1
|
Snyder JR, Ahmed M, Bhave S, Hotta R, Koppes RA, Goldstein AM, Koppes AN. Enteroendocrine Cells Sense Sucrose and Alter Enteric Neuron Excitability via Insulin Signaling. Adv Biol (Weinh) 2025; 9:e2300566. [PMID: 39703141 PMCID: PMC11913573 DOI: 10.1002/adbi.202300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Neurosensory circuits of the gastrointestinal tract sense microbial and nutrient changes in the gut; however, studying these circuits in vivo is hindered by invasive techniques and ethical concerns. Here, an in vitro model of enteroendocrine cells (EECs) and calcium reporting enteric neurons (ENs) is established and validated for functional signaling. Both mechanical and sucrose stimulation of co-cultures increased the percentage of neurons undergoing a calcium flux, indicating an action potential. Neuronal activation is blocked with either a piezo or insulin receptor blocker. At baseline, a flow only stimulus elicited 51.9% of neurons to activate in co-culture, which is decreased to 15.1% with a piezo blocker. Piezo blocked and sucrose stimulated EECs increased neuronal activation to 43.9%, and an insulin blocker reduced response to 12.4%. Since a cell line is used to model the EEC in the previous experiments, primary rat duodenal epithelium enriched for EECs are also stimulated and found to produced measurable insulin. This work shows the ability of EECs to produce insulin and for ENs to sense insulin. These results inspire further work on how insulin production outside the pancreas effects diabetes, insulin as a neurotransmitter, and exploration of additional nutritional and microbiotic stimuli on enteroendocrine-to-neuronal signaling.
Collapse
Affiliation(s)
- Jessica R Snyder
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Minhal Ahmed
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA, 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA, 02114, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA, 02114, USA
| | - Abigail N Koppes
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
2
|
de Oliveira AP, Perles JVCM, de Souza SRG, Sestak SS, da Motta Lima FG, Almeida GHDR, Cicero LR, Clebis NK, Guarnier FA, Blegniski FP, Vasconcelos RC, Araújo AA, Comar JF, Moreira LS, Sehaber-Sierakowski CC, Zanoni KPS, Zanoni JN. L-glutathione 1% promotes neuroprotection of nitrergic neurons and reduces the oxidative stress in the jejunum of rats with Walker-256-bearing tumor. Neurogastroenterol Motil 2023; 35:e14688. [PMID: 37831748 DOI: 10.1111/nmo.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
AIMS Our main goals were to investigate the effects of L-glutathione (1%) treatment in Walker-256 tumor-bearing rats by analyzing immunoreactive neurons (IR), responsive to the nNOS enzyme and 3-Nitrotyrosine, in their jejunum myenteric plexus. Moreover, the oxidative state and inflammatory process in these animals were investigated. METHODS Four experimental groups were utilized: control (C), control treated with L-glutathione (CGT), Walker-256 tumor-bearing rats (TW), and Walker-256 tumor-bearing rats treated with L-glutathione (TWGT). After 14 days of tumor inoculation, the jejunum was collected for immunohistochemical techniques and assessment of oxidative status. Plasma was collected to evaluate oxidative status and measure cytokines. RESULTS The TW group exhibited a decrease of reduced glutathione in their jejunum, which was prevented in the L-glutathione treated TWGT group. TW animals presented pronounced oxidative stress by increasing levels of lipoperoxidation in their jejunum and malondialdehyde in their plasma; however, the L-glutathione treatment in TWGT group was not able to avoid it. The total antioxidant capacity was altered in groups TW and TWGT, yet the last one had a better index in their plasma. The IL-10, and TNF-α levels increased in TWGT animals. The nNOS-IR neuron density decreased in the jejunum myenteric plexus of the TW group, which was avoided in the TWGT group. The nNOS +3-Nitrotyrosine neurons quantification did not show significative alterations. CONCLUSION The treatment with L-glutathione (1%) imposed an important defense to some parameters of oxidative stress induced by TW-256, leading to neuroprotection to the loss in the nNOS-IR neuron density.
Collapse
Affiliation(s)
- Ana Paula de Oliveira
- Department of Physiology Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Sabrina Silva Sestak
- Department of Physiology Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Lídia Rodrigues Cicero
- Department of Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Naianne Kelly Clebis
- Department of Morphology, Center of Biosciences Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Roseane Carvalho Vasconcelos
- Department of Dentistry, Program of Oral pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Aurigena Antunes Araújo
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | | | | | - Jacqueline Nelisis Zanoni
- Department of Physiology Sciences, State University of Maringá, Maringá, Paraná, Brazil
- Department of Morphology Sciences, State University of Maringá, Maringá, Paraná, Brazil
- Department of Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
3
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
4
|
Khoshavi Najafabadi F, Sadraei H, Mehranfard N, Ghasemi M. Motor Dysfunction of Gastric Antral Smooth Muscle in Diabetic Rats: Contribution of ATP-Dependent Potassium Channels. Adv Biomed Res 2023; 12:199. [PMID: 37694236 PMCID: PMC10492619 DOI: 10.4103/abr.abr_44_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 09/12/2023] Open
Abstract
Background The goal of the current research was to further elucidate the role of adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in the motility and contractility force of gastric smooth muscle of diabetic rats. Materials and Methods Male Wistar rats (190-230 g) were grouped into control and streptozotocin (STZ)-induced diabetes (55 mg/kg) rats. Thirty days later, gastric muscle contractility was measured using a myograph and a force transducer of antral segments immersed in a tissue bath. Gastric emptying response was measured through feeding of standard pellet. Furthermore, the expression of KATP channel subunits in antral smooth muscle was determined by western blot technique. Results The amplitude of KCl-evoked twitch contractions of diabetic antral strips was about 25% more than control (P < 0.05). Application of minoxidil, a KATP channel opener, dose dependently decreased the force of twitch contractions in both normal and diabetic antral strips. Application of 10 μM glibenclamide, a KATP channel blocker, did not antagonize the minoxidil-induced relaxation of antral strips. Diabetic gastric emptying was faster than normal, although not significant. Despite the relaxant effect of minoxidil on gastric emptying rate in normal rats (P < 0.05), this effect was not observed in diabetic rats. Also, glibenclamide increased gastric emptying and antagonized minoxidil-induced relaxation in normal rats (P < 0.05). Furthermore, the expression of KATP Kir6.1 and SUR2B subunits was substantially reduced in antral smooth muscle in diabetic condition (P < 0.01). Conclusion These results propose that KATP channels may contribute to the development of gastric motility disorders in diabetes.
Collapse
Affiliation(s)
- Fatameh Khoshavi Najafabadi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Hou C, Liang H, Hao Z, Zhao D. Berberine ameliorates the neurological dysfunction of the gastric fundus by promoting calcium channels dependent release of ACh in STZ-induced diabetic rats. Saudi Pharm J 2023; 31:433-443. [PMID: 37026044 PMCID: PMC10071329 DOI: 10.1016/j.jsps.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Background It has been reported diabetic gastroparesis is related to diabetic autonomic neuropathy of the gastrointestinal tract, and berberine (BBR) could ameliorate diabetic central and peripheral neuropathy. However, the influence of BBR on the function and motility of the gastric fundus nerve is unclear. Methods A diabetic rat model was constructed, and HE staining was used to observe the morphological changes in the gastric fundus. The changes in cholinergic and nitrogen-related neurochemical indexes and the effects of BBR on them were measured using Elisa. The effects of BBR on the neural function and motility of gastric fundus were investigated by electric field stimulation (EFS) induced neurogenic response in vitro. Results In the early stage of STZ-induced diabetic rats, the contractile response of gastric fundus induced by EFS was disorder, disturbance of contraction amplitude, and the cell bodies of neurons in the myenteric plexus of gastric fundus presented vacuolar lesions. Administration with BBR could improve the above symptoms. BBR further enhanced the contraction response in the presence of a NOS inhibitor or the case of inhibitory neurotransmitters removal. Interestingly, the activity of ACh could affect NO release directly and the enhancement of BBR on contractile response was canceled by calcium channel blockers completely. Conclusions In the early stage of STZ-induced diabetic rats, the neurogenic contractile response disorder of the gastric fundus is mainly related to cholinergic and nitrergic nerve dysfunction. BBR promotes the release of ACh mainly by affecting the calcium channel to improve the neurological dysfunction of the gastric fundus.
Collapse
Affiliation(s)
- Congcong Hou
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - Hongyu Liang
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
- Beijing Shouyi Group Co., Ltd. Mine Hospital, Tangshan 064400, PR China
| | - Zhangsen Hao
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - Ding Zhao
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
- Corresponding author at: Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| |
Collapse
|
6
|
Thakur V, Bashashati M, Enriquez J, Chattopadhyay M. Inhibiting Fatty Acid Amide Hydrolase Ameliorates Enteropathy in Diabetic Mice: A Cannabinoid 1 Receptor Mediated Mechanism. Vet Sci 2022; 9:vetsci9070364. [PMID: 35878381 PMCID: PMC9319435 DOI: 10.3390/vetsci9070364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal (GI) dysmotility in diabetics exhibits fecal incontinence or constipation which affects patients’ quality of life. In this study, we aimed to understand the pattern of GI transit in type 1 diabetic (T1D) mice and whether inhibiting endocannabinoid degradation would exhibit therapeutic effect. Whole gut-transit time and fecal-pellet output were measured at 16 week post-diabetes. T1D mice treated with fatty acid amide hydrolase (FAAH) inhibitor URB597 showed reduced fecal output as well as improved gut transit time. Cannabinoid 1 receptor antagonist, AM251 blocked the effects of URB597, which may demonstrate that FAAH inhibitor is a potential remedial strategy for GI dysmotility.
Collapse
Affiliation(s)
- Vikram Thakur
- Center of Emphasis in Diabetes and Metabolism, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Mohammad Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Josue Enriquez
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Munmun Chattopadhyay
- Center of Emphasis in Diabetes and Metabolism, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Correspondence:
| |
Collapse
|
7
|
Emerald BS, Mohsin S, D’Souza C, John A, El-Hasasna H, Ojha S, Raza H, al-Ramadi B, Adeghate E. Diabetes Mellitus Alters the Immuno-Expression of Neuronal Nitric Oxide Synthase in the Rat Pancreas. Int J Mol Sci 2022; 23:ijms23094974. [PMID: 35563364 PMCID: PMC9105024 DOI: 10.3390/ijms23094974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide is generated from nitric oxide synthase following hyperglycemia-induced oxidative stress during the course of diabetes mellitus (DM). We examined the temporal immuno-expression of neuronal nitric oxide synthase (nNOS) in the pancreas of diabetic and non-diabetic rats using immunohistochemical, immunofluorescence and western blot techniques 12 h, 24 h, 1 week, 2 weeks, 1, 8 and 15 months after induction of DM. nNOS co-localized with pancreatic beta cells but disappears 12 h after the onset of DM. In contrast, the nNOS content of pancreatic nerves increased significantly (p < 0.001) 24 h after the induction of DM, and decreased sharply thereafter. However, nNOS-positive ganglion cells were observed even 15 months post-diabetes. ROS increased by more than 100% two months after the onset of DM compared to non-diabetic control but was significantly (p < 0.000001) reduced at 9 months after the induction of DM. The pancreatic content of GSH increased significantly (p < 0.02) after 9 months of DM. Although, TBARS content was significantly (p < 0.009; p < 0.002) lower in aged (9 months) non-diabetic and DM rats, TBARS rate was markedly (p < 0.02) higher 9 months after the induction of DM when compared to younger age group. In conclusion, nNOS is present in pancreatic beta cell, but disappears 12 h after the onset of diabetes. In contrast, the tissue level of nNOS of pancreatic nerves increased in the first week of diabetes, followed by a sharp reduction. nNOS may play important roles in the metabolism of pancreatic beta cell.
Collapse
Affiliation(s)
- Bright Starling Emerald
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Sahar Mohsin
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Crystal D’Souza
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Annie John
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Hussain El-Hasasna
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
| | - Shreesh Ojha
- Departments of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Haider Raza
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Basel al-Ramadi
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
8
|
Chen Y, Zhang S, Li Y, Yan H, Ba Y, Wang X, Shi N, Liu C. Gastric Electrical Stimulation Increases the Proliferation of Interstitial Cells of Cajal and Alters the Enteric Nervous System in Diabetic Rats. Neuromodulation 2022; 25:1106-1114. [DOI: 10.1016/j.neurom.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
|
9
|
Onikanni AS, Lawal B, Olusola AO, Olugbodi JO, Sani S, Ajiboye BO, Ilesanmi OB, Alqarni M, Mostafa-Hedeab G, Obaidullah AJ, Batiha GES, Wu ATH. Sterculia tragacantha Lindl Leaf Extract Ameliorates STZ-Induced Diabetes, Oxidative Stress, Inflammation and Neuronal Impairment. J Inflamm Res 2021; 14:6749-6764. [PMID: 34916823 PMCID: PMC8668250 DOI: 10.2147/jir.s319673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Sterculia tragacantha is a medicinal plant commonly used in the western part of Nigeria, for managing diabetes mellitus. However, there is a dearth of scientific information on the antidiabetic and neuroprotective properties of the plant. Methods The in silico, in vitro and in vivo models were used to evaluate the antioxidants, antidiabetic, anti-inflammatory and neuroprotective potential of aqueous extract of Sterculia tragacantha leaf (AESTL) in streptozotocin (STZ)-induced diabetic rats. Thirty (30) male albino rats (155.34±6.33 g) were intraperitoneal injected with 40 mg/kg of freshly prepared streptozotocin and were divided into 5 groups (A-E) of 6 animals each. Groups A–D were treated with 0, 150 and 300 mg/kg of AESTL, and 200 mg/kg body weight of metformin respectively, while group E serve as the normal control. Results The results of in vitro analysis revealed dose-dependent antioxidant activities; ABTS (IC50 = 63.03±2.57 μg/mL), DPPH (117.49±2.35 μg/mL), FRAP (15.19±0.98 mmol/100g), TAC (43.38±0.96 mg/100g), hypoglycaemic effect; α-amylase (IC50 = 77.21±4.35 μg/mL) and α-glucosidase (IC50 = 443.25±12.35), and anti-cholinesterase; AChE (IC50 = 113.07±3.42 μg/mL) and BChE (IC50 = 87.50±4.32 μg/mL) activities of AESTL. In vivo study revealed dose-dependent hypoglycemic effect and body weight improvement in rats treated with the AESTL. In addition, AESTL improved the antioxidant status and attenuated STZ-induced dysregulations of Na+-K+-ATPase, cholinesterases and neurotransmitters in the brain tissue of experimental rats. The results also demonstrated that AESTL could regulate anti-inflammatory response via inhibition of COX-2/NO signaling axis in the brain of diabetic rats. Molecular docking analysis revealed that epicatechin and procyanidin B2, the bioactive compounds from AESTL, docked well to the binding cavities of acetylcholinesterase, butyrylcholinesterase, α-amylase and α-glucosidase with binding affinities ranges between –8.0 and –11.4 kcal/mol, suggesting that these compounds are the bioactive component that could be responsible for the antidiabetic and neuroprotective activities of AESTL. Conclusion The results of the present study strongly suggested that the AESTL extract could be very useful for halting diabetes progression and its associated neuroinflammation complications.
Collapse
Affiliation(s)
- Amos Sunday Onikanni
- Toxicology and Environmental Laboratory, Department of Biochemistry, Faculty of Science, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria.,Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.,Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taipei, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Augustine O Olusola
- Toxicology and Environmental Laboratory, Department of Biochemistry, Faculty of Science, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | | | - Saidu Sani
- Department of Biochemistry, Faculty of Biological Science, Alex Ekwueme Federal University Ndufu Alike IkwoD, Abakaliki, Ebonyi State, Nigeria
| | - Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Faculty of Science, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Omotayo B Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Ogbia, Bayelsa State, 23401, Nigeria
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Sakakah, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
| |
Collapse
|
10
|
Viola MF, Boeckxstaens G. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut 2021; 70:1383-1395. [PMID: 33384336 PMCID: PMC8223647 DOI: 10.1136/gutjnl-2020-323121] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
Intestinal resident macrophages are at the front line of host defence at the mucosal barrier within the gastrointestinal tract and have long been known to play a crucial role in the response to food antigens and bacteria that are able to penetrate the mucosal barrier. However, recent advances in single-cell RNA sequencing technology have revealed that resident macrophages throughout the gut are functionally specialised to carry out specific roles in the niche they occupy, leading to an unprecedented understanding of the heterogeneity and potential biological functions of these cells. This review aims to integrate these novel findings with long-standing knowledge, to provide an updated overview on our understanding of macrophage function in the gastrointestinal tract and to speculate on the role of specialised subsets in the context of homoeostasis and disease.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (Chrometa), KU Leuven, Leuven, Flanders, Belgium
| | - Guy Boeckxstaens
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (Chrometa), KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
11
|
Electroacupuncture at ST36 Improve the Gastric Motility by Affecting Neurotransmitters in the Enteric Nervous System in Type 2 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6666323. [PMID: 34221088 PMCID: PMC8225438 DOI: 10.1155/2021/6666323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 01/20/2023]
Abstract
Electroacupuncture (EA) can effectively relieve hyperglycemia and gastric emptying disorders in diabetic gastroparesis (DGP). However, the effect of EA on type 2 diabetes mellitus (T2DM) gastroparesis and its mechanism in the enteric nervous system (ENS) are rarely studied. We investigated the therapeutic effect of EA at ST36 and its effect on the main inhibitory and excitatory neurotransmitters in the ENS in DGP rats. Male Sprague-Dawley (SD) rats were fed a high-fat diet for 2 weeks and injected with streptozotocin (STZ) at 35 mg/kg to induce T2DM. T2DM rats were divided into the diabetic mellitus (DM) group and the EA group. The control (CON) group comprised normal rats without any intervention. EA treatment was started 6 weeks after the induction of DM and continued for 5 weeks. The body weight and food intake of the rats were recorded every week. Blood glucose, insulin, glucose tolerance, gastric emptying, and antral motility were measured after treatment. The expression of protein gene product 9.5 (PGP9.5), neuronal nitric oxide synthase (nNOS), and choline acetyltransferase (ChAT) in gastric antrum were quantified by western blotting and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The T2DM gastroparesis model was successfully established. EA treatment reduced the body weight, food intake, and blood glucose; improved glucose intolerance and insulin resistance; increased the gastric emptying rate, the mean antral pressure, and the amplitude of antral motility; and decreased the frequency of antral motility compared with those in the DM group. EA treatment increased the expression level of nNOS, ChAT, and PGP9.5 proteins, and nNOS and ChAT mRNA. The results suggested that EA at ST36 could ameliorate DGP, partly restore the damage to general neurons, and increase nNOS and ChAT in the gastric antrum. EA improved DGP partly via reducing the loss of inhibitory and excitatory neurotransmitters in the ENS.
Collapse
|
12
|
Protective effects of quercetin-loaded microcapsules on the enteric nervous system of diabetic rats. Auton Neurosci 2021; 230:102759. [DOI: 10.1016/j.autneu.2020.102759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
|
13
|
Martins-Perles JVC, Bossolani GDP, Zignani I, de Souza SRG, Frez FCV, de Souza Melo CG, Barili E, de Souza Neto FP, Guarnier FA, Armani ALC, Cecchini R, Zanoni JN. Quercetin increases bioavailability of nitric oxide in the jejunum of euglycemic and diabetic rats and induces neuronal plasticity in the myenteric plexus. Auton Neurosci 2020; 227:102675. [PMID: 32474374 DOI: 10.1016/j.autneu.2020.102675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Considering the antioxidant, neuroprotective, inflammatory and nitric oxide modulatory actions of quercetin, the aim of this study was to test the effect of quercetin administration in drinking water (40 mg/day/rat) on neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), overall population of myenteric neurons (HuC/D) and nitric oxide (NO) levels in the jejunal samples from diabetic rats. Male Wistar rats were distributed into four groups (8 rats per group): euglycemic (E), euglycemic administered with quercetin (E+Q), diabetic (D) and diabetic administered with quercetin (D+Q). Rats were induced to diabetes with streptozotocin (35mg/kg/iv) and, after 120 days, the proximal jejunum were collected and processed for immunohistochemical (VIP, nNOS and HuC/D) and chemiluminescence (quantification of tissue NO levels) techniques. Diabetes mellitus reduced the number of nNOS-IR (immunoreactive) (p <0.05) and HuC/D-IR (p <0.001) neurons, however, promoted an increased morphometric area of nNOS-IR neurons (p <0.001) and VIP-IR varicosities (p <0.05). In D+Q group, neuroplasticity effects were observed on HuC/D-IR neurons, accompanied by a reduction of cell body area of neurons nNOS- and VIP-IR varicosities (p <0.05). The NO levels were increased in the E+Q (p <0.05) and D+Q group (p <0.001) compared to the control group. In conclusion, the results showed that quercetin supplementation increased the bioavailability of NO in the jejunum in euglycemic and mitigate the effects of diabetes on nNOS-IR neurons and VIP-IR varicosities in the myenteric plexus of diabetic rats.
Collapse
Affiliation(s)
| | - Gleison Daion Piovezana Bossolani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Sara Raquel Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Flávia Cristina Vieira Frez
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Carina Guimarães de Souza Melo
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Emerson Barili
- Department of Statistic, Universidade Estadual de Maringá, Avenida Colombo, n 5790, Maringá, PR CEP 87020-900, Brazil
| | - Fernando Pinheiro de Souza Neto
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Flávia Alessandra Guarnier
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Alessandra Lourenço Cecchini Armani
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Rubens Cecchini
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Jacqueline Nelisis Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
14
|
Baker C, Ahmed M, Cheng K, Arciero E, Bhave S, Natalie Ho WL, Goldstein AM, Hotta R. Hypoganglionosis in the gastric antrum causes delayed gastric emptying. Neurogastroenterol Motil 2020; 32:e13766. [PMID: 31773831 PMCID: PMC7182502 DOI: 10.1111/nmo.13766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Enteric nervous system (ENS) abnormalities have been implicated in delayed gastric emptying but studies exploring potential treatment options are limited by the lack of an experimental animal model. We examined the ENS abnormalities in the mouse stomach associated with aging, developed a novel model of gastroparesis, and established a new approach to measure gastric emptying. METHODS A modified gastric emptying assay was developed, validated in nNOS -/- mice, and tested in mice at multiple ages. Age-related changes in ENS structure were analyzed by immunohistochemistry. Gastric aganglionosis was generated in Wnt1-iDTR mice using focal administration of diphtheria toxin (DT) into the anterior antral wall. KEY RESULTS Older mice (>5 months) exhibit hypoganglionosis in the gastric antrum and a decreased proportion of nNOS neurons as compared to younger mice (age 5-7 weeks). This was associated with a significant age-dependent decrease in liquid and solid gastric emptying. A novel model of gastric antrum hypoganglionosis was established using neural crest-specific expression of diphtheria toxin receptor. In this model, a significant reduction in liquid and solid gastric emptying is observed. CONCLUSIONS & INFERENCES Older mice exhibit delayed gastric emptying associated with hypoganglionosis and a reduction in nNOS-expressing neurons in the antrum. The causal relationship between antral hypoganglionosis and delayed gastric emptying was verified using a novel experimental model of ENS ablation. This study provides new information regarding the pathogenesis of delayed gastric emptying and provides a robust model system to study this disease and develop novel treatments.
Collapse
Affiliation(s)
- Corey Baker
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Minhal Ahmed
- Department of Bioengineering, Northeastern University, Boston MA 02115
| | - Katarina Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Wing Lam Natalie Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| |
Collapse
|
15
|
Blair PJ, Hwang SJ, Shonnard MC, Peri LE, Bayguinov Y, Sanders KM, Ward SM. The Role of Prostaglandins in Disrupted Gastric Motor Activity Associated With Type 2 Diabetes. Diabetes 2019; 68:637-647. [PMID: 30626609 PMCID: PMC6385756 DOI: 10.2337/db18-1064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Patients with diabetes often develop gastrointestinal motor problems, including gastroparesis. Previous studies have suggested this gastric motor disorder was a consequence of an enteric neuropathy. Disruptions in interstitial cells of Cajal (ICC) have also been reported. A thorough examination of functional changes in gastric motor activity during diabetes has not yet been performed. We comprehensively examined the gastric antrums of Lepob mice using functional, morphological, and molecular techniques to determine the pathophysiological consequences in this type 2 diabetic animal model. Video analysis and isometric force measurements revealed higher frequency and less robust antral contractions in Lepob mice compared with controls. Electrical pacemaker activity was reduced in amplitude and increased in frequency. Populations of enteric neurons, ICC, and platelet-derived growth factor receptor α+ cells were unchanged. Analysis of components of the prostaglandin pathway revealed upregulation of multiple enzymes and receptors. Prostaglandin-endoperoxide synthase-2 inhibition increased slow wave amplitudes and reduced frequency of diabetic antrums. In conclusion, gastric pacemaker and contractile activity is disordered in type 2 diabetic mice, and this appears to be a consequence of excessive prostaglandin signaling. Inhibition of prostaglandin synthesis may provide a novel treatment for diabetic gastric motility disorders.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Matthew C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Lauren E Peri
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| |
Collapse
|
16
|
PARP inhibition in platinum-based chemotherapy: Chemopotentiation and neuroprotection. Pharmacol Res 2018; 137:104-113. [PMID: 30278221 DOI: 10.1016/j.phrs.2018.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
Abstract
Cisplatin, carboplatin and oxaliplatin represent the backbone of platinum therapy for several malignancies including head and neck, lung, colorectal, ovarian, breast, and genitourinary cancer. However, the efficacy of platinum-based drugs is often compromised by a plethora of severe toxicities including sensory and enteric neuropathy. Acute and chronic neurotoxicity following platinum chemotherapy is a major constraint, contributing to dose-reductions, treatment delays, and cessation of treatment. Identifying drugs that effectively prevent these toxic complications is imperative to improve the efficacy of anti-cancer treatment and patient quality of life. Oxidative stress and mitochondrial dysfunction have been highlighted as key players in the pathophysiology of platinum chemotherapy-induced neuropathy. Inhibition of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated upon DNA damage, has demonstrated substantial sensory and enteric neuroprotective capacity when administered in combination with platinum chemotherapeutics. Furthermore, administration of PARP inhibitors alongside platinum chemotherapy has been found to significantly improve progression-free survival in patients with breast and ovarian cancer when compared to those receiving chemotherapy alone. This review summarises the current knowledge surrounding mitochondrial damage and oxidative stress in platinum chemotherapy-induced neuropathy and highlights a potential role for PARP in chemopotentiation and neuroprotection.
Collapse
|
17
|
Liu N, Abell T. Gastroparesis Updates on Pathogenesis and Management. Gut Liver 2018; 11:579-589. [PMID: 28535580 PMCID: PMC5593319 DOI: 10.5009/gnl16336] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/09/2017] [Indexed: 12/11/2022] Open
Abstract
Gastroparesis (Gp) is a chronic disease that presents with clinical symptoms of early satiety, bloating, nausea, vomiting, and abdominal pain. Along with these symptoms, an objective finding of delayed gastric emptying, along with a documented absence of gastric outlet obstruction, are required for diagnosis. This article focuses on updates in the pathogenesis and management of Gp. Recent studies on full thickness biopsies of Gp patients have shed light on the complex interactions of the central, autonomic, and enteric nervous systems, which all play key roles in maintaining normal gut motility. The management of Gp has evolved beyond prokinetics and antiemetics with the use of gastric electrical stimulators (GES). In addition, this review aims to introduce the concept of gastroparesis-like syndrome (GLS). GLS helps groups of patients who have the cardinal symptoms of Gp but have a normal or rapid emptying test. Recent tests have shown that patients with Gp and GLS have similar pathophysiology, benefit greatly from GES placement, and likely should be treated in a similar manner.
Collapse
Affiliation(s)
- Nanlong Liu
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY, USA
| | - Thomas Abell
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY, USA
| |
Collapse
|
18
|
Min YW, Ko EJ, Lee JY, Rhee PL. Impaired neural pathway in gastric muscles of patients with diabetes. Sci Rep 2018; 8:7101. [PMID: 29739973 PMCID: PMC5940896 DOI: 10.1038/s41598-018-24147-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
To explore the pathogenic mechanism of diabetic gastropathy, we investigated differences in response to electrical field stimulation (EFS) of gastric muscles from diabetic and non-diabetic (control) patients. Gastric specimens were obtained from 34 patients and 45 controls who underwent gastrectomy for early gastric cancer. Using organ bath techniques, we examined peak and nadir values of contraction under EFS. To examine responses to purinergic and nitrergic inhibition without cholinergic innervation, atropine, MRS2500, and N-nitro-L-arginine (L-NNA) were added sequentially to the organ bath. Tetrodotoxin (TTX) was used to confirm that the responses to EFS were mediated via neural stimulation. In the absence of pharmacological agents, peak contraction amplitude was greater in non-diabetic controls compared to diabetics only in the distal longitudinal gastric muscles. However, the nadir was greater in controls than in patients in both proximal and distal gastric circular muscles. Addition of MRS2500 could not decrease the nadir in both controls and patients, both in the proximal and distal stomach. However, L-NNA completely reversed the relaxation. TTX had no further effect on nadir. In conclusion, impaired inhibitory nitrergic neural pathway in both proximal and distal stomach and impaired excitatory cholinergic neural pathway in the distal stomach may contribute to the pathogenic mechanism underlying diabetic gastropathy.
Collapse
Affiliation(s)
- Yang Won Min
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Ju Ko
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Yeon Lee
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Poong-Lyul Rhee
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Mahavadi S, Sriwai W, Manion O, Grider JR, Murthy KS. Diabetes-induced oxidative stress mediates upregulation of RhoA/Rho kinase pathway and hypercontractility of gastric smooth muscle. PLoS One 2017; 12:e0178574. [PMID: 28678840 PMCID: PMC5497948 DOI: 10.1371/journal.pone.0178574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of diabetes-associated motility disorders are multifactorial and attributed to abnormalities in extrinsic and intrinsic innervation, and a decrease in the number of interstitial cells of Cajal, and nNOS expression and activity. Here we studied the effect of hyperglycemia on smooth muscle function. Using smooth muscles from the fundus of ob/ob mice and of wild type (WT) mice treated with 30 mM glucose (HG), we identified the molecular mechanism by which hyperglycemia upregulates RhoA/Rho kinase pathway and muscle contraction. RhoA expression, Rho kinase activity and muscle contraction were increased, while miR-133a expression was decreased in smooth muscle of ob/ob mice and in smooth muscle treated with HG. Intraperitoneal injections of pre-miR-133a decreased RhoA expression in WT mice and reversed the increase in RhoA expression in ob/ob mice. Intraperitoneal injections of antagomiR-133a increased RhoA expression in WT mice and augmented the increase in RhoA expression in ob/ob mice. The effect of pre-miR-133a or antagomiR-133a in vitro in smooth muscle treated with HG was similar to that obtained in vivo, suggesting that the expression of RhoA is negatively regulated by miR-133a and a decrease in miR-133a expression in diabetes causes an increase in RhoA expression. Oxidative stress (levels of reactive oxygen species and hydrogen peroxide, and expression of superoxide dismutase 1 and NADPH oxidase 4) was increased in smooth muscle of ob/ob mice and in HG-treated smooth muscle. Treatment of ob/ob mice with N-acetylcysteine (NAC) in vivo or addition of NAC in vitro to HG-treated smooth muscle reversed the effect of glucose on the expression of miR-133a and RhoA, Rho kinase activity and muscle contraction. NAC treatment also reversed the decrease in gastric emptying in ob/ob mice. We conclude that oxidative stress in diabetes causes a decrease in miR-133a expression leading to an increase in RhoA/Rho kinase pathway and muscle contraction.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Wimolpak Sriwai
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Olivia Manion
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
20
|
Chen H, Zhu W, Lu J, Fan J, Sun L, Feng X, Liu H, Zhang Z, Wang Y. The Effects of Auricular Electro-Acupuncture on Ameliorating the Dysfunction of Interstitial Cells of Cajal Networks and nNOSmRNA Expression in Antrum of STZ-Induced Diabetic Rats. PLoS One 2016; 11:e0166638. [PMID: 27930657 PMCID: PMC5145159 DOI: 10.1371/journal.pone.0166638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUD Interstitial cells of Cajal (ICCs) and nNOS play a crucial role in diabetic gastrointestinal dysmotility(DGD). Our previous study found that electro-acupuncture(EA) on ear point 'stomach' could repair the gastric dysrhythmias in rats induced by rectal distention(RD) after meal. However, little were known about the possible effect of auricular electro-acupuncture (AEA) on diabetic rats. Thus, we designed this study to investigate the effect of AEA on streptozotocin(STZ)-induced diabetic rats. METHOD Forty male Sprague_Dawley (SD) rats were injected with STZ, at the end of 8th week after injection, animals were randomly divided into four groups and received 2 weeks-treatment(10 times) respectively: control group(CON,n = 10, no stimulation), sham auricular electro-acupuncture group(SEA,n = 10, low frequency EA on earlobes), auricular eletro-acupuncture group(AEA,n = 10, low frequency EA on ear point 'stomach'), and ST-36 group(ST-36,n = 10, low frequency EA on ST-36). Gastrointestinal (GI) motility was measured by GI transit rate. ICCs(c-kit+ expression) in antrum were analyzed by Immunohistochemistry and western blotting. NO level in blood serum were detected by Griess Reagent, and nNOSmRNA expression in antrum were determined by Real-time PCR. RESULTS GI transit rate and ICCs(c-kit+ expression) in antrum of AEA group have the tendency to increase compared with CON group, but had no statistics difference (P>0.05). nNOSmRNA expression in antrum of AEA group was dramatically increased compared with CON group (P = 0.037). CONCLUSIONS Low frequency EA on ear 'stomach' point could significantly up-regulate nNOS mRNA expression and ameliorate the ICCs networks partly in gastric antrum of STZ -induced diabetic rats, which may has benefits on regulating the GI motility.
Collapse
Affiliation(s)
- Huan Chen
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijian Zhu
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lu
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinqing Fan
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Luning Sun
- Department of Pharmacy, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaohui Zhang
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqing Wang
- Department of Pharmacy, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
PEREIRA RENATAV, LINDEN DAVIDR, MIRANDA-NETO MARCÍLIOH, ZANONI JACQUELINEN. Differential effects in CGRPergic, nitrergic, and VIPergic myenteric innervation in diabetic rats supplemented with 2% L-glutamine. ACTA ACUST UNITED AC 2016; 88 Suppl 1:609-22. [DOI: 10.1590/0001-3765201620150228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022]
Abstract
ABSTRACT The objective of this study was to investigate the effects of 2% L-glutamine supplementation on myenteric innervation in the ileum of diabetic rats, grouped as follows: normoglycemic (N); normoglycemic supplemented with L-glutamine (NG); diabetic (D); and diabetic supplemented with L-glutamine (DG). The ileums were subjected to immunohistochemical techniques to localize neurons immunoreactive to HuC/D protein (HuC/D-IR) and neuronal nitric oxide synthase enzyme (nNOS-IR) and to analyze varicosities immunoreactive to vasoactive intestinal polypeptide (VIP-IR) and calcitonin gene-related peptide (CGRP-IR). L-Glutamine in the DG group (i) prevented the increase in the cell body area of nNOS-IR neurons, (ii) prevented the increase in the area of VIP-IR varicosities, (iii) did not prevent the loss of HuC/D-IR and nNOS-IR neurons per ganglion, and (iv) reduced the size of CGRP-IR varicosities. L-Glutamine in the NG group reduced (i) the number of HuC/D-IR and nNOS-IR neurons per ganglion, (ii) the cell body area of nNOS-IR neurons, and (iii) the size of VIP-IR and CGRP-IR varicosities. 2% L-glutamine supplementation exerted differential neuroprotective effects in experimental diabetes neuropathy that depended on the type of neurotransmitter analyzed. However, the effects of this dose of L-glutamine on normoglycemic animals suggests there are additional actions of this beyond its antioxidant capacity.
Collapse
|
22
|
Inhibitory effect of sildenafil on pyloric sphincter from streptozotocin-diabetic rats: role of no-cGMP transduction pathway. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Expression of Cocaine and Amphetamine Regulated Transcript (CART) in the Porcine Intramural Neurons of Stomach in the Course of Experimentally Induced Diabetes Mellitus. J Mol Neurosci 2015; 57:376-85. [PMID: 26266486 DOI: 10.1007/s12031-015-0618-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
In the present study, the effect of streptozotocin-induced diabetes on the cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) enteric nervous structures was investigated within the porcine stomach. To induce diabetes, the pigs were administered intravenously streptozotocin at a dose of 150 mg/kg of body weight. A significant decrease of the number of CART-LI perikarya was observed in the myenteric plexus of the gastric antrum, corpus, and pylorus in the experimental group. In contrast, submucous plexus was devoid of CART-positive neuronal cells both in control and experimental animals. In the control group, the highest densities of CART-LI nerve fibers were observed in the circular muscle layer of antrum and slightly less nerve fibers were present in the muscle layer of corpus and pylorus. In turn, submucous layer of all studied stomach regions revealed relatively smaller number of CART-positive nerve fibers. Diabetes caused statistically significant decrease in the expression of CART-LI nerve fibers only in the antrum circular muscle layer. Also, no changes in the CART-like immunoreactivity in the intraganglionic nerve fibers were observed. The obtained results suggest that acute hyperglycemia produced significant reduction of the CART expression in enteric perikarya throughout entire stomach as well as decrease of density the CART-LI fibers in circular muscle layer of the antrum. Additionally, we suggest that CART might be involved in the regulation of stomach function especially in the gastric motility.
Collapse
|
24
|
Aqueous Extract of Agaricus blazei Murrill Prevents Age-Related Changes in the Myenteric Plexus of the Jejunum in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:287153. [PMID: 25960748 PMCID: PMC4415631 DOI: 10.1155/2015/287153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/27/2023]
Abstract
This study evaluated the effects of the supplementation with aqueous extract of Agaricus blazei Murrill (ABM) on biometric and blood parameters and quantitative morphology of the myenteric plexus and jejunal wall in aging Wistar rats. The animals were euthanized at 7 (C7), 12 (C12 and CA12), and 23 months of age (C23 and CA23). The CA12 and CA23 groups received a daily dose of ABM extract (26 mg/animal) via gavage, beginning at 7 months of age. A reduction in food intake was observed with aging, with increases in the Lee index, retroperitoneal fat, intestinal length, and levels of total cholesterol and total proteins. Aging led to a reduction of the total wall thickness, mucosa tunic, villus height, crypt depth, and number of goblet cells. In the myenteric plexus, aging quantitatively decreased the population of HuC/D(+) neuronal and S100(+) glial cells, with maintenance of the nNOS(+) nitrergic subpopulation and increase in the cell body area of these populations. Supplementation with the ABM extract preserved the myenteric plexus in old animals, in which no differences were detected in the density and cell body profile of neurons and glial cells in the CA12 and CA23 groups, compared with C7 group. The supplementation with the aqueous extract of ABM efficiently maintained myenteric plexus homeostasis, which positively influenced the physiology and prevented the death of the neurons and glial cells.
Collapse
|
25
|
Sousa FC, Schamber CR, Amorin SSS, Natali MRM. Effect of fumonisin-containing diet on the myenteric plexus of the jejunum in rats. Auton Neurosci 2014; 185:93-9. [PMID: 25183308 DOI: 10.1016/j.autneu.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Fumonisins are mycotoxins that naturally occur as contaminants in grains that are destined for animal and human consumption. These mycotoxins cause hepatotoxic, nephrotoxic, carcinogenic, teratogenic, immunotoxic, and neurotoxic effects in different intensities based on dose, time of exposure, and animal species. In the present study, male Wistar rats were fed between postnatal days 21 and 63 with diets that contained fumonisins B1+B2 at concentrations of 1 and 3mg/kg. The objective of the present study was to evaluate the effects of fumonisins on food intake, growth, weight gain, serum activity of the alanine aminotransferase and aspartate aminotransferase enzymes, and quantitative and morphometric parameters of myenteric neurons in the jejunum that are immunoreactive to HuC/D protein and neuronal nitric oxide synthase enzyme (nNOS). Diets that contained fumonisins did not significantly alter food intake or body and blood parameters. We did not observe significant differences in the neuronal density and proportion of nitrergic neurons but found a significant reduction of cell body areas in both neuronal populations. This study is the first to report the effects of fumonisins in the enteric nervous system. The possible mechanisms by which fumonisins impair neuronal development and the use of the enteric nervous system as a tool for the study of the neurotoxic effects of fumonisins are discussed. In conclusion, fumonisin-containing food negatively affected the growth of myenteric neurons.
Collapse
Affiliation(s)
- Fernando Carlos Sousa
- Coordenação de Ciências Biológicas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Brazil.
| | | | | | | |
Collapse
|
26
|
Is L-glutathione more effective than L-glutamine in preventing enteric diabetic neuropathy? Dig Dis Sci 2014; 59:937-48. [PMID: 24370785 DOI: 10.1007/s10620-013-2993-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes and its complications appear to be multifactorial. Substances with antioxidant potential have been used to protect enteric neurons in experimental diabetes. AIM This study evaluated the effects of supplementation with L-glutamine and L-glutathione on enteric neurons in the jejunum in diabetic rats. METHODS Rats at 90 days of age were distributed into six groups: normoglycemic, normoglycemic supplemented with 2 % L-glutamine, normoglycemic supplemented with 1 % L-glutathione, diabetic (D), diabetic supplemented with 2 % L-glutamine (DG), and diabetic supplemented with 1 % L-glutathione (DGT). After 120 days, the jejunums were immunohistochemically stained for HuC/D+ neuronal nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP). Western blot was performed to evaluate nNOS and VIP. Submucosal and myenteric neurons were quantitatively and morphometrically analyzed. RESULTS Diabetic neuropathy was observed in myenteric HuC/D, nNOS, and VIP neurons (p < 0.05). In the submucosal plexus, diabetes did not change nitrergic innervation but increased VIPergic neuronal density and body size (p < 0.05). Supplementation with L-glutathione prevented changes in HuC/D neurons in the enteric plexus (p < 0.05), showing that supplementation with L-glutathione was more effective than with L-glutamine. Myenteric nNOS neurons in the DGT group exhibited a reduced density (34.5 %) and reduced area (p < 0.05). Submucosal neurons did not exhibit changes. The increase in VIP-expressing neurons was prevented in the submucosal plexus in the DG and DGT groups (p < 0.05). CONCLUSION Supplementation with L-glutathione exerted a better neuroprotective effect than L-glutamine and may prevent the development of enteric diabetic neuropathy.
Collapse
|
27
|
Abstract
The enteric nervous system is vulnerable to a range of congenital and acquired disorders that disrupt the function of its neurons or lead to their loss. The resulting enteric neuropathies are some of the most challenging clinical conditions to manage. Neural stem cells offer the prospect of a cure given their potential ability to replenish missing or dysfunctional neurons. This article discusses diseases that might be targets for stem cell therapies and the barriers that could limit treatment application. We explore various sources of stem cells and the proof of concept for their use. The critical steps that remain to be addressed before these therapies can be used in patients are also discussed. Key milestones include the harvesting of neural stem cells from the human gut and the latest in vivo transplantation studies in animals. The tremendous progress in the field has brought experimental studies exploring the potential of stem cell therapies for the management of enteric neuropathies to the cusp of clinical application.
Collapse
Affiliation(s)
- Alan J Burns
- Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nikhil Thapar
- 1] Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. [2] Division of Neurogastroenterology and Motility, Department of Paediatric Gastroenterology, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
28
|
Min YW, Hong YS, Ko EJ, Lee JY, Min BH, Sohn TS, Kim JJ, Rhee PL. Impairment of the proximal to distal tonic gradient in the human diabetic stomach. Neurogastroenterol Motil 2014; 26:229-36. [PMID: 24165095 DOI: 10.1111/nmo.12253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Little has been known about the contractile characteristics of diabetic stomach. We investigated spontaneous contractions and responses to acetylcholine in the gastric muscle in diabetic patients and non-diabetic control subjects according to the region of stomach. METHODS Gastric specimens were obtained from 26 diabetics and 55 controls who underwent gastrectomy at Samsung Medical Center between February 2008 and November 2011. Isometric force measurements were performed using circular muscle strips from the different regions of stomach under basal condition and in response to acetylcholine. KEY RESULTS Basal tone of control was higher in the proximal stomach than in the distal (0.63 g vs 0.46 g, p = 0.027). However, in diabetics, basal tone was not significantly different between the proximal and distal stomach (0.75 g vs 0.62 g, p = 0.32). The distal stomach of diabetics had higher basal tone and lower frequency than that of control (0.62 g vs 0.46 g, p = 0.049 and 4.0/min vs 4.9/min, p = 0.049, respectively). After exposure to acetylcholine, dose-dependent increases of basal tone, peak, and area under the curve (AUC) were noticed in both proximal and distal stomach of the two groups. In the proximal stomach, however, the dose-dependent increase of basal tone and AUC was less prominent in diabetics than in control. CONCLUSIONS & INFERENCES On the contrary to control, the proximal to distal tonic gradient was not observed in diabetic stomach. Diabetic stomach also had lower frequency of spontaneous contraction in the distal stomach and less acetylcholine-induced positive inotropic effect in the proximal stomach than control.
Collapse
Affiliation(s)
- Y W Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Autonomic neuropathy complicates diabetes by increasing patient morbidity and mortality. Surprisingly, considering its importance, development and exploitation of animal models has lagged behind the wealth of information collected for somatic symmetrical sensory neuropathy. Nonetheless, animal studies have resulted in a variety of insights into the pathogenesis, neuropathology, and pathophysiology of diabetic autonomic neuropathy (DAN) with significant and, in some cases, remarkable correspondence between rodent models and human disease. Particularly in the study of alimentary dysfunction, findings in intrinsic intramural ganglia, interstitial cells of Cajal and the extrinsic parasympathetic and sympathetic ganglia serving the bowel vie for recognition as the chief mechanism. A body of work focused on neuropathologic findings in experimental animals and human subjects has demonstrated that axonal and dendritic pathology in sympathetic ganglia with relative neuron preservation represents one of the neuropathologic hallmarks of DAN but it is unlikely to represent the entire story. There is a surprising selectivity of the diabetic process for subpopulations of neurons and nerve terminals within intramural, parasympathetic, and sympathetic ganglia and innervation of end organs, afflicting some while sparing others, and differing between vascular and other targets within individual end organs. Rather than resulting from a simple deficit in one limb of an effector pathway, autonomic dysfunction may proceed from the inability to integrate portions of several complex pathways. The selectivity of the diabetic process appears to confound a simple global explanation (e.g., ischemia) of DAN. Although the search for a single unifying pathogenetic hypothesis continues, it is possible that autonomic neuropathy will have multiple pathogenetic mechanisms whose interplay may require therapies consisting of a cocktail of drugs. The role of multiple neurotrophic substances, antioxidants (general or pathway specific), inhibitors of formation of advanced glycosylation end products and drugs affecting the polyol pathway may be complex and therapeutic elements may have both salutary and untoward effects. This review has attempted to present the background and current findings and hypotheses, focusing on autonomic elements including and beyond the typical parasympathetic and sympathetic nervous systems to include visceral sensory and enteric nervous systems.
Collapse
Affiliation(s)
- Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
30
|
Demedts I, Masaoka T, Kindt S, De Hertogh G, Geboes K, Farré R, Vanden Berghe P, Tack J. Gastrointestinal motility changes and myenteric plexus alterations in spontaneously diabetic biobreeding rats. J Neurogastroenterol Motil 2013; 19:161-70. [PMID: 23667747 PMCID: PMC3644652 DOI: 10.5056/jnm.2013.19.2.161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS Type 1 diabetes is often accompanied by gastrointestinal motility disturbances. Vagal neuropathy, hyperglycemia, and alterations in the myenteric plexus have been proposed as underlying mechanism. We therefore studied the relationship between vagal function, gastrointestinal motiliy and characteristics of the enteric nervous system in the biobreeding (BB) rat known as model for spontaneous type 1 diabetes. METHODS Gastric emptying breath test, small intestinal electromyography, relative risk-interval variability, histology and immunohistochemistry on antral and jejunal segments were performed at 1, 8 and 16 weeks after diabetes onset and on age-matched controls. RESULTS We observed no consistent changes in relative risk-interval variability and gastric emptying rate. There was however, a loss of phases 3 with longer duration of diabetes on small intestinal electromyography. We found a progressive decrease of nitrergic neurons in the myenteric plexus of antrum and jejunum, while numbers of cholinergic nerve were not altered. In addition, a transient inflammatory infiltrate in jejunal wall was found in spontaneous diabetic BB rats at 8 weeks of diabetes. CONCLUSIONS In diabetic BB rats, altered small intestinal motor control associated with a loss of myenteric nitric oxide synthase expression occurs, which does not depend on hyperglycemia or vagal dysfunction, and which is preceded by transient intestinal inflammation.
Collapse
Affiliation(s)
- Ingrid Demedts
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Tatsuhiro Masaoka
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Sebastien Kindt
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, University of Leuven, Leuven, Belgium
| | - Karel Geboes
- Department of Pathology, University of Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Knowles CH, Lindberg G, Panza E, De Giorgio R. New perspectives in the diagnosis and management of enteric neuropathies. Nat Rev Gastroenterol Hepatol 2013; 10:206-18. [PMID: 23399525 DOI: 10.1038/nrgastro.2013.18] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic disturbances of gastrointestinal function encompass a wide spectrum of clinical disorders that range from common conditions with mild-to-moderate symptoms to rare diseases characterized by a severe impairment of digestive function, including chronic pain, vomiting, bloating and severe constipation. Patients at the clinically severe end of the spectrum can have profound changes in gut transit and motility. In a subset of these patients, histopathological analyses have revealed abnormalities of the gut innervation, including the enteric nervous system, termed enteric neuropathies. This Review discusses advances in the diagnosis and management of the main clinical entities--achalasia, gastroparesis, intestinal pseudo-obstruction and chronic constipation--that result from enteric neuropathies, including both primary and secondary forms. We focus on the various evident neuropathologies (degenerative and inflammatory) of these disorders and, where possible, present the specific implications of histological diagnosis to contemporary treatment. This knowledge could enable the future development of novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Charles H Knowles
- Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | | | | | | |
Collapse
|
32
|
Lin CY, Lin TY, Lee MC, Chen SC, Chang JS. Hyperglycemia: GDNF-EGR1 pathway target renal epithelial cell migration and apoptosis in diabetic renal embryopathy. PLoS One 2013; 8:e56731. [PMID: 23468876 PMCID: PMC3585314 DOI: 10.1371/journal.pone.0056731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Maternal hyperglycemia can inhibit morphogenesis of ureteric bud branching, Glial cell line-derived neurotrophilic factor (GDNF) is a key regulator of the initiation of ureteric branching. Early growth response gene-1 (EGR-1) is an immediate early gene. Preliminary study found EGR-1 persistently expressed with GDNF in hyperglycemic environment. To evaluate the potential relationship of hyperglycemia-GDNF-EGR-1 pathway, in vitro human renal proximal tubular epithelial (HRPTE) cells as target and in vivo streptozotocin-induced mice model were used. Our in vivo microarray, real time-PCR and confocal morphological observation confirmed apoptosis in hyperglycemia-induced fetal nephropathy via activation of the GDNF/MAPK/EGR-1 pathway at E12-E15. Detachment between ureteric branch and metanephrons, coupled with decreasing number and collapse of nephrons on Day 1 newborn mice indicate hyperglycemic environment suppress ureteric bud to invade metanephric rudiment. In vitro evidence proved that high glucose suppressed HRPTE cell migration and enhanced GDNF-EGR-1 pathway, inducing HRPTE cell apoptosis. Knockdown of EGR-1 by siRNA negated hyperglycemic suppressed GDNF-induced HRPTE cells. EGR-1 siRNA also reduced GDNF/EGR-1-induced cRaf/MEK/ERK phosphorylation by 80%. Our findings reveal a novel mechanism of GDNF/MAPK/EGR-1 activation playing a critical role in HRPTE cell migration, apoptosis and fetal hyperglycemic nephropathy.
Collapse
Affiliation(s)
- Ching-Yuang Lin
- Clinical Immunology Center, China Medical University Hospital, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
33
|
Oh JH, Pasricha PJ. Recent advances in the pathophysiology and treatment of gastroparesis. J Neurogastroenterol Motil 2013; 19:18-24. [PMID: 23350043 PMCID: PMC3548121 DOI: 10.5056/jnm.2013.19.1.18] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/13/2012] [Indexed: 12/17/2022] Open
Abstract
Gastroparesis is a clinical disorder characterized by upper gastrointestinal symptoms related with delayed gastric emptying of solids and liquids in the absence of mechanical obstruction. Diabetes mellitus has been the most common cause of gastroparesis and idiopathic gastroparesis also accounts for a third of all chronic cases. The most important mechanisms of gastroparesis, as understood to date, are loss of expression of neuronal nitric oxide synthase and loss of the interstitial cells of Cajal. However, the pathogenesis of gastroparesis is poorly understood. There have been several studies on specific molecules related to the pathogenesis of gastroparesis. Additionally, the Gastroparesis Clinical Research Consortium of the National Institutes of Health has achieved several promising results regarding the pathophysiology of gastroparesis. As the progress in the pathophysiology of gastroparesis has been made, a promising new drug therapy has been found. The pathophysiology and drug therapy of gastroparesis are focused in this review. Until now, the real-world medication options for treatment of gastroparesis are limited. However, it is expected to be substantially improved as the pathophysiology of gastroparesis is elucidated.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Division of Gastroenterology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
34
|
Neuroprotective effect of quercetin on the duodenum enteric nervous system of streptozotocin-induced diabetic rats. Dig Dis Sci 2012; 57:3106-15. [PMID: 22878915 DOI: 10.1007/s10620-012-2300-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/15/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND In diabetes mellitus (DM), hyperglycemia promotes changes in biochemical mechanisms that induce oxidative stress. Oxidative stress has been closely linked to adverse consequences that affect the function of the gastrointestinal tract caused by injuries to the enteric nervous system (ENS) that in turn cause neurodegeneration and enteric glial loss. Therapeutic approaches have shown that diet supplementation with antioxidants, such as quercetin, reduce oxidative stress. AIMS This work sought to evaluate neurons and enteric glial cells in the myenteric and submucosal plexuses of the duodenum in diabetic rats supplemented with quercetin. METHODS The duodenum of 24 rats, including a control group (C), control quercetin supplementation group (CQ), diabetic group (D), and diabetic quercetin supplementation group (DQ), were used to investigate whole mounts of muscular and submucosal layers subjected to immunohistochemistry to detect vasoactive intestinal peptide in the myenteric layer and double-staining for HuC-D/neuronal nitric oxide synthase (nNOS) and HuC-D/S100. RESULTS A reduction of the general neuronal population (HuC/D) was found in the myenteric and submucosal plexuses (p < 0.001) in the D and DQ groups. The nitrergic subpopulation (nNOS) decreased only in the myenteric plexus (p < 0.001), and glial cells decreased in both plexuses (p < 0.001) in the D and DQ groups. In diabetic rats, quercetin supplementation reduced neuronal and glial loss. Diabetes promoted an increase in the cell body area of both the general and nitrergic populations. Quercetin supplementation only prevented neuronal hypertrophy in the general population. CONCLUSION Supplementation with quercetin eased the damage caused by diabetes, promoting a neuroprotective effect and reducing enteric glial loss in the duodenum.
Collapse
|
35
|
Bódi N, Talapka P, Poles MZ, Hermesz E, Jancsó Z, Katarova Z, Izbéki F, Wittmann T, Fekete É, Bagyánszki M. Gut region-specific diabetic damage to the capillary endothelium adjacent to the myenteric plexus. Microcirculation 2012; 19:316-26. [PMID: 22296580 DOI: 10.1111/j.1549-8719.2012.00164.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Damage in the capillaries supplying the MP has been proposed as a critical factor in the development of diabetic enteric neuropathy. We therefore investigated connections between STZ-induced diabetes and the BM morphology, the size of caveolar compartments, the width of TJs, the transport of albumin, and the quantitative features of Cav-1 and eNOS expression in these microvessels. METHODS Gut segments from diabetic rats were compared with those from insulin-treated diabetics and those from controls. The effects of diabetes on the BM, the caveolar compartments, and the TJs were evaluated morphometrically. The quantitative features of the albumin transport were investigated by postembedding immunohistochemistry. The diabetes-related changes in Cav-1 and eNOS expression were assessed by postembedding immunohistochemistry and molecular method. RESULTS Thickening of the BM, enlargement of the caveolar compartments, opening of the junctions, enhanced transport of albumin, and overexpression of Cav-1 and eNOS were documented in diabetic animals. Insulin replacement in certain gut segments prevented the development of these alterations. CONCLUSIONS These data provide morphological, functional, and molecular evidence that the endothelial cells in capillaries adjacent to the MP is a target of diabetic damage in a regional manner.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rivera LR, Poole DP, Thacker M, Furness JB. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil 2011; 23:980-8. [PMID: 21895878 DOI: 10.1111/j.1365-2982.2011.01780.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS) is a transmitter of inhibitory neurons supplying the muscle of the gastrointestinal tract. Transmission from these neurons is necessary for sphincter relaxation that allows the passage of gut contents, and also for relaxation of muscle during propulsive activity in the colon. There are deficiencies of transmission from NOS neurons to the lower esophageal sphincter in esophageal achalasia, to the pyloric sphincter in hypertrophic pyloric stenosis and to the internal anal sphincter in colonic achalasia. Deficits in NOS neurons are observed in two disorders in which colonic propulsion fails, Hirschsprung's disease and Chagas' disease. In addition, damage to NOS neurons occurs when there is stress to cells, in diabetes, resulting in gastroparesis, and following ischemia and reperfusion. A number of factors may contribute to the propensity of NOS neurons to be involved in enteric neuropathies. One of these is the failure of the neurons to maintain Ca(2+) homeostasis. In neurons in general, stress can increase cytoplasmic Ca(2+), causing a Ca(2+) toxicity. NOS neurons face the additional problem that NOS is activated by Ca(2+). This is hypothesized to produce an excess of NO, whose free radical properties can cause cell damage, which is exacerbated by peroxynitrite formed when NO reacts with oxygen free radicals.
Collapse
Affiliation(s)
- L R Rivera
- Department of Anatomy & Cell Biology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
37
|
|
38
|
Chandrasekharan B, Anitha M, Blatt R, Shahnavaz N, Kooby D, Staley C, Mwangi S, Jones DP, Sitaraman SV, Srinivasan S. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil 2011; 23:131-8, e26. [PMID: 20939847 PMCID: PMC3020997 DOI: 10.1111/j.1365-2982.2010.01611.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gastrointestinal dysfunction is very common in diabetic patients. We assessed the changes in the colonic enteric nervous system using colectomy specimens and intestinal biopsies from diabetic subjects and age-matched controls. METHODS In control and diabetic colons, we determined the total ganglion area (hematoxylin-eosin staining), changes in neuronal markers-protein gene product 9.5, peripherin, neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), choline acetyl transferase (ChAT) and vasoactive intestinal peptide (by immunostaining), apoptosis (cleaved caspase-3 staining) and reduced glutathione levels. Superoxide dismutase mRNA was determined in enteric ganglia isolated by laser capture micro dissection. Isometric muscle recording was used to assess contraction and relaxation responses of colonic circular muscle strips. Apoptosis in enteric neurons under hyperglycemia in vitro was determined by cleaved caspase-3 Western blotting and protective effects of lipoic acid were evaluated. KEY RESULTS Diabetic subjects had higher incidence of lower gastrointestinal symptoms like constipation and diarrhea at baseline prior to surgery. Diabetic ganglia displayed significant decrease in ganglion size due to enhanced apoptosis and loss of peripherin, nNOS, NPY, and ChAT neurons. Reduced glutathione levels in the diabetic colon (HbA1C > 7%) were significantly less than the control, indicating increased oxidative stress. Colonic circular muscle strips from diabetic subjects showed impaired contraction and relaxation responses compared with the healthy controls. Hyperglycemia-induced cleaved caspase-3 in enteric neurons was reversed by lipoic acid. CONCLUSIONS & INFERENCES Our data demonstrate loss of enteric neurons in the colon due to increased oxidative stress and apoptosis which may cause the motility disturbances seen in human diabetes. Antioxidants may be of therapeutic value for preventing motility disorders in diabetes.
Collapse
Affiliation(s)
- Bindu Chandrasekharan
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - Mallappa Anitha
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - Richard Blatt
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - Nikrad Shahnavaz
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - David Kooby
- Department of Surgery, Emory University, Clifton Rd
| | | | - Simon Mwangi
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - Dean P Jones
- Department of Pulmonary Medicine, Emory University, Atlanta, GA-30322
| | - Shanthi V. Sitaraman
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322
| |
Collapse
|
39
|
Kim ER, Kim KM, Lee JY, Joo M, Kim S, Noh JH, Ward SM, Koh SD, Rhee PL. The clue of Interstitial Cell of Cajalopathy (ICCpathy) in human diabetic gastropathy: the ultrastructural and electrical clues of ICCpathy in human diabetic gastropathy. ACTA ACUST UNITED AC 2010; 64:521-6. [PMID: 21185163 DOI: 10.1016/j.etp.2010.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/09/2010] [Indexed: 12/31/2022]
Abstract
Recent studies of diabetic animal models suggest an important role of ICC in the pathogenesis of gastropathy. The aim of this study was to characterize the ultrastructural features of ICC and record the electrical properties in the stomach of patients with type 2 DM. Gastric specimens were obtained from 13 diabetic patients and 6 control subjects with gastric cancer that underwent gastrectomy. All specimens were taken from disease-free areas. The samples were processed for both electron microscopic and electrophysiologic examination. The characteristic ultrastructural changes of the ICC were observed in both the nucleus and cytoplasm in patients with type 2 DM. Wrinkling of the nuclear envelope and changes in the cytoplasm such as dilatation of the endoplasmic reticulum, an increase of autophagic vacuoles, were more frequently observed in the diabetic patients. Apoptosis characterized by nuclear karyorrhexis or pyknosis was observed only in the diabetic patients. Slow waves were recorded in the circular muscle of stomach. In diabetic patients, the mean resting membrane potential was higher and amplitude was lower than controls. These changes of electrical activities of slow waves were accompanied with ultrastructural changes of ICC, particularly the characteristic nuclear changes. In human diabetic patients, the characteristic ultrastructural changes of ICC such as preapoptosis, accompanied with electrical dysrhythmia of slow waves, were observed. These results show several evidence converging to support that degeneration of the ICC may be associated with the pathogenesis of diabetic gastropathy.
Collapse
Affiliation(s)
- Eun Ran Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cellini J, DiNovo K, Harlow J, LePard KJ. Regional differences in neostigmine-induced contraction and relaxation of stomach from diabetic guinea pig. Auton Neurosci 2010; 160:69-81. [PMID: 21075692 DOI: 10.1016/j.autneu.2010.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/27/2010] [Accepted: 10/07/2010] [Indexed: 12/19/2022]
Abstract
Delayed gastric emptying and autonomic neuropathy have been documented in patients with diabetes mellitus. Some medications used to treat delayed gastric emptying enhance release of acetylcholine from autonomic neurons to strengthen gastric contractions. Autonomic coordination among gastric regions may be altered in diabetes resulting in poor outcomes in response to prokinetic drugs. Fundus, antrum, and pylorus from STZ or control guinea pigs were treated with neostigmine to mimic release of acetylcholine from autonomic neurons by prokinetic agents. In diabetic animals, neostigmine-induced contractions were weaker in fundus and pylorus but similar in antrum. The muscarinic receptor antagonist 4-DAMP or the nicotinic receptor antagonist hexamethonium reduced neostigmine-induced contractions. Activation of presynaptic muscarinic receptors on nitrergic neurons was impaired in fundus and antrum from diabetic animals. Nerve-stimulated contractions and relaxations, number of nNOS myenteric neurons, and tissue choline content were reduced in fundus from diabetic animals. Despite reduced number of myenteric neurons, tissue choline content was increased in antrum from diabetic animals. Since cholinergic motility of each gastric region was affected differently by diabetes, prokinetic drugs that nondiscriminately enhance acetylcholine release from autonomic neurons may not effectively normalize delayed gastric emptying in patients with diabetes and more selective medications may be warranted.
Collapse
Affiliation(s)
- Joseph Cellini
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University, USA
| | | | | | | |
Collapse
|
41
|
Utkan T, Yildiz F, Utkan NZ, Gacar N, Göçmez SS, Ulak G, Erden F, Sarioglu Y. Effects of diabetes and elevated glucose on nitrergic relaxations in the isolated duodenum of the rat. Acta Diabetol 2009; 46:295-301. [PMID: 19107318 DOI: 10.1007/s00592-008-0086-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 11/10/2008] [Indexed: 01/02/2023]
Abstract
Nitrergic relaxations of the isolated duodenum, induced by streptozotocin, were investigated in the experimental 8-week diabetes rat model. The effects of elevated glucose were also examined in the incubated duodenal muscles (in Krebs-Henseleit solution containing 44 mM glucose for 6 h) taken from nondiabetic rats. The relaxations induced by electrical field stimulation (EFS) and nicotine were significantly reduced in diabetic rats compared with control rats. Incubating of duodenal tissues in medium containing elevated glucose revealed significantly impaired relaxations to EFS and nicotine compared to responses obtained after normal glucose incubation. However, the relaxant responses to sodium nitroprusside and papaverine were similar in all groups. Incubating in hyperosmolar solutions containing sucrose, the relaxant responses were not affected. In conclusion, impairment of NO-mediated relaxations in diabetes may be related to hyperglycemia. The alterations caused by elevated glucose are not due to a hyperosmotic effect because the same concentration of sucrose had no effect on the relaxations.
Collapse
Affiliation(s)
- T Utkan
- Department of Pharmacology and Experimental Medical Research Center, Faculty of Medicine, Kocaeli University Medical School, Kocaeli, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Effects of insulin treatment on HuC/HuD, NADH diaphorase, and nNOS-positive myoenteric neurons of the duodenum of adult rats with acute diabetes. Dig Dis Sci 2009; 54:731-7. [PMID: 18661235 DOI: 10.1007/s10620-008-0430-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/25/2008] [Indexed: 12/19/2022]
Abstract
We carried out this investigation with the purpose of verifying whether insulin treatment prevents changes in the density of myoenteric neurons of the duodenum of Wistar rats with streptozotocin short-term diabetes. The animals from the diabetic group (D) lost more weight than the controls (group C), while the insulin treatment (group T) prevented weight loss in three animals and increased visceral fat in all of the animals of this group. Insulin treatment did not prevent the early loss of HuC/HuD myoenteric neurons. The density of nNOS-positive neurons did not change significantly in groups D and T. The density of NADHd-positive neurons in these groups was greater than in group C, indicating that short-term diabetes increases the activity of respiratory chain enzymes.
Collapse
|
43
|
Pereira RVF, de Miranda-Neto MH, da Silva Souza ID, Zanoni JN. Vitamin E supplementation in rats with experimental diabetes mellitus: analysis of myosin-V and nNOS immunoreactive myenteric neurons from terminal ileum. J Mol Histol 2008; 39:595-603. [PMID: 18953659 DOI: 10.1007/s10735-008-9200-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 10/09/2008] [Indexed: 12/16/2022]
Abstract
The effect of vitamin E (1 g/kg body weight) supplementation on myosin-V and neuronal nitric oxide synthase (nNOS) immunoreactive myenteric neurons from the ileum of diabetic rats was investigated in the present study. Forty animals were divided into the following groups: normoglycemics (N), normoglycemics treated with vitamin E (NE), diabetics (D), and diabetics treated with vitamin E (DE). Quantitative and morphometric analyses were performed. The area of the tertiary plexus was also determined. Diabetes produced a 24% reduction in the number of myosin-V neurons in group D compared with group N, an effect that was accompanied by an increase in the tertiary plexus area (P < 0.05). Neuronal density was 27% higher in group NE than group N (P < 0.05). Nitrergic neuronal density was not altered as a consequence of either diabetes or vitamin E treatment. Myosin-V and nNOS immunoreactive neuronal cell body area increased significantly in group NE. The area of myosin-V and nNOS myenteric neurons also increased in group D. Vitamin E treatment (group DE) increased only the size of nitrergic neurons. The present results suggest that vitamin E elicited a neuroprotective and neurotrophic effect on the natural aging process, but with regard to diabetes, vitamin E supplementation exerted a neurotrophic effect only on nitrergic neurons.
Collapse
Affiliation(s)
- Renata Virginia Fernandes Pereira
- Department of Morphophysiological Sciences, Universidade Estadual de Maringá, Avenida Colombo, no. 5790 Bloco H-79, CEP 87020-900 Maringá, PR, Brazil
| | | | | | | |
Collapse
|
44
|
Verhulst PJ, De Smet B, Saels I, Thijs T, Ver Donck L, Moechars D, Peeters TL, Depoortere I. Role of ghrelin in the relationship between hyperphagia and accelerated gastric emptying in diabetic mice. Gastroenterology 2008; 135:1267-76. [PMID: 18657539 DOI: 10.1053/j.gastro.2008.06.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 06/11/2008] [Accepted: 06/19/2008] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Ghrelin is an orexigenic peptide with gastroprokinetic effects. Mice with streptozotocin (STZ)-induced diabetes exhibit hyperphagia, altered gastric emptying, and increased plasma ghrelin levels. We investigated the causative role of ghrelin herein by comparing changes in ghrelin receptor knockout (growth hormone secretagogue receptor [GHS-R](-/-)) and wild-type (GHS-R(+/+)) mice with STZ-induced diabetes. METHODS Gastric emptying was measured with the [(13)C]octanoic acid breath test. The messenger RNA (mRNA) expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin was quantified by real-time reverse-transcription polymerase chain reaction. Neural contractions were elicited by electrical field stimulation in fundic smooth muscle strips. RESULTS Diabetes increased plasma ghrelin levels to a similar extent in both genotypes. Hyperphagia was more pronounced in GHS-R(+/+) than in GHS-R(-/-) mice between days 12 and 21. Increases in NPY and AgRP mRNA expression were less pronounced in diabetic GHS-R(-/-) than in GHS-R(+/+) mice from day 15 on, whereas decreases in proopiomelanocortin mRNA levels were similar in both genotypes. Gastric emptying was accelerated to a similar extent in both genotypes, starting on day 16. In fundic smooth muscle strips of diabetic GHS-R(+/+) and GHS-R(-/-) mice, neuronal relaxations were reduced, whereas contractions were increased; this increase was related to an increased affinity of muscarinic and tachykinergic receptors. CONCLUSIONS Diabetic hyperphagia is regulated by central mechanisms in which the ghrelin-signaling pathway affects the expression of NPY and AgRP in the hypothalamus. The acceleration of gastric emptying, which is not affected by ghrelin signaling, is not the cause of diabetic hyperphagia and probably involves local contractility changes in the fundus.
Collapse
Affiliation(s)
- Pieter-Jan Verhulst
- Centre for Gastroenterological Research, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zandecki M, Vanden Berghe P, Depoortere I, Geboes K, Peeters T, Janssens J, Tack J. Characterization of myenteric neuropathy in the jejunum of spontaneously diabetic BB-rats. Neurogastroenterol Motil 2008; 20:818-28. [PMID: 18312542 DOI: 10.1111/j.1365-2982.2008.01091.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Decreased gastric expression and function of neuronal nitric oxide synthase (nNOS) has been proposed as a potential mechanism underlying diabetic gastroparesis. As gastric nNOS expression is vagally controlled, these changes might occur secondarily to vagal neuropathy. In addition, it is unclear whether other inhibitory neurotransmitters are also involved. We used the type 1 diabetic BioBreeding (BB)-rat model to study jejunal motor control and nNOS expression, which is independent of the vagus. Jejunal segments were used for in vitro contractility studies, and measurement of nNOS expression after 8 or 16 weeks of diabetes compared with age- and sex-matched controls. Unlike electrical field stimulation and acetylcholine (ACh)-induced contractions, non-adrenergic non-cholinergic (NANC) relaxations were significantly reduced in diabetic rats. In contrast to control rats, NANC relaxations in diabetic rats were N(omega)-nitro-L-arginine methyl ester (L-NAME) insensitive. Jejunal nNOS expression was significantly decreased in diabetic rats. Both in diabetic and in control animals, L-NAME resistant relaxations were sensitive to P(2)-receptor antagonists. In the jejunum of spontaneously diabetic rats, decreased nitric oxide responsiveness and decreased nNOS protein expression occur while purinergic transmission is unaffected. These findings indicate that nitrergic enteric neuropathy may be a primary dysfunction in diabetes, independent from vagal dysfunction.
Collapse
Affiliation(s)
- M Zandecki
- Center for Gastroenterological Research, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
46
|
Pasricha PJ, Pehlivanov ND, Gomez G, Vittal H, Lurken MS, Farrugia G. Changes in the gastric enteric nervous system and muscle: a case report on two patients with diabetic gastroparesis. BMC Gastroenterol 2008; 8:21. [PMID: 18513423 PMCID: PMC2442096 DOI: 10.1186/1471-230x-8-21] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 05/30/2008] [Indexed: 01/02/2023] Open
Abstract
Background The pathophysiological basis of diabetic gastroparesis is poorly understood, in large part due to the almost complete lack of data on neuropathological and molecular changes in the stomachs of patients. Experimental models indicate various lesions affecting the vagus, muscle, enteric neurons, interstitial cells of Cajal (ICC) or other cellular components. The aim of this study was to use modern analytical methods to determine morphological and molecular changes in the gastric wall in patients with diabetic gastroparesis. Methods Full thickness gastric biopsies were obtained laparoscopically from two gastroparetic patients undergoing surgical intervention and from disease-free areas of control subjects undergoing other forms of gastric surgery. Samples were processed for histological and immunohistochemical examination. Results Although both patients had severe refractory symptoms with malnutrition, requiring the placement of a gastric stimulator, one of them had no significant abnormalities as compared with controls. This patient had an abrupt onset of symptoms with a relatively short duration of diabetes that was well controlled. By contrast, the other patient had long standing brittle and poorly controlled diabetes with numerous episodes of diabetic ketoacidosis and frequent hypoglycemic episodes. Histological examination in this patient revealed increased fibrosis in the muscle layers as well as significantly fewer nerve fibers and myenteric neurons as assessed by PGP9.5 staining. Further, significant reduction was seen in staining for neuronal nitric oxide synthase, heme oxygenase-2, tyrosine hydroxylase as well as for c-KIT. Conclusion We conclude that poor metabolic control is associated with significant pathological changes in the gastric wall that affect all major components including muscle, neurons and ICC. Severe symptoms can occur in the absence of these changes, however and may reflect vagal, central or hormonal influences. Gastroparesis is therefore likely to be a heterogeneous disorder. Careful molecular and pathological analysis may allow more precise phenotypic differentiation and shed insight into the underlying mechanisms as well as identify novel therapeutic targets.
Collapse
Affiliation(s)
- Pankaj J Pasricha
- Division of Gastroenterology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Punkkinen J, Färkkilä M, Mätzke S, Korppi-Tommola T, Sane T, Piirilä P, Koskenpato J. Upper abdominal symptoms in patients with Type 1 diabetes: unrelated to impairment in gastric emptying caused by autonomic neuropathy. Diabet Med 2008; 25:570-7. [PMID: 18445170 DOI: 10.1111/j.1464-5491.2008.02428.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Diabetic gastroparesis is a common condition occurring in some 30-50% of patients with long-term diabetes. Some studies have found a relationship between autonomic neuropathy and diabetic gastroparesis. In addition to autonomic neuropathy, acute changes in plasma glucose concentration can also affect gastric emptying. The objective was to examine the relationship between autonomic nerve function, glucose concentration, gastric emptying, and upper abdominal symptoms in Type 1 diabetic patients. METHODS Gastric emptying of solids and liquids was measured with scintigraphy in 27 patients with longstanding Type 1 diabetes with upper abdominal symptoms. Autonomic nerve function was examined by standardized cardiovascular tests, and plasma glucose concentrations were measured during scintigraphy. Severity of abdominal symptoms and quality of life were explored by validated questionnaires. RESULTS Seven patients (26%) had delayed gastric emptying of solids and three (11%) of liquids. Mean gastric half-emptying time of solids was 128 +/- 116 min and of liquids 42 +/- 30 min. Of the 26 patients undergoing tests, 16 (62%) had autonomic nerve dysfunction. Autonomic neuropathy score (1.6 +/- 1.7) correlated positively with the gastric emptying rate of solids (P = 0.006), a rate unrelated to symptom scores or plasma glucose concentrations during scintigraphy. Quality of life in patients with abdominal symptoms was lower than in the normal Finnish population. CONCLUSIONS Impaired gastric emptying of solids in patients with Type 1 diabetes is related to autonomic neuropathy, but not to actual glycaemic control. The upper abdominal symptoms observed in these patients cannot be explained, however, by impaired gastric emptying.
Collapse
Affiliation(s)
- J Punkkinen
- Department of Gastroenterology, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Miller SM, Narasimhan RA, Schmalz PF, Soffer EE, Walsh RM, Krishnamurthi V, Pasricha PJ, Szurszewski JH, Farrugia G. Distribution of interstitial cells of Cajal and nitrergic neurons in normal and diabetic human appendix. Neurogastroenterol Motil 2008; 20:349-57. [PMID: 18069951 DOI: 10.1111/j.1365-2982.2007.01040.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study was to determine the distribution of enteric nerves and interstitial cells of Cajal (ICC) in the normal human appendix and in type 1 diabetes. Appendixes were collected from patients with type 1 diabetes and from non-diabetic controls. Volumes of nerves and ICC were determined using 3-D reconstruction and neuronal nitric oxide synthase (nNOS) expressing neurons were counted. Enteric ganglia were found in the myenteric plexus region and within the longitudinal muscle. ICC were found throughout the muscle layers. In diabetes, c-Kit positive ICC volumes were significantly reduced as were nNOS expressing neurons. In conclusion, we describe the distribution of ICC and enteric nerves in health and in diabetes. The data also suggest that the human appendix, a readily available source of human tissue, may be useful model for the study of motility disorders.
Collapse
Affiliation(s)
- S M Miller
- Division of Gastroenterology and Hepatology, Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The proposed functions of the interstitial cells of Cajal (ICC) are to 1) pace the slow waves and regulate their propagation, 2) mediate enteric neuronal signals to smooth muscle cells, and 3) act as mechanosensors. In addition, impairments of ICC have been implicated in diverse motility disorders. This review critically examines the available evidence for these roles and offers alternate explanations. This review suggests the following: 1) The ICC may not pace the slow waves or help in their propagation. Instead, they may help in maintaining the gradient of resting membrane potential (RMP) through the thickness of the circular muscle layer, which stabilizes the slow waves and enhances their propagation. The impairment of ICC destabilizes the slow waves, resulting in attenuation of their amplitude and impaired propagation. 2) The one-way communication between the enteric neuronal varicosities and the smooth muscle cells occurs by volume transmission, rather than by wired transmission via the ICC. 3) There are fundamental limitations for the ICC to act as mechanosensors. 4) The ICC impair in numerous motility disorders. However, a cause-and-effect relationship between ICC impairment and motility dysfunction is not established. The ICC impair readily and transform to other cell types in response to alterations in their microenvironment, which have limited effects on motility function. Concurrent investigations of the alterations in slow-wave characteristics, excitation-contraction and excitation-inhibition couplings in smooth muscle cells, neurotransmitter synthesis and release in enteric neurons, and the impairment of the ICC are required to understand the etiologies of clinical motility disorders.
Collapse
Affiliation(s)
- Sushil K Sarna
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, Neuroscience, and Cell Biology, The University of Texas Medical Branch at Gavelston, Galveston, TX 77555-1064, USA.
| |
Collapse
|
50
|
Silverio SM, Mari RDB, Clebis NK, Scoz JR, Germano RDM, Agreste F, Bombonato PP, Stabille SR. Assessment of NADPH-diaphorase stained myenteric neurons of the jejunum of diabetic rats supplemented with ascorbic acid. PESQUISA VETERINÁRIA BRASILEIRA 2008. [DOI: 10.1590/s0100-736x2008000200001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relation between hyperglycemia and diabetic neuropathy has already been demonstrated in some studies. Among the theories proposed for its etiology the oxidative stress stands out. The performance of nitric oxide as a link between the metabolic and vascular neuropathogenic factors that triggers the diabetic neuropathy has already been put forward. This study aimed to assess the quantification and measurements of the cell body profile area (CBPA) of NADPH-diaphorase reactive (NADPH-dp) myenteric neurons of the jejunum of diabetic rats (induced by streptozotocin) supplemented with Ascorbic Acid (AA). These changes in the myenteric neurons seem to be related to the gastrointestinal disturbances observed in diabetes mellitus (DM). Twenty male Wistar rats (Rattus norvegicus) were distributed in 4 groups (n=5): controls (C), control supplemented (CS), diabetic (D), and diabetic suplemented (DS). DM was induced by estreptozotocin (50mg/kg body wt). One week after the induction and confirmation of the DM (glycemia exam), animals of the groups CS and DS received 50mg of AA three times a week by gavage. After 90 days of experiment, the animals were anesthetized with lethal thiopental dose (40mg/kg) and the collected jejunum processed for the histochemistry NADPH-diaphorase technique. Whole-mount preparations were obtained for quantitative and morphometric analysis of the myenteric neurons. A quantity of jejunum neurons in the Group D (96±7.5) was not different (P>0.05) from Group DS (116±8.08), C (92±9.7), and CS (81±5.4), but in Group DS the quantity was higher (P<0.05) than in Group C and CS. The CBPA of neurons from Group D (189.50±2.68µm²) and DS (195.92±3.75µm²) were lower (P<0.05) than from Group C (225.13±4.37µm²) and CS (210.23±3.15µm²). The streptozotocin-induced DM did not change the jejunum-ileum area, the jejunum myenteric plexus space organization and the density of NADPH-dp neurons. The 50g AA-supplementation, three times a week, during 90 days, did not decrease hyperglycemia; however, it had a neuroprotective effect on the myenteric neurons, minimizing the increase on the CBPA of NADPH-dp neurons and increasing the amount of NADPD-dp neurons.
Collapse
|