1
|
Liu J, Qin M, Shi Y, Jiang R, Wang Z, Zhang L, Zhao Y, Gao H, Li M, Huang C. Volatile carbonyl metabolites analysis of nanoparticle exposed lung cells in an organ-on-a-chip system. Talanta 2024; 274:126066. [PMID: 38599125 DOI: 10.1016/j.talanta.2024.126066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The evaluation of nanoparticles (NPs) cytotoxicity is crucial for advancing nanotechnology and assessing environmental pollution. However, existing methods for NPs cytotoxicity evaluation suffer from limited accuracy and inadequate information content. In the study, we developed a novel detection platform that enables the identification of cellular carbonyl metabolites at the organ level. The platform is integrated with a cell co-culture lung organ chip (LOC) and a micropillar concentrator. Notably, our work represents the successful measurement of the amounts of cellular metabolites on LOC system. The volatile carbonyl metabolites (VCMs) generated by cells exposure to various types of NPs with different concentrations were captured and detected by high-resolution mass spectrometry (MS). Compared with conventional cell viability and reactive oxygen species (ROS) analysis, our method discerns the toxicological impact of NPs at low concentrations by analyzed VCM at levels as low as ppb level. The LOC system based metabolic gas detection confirmed that low concentrations of NPs have a toxic effect on the cell model, which was not reflected in the fluorescence detection, and the effect of NP material is more significant than the size effect. Furthermore, this method can distinguish different NPs acting on cell models through cluster analysis of multiple VCMs.
Collapse
Affiliation(s)
- Jinlong Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Meiyan Qin
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Yimin Shi
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Rui Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Zizhen Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, China
| | - Hang Gao
- Institute of Microelectronics of the Chinese Academy of Sciences, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, China.
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| |
Collapse
|
2
|
Bautista-Pérez R, Cano-Martínez A, Herrera-Rodríguez MA, Ramos-Godinez MDP, Pérez Reyes OL, Chirino YI, Rodríguez Serrano ZJ, López-Marure R. Oral Exposure to Titanium Dioxide E171 and Zinc Oxide Nanoparticles Induces Multi-Organ Damage in Rats: Role of Ceramide. Int J Mol Sci 2024; 25:5881. [PMID: 38892068 PMCID: PMC11172338 DOI: 10.3390/ijms25115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are common food additives for human consumption. We examined multi-organ toxicity of both compounds on Wistar rats orally exposed for 90 days. Rats were divided into three groups: (1) control (saline solution), (2) E171-exposed, and (3) ZnO NPs-exposed. Histological examination was performed with hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Ceramide (Cer), 3-nitrotyrosine (NT), and lysosome-associated membrane protein 2 (LAMP-2) were detected by immunofluorescence. Relevant histological changes were observed: disorganization, inflammatory cell infiltration, and mitochondrial damage. Increased levels of Cer, NT, and LAMP-2 were observed in the liver, kidney, and brain of E171- and ZnO NPs-exposed rats, and in rat hearts exposed to ZnO NPs. E171 up-regulated Cer and NT levels in the aorta and heart, while ZnO NPs up-regulated them in the aorta. Both NPs increased LAMP-2 expression in the intestine. In conclusion, chronic oral exposure to metallic NPs causes multi-organ injury, reflecting how these food additives pose a threat to human health. Our results suggest how complex interplay between ROS, Cer, LAMP-2, and NT may modulate organ function during NP damage.
Collapse
Affiliation(s)
- Rocío Bautista-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.)
| | | | | | - Olga Lidia Pérez Reyes
- Departamento de Patología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Yolanda Irasema Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Zariá José Rodríguez Serrano
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.)
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.)
| |
Collapse
|
3
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
Gapeeva A, Qiu H, Cojocaru A, Arndt C, Riaz T, Schütt F, Selhuber-Unkel C, Mishra YK, Tura A, Sonntag S, Gniesmer S, Grisanti S, Kaps S, Adelung R. Tetrapodal ZnO-Based Composite Stents for Minimally Invasive Glaucoma Surgery. ACS Biomater Sci Eng 2023; 9:1352-1361. [PMID: 36776118 DOI: 10.1021/acsbiomaterials.2c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The glaucoma burden increases continuously and is estimated to affect more than 100 million people by 2040. As there is currently no cure to restore the optic nerve damage caused by glaucoma, the only controllable parameter is the intraocular pressure (IOP). In recent years, minimally invasive glaucoma surgery (MIGS) has emerged as an alternative to traditional treatments. It uses micro-sized drainage stents that are inserted through a small incision, minimizing the trauma to the tissue and reducing surgical and postoperative recovery time. However, a major challenge for MIGS devices is foreign body reaction and fibrosis, which can lead to a complete failure of the device. In this work, the antifibrotic potential of tetrapodal ZnO (t-ZnO) microparticles used as an additive is elucidated by using rat embryonic fibroblasts as a model. A simple, direct solvent-free process for the fabrication of stents with an outer diameter of 200-400 μm is presented, in which a high amount of t-ZnO particles (45-75 wt %) is mixed into polydimethylsiloxane (PDMS) and a highly viscous polymer/particle mixture is extruded. The fabricated stents possess increased elastic modulus compared to pure PDMS while remaining flexible to adapt to the curvature of an eye. In vitro experiments showed that the fibroblast cell viability was inhibited to 43 ± 3% when stents with 75 wt % t-ZnO were used. The results indicate that cell inhibiting properties can be attributed to an increased amount of protruding t-ZnO particles on the stent surface, leading to an increase in local contacts with cells and a disruption of the cell membrane. As a secondary mechanism, the released Zn ions could also contribute to the cell-inhibiting properties in the close vicinity of the stent surface. Overall, the fabrication method and the antifibrotic and mechanical properties of developed stents make them promising for application in MIGS.
Collapse
Affiliation(s)
- Anna Gapeeva
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Haoyi Qiu
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Phi-Stone AG, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Ala Cojocaru
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Phi-Stone AG, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Arndt
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Tehseen Riaz
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, DK-6400 Sønderborg, Denmark
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Svenja Sonntag
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Stefanie Gniesmer
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sören Kaps
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
5
|
Bocca B, Leso V, Battistini B, Caimi S, Senofonte M, Fedele M, Cavallo DM, Cattaneo A, Lovreglio P, Iavicoli I. Human biomonitoring and personal air monitoring. An integrated approach to assess exposure of stainless-steel welders to metal-oxide nanoparticles. ENVIRONMENTAL RESEARCH 2023; 216:114736. [PMID: 36343713 DOI: 10.1016/j.envres.2022.114736] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In welding, there is a potential risk due to metal-oxide nanoparticles (MONPs) exposure of workers. To investigate this possibility, the diameter and number particles concentration of MONPs were evaluated in different biological matrices and in personal air samples collected from 18 stainless-steel welders and 15 unexposed administrative employees engaged in two Italian mechanical engineering Companies. Exhaled breath condensate (EBC) and urine were sampled at pre-shift on 1st day and post-shift on 5th day of the workweek, while plasma and inhalable particulate matter (IPM) at post-shift on 5th day and analysed using the Single Particle Mass Spectrometry (SP-ICP-MS) technique to assess possible exposure to Cr2O3, Mn3O4 and NiO nanoparticles (NPs) in welders. The NPs in IPM at both Companies presented a multi-oxide composition consisting of Cr2O3 (median, 871,574 particles/m3; 70 nm), Mn3O4 (median, 713,481 particles/m3; 92 nm) and NiO (median, 369,324 particles/m3; 55 nm). The EBC of welders at both Companies showed Cr2O3 NPs median concentration significantly higher at post-shift (64,645 particles/mL; 55 nm) than at pre-shift (15,836 particles/mL; 58 nm). Significantly lower Cr2O3 NPs median concentration and size (7762 particles/mL; 44 nm) were observed in plasma compared to EBC of welders. At one Company, NiO NPs median concentration in EBC (22,000 particles/mL; 65 nm) and plasma (8248 particles/mL; 37 nm) were detected only at post-shift. No particles of Cr2O3, Mn3O4 and NiO were detected in urine of welders at both Companies. The combined analyses of biological matrices and air samples were a valid approach to investigate both internal and external exposure of welding workers to MONPs. Overall, results may inform suitable risk assessment and management procedures in welding operations.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Caimi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Fedele
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Andrea Cattaneo
- Department of Science and High Technology, Insubria University, Como, Italy
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA. Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Animals (Basel) 2022; 13:ani13010115. [PMID: 36611723 PMCID: PMC9817535 DOI: 10.3390/ani13010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A total of 180 broiler chickens (Cobb500) were randomly allotted to five experimental groups consisting of six replicates and six birds in each pen. Each group was fed a basal diet supplemented with 100 mg/kg ZnO (control) and 10, 40, 70, and 100 mg/kg ZnO NPs for 35 days. Resultantly, Zn uptake and accumulation in serum, breast muscle, tibia bone, and liver were linearly and significantly (p < 0.05) increased with increasing dietary ZnO NPs supplementation at 100 mg/kg compared to the control group (dietary 100 mg/kg ZnO), implying effective absorption capacity of ZnO NPs. This was followed by lower Zn excretion in feces in broilers fed ZnO NPs compared to controls (p < 0.05). Furthermore, dietary ZnO NPs at 40, 70, and 100 mg/kg levels improved broiler tibia bone morphological traits, such as weight, length, and thickness. Similarly, tibia bone mineralization increased in broilers fed ZnO NPs at 100 mg/kg compared to the control (p < 0.05), as demonstrated by tibia ash, Zn, Ca, and P retention. Antioxidative status in serum and liver tissue was also increased in broilers fed dietary ZnO NPs at 70 and 100 mg/kg compared to the control (p < 0.05). In conclusion, dietary ZnO NPs increased Zn absorption in broiler chickens and had a positive influence on tibia bone development and antioxidative status in serum and liver tissue, with dietary ZnO NPs supplementation at 70 and 100 mg/kg showing the optimum effects.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor’Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (N.A.R.); (A.A.S.)
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (N.A.R.); (A.A.S.)
| |
Collapse
|
7
|
Inhibition of cGAS ameliorates acute lung injury triggered by zinc oxide nanoparticles. Toxicol Lett 2022; 373:62-75. [PMID: 36368621 DOI: 10.1016/j.toxlet.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Zinc oxide nanoparticles (ZnONPs) have been widely used in various industrial and biomedical fields. Occupational or accidental inhalation exposure to ZnONPs might lead to acute lung injury (ALI). Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) are critical for the initiation and expansion of inflammation and contribute to tissue injury; however, the role and mechanism of the cGAS-STING pathway in ALI-induced by ZnONPs are unclear. METHODS Male C57BL/6 J mice were intratracheally injected with ZnONPs (0.6 mg/kg) or mock. The mice were euthanized and the degree of lung injury was determined 3 days after the instillation of ZnONPs. The BEAS-2B cell line was used as a cell model to investigate the cytotoxicity of ZnONPs in vitro. RESULTS We found that ZnONPs inhalation induced ALI in mice, manifested by exacerbated lung pathological changes, mitochondrial damage, oxidative stress and inflammation. Interestingly, cGAS and STING were activated in the lung tissues of the mice and BEAS-2B lung epithelial cells treated with ZnONPs. More importantly, we illustrated that the cGAS inhibitor RU.521 inhibited the activation of the cGAS-STING pathway, further decreased oxidative stress and inflammation, and led to ameliorated lung injury in mice treated with ZnONPs. CONCLUSION This study demonstrated that ZnONPs trigger the activation of the cGAS-STING pathway, which plays an important role in ZnONPs-induced ALI. Inhibition of cGAS with RU.521 mitigates the oxidative stress induced by ZnONPs, suggesting that targeting the cGAS-STING pathway may be a feasible strategy to ameliorate the pulmonary injury caused by nanoparticles.
Collapse
|
8
|
Vijayakumar S, Chen J, Kalaiselvi V, Tungare K, Bhori M, González-Sánchez ZI, Durán-Lara EF. Marine polysaccharide laminarin embedded ZnO nanoparticles and their based chitosan capped ZnO nanocomposites: Synthesis, characterization and in vitro and in vivo toxicity assessment. ENVIRONMENTAL RESEARCH 2022; 213:113655. [PMID: 35716813 DOI: 10.1016/j.envres.2022.113655] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In the current scenario where more and more products containing nanomaterials are on the technological or pharmaceutical market, it is crucial to have a thorough knowledge of their toxicity before proposing possible applications. A proper analysis of the toxicity of the nanoproducts should include both in vitro and in vivo biological approaches and should consider that the synthesis and purification methods of nanomaterials may affect such toxicity. In the current work, the green synthesis of laminarin embedded ZnO nanoparticles (Lm-ZnO NPs) and their based chitosan capped ZnO nanocomposites (Ch-Lm-ZnO NCmps) is described for the first time. Furthermore, the evaluation of their in vitro cytotoxicity, phytotoxicity, and in vivo (Zebrafish embryo) toxicity was described. First, the green synthesized Lm-ZnO NPs and Ch-Lm-ZnO NCmps were fully physicochemically characterized. Lm-ZnO NPs were greatly agglomerated and had a spindle morphology ranging from 100 to 350 nm, while Ch-Lm-ZnO NCmps had irregular rod shape with flake-like structure clusters randomly aggregated with diverse sizes ranging from 20 to 250 nm. The in vitro cytotoxicity assessment of the green synthesized Lm-ZnO NPs and Ch-Lm-ZnO NCmps was carried out in normal human dermal fibroblasts (HDF) cells and human colon cancer (HT-29) cells by MTT assay. Lm-ZnO NPs and Ch-Lm-ZnO NCmps (0.1-500 μg/mL), significantly inhibited the viability of both cell lines, revealing dose-dependent cytotoxicity. Besides, the Lm-ZnO NPs and Ch-Lm-ZnO NCmps significantly affected seed germination and roots and shoots length of mung (Vigna radiata). Moreover, the zebrafish embryo toxicity of Lm-ZnO NPs and Ch-Lm-ZnO NCmps among the various concentrations used (0.1-500 μg/mL) caused deformities, increased mortality and decreased the survival rate of zebrafish embryo dose-dependently.
Collapse
Affiliation(s)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai, 264209, PR China.
| | - Viswanathan Kalaiselvi
- Department of Physics, Navarasam Arts & Science College for Women, Arachalur, Erode, 638101, Tamilnadu, India
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, CBD Belapur, Plot No-50, Sector-15, Navi Mumbai, 400614, India
| | - Mustansir Bhori
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, CBD Belapur, Plot No-50, Sector-15, Navi Mumbai, 400614, India
| | - Zaira I González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de Los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab| Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de La Salud, Universidad de Talca, Talca, 3460000, Maule, Chile
| |
Collapse
|
9
|
Food Additive Zinc Oxide Nanoparticles: Dissolution, Interaction, Fate, Cytotoxicity, and Oral Toxicity. Int J Mol Sci 2022; 23:ijms23116074. [PMID: 35682753 PMCID: PMC9181433 DOI: 10.3390/ijms23116074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Food additive zinc oxide (ZnO) nanoparticles (NPs) are widely used as a Zn supplement in the food and agriculture industries. However, ZnO NPs are directly added to complex food-matrices and orally taken through the gastrointestinal (GI) tract where diverse matrices are present. Hence, the dissolution properties, interactions with bio- or food-matrices, and the ionic/particle fates of ZnO NPs in foods and under physiological conditions can be critical factors to understand and predict the biological responses and oral toxicity of ZnO NPs. In this review, the solubility of ZnO NPs associated with their fate in foods and the GI fluids, the qualitative and quantitative determination on the interactions between ZnO NPs and bio- or food-matrices, the approaches for the fate determination of ZnO NPs, and the interaction effects on the cytotoxicity and oral toxicity of ZnO NPs are discussed. This information will be useful for a wide range of ZnO applications in the food industry at safe levels.
Collapse
|
10
|
Chen GH, Song CC, Zhao T, Hogstrand C, Wei XL, Lv WH, Song YF, Luo Z. Mitochondria-Dependent Oxidative Stress Mediates ZnO Nanoparticle (ZnO NP)-Induced Mitophagy and Lipotoxicity in Freshwater Teleost Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2407-2420. [PMID: 35107266 DOI: 10.1021/acs.est.1c07198] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to many special characteristics, zinc oxide nanoparticles (ZnO NPs) are widely used all over the world, leading to their wide distribution in the environment. However, the toxicities and mechanisms of environmental ZnO NP-induced changes of physiological processes and metabolism remain largely unknown. Here, we found that addition of dietary ZnO NPs disturbed hepatic Zn metabolism, increased hepatic Zn and lipid accumulation, downregulated lipolysis, induced oxidative stress, and activated mitophagy; N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, Zn2+ ions chelator) alleviated high ZnO NP-induced Zn and lipid accumulation, oxidative stress, and mitophagy. Mechanistically, the suppression of mitochondrial oxidative stress attenuated ZnO NP-activated mitophagy and ZnO NP-induced lipotoxicity. Taken together, our study elucidated that mitochondrial oxidative stress mediated ZnO NP-induced mitophagy and lipotoxicity; ZnO NPs could be dissociated to free Zn2+ ions, which partially contributed to ZnO NP-induced changes in oxidative stress, mitophagy, and lipid metabolism. Our study provides novel insights into the impacts and mechanism of ZnO NPs as harmful substances inducing lipotoxicity of aquatic organisms, and accordingly, metabolism-relevant parameters will be useful for the risk assessment of nanoparticle materials in the environment.
Collapse
Affiliation(s)
- Guang-Hui Chen
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London WC2R 2LS, U.K
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
11
|
Malysheva A, Ivask A, Doolette CL, Voelcker NH, Lombi E. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. NATURE NANOTECHNOLOGY 2021; 16:926-932. [PMID: 33986512 DOI: 10.1038/s41565-021-00914-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/06/2021] [Indexed: 05/11/2023]
Abstract
Our knowledge of uptake, toxicity and detoxification mechanisms as related to nanoparticles' (NPs') characteristics remains incomplete. Here we combine the analytical power of three advanced techniques to study the cellular binding and uptake and the intracellular transformation of silver nanoparticles (AgNPs): single-particle inductively coupled mass spectrometry, mass cytometry and synchrotron X-ray absorption spectrometry. Our results show that although intracellular and extracellularly bound AgNPs undergo major transformation depending on their primary size and surface coating, intracellular Ag in 24 h AgNP-exposed human lymphocytes exists in nanoparticulate form. Biotransformation of AgNPs is dominated by sulfidation, which can be viewed as one of the cellular detoxification pathways for Ag. These results also show that the toxicity of AgNPs is primarily driven by internalized Ag. In fact, when toxicity thresholds are expressed as the intracellular mass of Ag per cell, differences in toxicity between NPs of different coatings and sizes are minimized. The analytical approach developed here has broad applicability in different systems where the aim is to understand and quantify cell-NP interactions and biotransformation.
Collapse
Affiliation(s)
- Anzhela Malysheva
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Angela Ivask
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Casey L Doolette
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
| |
Collapse
|
12
|
Curcio A, de Walle AV, Benassai E, Serrano A, Luciani N, Menguy N, Manshian BB, Sargsian A, Soenen S, Espinosa A, Abou-Hassan A, Wilhelm C. Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential. ACS NANO 2021; 15:9782-9795. [PMID: 34032115 DOI: 10.1021/acsnano.1c00567] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine. Among nanomaterials devoted to theranostics is copper sulfide (CuS), which provides outstanding optical properties along with easy synthesis and low cost. Herein, we performed a long-term multiscale study on the bioprocessing of hollow CuS nanoparticles (CuS NPs) and rattle-like iron oxide nanoflowers@CuS core-shell hybrids (IONF@CuS NPs) when inside stem cells and cancer cells, cultured as spheroids. In the spheroids, both CuS NPs and IONF@CuS NPs are rapidly dismantled into smaller units (day 0 to 3), and hair-like nanostructures are generated (day 9 to 21). This bioprocessing triggers an adaptation of the cellular metabolism to the internalized metals without impacting cell viability, differentiation, or oxidative stress response. Throughout the remodeling, a loss of IONF-derived magnetism is observed, but, surprisingly, the CuS photothermal potential is preserved, as demonstrated by a full characterization of the photothermal conversion across the bioprocessing process. The maintained photothermal efficiency correlated well with synchrotron X-ray absorption spectroscopy measurements, evidencing a similar chemical phase for Cu but not for Fe over time. These findings evidence that the intracellular bioprocessing of CuS nanoparticles can reshape them into bioengineered nanostructures without reducing the photothermal function and therapeutic potential.
Collapse
Affiliation(s)
- Alberto Curcio
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université-CNRS, 75005 Paris, France
| | - Aurore Van de Walle
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université-CNRS, 75005 Paris, France
| | - Emilia Benassai
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
- Sorbonne Université, CNRS UMR8234, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, F-75005 Paris, France
| | - Aida Serrano
- Spanish CRG beamline at the European Synchrotron (ESRF), B.P. 220, F-38043 Grenoble, France
- Departamento de Electrocerámica, Instituto de Cerámica y Vidrio, ICV-CSIC, Kelsen 5, 28049 Madrid, Spain
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Ara Sargsian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Ana Espinosa
- IMDEA Nanociencia, c/ Faraday, 9, 28049 Madrid, Spain
- Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS UMR8234, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, F-75005 Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université-CNRS, 75005 Paris, France
| |
Collapse
|
13
|
Doble PA, de Vega RG, Bishop DP, Hare DJ, Clases D. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging in Biology. Chem Rev 2021; 121:11769-11822. [PMID: 34019411 DOI: 10.1021/acs.chemrev.0c01219] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elemental imaging gives insight into the fundamental chemical makeup of living organisms. Every cell on Earth is comprised of a complex and dynamic mixture of the chemical elements that define structure and function. Many disease states feature a disturbance in elemental homeostasis, and understanding how, and most importantly where, has driven the development of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as the principal elemental imaging technique for biologists. This review provides an outline of ICP-MS technology, laser ablation cell designs, imaging workflows, and methods of quantification. Detailed examples of imaging applications including analyses of cancers, elemental uptake and accumulation, plant bioimaging, nanomaterials in the environment, and exposure science and neuroscience are presented and discussed. Recent incorporation of immunohistochemical workflows for imaging biomolecules, complementary and multimodal imaging techniques, and image processing methods is also reviewed.
Collapse
Affiliation(s)
- Philip A Doble
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Raquel Gonzalez de Vega
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - David P Bishop
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia.,School of BioSciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David Clases
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| |
Collapse
|
14
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Pan X, He G, Hai B, Liu Y, Bian L, Yong L, Zhang H, Yang C, Du C, Mao T, Ma Y, Jia F, Dou X, Zhai S, Liu X. VPS34 regulates dynamin to determine the endocytosis of mitochondria-targeted zinc oxide nanoparticles in human osteosarcoma cells. J Mater Chem B 2021; 9:2641-2655. [PMID: 33683276 DOI: 10.1039/d1tb00226k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our previous study, zinc oxide nanoparticles (ZnO NPs) presented satisfying therapeutic effects with cancer cell selectivity in osteosarcoma cells and, thus, have been considered as a potential nanomedicine for human osteosarcoma treatment. However, the poorly investigated internalization process, including their endocytic pathway into tumor cells and intracellular fate, limits the clinical application. Here, we further clarified these aspects. First, ZnO NPs were rapidly internalized by osteosarcoma cells and accumulated in mitochondria, before being entrapped into lysosomes. Second, dynasore (a dynamin inhibitor) was demonstrated to be the most effective in blocking ZnO NP uptake and rescuing ZnO NP-induced osteosarcoma cell autophagic death and apoptosis. Third, we confirmed the key role of dynamin 2 in ZnO NP endocytosis and subsequent autophagic cell death in vitro and in vivo. Furthermore, we proved that VPS34 transferred from cell cytoplasm to cell membrane to interact with dynamin under ZnO NP treatment. Altogether, combined with our previous study, the current research further revealed that ZnO NPs entered human osteosarcoma cells through the VPS34/dynamin 2-dependent endocytic pathway, directly targeting and damaging the mitochondria before being entrapped into the lysosomes, thereby initiating mitophagy-Zn2+-reactive oxygen species-mitophagy axis mediated cell apoptosis.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Orthopedics, Beijing International Cooperation Base for Science and Technology on Biomimetic Titanium Orthopedic Implants, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Deniaud A. Imaging inorganic nanomaterial fate down to the organelle level. Metallomics 2021; 13:6134098. [PMID: 33576806 DOI: 10.1093/mtomcs/mfab006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/14/2022]
Abstract
Nanotoxicology remains an important and emerging field since only recent years have seen the improvement of biological models and exposure setups toward real-life scenarios. The appropriate analysis of nanomaterial fate in these conditions also required methodological developments in imaging to become sensitive enough and element specific. In the last 2-4 years, impressive breakthroughs have been achieved using electron microscopy, nanoscale secondary ion mass spectrometry, X-ray fluorescence microscopy, or fluorescent sensors. In this review, basics of the approaches and application examples in the study of nanomaterial fate in biological systems will be described to highlight recent successes in the field.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| |
Collapse
|
17
|
Krishnaiah D, Khiari M, Klibet F, Kechrid Z. Oxidative stress toxicity effect of potential metal nanoparticles on human cells. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol 2020; 41:683-700. [DOI: 10.1002/jat.4121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
19
|
Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. NANOSCALE ADVANCES 2020; 2:3734-3763. [PMID: 36132767 PMCID: PMC9417516 DOI: 10.1039/d0na00286k] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/25/2020] [Indexed: 05/10/2023]
Abstract
Nanomaterials are currently widely exploited for their potential in the development of novel cancer therapies, and so far, mainly nanoparticles (NPs) consisting of liposomes and polymers have made their way into the clinic. However, major bottlenecks for the clinical translation of other types of NPs (i.e. inorganic) are the lack of knowledge concerning their long-term distribution in vivo and their potential toxicity. To counter this, various research groups have worked on soluble NPs, such as zinc oxide (ZnO), copper oxide (CuO), and silver (Ag), which tend to dissolve spontaneously into their ionic form, releasing toxic metal ions and leading to reactive oxygen species (ROS) generation when exposed to cellular environments. By fine-tuning the dissolution kinetics of these NPs, it is possible to control the level of ROS production and thus cytotoxicity to selectively destroy tumor tissue. Specifically, cancer cells tend to exhibit a higher basal level of oxidative stress compared to normal cells due to their higher metabolic rates, and therefore, by engineering NPs that generate sufficient ROS that barely exceed toxic thresholds in cancer cells, normal cells will only experience reversible transient damage. This review focuses on the use of these soluble inorganic NPs for selective cancer therapy and on the various in vitro and in vivo studies that have aimed to control the dissolution kinetics of these NPs, either through particle doping or surface modifications.
Collapse
Affiliation(s)
- Christy Maksoudian
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Neshat Saffarzadeh
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Evelien Hesemans
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Nora Dekoning
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Kiana Buttiens
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Stefaan J Soenen
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| |
Collapse
|
20
|
Canivet L, Denayer FO, Dubot P, Garçon G, Lo Guidice JM. Toxicity of iron nanoparticles towards primary cultures of human bronchial epithelial cells. J Appl Toxicol 2020; 41:203-215. [PMID: 32767597 DOI: 10.1002/jat.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
Air pollution is a public health issue and the toxicity of ambient particulate matter (PM) is well-recognized. Although it does not mostly contribute to the total mass of PM, increasing evidence indicates that the ultrafine fraction has generally a greater toxicity than the others do. A better knowledge of the underlying mechanisms involved in the pathological disorders related to nanoparticles (NPs) remains essential. Hence, the goal of this study was to determine better whether the exposure to a relatively low dose of well-characterized iron-rich NPs (Fe-NPs) might alter some critical toxicological endpoints in a relevant primary culture model of human bronchial epithelial cells (HBECs). We sought to use Fe-NPs representative of those frequently found in the industrial smokes of metallurgical industries. After having noticed the effective internalization of Fe-NPs, oxidative, inflammatory, DNA repair, and apoptotic endpoints were investigated within HBECs, mainly through transcriptional screening. Taken together, these results revealed that, despite it only produced relatively low levels of reactive oxygen species without any significant oxidative damage, low-dose Fe-NPs quickly significantly deregulated the transcription of some target genes closely involved in the proinflammatory response. Although this inflammatory process seemed to stay under control over time in case of this acute scenario of exposure, the future study of its evolution after a scenario of repeated exposure could be very interesting to evaluate the toxicity of Fe-NPs better.
Collapse
Affiliation(s)
- Ludivine Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Franck-Olivier Denayer
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Pierre Dubot
- CNRS UMR 7182, Métaux et céramiques à microstructure contrôlée, Institut de Chimie et des Matériaux, Paris Est, Thiais, France
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| |
Collapse
|
21
|
Carofiglio M, Barui S, Cauda V, Laurenti M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:5194. [PMID: 33850629 PMCID: PMC7610589 DOI: 10.3390/app10155194] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned.
Collapse
Affiliation(s)
- Marco Carofiglio
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Sugata Barui
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
22
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S. Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A. Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
23
|
Rossner P, Vrbova K, Strapacova S, Rossnerova A, Ambroz A, Brzicova T, Libalova H, Javorkova E, Kulich P, Vecera Z, Mikuska P, Coufalik P, Krumal K, Capka L, Docekal B, Moravec P, Sery O, Misek I, Fictum P, Fiser K, Machala M, Topinka J. Inhalation of ZnO Nanoparticles: Splice Junction Expression and Alternative Splicing in Mice. Toxicol Sci 2020; 168:190-200. [PMID: 30500950 PMCID: PMC6390655 DOI: 10.1093/toxsci/kfy288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the wide application of nanomaterials, toxicity studies of nanoparticles (NP) are often limited to in vitro cell models, and the biological impact of NP exposure in mammals has not been thoroughly investigated. Zinc oxide (ZnO) NPs are commonly used in various consumer products. To evaluate the effects of the inhalation of ZnO NP in mice, we studied splice junction expression in the lungs as a proxy to gene expression changes analysis. Female ICR mice were treated with 6.46 × 104 and 1.93 × 106 NP/cm3 for 3 days and 3 months, respectively. An analysis of differential expression and alternative splicing events in 298 targets (splice junctions) of 68 genes involved in the processes relevant to the biological effects of ZnO NP was conducted using next-generation sequencing. Three days of exposure resulted in the upregulation of IL-6 and downregulation of BID, GSR, NF-kB2, PTGS2, SLC11A2, and TXNRD1 splice junction expression; 3 months of exposure increased the expression of splice junctions in ALDH3A1, APAF1, BID, CASP3, DHCR7, GCLC, GCLM, GSR, GSS, EHHADH, FAS, HMOX-1, IFNγ, NF-kB1, NQO-1, PTGS1, PTGS2, RAD51, RIPK2, SRXN1, TRAF6, and TXNRD1. Alternative splicing of TRAF6 and TXNRD1 was induced after 3 days of exposure to 1.93 × 106 NP/cm3. In summary, we observed changes of splice junction expression in genes involved in oxidative stress, apoptosis, immune response, inflammation, and DNA repair, as well as the induction of alternative splicing in genes associated with oxidative stress and inflammation. Our data indicate the potential negative biological effects of ZnO NP inhalation.
Collapse
Affiliation(s)
- Pavel Rossner
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Kristyna Vrbova
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Simona Strapacova
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Andrea Rossnerova
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Antonin Ambroz
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Tana Brzicova
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic.,Department for Risk Research and Management, Faculty of Safety Engineering, VSB-Technical University of Ostrava, Ostrava 700 30, Czech Republic
| | - Helena Libalova
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Eliska Javorkova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Lukas Capka
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Bohumil Docekal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Pavel Moravec
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague 16502, Czech Republic
| | - Omar Sery
- Department of Animal Embryology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Ivan Misek
- Department of Animal Embryology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | - Karel Fiser
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague 15006, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jan Topinka
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
24
|
Preparation of biocompatible nano-ZnO/chitosan microspheres with multi-functions of antibacterial, UV-shielding and dye photodegradation. Int J Biol Macromol 2020; 146:939-945. [DOI: 10.1016/j.ijbiomac.2019.09.217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/09/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
|
25
|
Naatz H, Manshian BB, Rios Luci C, Tsikourkitoudi V, Deligiannakis Y, Birkenstock J, Pokhrel S, Mädler L, Soenen SJ. Model-Based Nanoengineered Pharmacokinetics of Iron-Doped Copper Oxide for Nanomedical Applications. Angew Chem Int Ed Engl 2020; 59:1828-1836. [PMID: 31755189 PMCID: PMC7004194 DOI: 10.1002/anie.201912312] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 01/18/2023]
Abstract
The progress in nanomedicine (NM) using nanoparticles (NPs) is mainly based on drug carriers for the delivery of classical chemotherapeutics. As low NM delivery rates limit therapeutic efficacy, an entirely different approach was investigated. A homologous series of engineered CuO NPs was designed for dual purposes (carrier and drug) with a direct chemical composition-biological functionality relationship. Model-based dissolution kinetics of CuO NPs in the cellular interior at post-exposure conditions were controlled through Fe-doping for intra/extra cellular Cu2+ and biological outcome. Through controlled ion release and reactions taking place in the cellular interior, tumors could be treated selectively, in vitro and in vivo. Locally administered NPs enabled tumor cells apoptosis and stimulated systemic anti-cancer immune responses. We clearly show therapeutic effects without tumor cells relapse post-treatment with 6 % Fe-doped CuO NPs combined with myeloid-derived suppressor cell silencing.
Collapse
Affiliation(s)
- Hendrik Naatz
- University of BremenFaculty of Production EngineeringBadgasteiner Str. 128359BremenGermany
- Leibniz Institute for Materials Engineering IWTBadgasteiner Str. 328359BremenGermany
| | - Bella B. Manshian
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and PathologyBelgium
- Molecular Small Animal Imaging CenterKU LeuvenHerestraat 49B3000LeuvenBelgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and PathologyBelgium
- Molecular Small Animal Imaging CenterKU LeuvenHerestraat 49B3000LeuvenBelgium
| | | | - Yiannis Deligiannakis
- University of IoanninaDepartment of PhysicsPanepistimioupoli Douroutis445110IoanninaGreece
| | - Johannes Birkenstock
- Central Laboratory for Crystallography and Applied MaterialsUniversity of Bremen28359BremenGermany
| | - Suman Pokhrel
- University of BremenFaculty of Production EngineeringBadgasteiner Str. 128359BremenGermany
- Leibniz Institute for Materials Engineering IWTBadgasteiner Str. 328359BremenGermany
| | - Lutz Mädler
- University of BremenFaculty of Production EngineeringBadgasteiner Str. 128359BremenGermany
- Leibniz Institute for Materials Engineering IWTBadgasteiner Str. 328359BremenGermany
| | - Stefaan J. Soenen
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and PathologyBelgium
- Molecular Small Animal Imaging CenterKU LeuvenHerestraat 49B3000LeuvenBelgium
| |
Collapse
|
26
|
Naatz H, Manshian BB, Rios Luci C, Tsikourkitoudi V, Deligiannakis Y, Birkenstock J, Pokhrel S, Mädler L, Soenen SJ. Model‐Based Nanoengineered Pharmacokinetics of Iron‐Doped Copper Oxide for Nanomedical Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hendrik Naatz
- University of BremenFaculty of Production Engineering Badgasteiner Str. 1 28359 Bremen Germany
- Leibniz Institute for Materials Engineering IWT Badgasteiner Str. 3 28359 Bremen Germany
| | - Bella B. Manshian
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and Pathology Belgium
- Molecular Small Animal Imaging CenterKU Leuven Herestraat 49 B3000 Leuven Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and Pathology Belgium
- Molecular Small Animal Imaging CenterKU Leuven Herestraat 49 B3000 Leuven Belgium
| | - Vasiliki Tsikourkitoudi
- University of IoanninaDepartment of Physics Panepistimioupoli Douroutis 445110 Ioannina Greece
| | - Yiannis Deligiannakis
- University of IoanninaDepartment of Physics Panepistimioupoli Douroutis 445110 Ioannina Greece
| | - Johannes Birkenstock
- Central Laboratory for Crystallography and Applied MaterialsUniversity of Bremen 28359 Bremen Germany
| | - Suman Pokhrel
- University of BremenFaculty of Production Engineering Badgasteiner Str. 1 28359 Bremen Germany
- Leibniz Institute for Materials Engineering IWT Badgasteiner Str. 3 28359 Bremen Germany
| | - Lutz Mädler
- University of BremenFaculty of Production Engineering Badgasteiner Str. 1 28359 Bremen Germany
- Leibniz Institute for Materials Engineering IWT Badgasteiner Str. 3 28359 Bremen Germany
| | - Stefaan J. Soenen
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and Pathology Belgium
- Molecular Small Animal Imaging CenterKU Leuven Herestraat 49 B3000 Leuven Belgium
| |
Collapse
|
27
|
Fate Determination of ZnO in Commercial Foods and Human Intestinal Cells. Int J Mol Sci 2020; 21:ijms21020433. [PMID: 31936671 PMCID: PMC7014048 DOI: 10.3390/ijms21020433] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Zinc oxide (ZnO) particles are widely used as zinc (Zn) fortifiers, because Zn is essential for various cellular functions. Nanotechnology developments may lead to production of nano-sized ZnO, although nanoparticles (NPs) are not intended to be used as food additives. Current regulations do not specify the size distribution of NPs. Moreover, ZnO is easily dissolved into Zn ions under acidic conditions. However, the fate of ZnO in commercial foods or during intestinal transit is still poorly understood. (2) Methods: We established surfactant-based cloud point extraction (CPE) for ZnO NP detection as intact particle forms using pristine ZnO-NP-spiked powdered or liquid foods. The fate determination and dissolution characterization of ZnO were carried out in commercial foods and human intestinal cells using in vitro intestinal transport and ex vivo small intestine absorption models. (3) Results: The results demonstrated that the CPE can effectively separate ZnO particles and Zn ions in food matrices and cells. The major fate of ZnO in powdered foods was in particle form, in contrast to its ionic fate in liquid beverages. The fate of ZnO was closely related to the extent of its dissolution in food or biomatrices. ZnO NPs were internalized into cells in both particle and ion form, but dissolved into ions with time, probably forming a Zn–ligand complex. ZnO was transported through intestinal barriers and absorbed in the small intestine primarily as Zn ions, but a small amount of ZnO was absorbed as particles. (4) Conclusion: The fate of ZnO is highly dependent on food matrix type, showing particle and ionic fates in powdered foods and liquid beverages, respectively. The major intracellular and intestinal absorption fates of ZnO NPs were Zn ions, but a small portion of ZnO particle fate was also observed after intestinal transit. These findings suggest that the toxicity of ZnO is mainly related to the Zn ion, but potential toxicity resulting from ZnO particles cannot be completely excluded.
Collapse
|
28
|
Wiesmann N, Tremel W, Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mater Chem B 2020; 8:4973-4989. [DOI: 10.1039/d0tb00739k] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide nanoparticles are characterized by a good biocompatibility while providing a versatile potential as innovative therapeutic agents in cancer medicine.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, Head and Neck Surgery
- University Medical Centre of the Johannes Gutenberg-University
- Laboratory for Molecular Tumor Biology
- 55131 Mainz
- Germany
| | - Wolfgang Tremel
- Department of Chemistry
- Johannes Gutenberg-University
- 55128 Mainz
- Germany
| | - Juergen Brieger
- Department of Otorhinolaryngology, Head and Neck Surgery
- University Medical Centre of the Johannes Gutenberg-University
- Laboratory for Molecular Tumor Biology
- 55131 Mainz
- Germany
| |
Collapse
|
29
|
Tang Y, Chen B, Hong W, Chen L, Yao L, Zhao Y, Aguilar ZP, Xu H. ZnO Nanoparticles Induced Male Reproductive Toxicity Based on the Effects on the Endoplasmic Reticulum Stress Signaling Pathway. Int J Nanomedicine 2019; 14:9563-9576. [PMID: 31824151 PMCID: PMC6900315 DOI: 10.2147/ijn.s223318] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose The aim of this study was to evaluate the adverse effects of ZnO NPs on male reproductive system and explore the possible mechanism. Methods In this study, the effect of oral administration of 50, 150 and 450 mg/kg zinc oxide nanoparticles (ZnO NPs) in adult male mice was studied over a 14-day period. Results The results showed that the number of sperms in the epididymis and the concentration of testosterone in serum were decreased with an increased dose of ZnO NPs. Testicular histopathological lesions like detachment, atrophy and vacuolization of germ cells were observed. The results showed that increased dosage of ZnO NPs correspondingly up-regulated the IRE1α, XBP1s, BIP, and CHOP (P<0.05) which are genes related to ER stress. These observations indicated that ZnO NPs had adverse effects on the male reproductive system in a dose-dependent manner possibly through ER stress. The expression of caspase-3 was significantly increased in all the treated groups (P<0.001), which reflected the possible activation of apoptosis. Additionally, there was significant down-regulation of the gene StAR (P<0.05), a key player in testosterone synthesis. When an ER-stress inhibitor salubrinal was administered to the 450 mg/kg ZnO NPs treatment group, the damages to the seminiferous tube and vacuolization of Sertoli and Leydig cells were not observed. Furthermore, the testosterone levels in the serum were similar to the control group after the subsequent salubrinal treatment. Conclusion It may be inferred that the ZnO NP's reproductive toxicity in male mice occurred via apoptosis and ER-stress signaling pathway.
Collapse
Affiliation(s)
- Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Bolu Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Wuding Hong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China.,The Second Affiliated Hospital of Nanchang University, Nanchang 330000, People's Republic of China
| | - Liyang Yao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
30
|
Roy S, Liu Z, Sun X, Gharib M, Yan H, Huang Y, Megahed S, Schnabel M, Zhu D, Feliu N, Chakraborty I, Sanchez-Cano C, Alkilany AM, Parak WJ. Assembly and Degradation of Inorganic Nanoparticles in Biological Environments. Bioconjug Chem 2019; 30:2751-2762. [DOI: 10.1021/acs.bioconjchem.9b00645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sathi Roy
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Ziyao Liu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Xing Sun
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Mustafa Gharib
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Huijie Yan
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Yalan Huang
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Saad Megahed
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | | | - Dingcheng Zhu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Neus Feliu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | | | | | - Alaaldin M. Alkilany
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, 11931 Amman, Jordan
| | - Wolfgang J. Parak
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
- CIC Biomagune, 20014 San Sebastian, Spain
| |
Collapse
|
31
|
Nazir S, Rabbani A, Mehmood K, Maqbool F, Shah GM, Khan MF, Sajid M. Antileishmanial activity and cytotoxicity of ZnO-based nano-formulations. Int J Nanomedicine 2019; 14:7809-7822. [PMID: 31576125 PMCID: PMC6767875 DOI: 10.2147/ijn.s203351] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Nanoparticles (NPs) can be toxic due to their nano-range sizes. Zinc oxide (ZnO) has good biocompatibility and is commercially used in cosmetics. Moreover, ZnO NPs have potential biomedical uses, but their safety remains unclear. METHODS A range of doped ZnO NPs was evaluated for antileishmanial activity and in vitro toxicity in brine shrimp and human macrophages, and N-doped ZnO NPs were evaluated for in vivo toxicity in male BALB/C mice. N-doped ZnO NPs were administered via two routes: intra-peritoneal injection and topically as a paste. The dosages were 10, 50, and 100 mg/kg/day for 14 days. RESULTS Topical administration was safe at all dosages, but intra-peritoneal injection displayed toxicity at higher doses, namely, 50 and 100 mg/kg/day. The pathological results for the i.p. dose groups were mild to severe degenerative changes in parenchyma cells, increases in Kupffer cells, disappearance of hepatic plates, increases in cell size, ballooning, cytoplasmic changes, and nuclear pyknosis in the liver. Kidney histology was also altered in the i.p. administration group (dose 100 mg/kg/day), with inflammatory changes in the focal area. We associate pathological abnormalities with the presence of doped ZnO NPs at the diseased site, which was verified by PIXE analysis of the liver and kidney samples of the treated and untreated mice groups. CONCLUSION The toxicity of the doped ZnO NPs can serve as an essential determinant for the effects of ZnO NPs on environmental toxicity and can be used for guidelines for safer use of ZnO-based nanomaterials in topical treatment of leishmaniasis and other biomedical applications.
Collapse
Affiliation(s)
- Samina Nazir
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Atiya Rabbani
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Khalid Mehmood
- Medical Centre, Quaid-e-Azam University, Islamabad, Pakistan
| | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | | | | | - Muhammad Sajid
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| |
Collapse
|
32
|
Ramadan R, Romera D, Carrascón R, Cantero M, Aguilera-Correa JJ, García Ruiz JP, Esteban J, Silván MM. Sol-Gel-Deposited Ti-Doped ZnO: Toward Cell Fouling Transparent Conductive Oxides. ACS OMEGA 2019; 4:11354-11363. [PMID: 31460239 PMCID: PMC6682115 DOI: 10.1021/acsomega.9b00646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/17/2019] [Indexed: 05/31/2023]
Abstract
Ti-doped ZnO thin films were obtained with the aim of tailoring ZnO film bioadhesiveness and making the optoelectronic properties of ZnO materials transferable to biological environments. The films were prepared on silicon substrates by sol-gel spin-coating and subsequent annealing. A Ti-O segregation limits the ZnO crystallite growth and creates a buffer out-layer. Consequently, the Ti-doped ZnO presents slightly increased resistivity, which remains in the order of 10-3 Ω·cm. The strong biochemical interference of Zn2+ ions released from pure ZnO surfaces was evidenced by culturing Staphylococcus epidermidis with and without the Zn2+ coupling agent clioquinol. The Ti-doped ZnO surfaces showed a considerable increase of bacterial viability with respect to pure ZnO. Cell adhesion was assayed with human mesenchymal stem cells (hMSCs). Although hMSCs find difficulties to adhere to the pure ZnO surface, they progressively expand on the surface of ZnO when the Ti doping is increased. A preliminary microdevice has been built on the Si substrate with a ZnO film doped with 5% Ti. A one-dimensional micropattern with a zigzag structure shows the preference of hMSCs for adhesion on Ti-doped ZnO with respect to Si. The induced contrast of surface tension further induces a cell polarization effect on hMSCs. It is suggested that the presence of Ti-O covalent bonding on the doped surfaces provides a much more stable ground for bioadhesion. Such fouling behavior suggests an influence of Ti doping on film bioadhesiveness and sets the starting point for the selection of optimal materials for implantable optoelectronic devices.
Collapse
Affiliation(s)
- Rehab Ramadan
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Physics
Department, Faculty of Science, Minia University, 61519 Minia, Egypt
| | - David Romera
- Departamento
de Microbiología Clínica, Instituto de Investigación Sanitaria de la Fundación
Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Rosalía
Delgado Carrascón
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Cantero
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - John-Jairo Aguilera-Correa
- Departamento
de Microbiología Clínica, Instituto de Investigación Sanitaria de la Fundación
Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Josefa P. García Ruiz
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaime Esteban
- Departamento
de Microbiología Clínica, Instituto de Investigación Sanitaria de la Fundación
Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Miguel Manso Silván
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
33
|
Lim SL, Ng CT, Zou L, Lu Y, Chen J, Bay BH, Shen HM, Ong CN. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 2019; 13:1117-1132. [DOI: 10.1080/17435390.2019.1640913] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Swee Ling Lim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Cheng Teng Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Li Zou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yonghai Lu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jiaqing Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Chen P, Wang H, He M, Chen B, Yang B, Hu B. Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:337-346. [PMID: 30616150 DOI: 10.1016/j.ecoenv.2018.12.096] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 05/27/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are widely used in daily life. However, common utilization of ZnO NPs results in increases in environmental release, and their health hazards have attracted extensive attention. To investigate the cytotoxicity of ZnO NPs and their mechanism in HepG2 cells, a comprehensive analytical system was developed. The internalization, cytotoxic mechanism, death mechanism and elimination behavior of three sizes of ZnO NPs were studied by electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICP-MS), MTT assays, GSH measurements, ROS measurements and analyses of apoptosis and gene expression. The size-, dose- and time-dependent characteristics of ZnO NPs were determined, and the metabolism of ZnO NPs in cells was discussed. The cytotoxicity of ZnO NPs was confirmed to depend on both the size and concentration and was attributed to the release of Zn2+, induction of oxidative stress and inflammatory response; the death mode of HepG2 cells incubated with ZnO NPs was necrotic rather than programmed cell death.
Collapse
Affiliation(s)
- Pengyu Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
35
|
Sanchez-Cano C, Gianolio D, Romero-Canelon I, Tucoulou R, Sadler PJ. Nanofocused synchrotron X-ray absorption studies of the intracellular redox state of an organometallic complex in cancer cells. Chem Commun (Camb) 2019; 55:7065-7068. [DOI: 10.1039/c9cc01675a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synchrotron nanoprobe X-ray absorption studies of an osmium metallodrug in cancer cells show hetereogeneous intracellular distribution of OsII and OsIII species.
Collapse
Affiliation(s)
| | - Diego Gianolio
- Diamond Light Source
- Harwell Science and Innovation Campus
- Didcot
- UK
| | | | | | | |
Collapse
|
36
|
Orsi D, Rimoldi T, Pinelli S, Alinovi R, Goldoni M, Benecchi G, Rossi F, Cristofolini L. New CeF 3-ZnO nanocomposites for self-lighted photodynamic therapy that block adenocarcinoma cell life cycle. Nanomedicine (Lond) 2018; 13:2311-2326. [PMID: 30198424 DOI: 10.2217/nnm-2017-0399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To synthesize and characterize the performances of a new all-inorganic nanocomposite (NC) for self-lighted photodynamic therapy against cancer. This NC could allow radiotherapy doses to be reduced, as it enhances the effects of x-rays, generating cytotoxic reactive oxygen species as singlet oxygen. MATERIALS & METHODS The proposed NC combines CeF3 and ZnO; CeF3 absorbs 6-MeV x-rays and activates the photosensitizer ZnO. Characterization is performed by transmission electron microscopy (TEM), scanning-TEM, energy dispersive x-ray spectrometry and fluorescence spectroscopies. Efficiency on human adenocarcinoma cells (A549) was tested by fluorescence spectroscopy, cytofluorimetry, viability assays, clonogenic assays, cell cycle progression assays. RESULTS NC blocks A549's cell cycle before mitosis in the dark. Upon low-dose x-ray irradiation (2 Gy), reactive oxygen species/singlet oxygen are generated, further blocking cell cycle and reducing viability by 18% with respect to the sum of x-ray irradiation and NC dark activity. CONCLUSION These novel NCs promise to reduce doses in radiotherapy, helping to reduce unwanted side effects.
Collapse
Affiliation(s)
- Davide Orsi
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Tiziano Rimoldi
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Silvana Pinelli
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Rossella Alinovi
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Matteo Goldoni
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanna Benecchi
- Servizio di Fisica Sanitaria, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
| | - Francesca Rossi
- Consiglio Nazionale Ricerche, Istituto dei Materiali per l'Elettronica ed il Magnetismo IMEM-CNR, 43124 Parma, Italy
| | - Luigi Cristofolini
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| |
Collapse
|
37
|
Leontowich AFG, Berg R, Regier CN, Taylor DM, Wang J, Beauregard D, Geilhufe J, Swirsky J, Wu J, Karunakaran C, Hitchcock AP, Urquhart SG. Cryo scanning transmission x-ray microscope optimized for spectrotomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093704. [PMID: 30278741 DOI: 10.1063/1.5041009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
A cryo scanning transmission X-ray microscope, the cryo-STXM, has been designed and commissioned at the Canadian Light Source synchrotron. The instrument is designed to operate from 100 to 4000 eV (λ = 12.4 - 0.31 nm). Users can insert a previously frozen sample, through a load lock, and rotate it ±70° in the beam to collect tomographic data sets. The sample can be maintained for extended periods at 92 K primarily to suppress radiation damage and a pressure on the order of 10-9 Torr to suppress sample contamination. The achieved spatial resolution (30 nm) and spectral resolution (0.1 eV) are similar to other current soft X-ray STXMs, as demonstrated by measurements on known samples and test patterns. The data acquisition efficiency is significantly more favorable for both imaging and tomography. 2D images, 3D tomograms, and 4D chemical maps of automotive hydrogen fuel cell thin sections are presented to demonstrate current performance and new capabilities, namely, cryo-spectrotomography in the soft X-ray region.
Collapse
Affiliation(s)
- A F G Leontowich
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - R Berg
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - C N Regier
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - D M Taylor
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - J Wang
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - D Beauregard
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - J Geilhufe
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - J Swirsky
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - J Wu
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - C Karunakaran
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - A P Hitchcock
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - S G Urquhart
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
38
|
Exploring multiple effects of Zn 0.15Mg 0.85O nanoparticles on Bacillus subtilis and macrophages. Sci Rep 2018; 8:12276. [PMID: 30115985 PMCID: PMC6095908 DOI: 10.1038/s41598-018-30719-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
The increasing number of multidrug resistant bacteria raises a serious public-health concern, which is exacerbated by the lack of new antibiotics. Metal oxide nanoparticles are already applied as an antibacterial additive in various products used in everyday life but their modes of action have remained unclear. Moreover, their potential negative effects to human health are still under evaluation. We explored effects of mixed metal oxide Zn0.15Mg0.85O on Bacillus subtilis, as a model bacterial organism, and on murine macrophages. Zn0.15Mg0.85O killed planktonic bacterial cells and prevented biofilm formation by causing membrane damages, oxidative stress and metal ions release. When exposed to a sub-inhibitory amount of Zn0.15Mg0.85O, B. subtilis up-regulates proteins involved in metal ions export, oxidative stress response and maintain of redox homeostasis. Moreover, expression profiles of proteins associated with information processing, metabolism, cell envelope and cell division were prominently changed. Multimode of action of Zn0.15Mg0.85O suggests that no single strategy may provide bacterial resistance. Macrophages tolerated Zn0.15Mg0.85O to some extend by both the primary phagocytosis of nanoparticles and the secondary phagocytosis of damaged cells. Bacterial co-treatment with ciprofloxacin and non-toxic amount of Zn0.15Mg0.85O increased antibiotic activity towards B. subtilis and E. coli.
Collapse
|
39
|
Siddiqi KS, ur Rahman A, Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. NANOSCALE RESEARCH LETTERS 2018; 13:141. [PMID: 29740719 PMCID: PMC5940970 DOI: 10.1186/s11671-018-2532-3] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/16/2018] [Indexed: 05/19/2023]
Abstract
Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.
Collapse
Affiliation(s)
| | - Aziz ur Rahman
- Department of Saidla (Unani Pharmacy), Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box #196, Gondar, Ethiopia
| |
Collapse
|
40
|
Líbalová H, Costa PM, Olsson M, Farcal L, Ortelli S, Blosi M, Topinka J, Costa AL, Fadeel B. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. CHEMOSPHERE 2018; 196:482-493. [PMID: 29324388 DOI: 10.1016/j.chemosphere.2017.12.182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/02/2017] [Accepted: 12/28/2017] [Indexed: 05/25/2023]
Abstract
The rapid dissolution of copper oxide (CuO) nanoparticles (NPs) with release of ions is thought to be one of the main factors modulating their toxicity. Here we assessed the cytotoxicity of a panel of CuO NPs (12 nm ± 4 nm) with different surface modifications, i.e., anionic sodium citrate (CIT) and sodium ascorbate (ASC), neutral polyvinylpyrrolidone (PVP), and cationic polyethylenimine (PEI), versus the pristine (uncoated) NPs, using a murine macrophage cell line (RAW264.7). Cytotoxicity, reactive oxygen species (ROS) production, and cellular uptake were assessed. The cytotoxicity results were analyzed by the benchmark dose (BMD) method and the NPs were ranked based on BMD20 values. The PEI-coated NPs were found to be the most cytotoxic. Despite the different properties of the coating agents, NP dissolution in cell medium was only marginally affected by surface modification. Furthermore, CuCl2 (used as an ion control) elicited significantly less cytotoxicity when compared to the CuO NPs. We also observed that the antioxidant, N-acetylcysteine, failed to protect against the cytotoxicity of the uncoated CuO NPs. Indeed, the toxicity of the surface-modified CuO NPs was not directly linked to particle dissolution and subsequent Cu burden in cells, nor to cellular ROS production, although CuO-ASC NPs, which were found to be the least cytotoxic, yielded lower levels of ROS in comparison to pristine NPs. Hierarchical cluster analysis suggested, instead, that the toxicity in the current in vitro model could be explained by synergistic interactions between the NPs, their dissolution, and the toxicity of the coating agents.
Collapse
Affiliation(s)
- Helena Líbalová
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pedro M Costa
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Olsson
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lucian Farcal
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Jan Topinka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anna L Costa
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Gupta J, Bahadur D. Defect-Mediated Reactive Oxygen Species Generation in Mg-Substituted ZnO Nanoparticles: Efficient Nanomaterials for Bacterial Inhibition and Cancer Therapy. ACS OMEGA 2018; 3:2956-2965. [PMID: 30023854 PMCID: PMC6044716 DOI: 10.1021/acsomega.7b01953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 05/24/2023]
Abstract
Mg-substituted ZnO nanoparticles (MgZnO NPs) were synthesized by a soft chemical approach and were well-characterized by X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, and photoluminescence spectroscopy. The absorption and photoluminescence spectra show that substitution of Mg ions results in the widening of the band gap and a significant enhancement in the concentration of defects in ZnO NPs. A systemic study of generation of reactive oxygen species (ROS) under dark, daylight, and visible light conditions suggests that the aqueous suspension of MgZnO NPs generates a higher level of ROS because of the surface defects (oxygen vacancies). This capability of MgZnO NPs makes them a more promising candidate for the inhibition of bacterial growth and for killing of cancer cells as compared to pure ZnO NPs, possibly because of the enhanced interaction and accumulation of MgZnO NPs in the cytoplasm or cell membrane in the presence of both Zn2+ and Mg2+ ions. Further, MgZnO NPs exhibit excellent selective killing of nasopharyngeal carcinoma cells (KB) and cervical cancer cells (HeLa) with minimal toxicity to normal fibroblast cells (L929). The results suggest that the generation of ROS and Zn2+ ions are possibly responsible for the higher activity toward the depolarization of cell membrane potential, the lipid peroxidation in bacterial cells, depolarization of the mitochondrial membrane, and cell cycle arrest in the S phase in cancer cells.
Collapse
Affiliation(s)
| | - D. Bahadur
- Department of Metallurgical Engineering
and Materials Science, Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
42
|
Zhang C, Li Y, Liu L, Gong Y, Xie Y, Cao Y. Chemical Structures of Polyphenols That Critically Influence the Toxicity of ZnO Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1714-1722. [PMID: 29383937 DOI: 10.1021/acs.jafc.8b00368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent studies suggested that phytochemicals as natural antioxidants in food could alleviate nanoparticle (NP) toxicity. This study investigated the combined toxicity of ZnO NPs and a panel of polyphenols. Surprisingly, polyphenols with both high and almost no radical scavenging activities could elicit cytoprotective effects against NP exposure in Caco-2 cells, which were primarily influenced by the positions of the hydroxyl group. Polyphenols with different chemical structures variously influenced the hydrodynamic size, zeta potential, and solubility of ZnO NPs as well as NP-induced intracellular superoxide and Zn ions, which could all contribute to the combined effects. Responses of human endothelial cells appeared to be different from the responses of Caco-2 cells, which may indicate cell-type dependent responses to combined exposure of NPs and phytochemicals. In conclusion, the data from this study suggested a pivotal role of chemical structures of phytochemicals in determining their capacity to affect ZnO NP toxicity.
Collapse
Affiliation(s)
- Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, P.R. China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, P.R. China
| |
Collapse
|
43
|
Anders CB, Eixenberger JE, Franco NA, Hermann RJ, Rainey KD, Chess JJ, Punnoose A, Wingett DG. ZnO nanoparticle preparation route influences surface reactivity, dissolution and cytotoxicity. ENVIRONMENTAL SCIENCE. NANO 2018; 5:572-588. [PMID: 29479436 PMCID: PMC5823520 DOI: 10.1039/c7en00888k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
ZnO nanoparticles (nZnO) are commonly used in nanotechnology applications despite their demonstrated cytotoxicity against multiple cell types. This underscores the significant need to determine the physicochemical properties that influence nZnO cytotoxicity. In this study, we analyzed six similarly sized nZnO formulations, along with SiO2-coated nZnO, bulk ZnO and ZnSO4 as controls. Four of the nZnO samples were synthesized using various wet chemical methods, while three employed high-temperature flame spray pyrolysis (FSP) techniques. X-ray diffraction and optical analysis demonstrated the lattice parameters and electron band gap of the seven nZnO formulations were similar. However, electrophoretic mobility measures, hydrodynamic size, photocatalytic rate constants, dissolution potential, reactive oxygen species (ROS) production and, more importantly, the cytotoxicity of the variously synthesized nZnO towards Jurkat leukemic and primary CD4+ T cells displayed major differences. Surface structure analysis using FTIR, X-ray photoelectron spectroscopies (XPS) and dynamic light scattering (DLS) revealed significant differences in the surface-bound chemical groups and the agglomeration tendencies of the samples. The wet chemical nZnO, with higher cationic surface charge, faster photocatalytic rates, increased extracellular dissolution and ROS generation demonstrated greater cytotoxicity towards both cell types than those made with FSP techniques. Furthermore, principal component analysis (PCA) suggests that the synthesis procedure employed influences which physicochemical properties contribute more to the cytotoxic response. These results suggest that the synthesis approach results in unique surface chemistries and can be a determinant of cellular cytotoxicity and oxidative stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Denise G. Wingett
- Biomolecular Sciences Graduate Programs, Boise State University, USA
- Department of Biological Sciences, Boise State University, USA
| |
Collapse
|
44
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
45
|
He T, Long J, Li J, Liu L, Cao Y. Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:233-240. [PMID: 29028602 DOI: 10.1016/j.etap.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/03/2017] [Accepted: 10/06/2017] [Indexed: 05/27/2023]
Abstract
Once inhaled, nanoparticles (NPs) will first interact with lung surfactant system, which may influence the colloidal aspects of NPs and consequently the toxic potential of NPs to pulmonary cells. In this study, we investigated the effects of dipalmitoyl phosphatidylcholine (DPPC), the major component in lung surfactant, on stability and toxicity of ZnO NPs. The presence of DPPC increased the UV-vis spectra, hydrodynamic size, Zeta potential and dissolution rate of ZnO NPs, which indicates that DPPC might interact with NPs and affect the colloidal stability of NPs. Exposure to ZnO NPs induced cytotoxicity associated with increased intracellular Zn ions but not superoxide in A549 cells. In A549 epithelium model, exposure to ZnO NPs induced cytotoxicity and decreased the release of interleukin 6 (IL-6) without a significant effect on epithelial permeability rate. Co-exposure of A549 cells or A549 epithelium model to DPPC and ZnO NPs induced a higher release of lactate dehydrogenase (LDH) and interleukin-6 (IL-6) compared with the exposure of ZnO NPs alone. We concluded that the presence of DPPC could influence the colloidal stability of ZnO NPs and increase the damage of NPs to membrane probably due to the increased positive surface charge.
Collapse
Affiliation(s)
- Tong He
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
46
|
Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact 2017; 278:40-47. [PMID: 28987328 DOI: 10.1016/j.cbi.2017.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/30/2023]
Abstract
The presence of food components may alter the colloidal aspects and toxicity of nanoparticles (NPs). In this study, the toxicity of ZnO NPs to Caco-2 and HepG2 cells was assessed, with the emphasis on the interactions between ZnO NPs and oleate (OA). The presence of OA increased UV-Vis spectra and hydrodynamic sizes, decreased Zeta potential, and markedly reduced the release of Zn ions from the dissolution of ZnO NPs, which combined indicated that OA could coat ZnO NPs and stabilize ZnO NPs. Exposure to ZnO NPs significantly induced cytotoxicity to Caco-2 and HepG2 cells, associated with increased intracellular Zn ions but not superoxide. When OA was added to the freshly prepared ZnO NP suspensions, the cytotoxicity, intracellular Zn ions and superoxide induced by ZnO NPs were not significantly affected. However, when ZnO NPs were aged for 24 h with the presence of OA, the cytotoxicity of ZnO NPs to Caco-2 and HepG2 cells was significantly reduced, associated with a reduction of intracellular Zn ions. The results from this study suggested that the presence of OA could increase colloidal stability of ZnO NPs and consequently reduce the toxicity of ZnO NPs after aging associated with reduced accumulation of intracellular Zn ions.
Collapse
Affiliation(s)
- Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Leying Jiang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
47
|
Wang J, Zhou H, Guo G, Tan J, Wang Q, Tang J, Liu W, Shen H, Li J, Zhang X. Enhanced Anti-Infective Efficacy of ZnO Nanoreservoirs through a Combination of Intrinsic Anti-Biofilm Activity and Reinforced Innate Defense. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33609-33623. [PMID: 28884578 DOI: 10.1021/acsami.7b08864] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increasing prevalence of implant-associated infections (IAIs) imposes a heavy burden on patients and medical providers. Bacterial biofilms are recalcitrant to antiseptic drugs and local immune defense and can attenuate host proinflammatory response to interfere with bacterial clearance. Zinc oxide nanoparticles (ZnO NPs) play a dual role in antibacterial and immunomodulatory activities but compromise the cytocompatibility because of their intracellular uptake. Here, ZnO NPs were immobilized on titanium to form homogeneous nanofilms (from discontinuous to continuous) through magnetron sputtering, and the possible antimicrobial activity and immunomodulatory effect of nano-ZnO films were investigated. Nano-ZnO films were found to prohibit sessile bacteria more than planktonic bacteria in vitro, and the antibacterial effect occurred in a dose-dependent manner. Using a novel mouse soft tissue IAI model, the in vivo results revealed that nano-ZnO films possessed outstanding antimicrobial efficacy, which could not be ascribed solely to the intrinsic anti-infective activity of nano-ZnO films observed in vitro. Macrophages and polymorphonuclear leukocytes (PMNs), two important factors in innate immune response, were cocultured with nano-ZnO and bacteria/lipopolysaccharide in vitro, and the nano-ZnO films could enhance the antimicrobial efficacy of macrophages and PMNs through promoting phagocytosis and secretion of inflammatory cytokines. This study provides insights into the anti-infective activity and mechanism of ZnO and consolidates the theoretical basis for future clinical applications of ZnO.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jiaqi Tan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Wei Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| |
Collapse
|
48
|
Branica G, Mladinić M, Omanović D, Želježić D. An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests. Arh Hig Rada Toksikol 2017; 67:277-288. [PMID: 28033099 DOI: 10.1515/aiht-2016-67-2910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/01/2016] [Indexed: 11/15/2022] Open
Abstract
Nanoparticle use has increased radically raising concern about possible adverse effects in humans. Zinc oxide nanoparticles (ZnO NPs) are among the most common nanomaterials in consumer and medical products. Several studies indicate problems with their safe use. The aim of our study was to see at which levels ZnO NPs start to produce adverse cytogenetic effects in human lymphocytes as an early attempt toward establishing safety limits for ZnO NP exposure in humans. We assessed the genotoxic effects of low ZnO NP concentrations (1.0, 2.5, 5, and 7.5 μg mL-1) in lymphocyte cultures over 14 days of exposure. We also tested whether low and high-density lymphocytes differed in their ability to accumulate ZnO NPs in these experimental conditions. Primary DNA damage (measured with the alkaline comet assay) increased with nanoparticle concentration in unseparated and high density lymphocytes. The same happened with the fragmentation of TP53 (measured with the comet-FISH). Nanoparticle accumulation was significant only with the two highest concentrations, regardless of lymphocyte density. High-density lymphocytes had significantly more intracellular Zn2+ than light-density ones. Our results suggest that exposure to ZnO NPs in concentrations above 5 μg mL-1 increases cytogenetic damage and intracellular Zn2+ levels in lymphocytes.
Collapse
|
49
|
Luo Y, Wu H, Feng C, Xiao K, Yang X, Liu Q, Lin TY, Zhang H, Walton JH, Ajena Y, Hu Y, Lam KS, Li Y. "One-Pot" Fabrication of Highly Versatile and Biocompatible Poly(vinyl alcohol)-porphyrin-based Nanotheranostics. Am J Cancer Res 2017; 7:3901-3914. [PMID: 29109786 PMCID: PMC5667413 DOI: 10.7150/thno.20190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/07/2017] [Indexed: 02/05/2023] Open
Abstract
Nanoparticle-based theranostic agents have emerged as a new paradigm in nanomedicine field for integration of multimodal imaging and therapeutic functions within a single platform. However, the clinical translation of these agents is severely limited by the complexity of fabrication, long-term toxicity of the materials, and unfavorable biodistributions. Here we report an extremely simple and robust approach to develop highly versatile and biocompatible theranostic poly(vinyl alcohol)-porphyrin nanoparticles (PPNs). Through a “one-pot” fabrication process, including the chelation of metal ions and encapsulation of hydrophobic drugs, monodispersenanoparticle could be formed by self-assembly of a very simple and biocompatible building block (poly(vinyl alcohol)-porphyrin conjugate). Using this approach, we could conveniently produce multifunctional PPNs that integrate optical imaging, positron emission tomography (PET), photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery functions in one formulation. PPNs exhibited unique architecture-dependent fluorescence self-quenching, as well as photodynamic- and photothermal- properties. Near-infrared fluorescence could be amplified upon PPN dissociation, providing feasibility of low-background fluorescence imaging. Doxorubicin (DOX)-loaded PPNs achieved 53 times longer half-life in blood circulation than free DOX. Upon irradiation by near infrared light at a single excitation wavelength, PPNs could be activated to release reactive oxygen species, heat and drugs simultaneously at the tumor sites in mice bearing tumor xenograft, resulting in complete eradication of tumors. Due to their organic compositions, PPNs showed no obvious cytotoxicity in mice via intravenous administration during therapeutic studies. This highly versatile and multifunctional PPN theranostic nanoplatform showed great potential for the integration of multimodal imaging and therapeutic functions towards personalized nanomedicine against cancers.
Collapse
|
50
|
Santillán-Urquiza E, Arteaga-Cardona F, Torres-Duarte C, Cole B, Wu B, Méndez-Rojas MA, Cherr GN. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170480. [PMID: 28989755 PMCID: PMC5627095 DOI: 10.1098/rsos.170480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/16/2017] [Indexed: 05/27/2023]
Abstract
Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.
Collapse
Affiliation(s)
- Esmeralda Santillán-Urquiza
- Departamento de Ingeniería Química, Ambiental y de Alimentos, Universidad de las Américas Puebla, Puebla, Mexico
| | | | | | - Bryan Cole
- School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Bing Wu
- School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Miguel A. Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla, Mexico
| | - Gary N. Cherr
- Bodega Marine Laboratory, University of California-Davis, Bodega Bay, CA, USA
- Departments of Environmental Toxicology and Nutrition, University of California-Davis, Davis, CA, USA
| |
Collapse
|