1
|
Arimura GI, Uemura T. Cracking the plant VOC sensing code and its practical applications. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00238-3. [PMID: 39395880 DOI: 10.1016/j.tplants.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Volatile organic compounds (VOCs) are essential airborne mediators of interactions between plants. These plant-plant interactions require sophisticated VOC-sensing mechanisms that enable plants to regulate their defenses against pests. However, these interactions are not limited to specific plants or even conspecifics, and can function in very flexible interactions between plants. Sensing and responding to VOCs in plants is finely controlled by their uptake and transport systems as well as by cellular signaling via, for example, chromatin remodeling system-based transcriptional regulation for defense gene activation. Based on the accumulated knowledge about the interactions between plants and their major VOCs, companion plants and biostimulants are being developed for practical applications in agricultural and horticultural pest control, providing a sustainable alternative to harmful chemicals.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan.
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| |
Collapse
|
2
|
Weraduwage SM, Whitten D, Kulke M, Sahu A, Vermaas JV, Sharkey TD. The isoprene-responsive phosphoproteome provides new insights into the putative signalling pathways and novel roles of isoprene. PLANT, CELL & ENVIRONMENT 2024; 47:1099-1117. [PMID: 38038355 DOI: 10.1111/pce.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Departments of Biology and Biochemistry, Bishop's University, Sherbrooke, Quebec, Canada
| | - Douglas Whitten
- Research Technology Support Facility-Proteomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- School of Natural Sciences, Technische Universität München, Munich, Germany
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Oku H, Iqbal A, Oogai S, Inafuku M, Mutanda I. Relationship between Cumulative Temperature and Light Intensity and G93 Parameters of Isoprene Emission for the Tropical Tree Ficus septica. PLANTS (BASEL, SWITZERLAND) 2024; 13:243. [PMID: 38256797 PMCID: PMC10820733 DOI: 10.3390/plants13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The most widely used isoprene emission algorithm, G93 formula, estimates instantaneous leaf-level isoprene emission using the basal emission factor and light and temperature dependency parameters. The G93 parameters have been suggested to show variation depending on past weather conditions, but no study has closely examined the relationship between past meteorological data and the algorithm parameters. Here, to examine the influence of the past weather on these parameters, we monitored weather conditions, G93 parameters, isoprene synthase transcripts and protein levels, and MEP pathway metabolites in the tropical tree Ficus septica for 12 days and analyzed their relationship with cumulative temperature and light intensity. Plants were illuminated with varying (ascending and descending) light regimes, and our previously developed Ping-Pong optimization method was used to parameterize G93. The cumulative temperature of the past 5 and 7 days positively correlated with CT2 and α, respectively, while the cumulative light intensity of the past 10 days showed the highest negative correlation with α. Concentrations of MEP pathway metabolites and IspS gene expression increased with increasing cumulative temperature. At best, the cumulative temperature of the past 2 days positively correlated with the MEP pathway metabolites and IspS gene expression, while these factors showed a biphasic positive and negative correlation with cumulative light intensity. Optimized G93 captured well the temperature and light dependency of isoprene emission at the beginning of the experiment; however, its performance significantly decreased for the latter stages of the experimental duration, especially for the descending phase. This was successfully improved through separate optimization of the ascending and descending phases, emphasizing the importance of the optimization of formula parameters and model improvement. These results have important implications for the improvement of isoprene emission algorithms, particularly under the predicted increase in future global temperatures.
Collapse
Affiliation(s)
- Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| | - Asif Iqbal
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Shigeki Oogai
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
| | - Ishmael Mutanda
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| |
Collapse
|
4
|
Bertić M, Zimmer I, Andrés-Montaner D, Rosenkranz M, Kangasjärvi J, Schnitzler JP, Ghirardo A. Automatization of metabolite extraction for high-throughput metabolomics: case study on transgenic isoprene-emitting birch. TREE PHYSIOLOGY 2023; 43:1855-1869. [PMID: 37418159 DOI: 10.1093/treephys/tpad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Metabolomics studies are becoming increasingly common for understanding how plant metabolism responds to changes in environmental conditions, genetic manipulations and treatments. Despite the recent advances in metabolomics workflow, the sample preparation process still limits the high-throughput analysis in large-scale studies. Here, we present a highly flexible robotic system that integrates liquid handling, sonication, centrifugation, solvent evaporation and sample transfer processed in 96-well plates to automatize the metabolite extraction from leaf samples. We transferred an established manual extraction protocol performed to a robotic system, and with this, we show the optimization steps required to improve reproducibility and obtain comparable results in terms of extraction efficiency and accuracy. We then tested the robotic system to analyze the metabolomes of wild-type and four transgenic silver birch (Betula pendula Roth) lines under unstressed conditions. Birch trees were engineered to overexpress the poplar (Populus × canescens) isoprene synthase and to emit various amounts of isoprene. By fitting the different isoprene emission capacities of the transgenic trees with their leaf metabolomes, we observed an isoprene-dependent upregulation of some flavonoids and other secondary metabolites as well as carbohydrates, amino acid and lipid metabolites. By contrast, the disaccharide sucrose was found to be strongly negatively correlated to isoprene emission. The presented study illustrates the power of integrating robotics to increase the sample throughput, reduce human errors and labor time, and to ensure a fully controlled, monitored and standardized sample preparation procedure. Due to its modular and flexible structure, the robotic system can be easily adapted to other extraction protocols for the analysis of various tissues or plant species to achieve high-throughput metabolomics in plant research.
Collapse
Affiliation(s)
- Marko Bertić
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Ina Zimmer
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - David Andrés-Montaner
- Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, Garmisch-Partenkirchen 82467, Germany
- Corteva Agriscience Spain S.L.U, Carreño, Spain
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg 93053, Germany
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, P.O Box 65, FI-00014, Finland
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
5
|
Pollastri S, Velikova V, Castaldini M, Fineschi S, Ghirardo A, Renaut J, Schnitzler JP, Sergeant K, Winkler JB, Zorzan S, Loreto F. Isoprene-Emitting Tobacco Plants Are Less Affected by Moderate Water Deficit under Future Climate Change Scenario and Show Adjustments of Stress-Related Proteins in Actual Climate. PLANTS (BASEL, SWITZERLAND) 2023; 12:333. [PMID: 36679046 PMCID: PMC9862500 DOI: 10.3390/plants12020333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Maurizio Castaldini
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio, Florence, Italy
| | - Silvia Fineschi
- Institute of Heritage Science-CNR (ISPC), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Naples, Italy
| |
Collapse
|
6
|
Isoprene Emission Influences the Proteomic Profile of Arabidopsis Plants under Well-Watered and Drought-Stress Conditions. Int J Mol Sci 2022; 23:ijms23073836. [PMID: 35409196 PMCID: PMC8998555 DOI: 10.3390/ijms23073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Isoprene is a small lipophilic molecule synthesized in plastids and abundantly released into the atmosphere. Isoprene-emitting plants are better protected against abiotic stresses, but the mechanism of action of isoprene is still under debate. In this study, we compared the physiological responses and proteomic profiles of Arabidopsis which express the isoprene synthase (ISPS) gene and emit isoprene with those of non-emitting plants under both drought-stress (DS) and well-watered (WW) conditions. We aimed to investigate whether isoprene-emitting plants displayed a different proteomic profile that is consistent with the metabolic changes already reported. Only ISPS DS plants were able to maintain the same photosynthesis and fresh weight of WW plants. LC-MS/MS-based proteomic analysis revealed changes in protein abundance that were dependent on the capacity for emitting isoprene in addition to those caused by the DS. The majority of the proteins changed in response to the interaction between DS and isoprene emission. These include proteins that are associated with the activation of secondary metabolisms leading to ABA, trehalose, and proline accumulations. Overall, our proteomic data suggest that isoprene exerts its protective mechanism at different levels: under drought stress, isoprene affects the abundance of chloroplast proteins, confirming a strong direct or indirect antioxidant action and also modulates signaling and hormone pathways, especially those controlling ABA synthesis. Unexpectedly, isoprene also alters membrane trafficking.
Collapse
|
7
|
Loreto F, D'Auria S. How do plants sense volatiles sent by other plants? TRENDS IN PLANT SCIENCE 2022; 27:29-38. [PMID: 34544607 DOI: 10.1016/j.tplants.2021.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Plants communicate via the emission of volatile organic compounds (VOCs) with many animals as well as other plants. We still know little about how VOCs are perceived by receiving (eavesdropping) plants. Here we propose a multiple system of VOC perception, where stress-induced VOCs dock on odorant-binding proteins (OBPs) like in animals and are transported to as-yet-unknown receptors mediating downstream metabolic and/or behavioral changes. Constitutive VOCs that are broadly and lifelong emitted by plants do not bind OBPs but may directly change the metabolism of eavesdropping plants. Deciphering how plants listen to their talking neighbors could empower VOCs as a tool for bioinspired strategies of plant defense when challenged by abiotic and biotic stresses.
Collapse
Affiliation(s)
- Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Sesto Fiorentino, Italy.
| | - Sabato D'Auria
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Institute for Food Science, National Research Council of Italy (CNR-ISA), Avellino, Italy.
| |
Collapse
|
8
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
9
|
Antioxidant Defenses in Plants: A Dated Topic of Current Interest. Antioxidants (Basel) 2021; 10:antiox10060855. [PMID: 34071788 PMCID: PMC8228735 DOI: 10.3390/antiox10060855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
|
10
|
Isoprene: An Antioxidant Itself or a Molecule with Multiple Regulatory Functions in Plants? Antioxidants (Basel) 2021; 10:antiox10050684. [PMID: 33925614 PMCID: PMC8146742 DOI: 10.3390/antiox10050684] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Isoprene (C5H8) is a small lipophilic, volatile organic compound (VOC), synthesized in chloroplasts of plants through the photosynthesis-dependent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Isoprene-emitting plants are better protected against thermal and oxidative stresses but only about 20% of the terrestrial plants are able to synthesize isoprene. Many studies have been performed to understand the still elusive isoprene protective mechanism. Isoprene reacts with, and quenches, many harmful reactive oxygen species (ROS) like singlet oxygen (1O2). A role for isoprene as antioxidant, made possible by its reduced state and conjugated double bonds, has been often suggested, and sometimes demonstrated. However, as isoprene is present at very low concentrations compared to other molecules, its antioxidant role is still controversial. Here we review updated evidences on the function(s) of isoprene, and outline contrasting indications on whether isoprene is an antioxidant directly scavenging ROS, or a membrane strengthener, or a modulator of genomic, proteomic and metabolomic profiles (perhaps as a secondary effect of ROS removal) eventually leading to priming of antioxidant plant defenses, or a signal of stress for neighbor plants alike other VOCs, or a hormone-like molecule, controlling the metabolic flux of other hormones made by the MEP pathway, or acting itself as a growth and development hormone.
Collapse
|
11
|
Protein expression plasticity contributes to heat and drought tolerance of date palm. Oecologia 2021; 197:903-919. [PMID: 33880635 PMCID: PMC8591023 DOI: 10.1007/s00442-021-04907-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/04/2022]
Abstract
Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.
Collapse
|
12
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
13
|
Miloradovic van Doorn M, Merl-Pham J, Ghirardo A, Fink S, Polle A, Schnitzler JP, Rosenkranz M. Root isoprene formation alters lateral root development. PLANT, CELL & ENVIRONMENT 2020; 43:2207-2223. [PMID: 32495947 DOI: 10.1111/pce.13814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Isoprene is a C5 volatile organic compound, which can protect aboveground plant tissue from abiotic stress such as short-term high temperatures and accumulation of reactive oxygen species (ROS). Here, we uncover new roles for isoprene in the plant belowground tissues. By analysing Populus x canescens isoprene synthase (PcISPS) promoter reporter plants, we discovered PcISPS promoter activity in certain regions of the roots including the vascular tissue, the differentiation zone and the root cap. Treatment of roots with auxin or salt increased PcISPS promoter activity at these sites, especially in the developing lateral roots (LR). Transgenic, isoprene non-emitting poplar roots revealed an accumulation of O2- in the same root regions where PcISPS promoter activity was localized. Absence of isoprene emission, moreover, increased the formation of LRs. Inhibition of NAD(P)H oxidase activity suppressed LR development, suggesting the involvement of ROS in this process. The analysis of the fine root proteome revealed a constitutive shift in the amount of several redox balance, signalling and development related proteins, such as superoxide dismutase, various peroxidases and linoleate 9S-lipoxygenase, in isoprene non-emitting poplar roots. Together our results indicate for isoprene a ROS-related function, eventually co-regulating the plant-internal signalling network and development processes in root tissue.
Collapse
Affiliation(s)
- Maja Miloradovic van Doorn
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Siegfried Fink
- Forest Botany, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
14
|
Awana M, Jain N, Samota MK, Rani K, Kumar A, Ray M, Gaikwad K, Praveen S, Singh NK, Singh A. Protein and gene integration analysis through proteome and transcriptome brings new insight into salt stress tolerance in pigeonpea (Cajanus cajan L.). Int J Biol Macromol 2020; 164:3589-3602. [PMID: 32882275 DOI: 10.1016/j.ijbiomac.2020.08.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/09/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Salt stress is a major constrain to the productivity of nutritionally rich pigeonpea, an important legume of SE Asia and other parts of the world. The present study provides a comprehensive insight on integrated proteomic and transcriptomic analysis of root and shoot tissues of contrasting pigeonpea varieties (ICP1071- salt-sensitive; ICP7- salt-tolerant) to unravel salt stress induced pathways. Proteome analysis revealed 82 differentially expressed proteins (DEPs) with ≥±1.5 fold expression on 2-Dimensional (2D) gel. Of these, 25 DEPs identified through MALDI-TOF/TOF were classified using Uniprot software into functional categories. Pathways analyses using KAAS server showed the highest abundance of functional genes regulating metabolisms of carbohydrate followed by protein folding/degradation, amino acids and lipids. Expression studies on six genes (triosephosphate isomerase, oxygen evolving enhancer protein 1, phosphoribulokinase, cysteine synthase, oxygen evolving enhancer protein 2 and early nodulin like protein 2) with ≥±3 fold change were performed, and five of these showed consistency in transcript and protein expressions. Transcript analysis of root and shoot led to positive identification of 25 differentially expressed salt-responsive genes, with seven genes having ≥±5 fold change have diverse biological functions. Our combinatorial analysis suggests important role of these genes/proteins in providing salt tolerance in pigeonpea.
Collapse
Affiliation(s)
- Monika Awana
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Mahesh Kumar Samota
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Horticulture Crop Processing Division, ICAR - Central Institute of Post Harvest Engineering and Technology, Abohar, Punjab 152116, India
| | - Kirti Rani
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Arbind Kumar
- Psichem Biotech Private Limited, Uttar Pradesh 201005, India
| | - Mrinmoy Ray
- Division of Forecasting and Agricultural Systems Modelling, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
15
|
On the Evolution and Functional Diversity of Terpene Synthases in the Pinus Species: A Review. J Mol Evol 2020; 88:253-283. [PMID: 32036402 DOI: 10.1007/s00239-020-09930-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
In the biosynthesis of terpenoids, the ample catalytic versatility of terpene synthases (TPS) allows the formation of thousands of different molecules. A steadily increasing number of sequenced plant genomes invariably show that the TPS gene family is medium to large in size, comprising from 30 to 100 functional members. In conifers, TPSs belonging to the gymnosperm-specific TPS-d subfamily produce a complex mixture of mono-, sesqui-, and diterpenoid specialized metabolites, which are found in volatile emissions and oleoresin secretions. Such substances are involved in the defence against pathogens and herbivores and can help to protect against abiotic stress. Oleoresin terpenoids can be also profitably used in a number of different fields, from traditional and modern medicine to fine chemicals, fragrances, and flavours, and, in the last years, in biorefinery too. In the present work, after summarizing the current views on the biosynthesis and biological functions of terpenoids, recent advances on the evolution and functional diversification of plant TPSs are reviewed, with a focus on gymnosperms. In such context, an extensive characterization and phylogeny of all the known TPSs from different Pinus species is reported, which, for such genus, can be seen as the first effort to explore the evolutionary history of the large family of TPS genes involved in specialized metabolism. Finally, an approach is described in which the phylogeny of TPSs in Pinus spp. has been exploited to isolate for the first time mono-TPS sequences from Pinus nigra subsp. laricio, an ecologically important endemic pine in the Mediterranean area.
Collapse
|
16
|
High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere. Proc Natl Acad Sci U S A 2020; 117:1596-1605. [PMID: 31907313 DOI: 10.1073/pnas.1912327117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.
Collapse
|
17
|
Lande NV, Barua P, Gayen D, Kumar S, Varshney S, Sengupta S, Chakraborty S, Chakraborty N. Dehydration-induced alterations in chloroplast proteome and reprogramming of cellular metabolism in developing chickpea delineate interrelated adaptive responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:337-348. [PMID: 31785520 DOI: 10.1016/j.plaphy.2019.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Chloroplast, the energy organelle unique to photosynthetic eukaryotes, executes several crucial functions including photosynthesis. While chloroplast development and function are controlled by the nucleus, environmental stress modulated alterations perceived by the chloroplasts are communicated to the nucleus via retrograde signaling. Notably, coordination of chloroplast and nuclear gene expression is synchronized by anterograde and retrograde signaling. The chloroplast proteome holds significance for stress responses and adaptation. We unraveled dehydration-induced alterations in the chloroplast proteome of a grain legume, chickpea and identified an array of dehydration-responsive proteins (DRPs) primarily involved in photosynthesis, carbohydrate metabolism and stress response. Notably, 12 DRPs were encoded by chloroplast genome, while the rest were nuclear-encoded. We observed a coordinated expression of different multi-subunit protein complexes viz., RuBisCo, photosystem II and cytochrome b6f, encoded by both chloroplast and nuclear genome. Comparison with previously reported stress-responsive chloroplast proteomes showed unique and overlapping components. Transcript abundance of several previously reported markers of retrograde signaling revealed relay of dehydration-elicited signaling events between chloroplasts and nucleus. Additionally, dehydration-triggered metabolic adjustments demonstrated alterations in carbohydrate and amino acid metabolism. This study offers a panoramic catalogue of dehydration-responsive signatures of chloroplast proteome and associated retrograde signaling events, and cellular metabolic reprograming.
Collapse
Affiliation(s)
- Nilesh Vikam Lande
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi, 110 020, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi, 110 020, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
18
|
Lande NV, Barua P, Gayen D, Kumar S, Chakraborty S, Chakraborty N. Proteomic dissection of the chloroplast: Moving beyond photosynthesis. J Proteomics 2019; 212:103542. [PMID: 31704367 DOI: 10.1016/j.jprot.2019.103542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/15/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023]
Abstract
Chloroplast, the photosynthetic machinery, converts photoenergy to ATP and NADPH, which powers the production of carbohydrates from atmospheric CO2 and H2O. It also serves as a major production site of multivariate pro-defense molecules, and coordinate with other organelles for cell defense. Chloroplast harbors 30-50% of total cellular proteins, out of which 80% are membrane residents and are difficult to solubilize. While proteome profiling has illuminated vast areas of biological protein space, a great deal of effort must be invested to understand the proteomic landscape of the chloroplast, which plays central role in photosynthesis, energy metabolism and stress-adaptation. Therefore, characterization of chloroplast proteome would not only provide the foundation for future investigation of expression and function of chloroplast proteins, but would open up new avenues for modulation of plant productivity through synchronizing chloroplastic key components. In this review, we summarize the progress that has been made to build new understanding of the chloroplast proteome and implications of chloroplast dynamicsing generate metabolic energy and modulating stress adaptation.
Collapse
Affiliation(s)
- Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
19
|
Lantz AT, Allman J, Weraduwage SM, Sharkey TD. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression. PLANT, CELL & ENVIRONMENT 2019; 42:2808-2826. [PMID: 31350912 PMCID: PMC6788959 DOI: 10.1111/pce.13629] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 05/10/2023]
Abstract
Isoprene is a volatile compound produced in large amounts by some, but not all, plants by the enzyme isoprene synthase. Plants emit vast quantities of isoprene, with a net global output of 600 Tg per year, and typical emission rates from individual plants around 2% of net carbon assimilation. There is significant debate about whether global climate change resulting from increasing CO2 in the atmosphere will increase or decrease global isoprene emission in the future. We show evidence supporting predictions of increased isoprene emission in the future, but the effects could vary depending on the environment under consideration. For many years, isoprene was believed to have immediate, physical effects on plants such as changing membrane properties or quenching reactive oxygen species. Although observations sometimes supported these hypotheses, the effects were not always observed, and the reasons for the variability were not apparent. Although there may be some physical effects, recent studies show that isoprene has significant effects on gene expression, the proteome, and the metabolome of both emitting and nonemitting species. Consistent results are seen across species and specific treatment protocols. This review summarizes recent findings on the role and control of isoprene emission from plants.
Collapse
Affiliation(s)
- Alexandra T. Lantz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Joshua Allman
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Sarathi M. Weraduwage
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Madison, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Taylor TC, Smith MN, Slot M, Feeley KJ. The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. PLANT, CELL & ENVIRONMENT 2019; 42:2448-2457. [PMID: 30993708 DOI: 10.1111/pce.13564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 05/07/2023]
Abstract
Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non-emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co-occurring tropical tree and liana species to test whether isoprene-emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non-emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene-emitting species than for non-emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt ) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non-emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co-limit photosynthesis above Topt . Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co-occurring non-emitting species.
Collapse
Affiliation(s)
- Tyeen C Taylor
- Department of Biological Sciences, University of Miami, Coral Gables, FL
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Kenneth J Feeley
- Department of Biological Sciences, University of Miami, Coral Gables, FL
| |
Collapse
|
21
|
Arefian M, Vessal S, Malekzadeh-Shafaroudi S, Siddique KHM, Bagheri A. Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC PLANT BIOLOGY 2019; 19:300. [PMID: 31288738 PMCID: PMC6617847 DOI: 10.1186/s12870-019-1793-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress that limits the growth, productivity, and geographical distribution of plants. A comparative proteomics and gene expression analysis was performed to better understand salinity tolerance mechanisms in chickpea. RESULTS Ten days of NaCl treatments resulted in the differential expression of 364 reproducible spots in seedlings of two contrasting chickpea genotypes, Flip 97-43c (salt tolerant, T1) and Flip 97-196c (salt susceptible, S1). Notably, after 3 days of salinity, 80% of the identified proteins in T1 were upregulated, while only 41% in S2 had higher expression than the controls. The proteins were classified into eight functional categories, and three groups of co-expression profile. The second co-expressed group of proteins had higher and/or stable expression in T1, relative to S2, suggesting coordinated regulation and the importance of some processes involved in salinity acclimation. This group was mainly enriched in proteins associated with photosynthesis (39%; viz. chlorophyll a-b binding protein, oxygen-evolving enhancer protein, ATP synthase, RuBisCO subunits, carbonic anhydrase, and fructose-bisphosphate aldolase), stress responsiveness (21%; viz. heat shock 70 kDa protein, 20 kDa chaperonin, LEA-2 and ascorbate peroxidase), and protein synthesis and degradation (14%; viz. zinc metalloprotease FTSH 2 and elongation factor Tu). Thus, the levels and/or early and late responses in the activation of targeted proteins explained the variation in salinity tolerance between genotypes. Furthermore, T1 recorded more correlations between the targeted transcripts and their corresponding protein expression profiles than S2. CONCLUSIONS This study provides insight into the proteomic basis of a salt-tolerance mechanism in chickpea, and offers unexpected and poorly understood molecular resources as reliable starting points for further dissection.
Collapse
Affiliation(s)
- Mohammad Arefian
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeedreza Vessal
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Saeid Malekzadeh-Shafaroudi
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Abdolreza Bagheri
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Velikova V, Tsonev T, Tattini M, Arena C, Krumova S, Koleva D, Peeva V, Stojchev S, Todinova S, Izzo LG, Brunetti C, Stefanova M, Taneva S, Loreto F. Physiological and structural adjustments of two ecotypes of Platanus orientalis L. from different habitats in response to drought and re-watering. CONSERVATION PHYSIOLOGY 2018; 6:coy073. [PMID: 30591840 PMCID: PMC6301291 DOI: 10.1093/conphys/coy073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Platanus orientalis covers a very fragmented area in Europe and, at the edge of its natural distribution, is considered a relic endangered species near extinction. In our study, it was hypothesized that individuals from the edge of the habitat, with stronger climate constrains (drier and warmer environment, Italy, IT ecotype), developed different mechanisms of adaptation than those growing under optimal conditions at the center of the habitat (more humid and colder environment, Bulgaria, BG ecotype). Indeed, the two P. orientalis ecotypes displayed physiological, structural and functional differences already under control (unstressed) conditions. Adaptation to a dry environment stimulated constitutive isoprene emission, determined active stomatal behavior, and modified chloroplast ultrastructure, ultimately allowing more effective use of absorbed light energy for photochemistry. When exposed to short-term acute drought stress, IT plants showed active stomatal control that enhanced instantaneous water use efficiency, and stimulation of isoprene emission that sustained photochemistry and reduced oxidative damages to membranes, as compared to BG plants. None of the P. orientalis ecotypes recovered completely from drought stress after re-watering, confirming the sensitivity of this mesophyte to drought. Nevertheless, the IT ecotype showed less damage and better stability at the level of chloroplast membrane parameters when compared to the BG ecotype, which we interpret as possible adaptation to hostile environments and improved capacity to cope with future, likely more recurrent, drought stress.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia, Bulgaria
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, Naples, Italy
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | | | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia, Bulgaria
| | - Svetoslav Stojchev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | | | - Stefka Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
23
|
Brunetti C, Loreto F, Ferrini F, Gori A, Guidi L, Remorini D, Centritto M, Fini A, Tattini M. Metabolic plasticity in the hygrophyte Moringa oleifera exposed to water stress. TREE PHYSIOLOGY 2018; 38:1640-1654. [PMID: 30137639 DOI: 10.1093/treephys/tpy089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/24/2018] [Indexed: 05/19/2023]
Abstract
Over the past decades, introduction of many fast-growing hygrophilic, and economically valuable plants into xeric environments has occurred. However, production and even survival of these species may be threatened by harsh climatic conditions unless an effective physiological and metabolic plasticity is available. Moringa oleifera Lam., a multipurpose tree originating from humid sub-tropical regions of India, is widely cultivated in many arid countries because of its multiple uses. We tested whether M. oleifera can adjust primary and secondary metabolism to efficiently cope with increasing water stress. It is shown that M. oleifera possesses an effective isohydric behavior. Water stress induced a quick and strong stomatal closure, driven by abscisic acid (ABA) accumulation, and leading to photosynthesis inhibition with consequent negative effects on biomass production. However, photochemistry was not impaired and maximal fluorescence and saturating photosynthesis remained unaffected in stressed leaves. We report for the first time that M. oleifera produces isoprene, and show that isoprene emission increased three-fold during stress progression. It is proposed that higher isoprene biosynthesis helps leaves cope with water stress through its antioxidant or membrane stabilizing action, and also indicates a general MEP (methylerythritol 4-phosphate) pathway activation that further helps protect photosynthesis under water stress. Increased concentrations of antioxidant flavonoids were also observed in water stressed leaves, and probably cooperate in limiting irreversible effects of the stress in M. oleifera leaves. The observed metabolic and phenotypic plasticity may facilitate the establishment of M. oleifera in xeric environments, sustaining the economic and environmental value of this plant.
Collapse
Affiliation(s)
- Cecilia Brunetti
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Sesto Fiorentino (Florence), Italy
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Piazzale Aldo Moro 7, Roma, Italy
| | - Francesco Ferrini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mauro Centritto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Sesto Fiorentino (Florence), Italy
| | - Alessio Fini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Massimiliano Tattini
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
24
|
Taylor TC, McMahon SM, Smith MN, Boyle B, Violle C, van Haren J, Simova I, Meir P, Ferreira LV, de Camargo PB, da Costa ACL, Enquist BJ, Saleska SR. Isoprene emission structures tropical tree biogeography and community assembly responses to climate. THE NEW PHYTOLOGIST 2018; 220:435-446. [PMID: 29974469 DOI: 10.1111/nph.15304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
The prediction of vegetation responses to climate requires a knowledge of how climate-sensitive plant traits mediate not only the responses of individual plants, but also shifts in the species and functional compositions of whole communities. The emission of isoprene gas - a trait shared by one-third of tree species - is known to protect leaf biochemistry under climatic stress. Here, we test the hypothesis that isoprene emission shapes tree species compositions in tropical forests by enhancing the tolerance of emitting trees to heat and drought. Using forest inventory data, we estimated the proportional abundance of isoprene-emitting trees (pIE) at 103 lowland tropical sites. We also quantified the temporal composition shifts in three tropical forests - two natural and one artificial - subjected to either anomalous warming or drought. Across the landscape, pIE increased with site mean annual temperature, but decreased with dry season length. Through time, pIE strongly increased under high temperatures, and moderately increased following drought. Our analysis shows that isoprene emission is a key plant trait determining species responses to climate. For species adapted to seasonal dry periods, isoprene emission may tradeoff with alternative strategies, such as leaf deciduousness. Community selection for isoprene-emitting species is a potential mechanism for enhanced forest resilience to climatic change.
Collapse
Affiliation(s)
- Tyeen C Taylor
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sean M McMahon
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, MD, 21307, USA
| | - Marielle N Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brad Boyle
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Hardner & Gullison Associates, LLC, 15 Woodland Drive, Amherst, NH, 03031, USA
| | - Cyrille Violle
- Centre d'Écologie Fonctionnelle et Évolutive (UMR 5175), CNRS - Université de Montpellier - Université Paul Valéry Montpellier, EPHE, Montpellier, France
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S. Biosphere Road, Oracle, AZ, 85623, USA
| | - Irena Simova
- Center for Theoretical Study, Charles University, Praha, 11636, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Praha, Czech Republic
| | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK
| | - Leandro V Ferreira
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, 66040-170, Belém, PA, Brazil
| | - Plinio B de Camargo
- Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, 13400-970, Piracicaba, São Paulo, Brazil
| | - Antonio C L da Costa
- Centro de Geociências, Universidade Federal do Pará, 66017-970, Belém, PA, Brazil
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
25
|
Fini A, Brunetti C, Loreto F, Centritto M, Ferrini F, Tattini M. Isoprene Responses and Functions in Plants Challenged by Environmental Pressures Associated to Climate Change. FRONTIERS IN PLANT SCIENCE 2017; 8:1281. [PMID: 28798754 PMCID: PMC5526906 DOI: 10.3389/fpls.2017.01281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/06/2017] [Indexed: 05/12/2023]
Abstract
The functional reasons for isoprene emission are still a matter of hot debate. It was hypothesized that isoprene biosynthesis evolved as an ancestral mechanism in plants adapted to high water availability, to cope with transient and recurrent oxidative stresses during their water-to-land transition. There is a tight association between isoprene emission and species hygrophily, suggesting that isoprene emission may be a favorable trait to cope with occasional exposure to stresses in mesic environments. The suite of morpho-anatomical traits does not allow a conservative water use in hygrophilic mesophytes challenged by the environmental pressures imposed or exacerbated by drought and heat stress. There is evidence that in stressed plants the biosynthesis of isoprene is uncoupled from photosynthesis. Because the biosynthesis of isoprene is costly, the great investment of carbon and energy into isoprene must have relevant functional reasons. Isoprene is effective in preserving the integrity of thylakoid membranes, not only through direct interaction with their lipid acyl chains, but also by up-regulating proteins associated with photosynthetic complexes and enhancing the biosynthesis of relevant membrane components, such as mono- and di-galactosyl-diacyl glycerols and unsaturated fatty acids. Isoprene may additionally protect photosynthetic membranes by scavenging reactive oxygen species. Here we explore the mode of actions and the potential significance of isoprene in the response of hygrophilic plants when challenged by severe stress conditions associated to rapid climate change in temperate climates, with special emphasis to the concomitant effect of drought and heat. We suggest that isoprene emission may be not a good estimate for its biosynthesis and concentration in severely droughted leaves, being the internal concentration of isoprene the important trait for stress protection.
Collapse
Affiliation(s)
- Alessio Fini
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Trees and Timber InstituteSesto Fiorentino, Italy
- Department of Agrifood Production and Environmental Sciences, University of FlorenceFlorence, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Science, National Research Council of ItalyRome, Italy
| | - Mauro Centritto
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Trees and Timber InstituteSesto Fiorentino, Italy
| | - Francesco Ferrini
- Department of Agrifood Production and Environmental Sciences, University of FlorenceFlorence, Italy
| | - Massimiliano Tattini
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Institute for Sustainable Plant ProtectionSesto Fiorentino, Italy
| |
Collapse
|
26
|
Moritz F, Kaling M, Schnitzler JP, Schmitt-Kopplin P. Characterization of poplar metabotypes via mass difference enrichment analysis. PLANT, CELL & ENVIRONMENT 2017; 40:1057-1073. [PMID: 27943315 DOI: 10.1111/pce.12878] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Instrumentation technology for metabolomics has advanced drastically in recent years in terms of sensitivity and specificity. Despite these technical advances, data analytical strategies are still in their infancy in comparison with other 'omics'. Plants are known to possess an immense diversity of secondary metabolites. Typically, more than 70% of metabolomics data are not amenable to systems biological interpretation because of poor database coverage. Here, we propose a new general strategy for mass-spectrometry-based metabolomics that incorporates all exact mass features with known sum formulas into the evaluation and interpretation of metabolomics studies. We extend the use of mass differences, commonly used for feature annotation, by redefining them as variables that reflect the remaining 'omic' domains. The strategy uses exact mass difference network analyses exemplified for the metabolomic description of two grey poplar (Populus × canescens) genotypes that differ in their capability to emit isoprene. This strategy established a direct connection between the metabotype and the non-isoprene-emitting phenotype, as mass differences pertaining to prenylation reactions were over-represented in non-isoprene-emitting poplars. Not only was the analysis of mass differences able to grasp the known chemical biology of poplar, but it also improved the interpretability of yet unknown biochemical relationships.
Collapse
Affiliation(s)
- Franco Moritz
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Moritz Kaling
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München (TUM), Freising, Germany
| |
Collapse
|
27
|
Velikova V, Brunetti C, Tattini M, Doneva D, Ahrar M, Tsonev T, Stefanova M, Ganeva T, Gori A, Ferrini F, Varotto C, Loreto F. Physiological significance of isoprenoids and phenylpropanoids in drought response of Arundinoideae species with contrasting habitats and metabolism. PLANT, CELL & ENVIRONMENT 2016; 39:2185-97. [PMID: 27351898 DOI: 10.1111/pce.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 05/26/2023]
Abstract
Physiological, biochemical and morpho-anatomical traits that determine the phenotypic plasticity of plants under drought were tested in two Arundinoideae with contrasting habitats, growth traits and metabolism: the fast-growing Arundo donax, which also is a strong isoprene emitter, and the slow-growing Hakonechloa macra that does not invest on isoprene biosynthesis. In control conditions, A. donax displayed not only higher photosynthesis but also higher concentration of carotenoids and lower phenylpropanoid content than H. macra. In drought-stressed plants, photosynthesis was similarly inhibited in both species, but substantially recovered only in A. donax after rewatering. Decline of photochemical and biochemical parameters, increased concentration of CO2 inside leaves, and impairment of chloroplast ultrastructure were only observed in H. macra indicating damage of photosynthetic machinery under drought. It is suggested that volatile and non-volatile isoprenoids produced by A. donax efficiently preserve the chloroplasts from transient drought damage, while H. macra invests on phenylpropanoids that are less efficient in preserving photosynthesis but likely offer better antioxidant protection under prolonged stress.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy.
| | - Cecilia Brunetti
- Trees and Timber Institute, The National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino, 50019, Florence, Italy
| | - Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Mastaneh Ahrar
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
- Institute of Ecology, University of Innsbruck, Austria
| | - Tsonko Tsonev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | | | - Tsveta Ganeva
- Faculty of Biology, Sofia University, 1113, Sofia, Bulgaria
| | - Antonella Gori
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Ferrini
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), 00185, Rome, Italy
| |
Collapse
|
28
|
Harvey CM, Sharkey TD. Exogenous isoprene modulates gene expression in unstressed Arabidopsis thaliana plants. PLANT, CELL & ENVIRONMENT 2016; 39:1251-1263. [PMID: 26477606 DOI: 10.1111/pce.12660] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Isoprene is a well-studied volatile hemiterpene that protects plants from abiotic stress through mechanisms that are not fully understood. The antioxidant and membrane stabilizing potential of isoprene are the two most commonly invoked mechanisms. However, isoprene also affects phenylpropanoid metabolism, suggesting an additional role as a signalling molecule. In this study, microarray-based gene expression profiling reveals transcriptional reprogramming of Arabidopsis thaliana plants fumigated for 24 h with a physiologically relevant concentration of isoprene. Functional enrichment analysis of fumigated plants revealed enhanced heat- and light-stress-responsive processes in response to isoprene. Isoprene induced a network enriched in ERF and WRKY transcription factors, which may play a role in stress tolerance. The isoprene-induced up-regulation of phenylpropanoid biosynthetic genes was specifically confirmed using quantitative reverse transcription polymerase chain reaction. These results support a role for isoprene as a signalling molecule, in addition to its possible roles as an antioxidant and membrane thermoprotectant.
Collapse
Affiliation(s)
- Christopher M Harvey
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd., East Lansing, MI, 48824, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd., East Lansing, MI, 48824, USA
| |
Collapse
|
29
|
Jud W, Vanzo E, Li Z, Ghirardo A, Zimmer I, Sharkey TD, Hansel A, Schnitzler JP. Effects of heat and drought stress on post-illumination bursts of volatile organic compounds in isoprene-emitting and non-emitting poplar. PLANT, CELL & ENVIRONMENT 2016; 39:1204-15. [PMID: 26390316 PMCID: PMC4982041 DOI: 10.1111/pce.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/13/2015] [Indexed: 05/22/2023]
Abstract
Over the last decades, post-illumination bursts (PIBs) of isoprene, acetaldehyde and green leaf volatiles (GLVs) following rapid light-to-dark transitions have been reported for a variety of different plant species. However, the mechanisms triggering their release still remain unclear. Here we measured PIBs of isoprene-emitting (IE) and isoprene non-emitting (NE) grey poplar plants grown under different climate scenarios (ambient control and three scenarios with elevated CO2 concentrations: elevated control, periodic heat and temperature stress, chronic heat and temperature stress, followed by recovery periods). PIBs of isoprene were unaffected by elevated CO2 and heat and drought stress in IE, while they were absent in NE plants. On the other hand, PIBs of acetaldehyde and also GLVs were strongly reduced in stress-affected plants of all genotypes. After recovery from stress, distinct differences in PIB emissions in both genotypes confirmed different precursor pools for acetaldehyde and GLV emissions. Changes in PIBs of GLVs, almost absent in stressed plants and enhanced after recovery, could be mainly attributed to changes in lipoxygenase activity. Our results indicate that acetaldehyde PIBs, which recovered only partly, derive from a new mechanism in which acetaldehyde is produced from methylerythritol phosphate pathway intermediates, driven by deoxyxylulose phosphate synthase activity.
Collapse
Affiliation(s)
- Werner Jud
- Institute of Ion and Applied Physics, University of Innsbruck, 6020, Innsbruck, Austria
| | - Elisa Vanzo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Ziru Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan, 48823, USA
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Ina Zimmer
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan, 48823, USA
| | - Armin Hansel
- Institute of Ion and Applied Physics, University of Innsbruck, 6020, Innsbruck, Austria
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| |
Collapse
|
30
|
Sicard P, Augustaitis A, Belyazid S, Calfapietra C, de Marco A, Fenn M, Bytnerowicz A, Grulke N, He S, Matyssek R, Serengil Y, Wieser G, Paoletti E. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:977-987. [PMID: 26873061 DOI: 10.1016/j.envpol.2016.01.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 05/16/2023]
Abstract
Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services.
Collapse
Affiliation(s)
- Pierre Sicard
- ACRI-HE, 260 Route Du Pin Montard BP234, 06904 Sophia-Antipolis Cedex, France.
| | - Algirdas Augustaitis
- Aleksandras Stulginskis University, Studentu 13, Kaunas Dstr., LT-53362 Lithuania.
| | | | | | | | - Mark Fenn
- USDA, Forest Service, PSW Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507, USA.
| | - Andrzej Bytnerowicz
- USDA, Forest Service, PSW Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507, USA.
| | | | - Shang He
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.
| | - Rainer Matyssek
- Ecophysiology of Plants, Technische Universität München, von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | | | - Gerhard Wieser
- Division of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Rennweg 1, 6020 Innsbruck, Austria.
| | - Elena Paoletti
- IPSP-CNR, Via Madonna Del Piano 10, 50019 Sesto Fiorentino Firenze, Italy.
| |
Collapse
|
31
|
Tiwari S, Grote R, Churkina G, Butler T. Ozone damage, detoxification and the role of isoprenoids - new impetus for integrated models. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:324-336. [PMID: 32480464 DOI: 10.1071/fp15302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/22/2015] [Indexed: 06/11/2023]
Abstract
High concentrations of ozone (O3) can have significant impacts on the health and productivity of agricultural and forest ecosystems, leading to significant economic losses. In order to estimate this impact under a wide range of environmental conditions, the mechanisms of O3 impacts on physiological and biochemical processes have been intensively investigated. This includes the impact on stomatal conductance, the formation of reactive oxygen species and their effects on enzymes and membranes, as well as several induced and constitutive defence responses. This review summarises these processes, discusses their importance for O3 damage scenarios and assesses to which degree this knowledge is currently used in ecosystem models which are applied for impact analyses. We found that even in highly sophisticated models, feedbacks affecting regulation, detoxification capacity and vulnerability are generally not considered. This implies that O3 inflicted alterations in carbon and water balances cannot be sufficiently well described to cover immediate plant responses under changing environmental conditions. Therefore, we suggest conceptual models that link the depicted feedbacks to available process-based descriptions of stomatal conductance, photosynthesis and isoprenoid formation, particularly the linkage to isoprenoid models opens up new options for describing biosphere-atmosphere interactions.
Collapse
Affiliation(s)
- Supriya Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Rüdiger Grote
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Galina Churkina
- Institute of Advanced Sustainable Studies, Berliner St. 130, 14467 Potsdam, Germany
| | - Tim Butler
- Institute of Advanced Sustainable Studies, Berliner St. 130, 14467 Potsdam, Germany
| |
Collapse
|
32
|
Meng F, Luo Q, Wang Q, Zhang X, Qi Z, Xu F, Lei X, Cao Y, Chow WS, Sun G. Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.). Sci Rep 2016; 6:23098. [PMID: 26975701 PMCID: PMC4791547 DOI: 10.1038/srep23098] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/17/2016] [Indexed: 11/09/2022] Open
Abstract
Salinity is an important abiotic stressor that negatively affects plant growth. In this study, we investigated the physiological and molecular mechanisms underlying moderate and high salt tolerance in diploid (2×) and tetraploid (4×) Robinia pseudoacacia L. Our results showed greater H2O2 accumulation and higher levels of important antioxidative enzymes and non-enzymatic antioxidants in 4× plants compared with 2× plants under salt stress. In addition, 4× leaves maintained a relatively intact structure compared to 2× leaves under a corresponding condition. NaCl treatment didn't significantly affect the photosynthetic rate, stomatal conductance or leaf intercellular CO2 concentrations in 4× leaves. Moreover, proteins from control and salt treated 2× and 4× leaf chloroplast samples were extracted and separated by two-dimensional gel electrophoresis. A total of 61 spots in 2× (24) and 4× (27) leaves exhibited reproducible and significant changes under salt stress. In addition, 10 proteins overlapped between 2× and 4× plants under salt stress. These identified proteins were grouped into the following 7 functional categories: photosynthetic Calvin-Benson Cycle (26), photosynthetic electron transfer (7), regulation/defense (5), chaperone (3), energy and metabolism (12), redox homeostasis (1) and unknown function (8). This study provides important information of use in the improvement of salt tolerance in plants.
Collapse
Affiliation(s)
- Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China
| | - Qiuxiang Luo
- Key Laboratory of Saline-Alkaline Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, 150040, P.R. China
| | - Qiuyu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China
| | - Xiuli Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China
| | - Zhenhua Qi
- College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China
| | - Fuling Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China
| | - Xue Lei
- College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China
| | - Yuan Cao
- College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China
| | - Wah Soon Chow
- Division of Plant Science, Research School of Biology, The Australian National University, 46 Biology Place, Acton 2601, ACT, Australia
| | - Guangyu Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China
| |
Collapse
|
33
|
Concentration of isoprene in artificial and thylakoid membranes. J Bioenerg Biomembr 2015; 47:419-29. [DOI: 10.1007/s10863-015-9625-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
|
34
|
Tattini M, Loreto F, Fini A, Guidi L, Brunetti C, Velikova V, Gori A, Ferrini F. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. THE NEW PHYTOLOGIST 2015; 207:613-26. [PMID: 25784134 DOI: 10.1111/nph.13380] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/19/2015] [Indexed: 05/05/2023]
Abstract
The hypothesis was tested that isoprenoids and phenylpropanoids play a prominent role in countering photooxidative stress, following the depletion of antioxidant enzyme activity in plants exposed to severe drought stress under high solar irradiance and high temperatures. Platanus × acerifolia, a high isoprene-emitting species, was drought-stressed during summer (WS) and compared with unstressed controls (WW). Water relations and photosynthetic parameters were measured under mild, moderate, and severe drought stress conditions. Volatile and nonvolatile isoprenoids, antioxidant enzymes, and phenylpropanoids were measured with the same time course, but in four different periods of the day. Drought severely inhibited photosynthesis, whereas it did not markedly affect the photochemical machinery. Isoprene emission and zeaxanthin concentration were higher in WS than in WW leaves, particularly at mild and moderate stresses, and during the hottest hours of the day. The activities of catalase and ascorbate peroxidase steeply declined during the day, while the activity of guaiacol peroxidase and the concentration of quercetin increased during the day, peaking in the hottest hours in both WW and WS plants. Our experiment reveals a sequence of antioxidants that were used daily by plants to orchestrate defense against oxidative stress induced by drought and associated high light and high temperature. Secondary metabolites seem valuable complements of antioxidant enzymes to counter oxidative stress during the hottest daily hours.
Collapse
Affiliation(s)
- Massimiliano Tattini
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, I-50019, Sesto Fiorentino (Florence), Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), I-00185, Rome, Italy
| | - Alessio Fini
- Department of Plant, Soil and Environmental Sciences, University of Florence, I-50019, Sesto Fiorentino (Florence), Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124, Pisa, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, I-50019, Sesto Fiorentino (Florence), Italy
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Trees and Timber Institute, I-50019, Sesto Fiorentino (Florence), Italy
| | - Violeta Velikova
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (Trento), Italy
| | - Antonella Gori
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, I-50019, Sesto Fiorentino (Florence), Italy
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Trees and Timber Institute, I-50019, Sesto Fiorentino (Florence), Italy
| | - Francesco Ferrini
- Department of Plant, Soil and Environmental Sciences, University of Florence, I-50019, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
35
|
Tholl D. Biosynthesis and biological functions of terpenoids in plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:63-106. [PMID: 25583224 DOI: 10.1007/10_2014_295] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, 409 Latham Hall, 24061, Blacksburg, VA, USA,
| |
Collapse
|
36
|
Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP. S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 2014; 9:e106886. [PMID: 25192423 PMCID: PMC4156402 DOI: 10.1371/journal.pone.0106886] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.
Collapse
Affiliation(s)
- Elisa Vanzo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Heller
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
37
|
Ghirardo A, Wright LP, Bi Z, Rosenkranz M, Pulido P, Rodríguez-Concepción M, Niinemets Ü, Brüggemann N, Gershenzon J, Schnitzler JP. Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene. PLANT PHYSIOLOGY 2014; 165:37-51. [PMID: 24590857 PMCID: PMC4012595 DOI: 10.1104/pp.114.236018] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/03/2014] [Indexed: 05/20/2023]
Abstract
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
Collapse
Affiliation(s)
- Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Louwrance Peter Wright
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Zhen Bi
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Pablo Pulido
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Manuel Rodríguez-Concepción
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Ülo Niinemets
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Nicolas Brüggemann
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Jonathan Gershenzon
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | | |
Collapse
|