispersion extracted from blue shift measurement. Properties of QDs' gain spectrally resonating with plasmons can account for such blue shift, though their absorbance properties never allow the negative index change for the blue shift observed according to the KK relation. We also discuss the limited applicability of the KK relation and possible QDs gain saturation for the experiment-theory disagreement. This work may contribute to the understanding of the photophysical properties critical for plasmonic applications, such as plasmonic local index engineering required in analyte labeling QDs coupled with plasmons for biomedical imaging or assay.
Collapse
|
36
|
Víšová I, Houska M, Vaisocherová-Lísalová H. Biorecognition antifouling coatings in complex biological fluids: a review of functionalization aspects. Analyst 2022; 147:2597-2614. [PMID: 35621143 DOI: 10.1039/d2an00436d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in biointerface research has highlighted the role of antifouling functionalizable coatings in the development of advanced biosensors for point-of-care bioanalytical and biomedical applications dealing with real-world complex samples. The resistance to nonspecific adsorption promotes the biorecognition performance and overall increases the reliability and specificity of the analysis. However, the process of modification with biorecognition elements (so-called functionalization) may influence the resulting antifouling properties. The extent of these effects concerning both functionalization procedures potentially changing the surface architecture and properties, and the physicochemical properties of anchored biorecognition elements, remains unclear and has not been summarized in the literature yet. This critical review summarizes these key functionalization aspects with respect to diverse antifouling architectures showing low or ultra-low fouling quantitative characteristics in complex biological media such as bodily fluids or raw food samples. The subsequent discussion focuses on the impact of functionalization on fouling resistance. Furthermore, this review discusses some of the drawbacks of available surface sensitive characterization methods and highlights the importance of suitable assessment of the resistance to fouling.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Milan Houska
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Hana Vaisocherová-Lísalová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| |
Collapse
|
37
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
38
|
Guo X, Pu R, Zhu Z, Qiao S, Liang Y, Huang B, Liu H, Labrador-Páez L, Kostiv U, Zhao P, Wu Q, Widengren J, Zhan Q. Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes. Nat Commun 2022; 13:2843. [PMID: 35606360 PMCID: PMC9126916 DOI: 10.1038/s41467-022-30114-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Stimulated emission depletion (STED) microscopy is a powerful diffraction-unlimited technique for fluorescence imaging. Despite its rapid evolution, STED fundamentally suffers from high-intensity light illumination, sophisticated probe-defined laser schemes, and limited photon budget of the probes. Here, we demonstrate a versatile strategy, stimulated-emission induced excitation depletion (STExD), to deplete the emission of multi-chromatic probes using a single pair of low-power, near-infrared (NIR), continuous-wave (CW) lasers with fixed wavelengths. With the effect of cascade amplified depletion in lanthanide upconversion systems, we achieve emission inhibition for a wide range of emitters (e.g., Nd3+, Yb3+, Er3+, Ho3+, Pr3+, Eu3+, Tm3+, Gd3+, and Tb3+) by manipulating their common sensitizer, i.e., Nd3+ ions, using a 1064-nm laser. With NaYF4:Nd nanoparticles, we demonstrate an ultrahigh depletion efficiency of 99.3 ± 0.3% for the 450 nm emission with a low saturation intensity of 23.8 ± 0.4 kW cm-2. We further demonstrate nanoscopic imaging with a series of multi-chromatic nanoprobes with a lateral resolution down to 34 nm, two-color STExD imaging, and subcellular imaging of the immunolabelled actin filaments. The strategy expounded here promotes single wavelength-pair nanoscopy for multi-chromatic probes and for multi-color imaging under low-intensity-level NIR-II CW laser depletion.
Collapse
Affiliation(s)
- Xin Guo
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Rui Pu
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhimin Zhu
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shuqian Qiao
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yusen Liang
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Bingru Huang
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Haichun Liu
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Lucía Labrador-Páez
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Uliana Kostiv
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Pu Zhao
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qiusheng Wu
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- MOE Key Laboratory and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China.
| |
Collapse
|
39
|
Wu G, Zhang N, Matarasso A, Heck I, Li H, Lu W, Phaup JG, Schneider M, Wu Y, Weng Z, Sun H, Gao Z, Zhang X, Sandberg SG, Parvin D, Seaholm E, Islam SK, Wang X, Phillips PEM, Castro DC, Ding S, Li DP, Bruchas MR, Zhang Y. Implantable Aptamer-Graphene Microtransistors for Real-Time Monitoring of Neurochemical Release in Vivo. NANO LETTERS 2022; 22:3668-3677. [PMID: 35439419 PMCID: PMC9420334 DOI: 10.1021/acs.nanolett.2c00289] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The real-time monitoring of neurochemical release in vivo plays a critical role in understanding the biochemical process of the complex nervous system. Current technologies for such applications, including microdialysis and fast-scan cyclic voltammetry, suffer from limited spatiotemporal resolution or poor selectivity. Here, we report a soft implantable aptamer-graphene microtransistor probe for real-time monitoring of neurochemical release. As a demonstration, we show the monitoring of dopamine with nearly cellular-scale spatial resolution, high selectivity (dopamine sensor >19-fold over norepinephrine), and picomolar sensitivity, simultaneously. Systematic benchtop evaluations, ex vivo experiments, and in vivo studies in mice models highlight the key features and demonstrate the capability of capturing the dopamine release dynamics evoked by pharmacological stimulation, suggesting the potential applications in basic neuroscience studies and studying neurological disease-related processes. The developed system can be easily adapted for monitoring other neurochemicals and drugs by simply replacing the aptamers functionalized on the graphene microtransistors.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Avi Matarasso
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ian Heck
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Huijie Li
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Wei Lu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - J. Glenn Phaup
- Center for Precision Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Michael Schneider
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zan Gao
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Stefan G. Sandberg
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilruba Parvin
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Elena Seaholm
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Syed Kamrul Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Xueju Wang
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Paul E. M. Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daniel C. Castro
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - De-Pei Li
- Center for Precision Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Michael R. Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
40
|
Liang Y, Zhu Z, Qiao S, Guo X, Pu R, Tang H, Liu H, Dong H, Peng T, Sun LD, Widengren J, Zhan Q. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. NATURE NANOTECHNOLOGY 2022; 17:524-530. [PMID: 35469009 DOI: 10.1038/s41565-022-01101-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
A photon avalanche (PA) effect that occurs in lanthanide-doped solids gives rise to a giant nonlinear response in the luminescence intensity to the excitation light intensity. As a result, much weaker lasers are needed to evoke such PAs than for other nonlinear optical processes. Photon avalanches are mostly restricted to bulk materials and conventionally rely on sophisticated excitation schemes, specific for each individual system. Here we show a universal strategy, based on a migrating photon avalanche (MPA) mechanism, to generate huge optical nonlinearities from various lanthanide emitters located in multilayer core/shell nanostructrues. The core of the MPA nanoparticle, composed of Yb3+ and Pr3+ ions, activates avalanche looping cycles, where PAs are synchronously achieved for both Yb3+ and Pr3+ ions under 852 nm laser excitation. These nanocrystals exhibit a 26th-order nonlinearity and a clear pumping threshold of 60 kW cm-2. In addition, we demonstrate that the avalanching Yb3+ ions can migrate their optical nonlinear response to other emitters (for example, Ho3+ and Tm3+) located in the outer shell layer, resulting in an even higher-order nonlinearity (up to the 46th for Tm3+) due to further cascading multiplicative effects. Our strategy therefore provides a facile route to achieve giant optical nonlinearity in different emitters. Finally, we also demonstrate applicability of MPA emitters to bioimaging, achieving a lateral resolution of ~62 nm using one low-power 852 nm continuous-wave laser beam.
Collapse
Affiliation(s)
- Yusen Liang
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Zhimin Zhu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Shuqian Qiao
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Xin Guo
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Rui Pu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Huan Tang
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Haichun Liu
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Tingting Peng
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, P. R. China.
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Normal University, Guangzhou, P. R. China.
| |
Collapse
|
41
|
Alberts EM, Fernando PUAI, Thornell TL, George HE, Koval AM, Shukla MK, Weiss CA, Moores LC. Toward bioinspired polymer adhesives: activation assisted via HOBt for grafting of dopamine onto poly(acrylic acid). ROYAL SOCIETY OPEN SCIENCE 2022; 9:211637. [PMID: 35360348 PMCID: PMC8965409 DOI: 10.1098/rsos.211637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
The design of bioinspired polymers has long been an area of intense study, however, applications to the design of concrete admixtures for improved materials performance have been relatively unexplored. In this work, we functionalized poly(acrylic acid) (PAA), a simple analogue to polycarboxylate ether admixtures in concrete, with dopamine to form a catechol-bearing polymer (PAA-g-DA). Synthetic routes using hydroxybenzotriazole (HOBt) as an activating agent were examined for their ability in grafting dopamine to the PAA backbone. Previous literature using the traditional coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to graft dopamine to PAA were found to be inconsistent and the sensitivity of EDC coupling reactions necessitated a search for an alternative. Additionally, HOBt allowed for greater control over per cent functionalization of the backbone, is a simple, robust reaction, and showed potential for scalability. This finding also represents a novel synthetic pathway for amide bond formation between dopamine and PAA. Finally, we performed preliminary adhesion studies of our polymer on rose granite specimens and demonstrated a 56% improvement in the mean adhesion strength over unfunctionalized PAA. These results demonstrate an early study on the potential of PAA-g-DA to be used for improving the bonds within concrete.
Collapse
Affiliation(s)
| | - P. U. Ashvin Iresh Fernando
- Bennett Aerospace, 1100 Crescent Green, #250, Cary, NC 27518, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Travis L. Thornell
- US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Hannah E. George
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, Hattiesburg, MS 39406, USA
| | - Ashlyn M. Koval
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Manoj K. Shukla
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Charles A. Weiss
- US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Lee C. Moores
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
42
|
Highly sensitive electrochemical detection of biotin-avidin interaction on gold electrode modified with silver nanoparticles through bilayer assembly. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Electrochemical sensing of biotin-avidin interaction on gold electrode modified by silver nanoparticles through covalent co-assembling. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
44
|
Zhang H, Luan Q, Li Y, Wang J, Bao Y, Tang H, Huang F. Fabrication of highly porous, functional cellulose-based microspheres for potential enzyme carriers. Int J Biol Macromol 2021; 199:61-68. [PMID: 34954297 DOI: 10.1016/j.ijbiomac.2021.12.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
Here, we present highly porous, cellulose-based microspheres using (2,2,6,6-tetramethylpiperidine-1-oxyl) TEMPO-oxidized cellulose fibers (TOCFs) as starting materials. The TOCFs were first dissolved in NaOH/urea solvent and transformed into microspheres via an emulsification method. The carboxyl groups on the surface of TOCFs were successfully carried on the cellulose-based microspheres, which provides them numerous reacting or binding sites, allowing them to be easily functionalized or immobilized with biomolecules for multi-functional applications. Furthermore, the introduction of magnetic nanoparticles awards these microspheres magnetic properties, allowing them to be attracted by a magnetic field. As a proof of concept, we demonstrate the application of using these carboxylate cellulose-based microspheres for enzyme immobilization. The cellulose-based microspheres can successfully create stable covalent bonds with enzymes after the activation of carboxyl groups. The enhanced pH tolerance, thermal stability, convenient recovery, and reusability position the emulsified microspheres as promising carriers for enzyme immobilization.
Collapse
Affiliation(s)
- Hao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Qian Luan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yan Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Jiahui Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yuping Bao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
45
|
Mohd Asri MA, Nordin AN, Ramli N. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. BIOMICROFLUIDICS 2021; 15:061502. [PMID: 34777677 PMCID: PMC8577868 DOI: 10.1063/5.0071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 05/18/2023]
Abstract
Integrated microfluidic biosensors enable powerful microscale analyses in biology, physics, and chemistry. However, conventional methods for fabrication of biosensors are dependent on cleanroom-based approaches requiring facilities that are expensive and are limited in access. This is especially prohibitive toward researchers in low- and middle-income countries. In this topical review, we introduce a selection of state-of-the-art, low-cost prototyping approaches of microfluidics devices and miniature sensor electronics for the fabrication of sensor devices, with focus on electrochemical biosensors. Approaches explored include xurography, cleanroom-free soft lithography, paper analytical devices, screen-printing, inkjet printing, and direct ink writing. Also reviewed are selected surface modification strategies for bio-conjugates, as well as examples of applications of low-cost microfabrication in biosensors. We also highlight several factors for consideration when selecting microfabrication methods appropriate for a project. Finally, we share our outlook on the impact of these low-cost prototyping strategies on research and development. Our goal for this review is to provide a starting point for researchers seeking to explore microfluidics and biosensors with lower entry barriers and smaller starting investment, especially ones from low resource settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
- Author to whom correspondence should be addressed:
| | - Nabilah Ramli
- Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| |
Collapse
|
46
|
Balakrishnan HK, Doeven EH, Merenda A, Dumée LF, Guijt RM. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review. Anal Chim Acta 2021; 1185:338796. [PMID: 34711329 DOI: 10.1016/j.aca.2021.338796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/25/2023]
Abstract
Porous materials facilitate the efficient separation of chemicals and particulate matter by providing selectivity through structural and surface properties and are attractive as sorbent owing to their large surface area. This broad applicability of porous materials makes the integration of porous materials and microfluidic devices important in the development of more efficient, advanced separation platforms. Additive manufacturing approaches are fundamentally different to traditional manufacturing methods, providing unique opportunities in the fabrication of fluidic devices. The complementary 3D printing (3DP) methods are each accompanied by unique opportunities and limitations in terms of minimum channel size, scalability, functional integration and automation. This review focuses on the developments in the fabrication of 3DP miniaturised fluidic devices with integrated porous materials, focusing polymer-based methods including fused filament fabrication (FFF), inkjet 3D printing and digital light projection (DLP). The 3DP methods are compared based on resolution, scope for multimaterial printing and scalability for manufacturing. As opportunities for printing pores are limited by resolution, the focus is on approaches to incorporate materials with sub-micron pores to be used as membrane, sorbent or stationary phase in separation science using Post-Print, Print-Pause-Print and In-Print processes. Technical aspects analysing the efficiency of the fabrication process towards scalable manufacturing are combined with application aspects evaluating the separation and/or extraction performance. The review is concluded with an overview on achievements and opportunities for manufacturable 3D printed membrane/sorbent integrated fluidic devices.
Collapse
Affiliation(s)
- Hari Kalathil Balakrishnan
- Deakin University, Centre for Rural and Regional Futures, Locked Bag 20000, Geelong, VIC 3320, Australia; Deakin University, Institute for Frontier Materials, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Egan H Doeven
- Deakin University, Centre for Rural and Regional Futures, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Andrea Merenda
- Deakin University, Institute for Frontier Materials, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Centre on CO(2) and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Centre for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rosanne M Guijt
- Deakin University, Centre for Rural and Regional Futures, Locked Bag 20000, Geelong, VIC 3320, Australia.
| |
Collapse
|
47
|
Pal A, Biswas S, O Kare SP, Biswas P, Jana SK, Das S, Chaudhury K. Development of an impedimetric immunosensor for machine learning-based detection of endometriosis: A proof of concept. SENSORS AND ACTUATORS B: CHEMICAL 2021; 346:130460. [DOI: 10.1016/j.snb.2021.130460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
48
|
Shimony N, Shagan A, Eylon B, Nyska A, Gross A, Mizrahi B. Liquid Copolymers as Biodegradable Surgical Sealant. Adv Healthc Mater 2021; 10:e2100803. [PMID: 34081412 DOI: 10.1002/adhm.202100803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Indexed: 01/08/2023]
Abstract
Surgical sealants are widely used to prevent seepage of fluids and liquids, promote hemostasis, and close incisions. Despite the remarkable progress the field of biomaterials has undergone, the clinical uses of surgical sealants are limited because of their short persistence time in vivo, toxicity, and high production costs. Here, the development of two complementary neat (solvent-free) prepolymers, PEG4 -PLGA-NHS and PEG4 -NH2 , that harden upon mixing to yield an elastic biodegradable sealant is presented. The mechanical and rheological properties and cross-linking rate can be controlled by varying the ratio between the two prepolymers. The tested sealants show a longer persistence time compared with fibrin glue, minimal cytotoxicity in vitro, and excellent biocompatibility in vivo. The neat, multiarmed approach demonstrated here improves the mechanical and biocompatibility properties and provides a promising tissue sealant solution for wound closure in future surgical procedures.
Collapse
Affiliation(s)
- Neta Shimony
- Faculty of Biotechnology and Food Engineering Technion—Israel Institute of Technology Haifa 3200003 Israel
| | - Alona Shagan
- Faculty of Biotechnology and Food Engineering Technion—Israel Institute of Technology Haifa 3200003 Israel
| | - Bat‐hen Eylon
- Faculty of Biotechnology and Food Engineering Technion—Israel Institute of Technology Haifa 3200003 Israel
| | - Abraham Nyska
- Tel Aviv University and Consultant in Toxicologic Pathology Tel Aviv 6200515 Israel
| | - Adi Gross
- Faculty of Biotechnology and Food Engineering Technion—Israel Institute of Technology Haifa 3200003 Israel
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering Technion—Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
49
|
Di Natale C, Battista E, Lettera V, Reddy N, Pitingolo G, Vecchione R, Causa F, Netti PA. Easy Surface Functionalization and Bioconjugation of Peptides as Capture Agents of a Microfluidic Biosensing Platform for Multiplex Assay in Serum. Bioconjug Chem 2021; 32:1593-1601. [PMID: 34114801 PMCID: PMC8382222 DOI: 10.1021/acs.bioconjchem.1c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The development of assays for protein biomarkers in complex matrices is a demanding task that still needs implementation of new approaches. Antibodies as capture agents have been largely used in bioassays but their low stability, low-efficiency production, and cross-reactivity in multiplex approaches impairs their larger applications. Instead, synthetic peptides, even with higher stability and easily adapted amino acid sequences, still remain largely unexplored in this field. Here, we provide a proof-of-concept of a microfluidic device for direct detection of biomarker overexpression. The multichannel microfluidic polydimethylsiloxane (PDMS) device was first derivatized with PAA (poly(acrylic acid)) solution. CRP-1, VEGF-114, and ΦG6 peptides were preliminarily tested to respectively bind the biomarkers, C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-α). Each PDMS microchannel was then respectively bioconjugated with a specific peptide (CRP-1, VEGF-114, or ΦG6) to specifically capture CRP, VEGF, and TNF-α. With such microdevices, a fluorescence bioassay has been set up with sensitivity in the nanomolar range, both in buffered solution and in human serum. The proposed multiplex assay worked with a low amount of sample (25 μL) and detected biomarker overexpression (above nM concentration), representing a noninvasive and inexpensive screening platform.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Edmondo Battista
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Vincenzo Lettera
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Biopox
srl, Viale Maria Bakunin
12, 80125 Naples, Italy
| | - Narayana Reddy
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Gabriele Pitingolo
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Filippo Causa
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento
di Ingegneria Chimica del Materiali e della Produzione Industriale
(DICMAPI), University “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento
di Ingegneria Chimica del Materiali e della Produzione Industriale
(DICMAPI), University “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
50
|
Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, Hajian R, Gasiunas G, Kutanovas S, Kim D, Parkinson J, Dickerson K, Ripoll JJ, Peytavi R, Lu HW, Barron F, Goldsmith BR, Collins PG, Conboy IM, Siksnys V, Aran K. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2021; 5:713-725. [PMID: 33820980 DOI: 10.1038/s41551-021-00706-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Simple and fast methods for the detection of target genes with single-nucleotide specificity could open up genetic research and diagnostics beyond laboratory settings. We recently reported a biosensor for the electronic detection of unamplified target genes using liquid-gated graphene field-effect transistors employing an RNA-guided catalytically deactivated CRISPR-associated protein 9 (Cas9) anchored to a graphene monolayer. Here, using unamplified genomic samples from patients and by measuring multiple types of electrical response, we show that the biosensors can discriminate within one hour between wild-type and homozygous mutant alleles differing by a single nucleotide. We also show that biosensors using a guide RNA-Cas9 orthologue complex targeting genes within the protospacer-adjacent motif discriminated between homozygous and heterozygous DNA samples from patients with sickle cell disease, and that the biosensors can also be used to rapidly screen for guide RNA-Cas9 complexes that maximize gene-targeting efficiency.
Collapse
Affiliation(s)
- Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | - Kandace Fung
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | | | - Kasey Smith
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | - Giedrius Gasiunas
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Daehwan Kim
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Hsiang-Wei Lu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | | | | | - Virginijus Siksnys
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Cardea, San Diego, CA, USA.
- University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|