1
|
Goepp M, Milburn JV, Zhang B, Dong Y, Tyrrell V, Zheng X, Marshall JM, Bolsega S, Basic M, Glendinning L, Ho GT, Satsangi J, Breyer RM, Narumiya S, McSorley HJ, Schwarze JKJ, Anderson CJ, Dockrell DH, Rossi AG, Bleich A, Lucas CD, O'Donnell VB, Mole D, Arends MJ, Zhou Y, Yao C. Age-related impairment of intestinal inflammation resolution through an eicosanoid-immune-microbiota axis. Cell Host Microbe 2025; 33:671-687.e6. [PMID: 40373750 DOI: 10.1016/j.chom.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/27/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
Aging manifests a decline of immune function, induces microbiome dysbiosis, drives organ inflammation, and impedes the resolution of inflammation. However, the mechanisms underlying age-related intestinal inflammation remain poorly described. Here, we find that the resolution of T cell-initiated intestinal inflammation is impaired with aging. This impairment is mediated by disrupting the immune-microbiota interplay, controlled by intestinal eicosanoid metabolism. Pharmacologically inhibiting eicosanoid biosynthesis, blocking the prostaglandin E receptor subtype 4 (EP4), or genetically ablating EP4 diminishes age-related impairment of intestinal inflammation resolution. Mechanistically, mononuclear phagocyte-intrinsic eicosanoid-EP4 signaling impedes the resolution of intestinal inflammation through fostering gut microbial dysbiosis and, more importantly, interrupting segmented filamentous bacterial adhesion to the intestinal epithelium. Colonization with EP4-ablated mouse microbiota or segmented filamentous bacteria improves the resolution of intestinal inflammation. These findings reveal that eicosanoid-dependent immune-microbiota interactions impair inflammation resolution in the aged intestine, highlighting potential intervention strategies for improving age-related gut health.
Collapse
Affiliation(s)
- Marie Goepp
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jemma V Milburn
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Birong Zhang
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Yijia Dong
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Victoria Tyrrell
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jennifer M Marshall
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Laura Glendinning
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 9DU, UK
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Henry J McSorley
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, The University of Dundee, Dundee DD1 4HN, UK
| | - Jürgen K J Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Christopher J Anderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - David H Dockrell
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Christopher D Lucas
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Valerie B O'Donnell
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Damian Mole
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Mark J Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, The University of Edinburgh, Institute of Genetics & Cancer, Edinburgh EH4 2XR, UK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Chengcan Yao
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
2
|
Prasongtanakij S, Soontrapa K, Thumkeo D. The role of prostanoids in regulatory T cells and their implications in inflammatory diseases and cancers. Eur J Cell Biol 2025; 104:151482. [PMID: 40184828 DOI: 10.1016/j.ejcb.2025.151482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025] Open
Abstract
Regulatory T cells (Tregs) play an important role in the immune system through the regulation of immunological self-tolerance and homeostasis. Furthermore, increasing evidence suggests the potential contribution of Tregs beyond immunity in the process of repairing various injured tissues. Tregs are generally characterised by the constitutive expression of forkhead box protein 3 (FOXP3) transcription factor in the nucleus and high expression levels of CD25 and CTLA-4 on the cell surface. To date, a large number of molecules have been identified as key regulators of Treg differentiation and function. Among these molecules are prostanoids, which are multifaceted lipid mediators. Prostanoids are produced from arachidonic acid through the catalytic activity of the enzyme cyclooxygenase and exert their functions through the 9 cognate receptors, DP1-2, EP1-EP4, FP, IP and TP. We briefly review previous studies on the regulatory mechanism of Tregs and then discuss recent works on the modulatory role of prostanoids.
Collapse
Affiliation(s)
- Somsak Prasongtanakij
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Dean Thumkeo
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan; Center for Medical Education and Internationalization, Kyoto University Faculty of Medicine, Japan.
| |
Collapse
|
3
|
Blomqvist A. Prostaglandin E 2 production in the brainstem parabrachial nucleus facilitates the febrile response. Temperature (Austin) 2024; 11:309-317. [PMID: 39583895 PMCID: PMC11583619 DOI: 10.1080/23328940.2024.2401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/26/2024] Open
Abstract
Our body temperature is normally kept within a narrow range of 1°C. For example, if our body temperature rises, such as in a hot environment or due to strenuous exercise, our thermoregulatory system will trigger a powerful heat defense response with vasodilation, sweating, and lowered metabolism. During fever, which often involves body temperatures of up to 41°C, this heat defense mechanism is apparently inhibited; otherwise, the rising body temperature would be immediately combated, and fever would not be allowed to develop. New evidence suggests how and where this inhibition takes place. In two consecutive studies from Cheng et al. and Xu et al., it has been shown that prostaglandin E2, which generates fever by acting on thermosensory neurons in the preoptic hypothalamus, also acts on neurons in the brainstem parabrachial nucleus, which receive temperature information from temperature-activated spinal cord neurons and relay this information to the thermoregulatory center in the hypothalamus to either induce cold or heat defenses. By acting on the same type of prostaglandin E2 receptor that is critical for fever generation in the preoptic hypothalamus, the EP3 receptor, prostaglandin E2 inhibits the signaling of the heat-responsive parabrachial neurons, while stimulating the cold-responsive neurons. These novel findings thus show that prostaglandin E2, by binding to the same receptor subtype in the parabrachial nucleus as in the preoptic hypothalamus, adjusts the sensitivity of the thermosensory system in a coordinated manner to allow the development of febrile body temperatures.
Collapse
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Esteva-Font C, Geurts F, Hansen TPK, Hoorn EJ, Fenton RA. Inducible deletion of the prostaglandin EP3 receptor in kidney tubules of male and female mice has no major effect on water homeostasis. Am J Physiol Renal Physiol 2024; 327:F504-F518. [PMID: 38961846 DOI: 10.1152/ajprenal.00146.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
The prostaglandin E2 (PGE2) receptor EP3 has been detected in the thick ascending limb (TAL) and the collecting duct of the kidney, where its actions are proposed to inhibit water reabsorption. However, EP3 is also expressed in other cell types, including vascular endothelial cells. The aim here was to determine the contribution of EP3 in renal water handling in male and female adult mice by phenotyping a novel mouse model with doxycycline-dependent deletion of EP3 throughout the kidney tubule (EP3-/- mice). RNAscope demonstrated that EP3 was highly expressed in the cortical and medullary TAL of adult mice. Compared with controls EP3 mRNA expression was reduced by >80% in whole kidney (RT-qPCR) and nondetectable (RNAscope) in renal tubules of EP3-/- mice. Under basal conditions, there were no significant differences in control and EP3-/- mice of both sexes in food and water intake, body weight, urinary output, or clinical biochemistries. No differences were detectable between genotypes in handling of an acute water load or in their response to the vasopressin analog 1-deamino-8-d-arginine-vasopressin (dDAVP). No differences in water handling were observed when PGE2 production was enhanced using 1% NaCl load. Expression of proteins involved in kidney water handling was not different between genotypes. This study demonstrates that renal tubular EP3 is not essential for body fluid homeostasis in males or females, even when PGE2 levels are high. The mouse model is a novel tool for examining the role of EP3 in kidney function independently of potential developmental abnormalities or systemic effects.NEW & NOTEWORTHY The prostanoid EP3 receptor is proposed to play a key role in the kidney tubule and antagonize the effects of vasopressin on aquaporin-mediated water reabsorption. Here, we phenotyped a kidney tubule-specific inducible knockout mouse model of the EP3 receptor. Our major finding is that, even under physiological stress, tubular EP3 plays no detectable role in renal water or solute handling. This suggests that other EP receptors must be important for renal salt and water handling.
Collapse
Affiliation(s)
| | - Frank Geurts
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Toke P K Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Taketomi Y, Higashi T, Kano K, Miki Y, Mochizuki C, Toyoshima S, Okayama Y, Nishito Y, Nakae S, Tanaka S, Tokuoka SM, Oda Y, Shichino S, Ueha S, Matsushima K, Akahoshi N, Ishii S, Chun J, Aoki J, Murakami M. Lipid-orchestrated paracrine circuit coordinates mast cell maturation and anaphylaxis through functional interaction with fibroblasts. Immunity 2024; 57:1828-1847.e11. [PMID: 39002541 DOI: 10.1016/j.immuni.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayoshi Higashi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Chika Mochizuki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, and Division of Internal Medicine, Department of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, and Division of Internal Medicine, Department of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Allergy and Internal Medicine, Misato Kenwa Hospital, Saitama 341-8555, Japan; Department of Internal Medicine, Division of Respiratory Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan; Advanced Medical Science Research Center, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
6
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Kumari A, Vertii A. Perspective: "Current understanding of NADs dynamics and mechanisms of Disease". Gene 2024; 894:147960. [PMID: 37923094 DOI: 10.1016/j.gene.2023.147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Chromatin architecture is essential for gene regulation, and multiple levels of the 3D chromatin organization exhibit dynamic changes during organismal development and cell differentiation. Heterochromatin, termed compartment B in Hi-C datasets, is a phase-separating gene-silencing form of chromatin, preferentially located at the two nuclear sites, nuclear (lamina-associate chromatin domains, LADs) and nucleoli (nucleoli-associated chromatin domains, NADs) peripheries. LADs and NADs contain both interchangeable and location-specific chromatin domains. Recent studies suggest striking dynamics in LADs and NADs during the differentiation of embryonic stem cells into neural progenitors and neurons. Here we discuss recent advances in understanding NADs changes during neuronal differentiation and future questions on how NADs integrity can contribute to healthy neurodevelopment and neurodevelopment diseases.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US
| | - Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US.
| |
Collapse
|
8
|
Nakamura K. Central Mechanisms of Thermoregulation and Fever in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:141-159. [PMID: 39289279 DOI: 10.1007/978-981-97-4584-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermoregulation is a fundamental homeostatic function in mammals mediated by the central nervous system. The framework of the central circuitry for thermoregulation lies in the hypothalamus and brainstem. The preoptic area (POA) of the hypothalamus integrates cutaneous and central thermosensory information into efferent control signals that regulate excitatory descending pathways through the dorsomedial hypothalamus (DMH) and rostral medullary raphe region (rMR). The cutaneous thermosensory feedforward signals are delivered to the POA by afferent pathways through the lateral parabrachial nucleus, while the central monitoring of body core temperature is primarily mediated by warm-sensitive neurons in the POA for negative feedback regulation. Prostaglandin E2, a pyrogenic mediator produced in response to infection, acts on the POA to trigger fever. Recent studies have revealed that this circuitry also functions for physiological responses to psychological stress and starvation. Master psychological stress signaling from the medial prefrontal cortex to the DMH has been discovered to drive a variety of physiological responses for stress coping, including hyperthermia. During starvation, hunger signaling from the hypothalamus was found to activate medullary reticular neurons, which then suppress thermogenic sympathetic outflows from the rMR for energy saving. This thermoregulatory circuit represents a fundamental mechanism of the central regulation for homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
9
|
Xiong L, Huang W, Liu Y, Zhao H, Wang Y, Jin Y, Zhang L, Zhang Y. Study on Antipyretic Properties of Phenolics in Lonicerae Japonicae Flos Based on Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry Combined with Network Pharmacology. J Food Biochem 2023; 2023:1-17. [DOI: 10.1155/2023/8883860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Objective. To identify and quantify the active phenolic components in Lonicerae japonicae flos (LJF) for fever treatment and their mechanism of action using network pharmacology and molecular docking. Methods. Based on qualitative analysis of LJF, 194 phenolics were obtained, including 81 phenolic acids and 113 flavonoids. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to identify potential targets for these components to interact with fever. Molecular docking with microsomal PGE2 synthase-1, EP1, EP2, EP3, and EP4 targets was used to determine antipyretic components. The antipyretic efficacy of the main components was verified by in vivo experiments. Finally, high-performance liquid chromatography-tandem mass spectrometry was used to quantify the main antipyretic components of LJF. Results. Phenolics in LJF may prevent and treat fever by participating in calcium signaling, regulating TRP channels, and cAMP signaling. Luteolin-7-O-glucoside, apigenin-7-O-glucoside, 3,5-O-dicaffeoylquinic acid, luteolin, and other components have a good docking effect with PGE2 synthase-1 and its four subtypes. 3,5-O-dicaffeoylquinic acid, luteolin-7-O-glucoside, and apigenin-7-O-glucoside have good antipyretic effects in a yeast-induced pyrexia model. The content of these antipyretic components varies with the developmental period of LJF. Phenolic acids are the main components that distinguish the different developmental periods of LJF. Conclusion. The potential antipyretic components and molecular mechanisms of phenolics provide a basis for the traditional medicinal effects and future development and utilization of LJF.
Collapse
Affiliation(s)
- Lewen Xiong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenjing Huang
- Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Yan Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Jin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Longfei Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
10
|
Nazabal A, Mendiguren A, Pineda J. Inhibition of rat locus coeruleus neurons by prostaglandin E 2 EP3 receptors: pharmacological characterization ex vivo. Front Pharmacol 2023; 14:1290605. [PMID: 38035000 PMCID: PMC10684765 DOI: 10.3389/fphar.2023.1290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an inflammatory mediator synthesized by the brain constitutive cyclooxygenase enzyme. PGE2 binds to G protein-coupled EP1-4 receptors (EP1 to Gq, EP2,4 to Gs, and EP3 to Gi/o). EP2, EP3 and EP4 receptors are expressed in the locus coeruleus (LC), the main noradrenergic nucleus in the brain. EP3 receptors have been explored in the central nervous system, although its role regulating the locus coeruleus neuron activity has not been pharmacologically defined. Our aim was to characterize the function of EP3 receptors in neurons of the LC. Thus, we studied the effect of EP3 receptor agonists on the firing activity of LC cells in rat brain slices by single-unit extracellular electrophysiological techniques. The EP3 receptor agonist sulprostone (0.15 nM-1.28 µM), PGE2 (0.31 nM-10.2 µM) and the PGE1 analogue misoprostol (0.31 nM-2.56 µM) inhibited the firing rate of LC neurons in a concentration-dependent manner (EC50 = 15 nM, 110 nM, and 51 nM, respectively). The EP3 receptor antagonist L-798,106 (3-10 µM), but not the EP2 (PF-04418948, 3-10 µM) or EP4 (L-161,982, 3-10 µM) receptor antagonists, caused rightward shifts in the concentration-effect curves for the EP3 receptor agonists. Sulprostone-induced effect was attenuated by the Gi/o protein blocker pertussis toxin (pertussis toxin, 500 ng ml-1) and the inhibitors of inwardly rectifying potassium channels (GIRK) BaCl2 (300 µM) and SCH-23390 (15 µM). In conclusion, LC neuron firing activity is regulated by EP3 receptors, presumably by an inhibitory Gi/o protein- and GIRK-mediated mechanism.
Collapse
|
11
|
Yarboro MT, Boatwright N, Sekulich DC, Hooper CW, Wong T, Poole SD, Berger CD, Brown AJ, Jetter CS, Sucre JMS, Shelton EL, Reese J. A novel role for PGE 2-EP 4 in the developmental programming of the mouse ductus arteriosus: consequences for vessel maturation and function. Am J Physiol Heart Circ Physiol 2023; 325:H687-H701. [PMID: 37566109 PMCID: PMC10643004 DOI: 10.1152/ajpheart.00294.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
The ductus arteriosus (DA) is a vascular shunt that allows oxygenated blood to bypass the developing lungs in utero. Fetal DA patency requires vasodilatory signaling via the prostaglandin E2 (PGE2) receptor EP4. However, in humans and mice, disrupted PGE2-EP4 signaling in utero causes unexpected patency of the DA (PDA) after birth, suggesting another role for EP4 during development. We used EP4-knockout (KO) mice and acute versus chronic pharmacological approaches to investigate EP4 signaling in DA development and function. Expression analyses identified EP4 as the primary EP receptor in the DA from midgestation to term; inhibitor studies verified EP4 as the primary dilator during this period. Chronic antagonism recapitulated the EP4 KO phenotype and revealed a narrow developmental window when EP4 stimulation is required for postnatal DA closure. Myography studies indicate that despite reduced contractile properties, the EP4 KO DA maintains an intact oxygen response. In newborns, hyperoxia constricted the EP4 KO DA but survival was not improved, and permanent remodeling was disrupted. Vasomotion and increased nitric oxide (NO) sensitivity in the EP4 KO DA suggest incomplete DA development. Analysis of DA maturity markers confirmed a partially immature EP4 KO DA phenotype. Together, our data suggest that EP4 signaling in late gestation plays a key developmental role in establishing a functional term DA. When disrupted in EP4 KO mice, the postnatal DA exhibits signaling and contractile properties characteristic of an immature DA, including impairments in the first, muscular phase of DA closure, in addition to known abnormalities in the second permanent remodeling phase.NEW & NOTEWORTHY EP4 is the primary EP receptor in the ductus arteriosus (DA) and is critical during late gestation for its development and eventual closure. The "paradoxical" patent DA (PDA) phenotype of EP4-knockout mice arises from a combination of impaired contractile potential, altered signaling properties, and a failure to remodel associated with an underdeveloped immature vessel. These findings provide new mechanistic insights into women who receive NSAIDs to treat preterm labor, whose infants have unexplained PDA.
Collapse
Affiliation(s)
- Michael T Yarboro
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Naoko Boatwright
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Deanna C Sekulich
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher W Hooper
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ting Wong
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Stanley D Poole
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Courtney D Berger
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexus J Brown
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher S Jetter
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jennifer M S Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Elaine L Shelton
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Jeff Reese
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
12
|
Abstract
Mouse models of colorectal cancer (CRC) have been crucial in the identification of the role of genes responsible for the full range of pathology of the human disease and have proved to be dependable for testing anti-cancer drugs. Recent research points toward the relevance of tumor, angiogenic, and immune microenvironments in CRC progression to late-stage disease, as well as the treatment of it. This study examines important mouse models in CRC, discussing inherent strengths and weaknesses disclosed during their construction. It endeavors to provide both a synopsis of previous work covering how investigators have defined various models and to evaluate critically how researchers are most likely to use them in the future. Accumulated evidence regarding the metastatic process and the hope of using checkpoint inhibitors and immunological inhibitor therapies points to the need for a genetically engineered mouse model that is both immunocompetent and autochthonous.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Majima M, Hosono K, Ito Y, Amano H, Nagashima Y, Matsuda Y, Watanabe SI, Nishimura H. A biologically active lipid, thromboxane, as a regulator of angiogenesis and lymphangiogenesis. Biomed Pharmacother 2023; 163:114831. [PMID: 37150029 DOI: 10.1016/j.biopha.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Thromboxane (TX) and prostaglandins are metabolites of arachidonic acid, a twenty-carbon unsaturated fatty acid, and have a variety of actions that are exerted via specific receptors. Angiogenesis is defined as the formation of new blood vessels from pre-existing vascular beds and is a critical component of pathological conditions, including inflammation and cancer. Lymphatic vessels play crucial roles in the regulation of interstitial fluid, immune surveillance, and the absorption of dietary fat from the intestine; and they are also involved in the pathogenesis of various diseases. Similar to angiogenesis, lymphangiogenesis, the formation of new lymphatic vessels, is a critical component of pathological conditions. The TP-dependent accumulation of platelets in microvessels has been reported to enhance angiogenesis under pathological conditions. Although the roles of some growth factors and cytokines in angiogenesis and lymphangiogenesis have been well characterized, accumulating evidence suggests that TX induces the production of proangiogenic and prolymphangiogenic factors through the activation of adenylate cyclase, and upregulates angiogenesis and lymphangiogenesis under disease conditions. In this review, we discuss the role of TX as a regulator of angiogenesis and lymphangiogenesis, and its emerging importance as a therapeutic target.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan.
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinao Nagashima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Tokyo Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hironobu Nishimura
- Department of Biological Information, Faculty of Health and Medical Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
14
|
Korkutata M, Lazarus M. Adenosine A 2A receptors and sleep. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:155-178. [PMID: 37741690 DOI: 10.1016/bs.irn.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine, a known endogenous somnogen, induces sleep via A1 and A2A receptors. In this chapter, we review the current knowledge regarding the role of the adenosine A2A receptor and its agonists, antagonists, and allosteric modulators in sleep-wake regulation. Although many adenosine A2A receptor agonists, antagonists, and allosteric modulators have been identified, only a few have been tested to see if they can promote sleep or wakefulness. In addition, the growing popularity of natural sleep aids has led to an investigation of natural compounds that may improve sleep by activating the adenosine A2A receptor. Finally, we discuss the potential therapeutic advantage of allosteric modulators of adenosine A2A receptors over classic agonists and antagonists for treating sleep and neurologic disorders.
Collapse
Affiliation(s)
- Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
15
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
16
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Remuzzi G, Schiaffino S, Santoro MG, FitzGerald GA, Melino G, Patrono C. Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years. Front Pharmacol 2022; 13:987816. [PMID: 36304162 PMCID: PMC9595217 DOI: 10.3389/fphar.2022.987816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 Committee of the Lincei Academy has reviewed the scientific evidence supporting the efficacy and safety of existing and new drugs/biologics for the preventing and treating of COVID-19 and its complications. This position paper reports what we have learned in the field in the past 2 years. The focus was on, but not limited to, drugs and neutralizing monoclonal antibodies, anti-SARS-CoV-2 agents, anti-inflammatory and immunomodulatory drugs, complement inhibitors and anticoagulant agents. We also discuss the risks/benefit of using cell therapies on COVID-19 patients. The report summarizes the available evidence, which supports recommendations from health authorities and panels of experts regarding some drugs and biologics, and highlights drugs that are not recommended, or drugs for which there is insufficient evidence to recommend for or against their use. We also address the issue of the safety of drugs used to treat underlying concomitant conditions in COVID-19 patients. The investigators did an enormous amount of work very quickly to understand better the nature and pathophysiology of COVID-19. This expedited the development and repurposing of safe and effective therapeutic interventions, saving an impressive number of lives in the community as well as in hospitals.
Collapse
Affiliation(s)
- Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA, United States
| | - Gennaro Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Patrono
- Department of Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
18
|
Murakami M, Takamiya R, Miki Y, Sugimoto N, Nagasaki Y, Suzuki-Yamamoto T, Taketomi Y. Segregated functions of two cytosolic phospholipase A 2 isoforms (cPLA 2α and cPLA 2ε) in lipid mediator generation. Biochem Pharmacol 2022; 203:115176. [PMID: 35841927 DOI: 10.1016/j.bcp.2022.115176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022]
Abstract
Among the phospholipase A2 (PLA2) superfamily, group IVA cytosolic PLA2 (cPLA2α) is currently attracting much attention as a central regulator of arachidonic acid (AA) metabolism linked to eicosanoid biosynthesis. Following cell activation, cPLA2α selectively releases AA, a precursor of a variety of eicosanoids, from phospholipids in perinuclear membrane compartments. cPLA2α-null mice display various phenotypes that could be largely explained by reduced eicosanoid signaling. In contrast, group IVE cPLA2ε, another member of the cPLA2 family, acts as a Ca2+-dependent N-acyltransferase rather than a PLA2, thereby regulating the biosynthesis of N-acylethanolamines (NAEs), a unique class of lipid mediators with an anti-inflammatory effect. In response to Ca2+ signaling, cPLA2ε translocates to phosphatidylserine-rich organelle membranes in the endocytic/recycling pathway. In vivo, cPLA2ε is induced in keratinocytes of psoriatic skin, and its genetic deletion exacerbates psoriatic inflammation due to a marked reduction of NAE-related lipids. cPLA2ε also contributes to NAE generation in several if not all mouse tissues. Thus, the two members of the cPLA2 family, cPLA2α and cPLA2ε, catalyze distinct enzymatic reactions to mobilize distinct sets of lipid mediators, thereby differently regulating pathophysiological events in health and disease. Such segregation of the cPLA2α-eicosanoid and cPLA2ε-NAE pathways represents a new paradigm of research on PLA2s and lipid mediators.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Rina Takamiya
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Sugimoto
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Nagasaki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Mota CM, Madden CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production. Brain Behav Immun 2022; 103:109-121. [PMID: 35429606 PMCID: PMC9524517 DOI: 10.1016/j.bbi.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Infectious diseases and inflammatory conditions recruit the immune system to mount an appropriate acute response that includes the production of cytokines. Cytokines evoke neurally-mediated responses to fight pathogens, such as the recruitment of thermoeffectors, thereby increasing body temperature and leading to fever. Studies suggest that the cytokine interleukin-1β (IL-1β) depends upon cyclooxygenase (COX)-mediated prostaglandin E2 production for the induction of neural mechanisms to elicit fever. However, COX inhibitors do not eliminate IL-1β-induced fever, thus suggesting that COX-dependent and COX-independent mechanisms are recruited for increasing body temperature after peripheral administration of IL-1β. In the present study, we aimed to build a foundation for the neural circuit(s) controlling COX-independent, inflammatory fever by determining the involvement of brain areas that are critical for controlling the sympathetic outflow to brown adipose tissue (BAT) and the cutaneous vasculature. In anesthetized rats, pretreatment with indomethacin, a non-selective COX inhibitor, did not prevent BAT thermogenesis or cutaneous vasoconstriction (CVC) induced by intravenous IL-1β (2 µg/kg). BAT and cutaneous vasculature sympathetic premotor neurons in the rostral raphe pallidus area (rRPa) are required for IL-1β-evoked BAT thermogenesis and CVC, with or without pretreatment with indomethacin. Additionally, activation of glutamate receptors in the dorsomedial hypothalamus (DMH) is required for COX-independent, IL-1β-induced BAT thermogenesis. Therefore, our data suggests that COX-independent mechanisms elicit activation of neurons within the DMH and rRPa, which is sufficient to trigger and mount inflammatory fever. These data provide a foundation for elucidating the brain circuits responsible for COX-independent, IL-1β-elicited fevers.
Collapse
Affiliation(s)
| | - Christopher J. Madden
- Corresponding author at: Dept. of Neurological Surgery, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, United States. (C.J. Madden)
| |
Collapse
|
20
|
Osaka T. The EP 3 and EP 4 Receptor Subtypes both Mediate the Fever-producing Effects of Prostaglandin E 2 in the Rostral Ventromedial Preoptic Area of the Hypothalamus in Rats. Neuroscience 2022; 494:25-37. [PMID: 35550162 DOI: 10.1016/j.neuroscience.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to re-examine the receptor subtype that mediates the fever-producing effects of prostaglandin E2 (PGE2) in the rostral ventromedial preoptic area (rvmPOA) of the hypothalamus. Among the four subtypes of PGE2 receptors (EP1, EP2, EP3, and EP4), EP3 receptor is crucially involved in the febrile effects of PGE2. However, it is possible for other subtypes of PGE2 receptor to contribute in the central mechanism of fever generation. Accordingly, effects of microinjection of PGE2 receptor subtype-specific agonists or antagonists were examined at the locus where a microinjection of a small amount (420 fmol) of PGE2 elicited prompt increases in the O2 consumption rate (VO2), heart rate, and colonic temperature (Tc) in the rvmPOA of urethane-chloralose-anesthetized rats. The EP3 agonist sulprostone mimicked, whereas its antagonist L-798,106 reduced, the febrile effects of PGE2 microinjected into the same site. Similarly, the EP4 agonist rivenprost mimicked, whereas its antagonist ONO-AE3-208 reduced, the effects of PGE2 microinjected into the same site. In contrast, microinjection of the EP1 agonist iloprost induced a very small increase in VO2 but did not have significant influences on the heart rate and Tc, whereas its antagonist, AH6809, did not affect the PGE2-induced responses. Microinjection of the EP2 agonist butaprost had no effects on the VO2, heart rate, and Tc. The results suggest that the EP3 and EP4 receptor subtypes are both involved in the fever generated by PGE2 in the rvmPOA.
Collapse
Affiliation(s)
- Toshimasa Osaka
- National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku 162-8636, Japan.
| |
Collapse
|
21
|
Yamagishi-Kimura R, Honjo M, Aihara M. The Roles Played by FP/EP3 Receptors During Pressure-lowering in Mouse Eyes Mediated by a Dual FP/EP3 Receptor Agonist. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35147658 PMCID: PMC8842472 DOI: 10.1167/iovs.63.2.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose We investigated the intraocular pressure (IOP)-lowering effect of topical sepetaprost (SPT), a dual agonist of the FP and EP3 receptors. We explored whether certain receptors mediated the hypotensive effect of SPT and outflow facility changes in C57BL/6 mice (wild-type [WT]) and FP and EP3 receptor-deficient mice (FPKO and EP3KO mice, respectively). Methods IOP was measured using a microneedle. Outflow facility was measured using a two-level, constant-pressure perfusion method. Results SPT significantly reduced IOP for 8 hours after administration to WT mice. The 2-hour IOP reductions afforded by latanoprost were 15.3 ± 2.5, 1.8 ± 2.0, and 12.3 ± 2.4% in WT, FPKO, and EP3KO mice, respectively; the SPT figures were 13.6 ± 2.1, 5.9 ± 2.7, and 6.6 ± 2.6%, respectively. Latanoprost-mediated IOP reduction was significantly decreased in FPKO mice, and SPT-mediated IOP reduction was reduced in both FPKO and EP3KO mice. At 6 hours after administration, latanoprost did not significantly reduce the IOP in any tested mouse strain. SPT-mediated IOP reduction was reduced in both FPKO and EP3KO mice. IOP reduction at 6 hours was significantly higher after simultaneous administration of selective FP and EP3 receptor agonists, but IOP did not fall on administration of (only) a selective EP3 receptor agonist. SPT significantly increased outflow facility in WT mice, but less so in FPKO and EP3KO mice. Conclusions The IOP-lowering effect of SPT lasted longer than that of latanoprost. Our data imply that this may be attributable to augmented outflow facility mediated by the FP and EP3 receptors.
Collapse
Affiliation(s)
- Reiko Yamagishi-Kimura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Skotte L, Fadista J, Bybjerg-Grauholm J, Appadurai V, Hildebrand MS, Hansen TF, Banasik K, Grove J, Albiñana C, Geller F, Bjurström CF, Vilhjálmsson BJ, Coleman M, Damiano JA, Burgess R, Scheffer IE, Pedersen OBV, Erikstrup C, Westergaard D, Nielsen KR, Sørensen E, Bruun MT, Liu X, Hjalgrim H, Pers TH, Mortensen PB, Mors O, Nordentoft M, Dreier JW, Børglum AD, Christensen J, Hougaard DM, Buil A, Hviid A, Melbye M, Ullum H, Berkovic SF, Werge T, Feenstra B. Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes. Brain 2022; 145:555-568. [PMID: 35022648 PMCID: PMC9128543 DOI: 10.1093/brain/awab260] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Febrile seizures represent the most common type of pathological brain activity in
young children and are influenced by genetic, environmental and developmental
factors. In a minority of cases, febrile seizures precede later development of
epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases
and 83 966 controls identifying and replicating seven new loci, all with
P < 5 × 10−10. Variants at two loci were functionally related to altered expression of the fever
response genes PTGER3 and IL10, and four other
loci harboured genes (BSN, ERC2,
GABRG2, HERC1) influencing neuronal
excitability by regulating neurotransmitter release and binding, vesicular
transport or membrane trafficking at the synapse. Four previously reported loci
(SCN1A, SCN2A, ANO3 and
12q21.33) were all confirmed. Collectively, the seven novel and four previously
reported loci explained 2.8% of the variance in liability to febrile
seizures, and the single nucleotide polymorphism heritability based on all
common autosomal single nucleotide polymorphisms was 10.8%.
GABRG2, SCN1A and SCN2A
are well-established epilepsy genes and, overall, we found positive genetic
correlations with epilepsies (rg = 0.39,
P = 1.68 × 10−4). Further,
we found that higher polygenic risk scores for febrile seizures were associated
with epilepsy and with history of hospital admission for febrile seizures.
Finally, we found that polygenic risk of febrile seizures was lower in febrile
seizure patients with neuropsychiatric disease compared to febrile seizure
patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date
implicates central fever response genes as well as genes affecting neuronal
excitability, including several known epilepsy genes. Further functional and
genetic studies based on these findings will provide important insights into the
complex pathophysiological processes of seizures with and without fever.
Collapse
Affiliation(s)
- Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jonas Bybjerg-Grauholm
- Danish Centre for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Vivek Appadurai
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Sct. Hans, Mental Health Services, Capital Region Denmark, Roskilde, Denmark
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Thomas F Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Grove
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine–Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Clara Albiñana
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Carmen F Bjurström
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Bjarni J Vilhjálmsson
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Matthew Coleman
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
| | - Rosemary Burgess
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
- Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Flemington, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar René Nielsen
- Department of Clinical Immunology, Aalborg University Hospital North, Aalborg, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Xueping Liu
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Preben Bo Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Center Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Julie W Dreier
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine–Human Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob Christensen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - David M Hougaard
- Danish Centre for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Alfonso Buil
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Sct. Hans, Mental Health Services, Capital Region Denmark, Roskilde, Denmark
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Pharmacovigilance Research Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Statens Serum Institut, Copenhagen, Denmark
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Sct. Hans, Mental Health Services, Capital Region Denmark, Roskilde, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
23
|
Machado NLS, Saper CB. Genetic identification of preoptic neurons that regulate body temperature in mice. Temperature (Austin) 2022; 9:14-22. [PMID: 35655663 PMCID: PMC9154766 DOI: 10.1080/23328940.2021.1993734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There has been an explosion recently in our understanding of the neuronal populations in the preoptic area involved in thermoregulation of mice. Recent studies have identified several genetically specified populations of neurons predominantly in the median preoptic nucleus (MnPO) but spreading caudolaterally into the preoptic area that regulate body temperature. . These include warm-responsive neurons that express the peptides PACAP, BDNF, or QRFP; and receptors for temperature, leptin, estrogen, or prostaglandin E2 (PGE2). These neurons are predominantly glutamatergic and driving them opto- or chemogenetically can cause profound hypothermia, and in some cases, periods of torpor or a hibernation-like state. Conversely, fever response is likely to depend upon inhibiting the activity of these neurons through the PGE2 receptor EP3. Another cell group, the Brs3-expressing MnPO neurons, are apparently cold-responsive and cause increases in body temperature. MnPO-QRFP neurons cause hypothermia via activation of their terminals in the region of the dorsomedial nucleus of the hypothalamus (DMH). As the MnPO-QRFP neurons are essentially glutamatergic, and the DMH largely uses glutamatergic projections to the raphe pallidus to increase body temperature, this model suggests the existence of local inhibitory interneurons in the DMH region between the MnPO-QRFP glutamatergic neurons that cause hypothermia and the DMH glutamatergic neurons that cause hyperthermia. The new genetically targeted studies in mice provide a way to identify the precise neuronal circuitry that is responsible for our physiological observations in this species, and will suggest critical experiments that can be undertaken to compare these with the thermoregulatory circuitry in other species.
Collapse
Affiliation(s)
- Natalia L. S. Machado
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Clifford B. Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, United States,CONTACT Clifford B. Saper
| |
Collapse
|
24
|
Zhang XX, Liang X, Li SR, Guo KJ, Li DF, Li TF. Bone Marrow Mesenchymal Stem Cells Overexpressing HIF-1α Prevented the Progression of Glucocorticoid-Induced Avascular Osteonecrosis of Femoral Heads in Mice. Cell Transplant 2022; 31:9636897221082687. [PMID: 35287482 PMCID: PMC8928352 DOI: 10.1177/09636897221082687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoid (GC)-induced avascular osteonecrosis of femoral head (AOFH) is a devastating complication, and no cures are currently available for it. Previous studies have demonstrated that implantation of bone marrow mesenchymal stem cells (BMMSCs) may prevent the progression of pre-collapse AOFH. Based on previous observations, we hypothesized that GCs induce AOFH via the COX-2 (cyclooxygenase-2)-PGE-2 (prostaglandin E2)-HIF-1α (hypoxia-inducible factor-1α) axis, and that modification of BMMSCs may improve the efficacy of their implantation. BMMSCs isolated from wild-type (WT) mice were treated with dexamethasone (Dex) and the results showed that Dex repressed the expression of COX-2. Femoral head samples harvested from both WT and COX-2 knock-out (COX-2-/-) mice were subjected to micro-computed tomography and histological examinations. Compared with their WT littermates, COX-2-/- mice had larger trabecular separations, diminished microvasculature, and reduced HIF-1α expression in their femoral heads. In vitro angiogenesis assays with tube formation and fetal metatarsal sprouting demonstrated that Dex repressed angiogenesis and PGE-2 antagonized its effects. An AOFH model was successfully established in C57BL/6J mice. In vitro experiment showed that BMMSCs infected with Lentivirus encoding HIF-1α (Lenti-HIF-1α) resulted in a robust increase in the production of HIF-1α protein. Implantation of BMMSCs overexpressing HIF-1α into femoral heads of AOFH mice significantly reduced osteonecrotic areas and enhanced bone repair, thus largely preserving the structural integrity of femoral heads. Our studies provide strong rationales for early intervention with core decompression and implantation of modified BMMSCs for GC-induced AOFH, which may spare patients from expensive and difficult surgical procedures.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Xu Liang
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Sen-Rui Li
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Kuang-Jin Guo
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, Zhengzhou University First Affiliated Hospital, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Vertii A. Stress as a Chromatin Landscape Architect. Front Cell Dev Biol 2021; 9:790138. [PMID: 34970548 PMCID: PMC8712864 DOI: 10.3389/fcell.2021.790138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
The exponential development of methods investigating different levels of spatial genome organization leads to the appreciation of the chromatin landscape's contribution to gene regulation and cell fate. Multiple levels of 3D chromatin organization include chromatin loops and topologically associated domains, followed by euchromatin and heterochromatin compartments, chromatin domains associated with nuclear bodies, and culminate with the chromosome territories. 3D chromatin architecture is exposed to multiple factors such as cell division and stress, including but not limited to mechanical, inflammatory, and environmental challenges. How exactly the stress exposure shapes the chromatin landscape is a new and intriguing area of research. In this mini-review, the developments that motivate the exploration of this field are discussed.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
26
|
A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021; 23:35-52. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.
Collapse
|
27
|
Clària J. Leveraging omics to understand the molecular basis of acute-on-chronic liver failure. ADVANCES IN LABORATORY MEDICINE 2021; 2:516-540. [PMID: 37360898 PMCID: PMC10197663 DOI: 10.1515/almed-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 06/28/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a complex syndrome that develops in patients with acutely decompensated cirrhosis. In this condition, dysbalanced immune function and excessive systemic inflammation are closely associated with organ failure and high short-term mortality. In this review, we describe how omic technologies have contributed to the characterization of the hyperinflammatory state in patients with acutely decompensated cirrhosis developing ACLF, with special emphasis on the role of metabolomics, lipidomics and transcriptomics in profiling the triggers (pathogen- and damage-associated molecular patterns [PAMPs and DAMPs]) and effector molecules (cytokines, chemokines, growth factors and bioactive lipid mediators) that lead to activation of the innate immune system. This review also describes how omic approaches can be invaluable tools to accelerate the identification of novel biomarkers that could guide the implementation of novel therapies/interventions aimed at protecting these patients from excessive systemic inflammation and organ failure.
Collapse
Affiliation(s)
- Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic – IDIBAPS, Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Cao C, Tachibana T, Gilbert ER, Cline MA. Prostaglandin E2-induced anorexia involves hypothalamic brain-derived neurotrophic factor and ghrelin in chicks. Prostaglandins Other Lipid Mediat 2021; 156:106574. [PMID: 34102274 DOI: 10.1016/j.prostaglandins.2021.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022]
Abstract
Central administration of prostaglandin E2 (PGE2) is associated with potent anorexia in rodents and chicks, although hypothalamic mechanisms are not fully understood. The objective of the present study was to identify hypothalamic nuclei and appetite-related factors that are involved in this anorexigenic effect, using chickens as a model. Intracerebroventricular injection of 2.5, 5, and 10 nmol of PGE2 suppressed food and water intake in broiler chicks in a dose-dependent manner. c-Fos immunoreactivity was increased in the paraventricular nucleus (PVN) at 60 min post injection of 5 nmol of PGE2. Under the same treatment condition, hypothalamic expression of melanocortin receptor 3 and ghrelin mRNAs increased, whereas neuropeptide Y receptor sub-type 5 and tropomyosin receptor kinase B (TrkB) mRNAs decreased in PGE2-treated chicks. In the PVN, chicks injected with PGE2 had more brain-derived neurotrophic factor (BDNF), ghrelin, and c-Fos mRNA but less corticotrophin-releasing factor receptor 1 (CRFR1), CRFR2, and TrkB mRNA expression. In conclusion, PGE2 injection resulted in decreased food and water intake that likely involves BDNF and ghrelin originating in the PVN. Because the anorexigenic effect is so potent and hypothalamic mechanisms are similar in chickens and rodents, a greater understanding of the role of PGE2 in acute appetite regulation may have implications for treating eating and metabolic disorders in humans.
Collapse
MESH Headings
- Animals
- Anorexia/chemically induced
- Anorexia/metabolism
- Ghrelin/pharmacology
- Ghrelin/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Chickens
- Dinoprostone/metabolism
- Hypothalamus/metabolism
- Hypothalamus/drug effects
- Male
- Eating/drug effects
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Paraventricular Hypothalamic Nucleus/metabolism
- Paraventricular Hypothalamic Nucleus/drug effects
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 3/genetics
Collapse
Affiliation(s)
- Chang Cao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
29
|
Iwata Y, Miyao M, Hirotsu A, Tatsumi K, Matsuyama T, Uetsuki N, Tanaka T. The inhibitory effects of Orengedokuto on inducible PGE2 production in BV-2 microglial cells. Heliyon 2021; 7:e07759. [PMID: 34458607 PMCID: PMC8377439 DOI: 10.1016/j.heliyon.2021.e07759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background and aim Reactive microglia has been associated with neuroinflammation caused by the production of proinflammatory molecules such as cytokines, nitric oxide, and prostaglandins. The overexpression of these molecules may provoke neuronal damage that can cause neurodegenerative diseases. A traditional herbal medicine, Orengedokuto (OGT), has been widely used for treating inflammation-related diseases. However, how it influences neuroinflammation remains poorly understood. Experimental procedure This study investigated the effects of OGT on inflammatory molecule induction in BV-2 microglial cells using real-time RT-PCR and ELISA. An in vivo confirmation of these effects was then performed in mice. Results and conclusion OGT showed dose-dependent inhibition of prostaglandin E2 (PGE2) production in BV-2 cells stimulated with lipopolysaccharide (LPS). To elucidate the mechanism of PGE2 inhibition, we examined cyclooxygenases (COXs) and found that OGT did not suppress COX-1 expression or inhibit LPS-induced COX-2 upregulation at either the transcriptional or translational levels. In addition, OGT did not inhibit COX enzyme activities within the concentration that inhibited PGE2 production, suggesting that the effect of OGT is COX-independent. The inhibitory effects of OGT on PGE2 production in BV-2 cells were experimentally replicated in primary cultured astrocytes and mice brains. OGT can be useful in the treatment of neuroinflammatory diseases by modulating PGE2 expression.
Collapse
Affiliation(s)
- Yoshika Iwata
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mariko Miyao
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akiko Hirotsu
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenichiro Tatsumi
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomonori Matsuyama
- Department of Anesthesia, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-0861, Japan
| | - Nobuo Uetsuki
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoharu Tanaka
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
30
|
Eskilsson A, Shionoya K, Engblom D, Blomqvist A. Fever During Localized Inflammation in Mice Is Elicited by a Humoral Pathway and Depends on Brain Endothelial Interleukin-1 and Interleukin-6 Signaling and Central EP 3 Receptors. J Neurosci 2021; 41:5206-5218. [PMID: 33941650 PMCID: PMC8211540 DOI: 10.1523/jneurosci.0313-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
We examined the signaling route for fever during localized inflammation in male and female mice, elicited by casein injection into a preformed air pouch. The localized inflammation gave rise to high concentrations of prostaglandins of the E species (PGE2) and cytokines in the air pouch and elevated levels of these inflammatory mediators in plasma. There were also elevated levels of PGE2 in the cerebrospinal fluid, although there was little evidence for PGE2 synthesis in the brain. Global deletion of the PGE2 prostaglandin E receptor 3 (EP3) abolished the febrile response as did deletion of the EP3 receptor in neural cells, whereas its deletion on peripheral nerves had no effect, implying that PGE2 action on this receptor in the CNS elicited the fever. Global deletion of the interleukin-1 receptor type 1 (IL-1R1) also abolished the febrile response, whereas its deletion on neural cells or peripheral nerves had no effect. However, deletion of the IL-1R1 on brain endothelial cells, as well as deletion of the interleukin-6 receptor α on these cells, attenuated the febrile response. In contrast, deletion of the PGE2 synthesizing enzymes cyclooxygenase-2 and microsomal prostaglandin synthase-1 in brain endothelial cells, known to attenuate fever evoked by systemic inflammation, had no effect. We conclude that fever during localized inflammation is not mediated by neural signaling from the inflamed site, as previously suggested, but is dependent on humoral signaling that involves interleukin actions on brain endothelial cells, probably facilitating PGE2 entry into the brain from the circulation and hence representing a mechanism distinct from that at work during systemic inflammation.
Collapse
Affiliation(s)
- Anna Eskilsson
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Kiseko Shionoya
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - David Engblom
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
31
|
Yoneshiro T, Kataoka N, Walejko JM, Ikeda K, Brown Z, Yoneshiro M, Crown SB, Osawa T, Sakai J, McGarrah RW, White PJ, Nakamura K, Kajimura S. Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever. eLife 2021; 10:66865. [PMID: 33944778 PMCID: PMC8137140 DOI: 10.7554/elife.66865] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/02/2021] [Indexed: 01/21/2023] Open
Abstract
Importing necessary metabolites into the mitochondrial matrix is a crucial step of fuel choice during stress adaptation. Branched chain-amino acids (BCAAs) are essential amino acids needed for anabolic processes, but they are also imported into the mitochondria for catabolic reactions. What controls the distinct subcellular BCAA utilization during stress adaptation is insufficiently understood. The present study reports the role of SLC25A44, a recently identified mitochondrial BCAA carrier (MBC), in the regulation of mitochondrial BCAA catabolism and adaptive response to fever in rodents. We found that mitochondrial BCAA oxidation in brown adipose tissue (BAT) is significantly enhanced during fever in response to the pyrogenic mediator prostaglandin E2 (PGE2) and psychological stress in mice and rats. Genetic deletion of MBC in a BAT-specific manner blunts mitochondrial BCAA oxidation and non-shivering thermogenesis following intracerebroventricular PGE2 administration. At a cellular level, MBC is required for mitochondrial BCAA deamination as well as the synthesis of mitochondrial amino acids and TCA intermediates. Together, these results illuminate the role of MBC as a determinant of metabolic flexibility to mitochondrial BCAA catabolism and optimal febrile responses. This study also offers an opportunity to control fever by rewiring the subcellular BCAA fate.
Collapse
Affiliation(s)
- Takeshi Yoneshiro
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naoya Kataoka
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jacquelyn M Walejko
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States
| | - Kenji Ikeda
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University, Tokyo, Japan
| | - Zachary Brown
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Momoko Yoneshiro
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Scott B Crown
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States.,Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, United States
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States.,Department of Medicine, Division of EndocrinologyMetabolism and Nutrition, Duke University School of Medicine, Durham, United States
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Kajimura
- Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Durham, United States
| |
Collapse
|
32
|
Ayoub SS. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature (Austin) 2021; 8:351-371. [PMID: 34901318 PMCID: PMC8654482 DOI: 10.1080/23328940.2021.1886392] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023] Open
Abstract
Paracetamol (acetaminophen) is undoubtedly one of the most widely used drugs worldwide. As an over-the-counter medication, paracetamol is the standard and first-line treatment for fever and acute pain and is believed to remain so for many years to come. Despite being in clinical use for over a century, the precise mechanism of action of this familiar drug remains a mystery. The oldest and most prevailing theory on the mechanism of analgesic and antipyretic actions of paracetamol relates to the inhibition of CNS cyclooxygenase (COX) enzyme activities, with conflicting views on the COX isoenzyme/variant targeted by paracetamol and on the nature of the molecular interactions with these enzymes. Paracetamol has been proposed to selectively inhibit COX-2 by working as a reducing agent, despite the fact that in vitro screens demonstrate low potency on the inhibition of COX-1 and COX-2. In vivo data from COX-1 transgenic mice suggest that paracetamol works through inhibition of a COX-1 variant enzyme to mediate its analgesic and particularly thermoregulatory actions (antipyresis and hypothermia). A separate line of research provides evidence on potentiation of the descending inhibitory serotonergic pathway to mediate the analgesic action of paracetamol, but with no evidence of binding to serotonergic molecules. AM404 as a metabolite for paracetamol has been proposed to activate the endocannabinoid and the transient receptor potential vanilloid-1 (TRPV1) systems. The current review gives an update and in some cases challenges the different theories on the pharmacology of paracetamol and raises questions on some of the inadequately explored actions of paracetamol. List of Abbreviations: AM404, N-(4-hydroxyphenyl)-arachidonamide; CB1R, Cannabinoid receptor-1; Cmax, Maximum concentration; CNS, Central nervous system; COX, Cyclooxygenase; CSF, Cerebrospinal fluid; ED50, 50% of maximal effective dose; FAAH, Fatty acid amidohydrolase; IC50, 50% of the maximal inhibitor concentration; LPS, Lipopolysaccharide; NSAIDs, Non-steroidal anti-inflammatory drugs; PGE2, Prostaglandin E2; TRPV1, Transient receptor potential vanilloid-1.
Collapse
Affiliation(s)
- Samir S Ayoub
- School of Health, Sport and Bioscience, Medicines Research Group, University of East London, London, UK
| |
Collapse
|
33
|
Johnson RM, Olatunde AC, Woodie LN, Greene MW, Schwartz EH. The Systemic and Cellular Metabolic Phenotype of Infection and Immune Response to Listeria monocytogenes. Front Immunol 2021; 11:614697. [PMID: 33628207 PMCID: PMC7897666 DOI: 10.3389/fimmu.2020.614697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
It is widely accepted that infection and immune response incur significant metabolic demands, yet the respective demands of specific immune responses to live pathogens have not been well delineated. It is also established that upon activation, metabolic pathways undergo shifts at the cellular level. However, most studies exploring these issues at the systemic or cellular level have utilized pathogen associated molecular patterns (PAMPs) that model sepsis, or model antigens at isolated time points. Thus, the dynamics of pathogenesis and immune response to a live infection remain largely undocumented. To better quantitate the metabolic demands induced by infection, we utilized a live pathogenic infection model. Mice infected with Listeria monocytogenes were monitored longitudinally over the course of infection through clearance. We measured systemic metabolic phenotype, bacterial load, innate and adaptive immune responses, and cellular metabolic pathways. To further delineate the role of adaptive immunity in the metabolic phenotype, we utilized two doses of bacteria, one that induced both sickness behavior and protective (T cell mediated) immunity, and the other protective immunity alone. We determined that the greatest impact to systemic metabolism occurred during the early immune response, which coincided with the greatest shift in innate cellular metabolism. In contrast, during the time of maximal T cell expansion, systemic metabolism returned to resting state. Taken together, our findings demonstrate that the timing of maximal metabolic demand overlaps with the innate immune response and that when the adaptive response is maximal, the host has returned to relative metabolic homeostasis.
Collapse
Affiliation(s)
- Robert M Johnson
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Adesola C Olatunde
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Lauren N Woodie
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Michael W Greene
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
34
|
Heeney A, Rogers AC, Mohan H, Mc Dermott F, Baird AW, Winter DC. Prostaglandin E 2 receptors and their role in gastrointestinal motility - Potential therapeutic targets. Prostaglandins Other Lipid Mediat 2021; 152:106499. [PMID: 33035691 DOI: 10.1016/j.prostaglandins.2020.106499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is found throughout the gastrointestinal tract in a diverse variety of functions and roles. The recent discovery of four PGE2 receptor subtypes in intestinal muscle layers as well as in the enteric plexus has led to much interest in the study of their roles in gut motility. Gut dysmotility has been implicated in functional disease processes including irritable bowel syndrome (IBS) and slow transit constipation, and lubiprostone, a PGE2 derivative, has recently been licensed to treat both conditions. The diversity of actions of PGE2 in the intestinal tract is attributed to its differing effects on its downstream receptor types, as well as their varied distribution in the gut, in both health and disease. This review aims to identify the role and distribution of PGE2 receptors in the intestinal tract, and aims to elucidate their distinct role in gut motor function, with a specific focus on functional intestinal pathologies.
Collapse
Affiliation(s)
- A Heeney
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - A C Rogers
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - H Mohan
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - F Mc Dermott
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - A W Baird
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - D C Winter
- Institute for Clinical Outcomes, Research and Education (ICORE), St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
35
|
Nishi A, Ohbuchi K, Kaifuchi N, Shimobori C, Kushida H, Yamamoto M, Kita Y, Tokuoka SM, Yachie A, Matsuoka Y, Kitano H. LimeMap: a comprehensive map of lipid mediator metabolic pathways. NPJ Syst Biol Appl 2021; 7:6. [PMID: 33504811 PMCID: PMC7840682 DOI: 10.1038/s41540-020-00163-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
Lipid mediators are major factors in multiple biological functions and are strongly associated with disease. Recent lipidomics approaches have made it possible to analyze multiple metabolites and the associations of individual lipid mediators. Such systematic approaches have enabled us to identify key changes of biological relevance. Against this background, a knowledge-based pathway map of lipid mediators would be useful to visualize and understand the overall interactions of these factors. Here, we have built a precise map of lipid mediator metabolic pathways (LimeMap) to visualize the comprehensive profiles of lipid mediators that change dynamically in various disorders. We constructed the map by focusing on ω-3 and ω-6 fatty acid metabolites and their respective metabolic pathways, with manual curation of referenced information from public databases and relevant studies. Ultimately, LimeMap comprises 282 factors (222 mediators, and 60 enzymes, receptors, and ion channels) and 279 reactions derived from 102 related studies. Users will be able to modify the map and visualize measured data specific to their purposes using CellDesigner and VANTED software. We expect that LimeMap will contribute to elucidating the comprehensive functional relationships and pathways of lipid mediators.
Collapse
Affiliation(s)
- Akinori Nishi
- grid.510132.4Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Katsuya Ohbuchi
- grid.510132.4Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Noriko Kaifuchi
- grid.510132.4Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Chika Shimobori
- grid.510132.4Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Hirotaka Kushida
- grid.510132.4Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Masahiro Yamamoto
- grid.510132.4Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Yoshihiro Kita
- grid.26999.3d0000 0001 2151 536XLife Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Suzumi M. Tokuoka
- grid.26999.3d0000 0001 2151 536XDepartment of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayako Yachie
- grid.452864.9The Systems Biology Institute, Shinagawa, Tokyo Japan
| | - Yukiko Matsuoka
- grid.452864.9The Systems Biology Institute, Shinagawa, Tokyo Japan
| | - Hiroaki Kitano
- grid.452864.9The Systems Biology Institute, Shinagawa, Tokyo Japan
| |
Collapse
|
36
|
McKinley MJ, Pennington GL, Ryan PJ. The median preoptic nucleus: A major regulator of fluid, temperature, sleep, and cardiovascular homeostasis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:435-454. [PMID: 34225980 DOI: 10.1016/b978-0-12-819975-6.00028-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Located in the midline lamina terminalis of the anterior wall of the third ventricle, the median preoptic nucleus is a thin elongated nucleus stretching around the rostral border of the anterior commissure. Its neuronal elements, composed of various types of excitatory glutamatergic and inhibitory GABAergic neurons, receive afferent neural signals from (1) neighboring subfornical organ and organum vasculosum of the lamina terminalis related to plasma osmolality and hormone concentrations, e.g., angiotensin II; (2) from peripheral sensors such as arterial baroreceptors and cutaneous thermosensors. Different sets of these MnPO glutamatergic and GABAergic neurons relay output signals to hypothalamic, midbrain, and medullary regions that drive homeostatic effector responses. Included in the effector responses are (1) thirst, antidiuretic hormone secretion and renal sodium excretion that subserve osmoregulation and body fluid homeostasis; (2) vasoconstriction or dilatation of skin blood vessels, and shivering and brown adipose tissue thermogenesis for core temperature homeostasis; (3) inhibition of hypothalamic and midbrain nuclei that stimulate wakefulness and arousal, thereby promoting both REM and non-REM sleep; and (4) activation of sympathetic pathways that drive vasoconstriction and heart rate to maintain arterial pressure and the perfusion of vital organs. The small size of MnPO belies its massive homeostatic significance.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| | - Glenn L Pennington
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
37
|
Takimoto R, Suzawa T, Yamada A, Sasa K, Miyamoto Y, Yoshimura K, Sasama Y, Tanaka M, Kinoshita M, Ikezaki K, Ichikawa M, Yamamoto M, Shirota T, Kamijo R. Zoledronate promotes inflammatory cytokine expression in human CD14-positive monocytes among peripheral mononuclear cells in the presence of γδ T cells. Immunology 2020; 162:306-313. [PMID: 33131052 DOI: 10.1111/imm.13283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 11/27/2022] Open
Abstract
Bisphosphonates distributed to bone exert toxic effects specifically towards osteoclasts. On the other hand, intravenous administration of a nitrogen-containing bisphosphonate (N-BP) such as zoledronate induces acute-phase reactions (APRs), including influenza-like fever 1 day later, indicating an interaction with immunocompetent cells circulating blood. Although it has been reported that activation of γδ T cells is pivotal to induce an APR following treatment with zoledronate, downstream events, including the production of inflammatory cytokines after activation of γδ T cells, remain obscure. We investigated the effects of zoledronate on inflammatory cytokine expression in human peripheral blood mononuclear cells (PBMCs) in vitro. While zoledronate induced mRNA expressions of tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and interferon-γ (IFN-γ) in PBMC, depletion of γδ T cells abolished that zoledronate-induced expression of those cytokines, indicating the necessity of γδ T cells for expression induction by zoledronate. However, which types of cells were responsible for the production of those cytokines in blood remained unclear. As it is generally accepted that monocytes and macrophages are primary sources of inflammatory cytokines, CD14+ cells from PBMC were exposed to zoledronate in the presence of PBMC, which resulted in induced expression of mRNAs for IL-1β, IL-6 and IFN-γ, but not for TNF-α. These results indicate that CD14+ cells are responsible, at least in part, for the production of IL-1β, IL-6 and IFN-γ in blood exposed to zoledronate. This suggests that CD14+ cells play an essential role in the occurrence of APRs following N-BP administration.
Collapse
Affiliation(s)
- Reiko Takimoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Yuji Sasama
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Motohiro Tanaka
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Mitsuhiro Kinoshita
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kaori Ikezaki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Makoto Ichikawa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
38
|
Maddipati KR. Non-inflammatory Physiology of "Inflammatory" Mediators - Unalamation, a New Paradigm. Front Immunol 2020; 11:580117. [PMID: 33117385 PMCID: PMC7575772 DOI: 10.3389/fimmu.2020.580117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
Many small molecules (mostly lipids derived from polyunsaturated fatty acids) and proteins (e. g., cytokines and chemokines) are labeled as inflammatory mediators for their role in eliciting physiological responses to injury. While acute inflammatory events are controlled by anti-inflammatory drugs, lasting damage to the tissues as a result of persistent inflammation is increasingly viewed as the root cause of many chronic diseases that include cardiovascular, neurological, and metabolic disorders, rheumatoid arthritis, and cancer. Interestingly, some of the “inflammatory” mediators also participate in normal developmental physiology without eliciting inflammation. Anti-inflammatory drugs that target the biosynthesis of these mediators are too indiscriminate to distinguish their two divergent physiological roles. A more precise definition of these two physiological processes partaken by the “inflammatory” mediators is warranted to identify their differences. The new paradigm is named “unalamation” ('ə‘n'əlAmāSH(ə)n) to distinguish from inflammation and to identify appropriate intervention strategies to mitigate inflammation associated pathophysiology without affecting the normal developmental physiology.
Collapse
|
39
|
Kirkby NS, Raouf J, Ahmetaj-Shala B, Liu B, Mazi SI, Edin ML, Chambers MG, Korotkova M, Wang X, Wahli W, Zeldin DC, Nüsing R, Zhou Y, Jakobsson PJ, Mitchell JA. Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. Cardiovasc Res 2020; 116:1972-1980. [PMID: 31688905 PMCID: PMC7519887 DOI: 10.1093/cvr/cvz290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/23/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023] Open
Abstract
AIMS Cardiovascular side effects caused by non-steroidal anti-inflammatory drugs (NSAIDs), which all inhibit cyclooxygenase (COX)-2, have prevented development of new drugs that target prostaglandins to treat inflammation and cancer. Microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors have efficacy in the NSAID arena but their cardiovascular safety is not known. Our previous work identified asymmetric dimethylarginine (ADMA), an inhibitor of endothelial nitric oxide synthase, as a potential biomarker of cardiovascular toxicity associated with blockade of COX-2. Here, we have used pharmacological tools and genetically modified mice to delineate mPGES-1 and COX-2 in the regulation of ADMA. METHODS AND RESULTS Inhibition of COX-2 but not mPGES-1 deletion resulted in increased plasma ADMA levels. mPGES-1 deletion but not COX-2 inhibition resulted in increased plasma prostacyclin levels. These differences were explained by distinct compartmentalization of COX-2 and mPGES-1 in the kidney. Data from prostanoid synthase/receptor knockout mice showed that the COX-2/ADMA axis is controlled by prostacyclin receptors (IP and PPARβ/δ) and the inhibitory PGE2 receptor EP4, but not other PGE2 receptors. CONCLUSION These data demonstrate that inhibition of mPGES-1 spares the renal COX-2/ADMA pathway and define mechanistically how COX-2 regulates ADMA.
Collapse
Affiliation(s)
- Nicholas S Kirkby
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Joan Raouf
- Unit of Rheumatology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Blerina Ahmetaj-Shala
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Bin Liu
- Cardiovascular Research Centre, Shantou University Medical College, Shantou, China
| | - Sarah I Mazi
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
- King Fahad Cardiac Center, King Saud University, Riyadh, Saudi Arabia
| | - Matthew L Edin
- National Institute for Environmental Health Sciences, Durham, NC, USA
| | | | - Marina Korotkova
- Unit of Rheumatology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology & Research, Singapore, Singapore
- Department of Cell Biology, Institute of Ophthalmology, University College London, London, UK
- Singapore Eye Research Institute, Singapore, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Darryl C Zeldin
- National Institute for Environmental Health Sciences, Durham, NC, USA
| | - Rolf Nüsing
- Clinical Pharmacology and Pharmacotherapy Department, Goethe University, Frankfurt, Germany
| | - Yingbi Zhou
- Cardiovascular Research Centre, Shantou University Medical College, Shantou, China
| | - Per-Johan Jakobsson
- Unit of Rheumatology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Jane A Mitchell
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
40
|
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors (COXibs) inhibit the progression of endometrial cancer, ovarian cancer and cervical cancer. However, concerning the adverse effects of NSAIDs and COXibs, it is still urgent and necessary to explore novel and specific anti-inflammation targets for potential chemoprevention. The signaling of cyclooxygenase 2-prostaglandin E2-prostaglandin E2 receptors (COX-2-PGE2-EPs) is the central inflammatory pathway involved in the gynecological carcinogenesis. METHODS Literature searches were performed to the function of COX-2-PGE2-EPs in gynecological malignancies. RESULTS This review provides an overview of the current knowledge of COX-2-PGE2-EPs signaling in endometrial cancer, ovarian cancer and cervical cancer. Many studies demonstrated the upregulated expression of the whole signaling pathway in gynecological malignancies and some focused on the function of COX-2 and cAMP-linked EP2/EP4 and EP3 signaling pathway in gynecological cancer. By contrast, roles of EP1 and the exact pathological mechanisms have not been completely clarified. The studies concerning EP receptors in gynecological cancers highlight the potential advantage of combining COX enzyme inhibitors with EP receptor antagonists as therapeutic agents in gynecological cancers. CONCLUSION EPs represent promising anti-inflammation biomarkers for gynecological cancer and may be novel treatment targets in the near future.
Collapse
|
41
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
42
|
Word AB, Broadway PR, Burdick Sanchez NC, Hutcheson JP, Ellis GB, Holland BP, Ballou MA, Carroll JA. Acute immunologic and metabolic responses of beef heifers following topical administration of flunixin meglumine at various times relative to bovine herpesvirus 1 and Mannheimia haemolyticachallenges. Am J Vet Res 2020; 81:243-253. [DOI: 10.2460/ajvr.81.3.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Nakamoto S, Ito Y, Nishizawa N, Goto T, Kojo K, Kumamoto Y, Watanabe M, Narumiya S, Majima M. EP3 signaling in dendritic cells promotes liver repair by inducing IL-13-mediated macrophage differentiation in mice. FASEB J 2020; 34:5610-5627. [PMID: 32112485 DOI: 10.1096/fj.201901955r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Macrophage plasticity is essential for liver wound healing; however, the mechanisms underlying macrophage phenotype switching are largely unknown. Dendritic cells (DCs) are critical initiators of innate immune responses; as such, they orchestrate inflammation following hepatic injury. Here, we subjected EP3-deficient (Ptger3-/- ) and wild-type (WT) mice to hepatic ischemia-reperfusion (I/R) and demonstrate that signaling via the prostaglandin E (PGE) receptor EP3 in DCs regulates macrophage plasticity during liver repair. Compared with WT mice, Ptger3-/- mice showed delayed liver repair accompanied by reduced expression of hepatic growth factors and accumulation of Ly6Clow reparative macrophages and monocyte-derived DCs (moDCs). MoDCs were recruited to the boundary between damaged and undamaged liver tissue in an EP3-dependent manner. Adoptive transfer of moDCs from Ptger3-/- mice resulted in impaired repair, along with increased numbers of Ly6Chigh inflammatory macrophages. Bone marrow macrophages (BMMs) up-regulated expression of genes related to a reparative macrophage phenotype when co-cultured with moDCs; this phenomenon was dependent on EP3 signaling. In the presence of an EP3 agonist, interleukin (IL)-13 derived from moDCs drove BMMs to increase expression of genes characteristic of a reparative macrophage phenotype. The results suggest that EP3 signaling in moDCs facilitates liver repair by inducing IL-13-mediated switching of macrophage phenotype from pro-inflammatory to pro-reparative.
Collapse
Affiliation(s)
- Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nobuyuki Nishizawa
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
44
|
EP3R-Expressing Glutamatergic Preoptic Neurons Mediate Inflammatory Fever. J Neurosci 2020; 40:2573-2588. [PMID: 32079648 DOI: 10.1523/jneurosci.2887-19.2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
Fever is a common phenomenon during infection or inflammatory conditions. This stereotypic rise in body temperature (Tb) in response to inflammatory stimuli is a result of autonomic responses triggered by prostaglandin E2 action on EP3 receptors expressed by neurons in the median preoptic nucleus (MnPOEP3R neurons). To investigate the identity of MnPOEP3R neurons, we first used in situ hybridization to show coexpression of EP3R and the VGluT2 transporter in MnPO neurons. Retrograde tracing showed extensive direct projections from MnPOVGluT2 but few from MnPOVgat neurons to a key site for fever production, the raphe pallidus. Ablation of MnPOVGluT2 but not MnPOVgat neurons abolished fever responses but not changes in Tb induced by behavioral stress or thermal challenges. Finally, we crossed EP3R conditional knock-out mice with either VGluT2-IRES-cre or Vgat-IRES-cre mice and used both male and female mice to confirm that the neurons that express EP3R and mediate fever are glutamatergic, not GABAergic. This finding will require rethinking current concepts concerning the central thermoregulatory pathways based on the MnPOEP3R neurons being GABAergic.SIGNIFICANCE STATEMENT Body temperature is regulated by the CNS. The rise of the body temperature, or fever, is an important brain-orchestrated mechanism for fighting against infectious or inflammatory disease, and is tightly regulated by the neurons located in the median preoptic nucleus (MnPO). Here we demonstrate that excitatory MnPO neurons mediate fever and examine a potential central circuit underlying the development of fever responses.
Collapse
|
45
|
Loss of hypothermic and anti-pyretic action of paracetamol in cyclooxygenase-1 knockout mice is indicative of inhibition of cyclooxygenase-1 variant enzymes. Eur J Pharmacol 2019; 861:172609. [DOI: 10.1016/j.ejphar.2019.172609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 02/02/2023]
|
46
|
Caldeira MO, Bruckmaier RM, Wellnitz O. Meloxicam affects the inflammatory responses of bovine mammary epithelial cells. J Dairy Sci 2019; 102:10277-10290. [PMID: 31447141 DOI: 10.3168/jds.2019-16630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022]
Abstract
Nonsteroidal anti-inflammatory drugs are used as supportive therapy with antimicrobial treatments for mastitis in cows to alleviate pain of the inflamed mammary gland. They act mainly by inhibition of cyclooxygenases. Meloxicam (MEL) is a drug designed for cyclooxygenase-2 selectivity, which is upregulated upon inflammation, acting as a key enzyme for the conversion of arachidonic acid to prostaglandins. Although some studies in dairy cows showed positive results in recovery from mastitis when MEL was added to the treatments, direct effects of MEL on the immune system of mastitic cows are unknown. The aim of this study was to investigate effects of MEL on the immune response of bovine mammary epithelial cells (MEC) with or without simultaneous immune stimulation by pathogen-associated molecular patterns of common mastitis pathogens. Mammary epithelial cells from 4 cows were isolated and cultured. To evaluate dose effects of MEL, MEC were challenged with or without 0.2 µg/mL lipopolysaccharide (LPS; serotype O26:B6 from Escherichia coli) with addition of increasing concentrations of MEL (0, 0.25, 0.5, 1.0, 1.5, or 2.0 mg/mL). The addition of MEL prevented the increase of mRNA expression of key inflammatory factors in LPS-challenged MEC in a dose-dependent manner. To investigate the effects of MEL on pathogen-specific immune responses of MEC, treatments included challenges with LPS from E. coli and lipoteichoic acid from Staphylococcus aureus with or without 1.5 mg/mL MEL for 3, 6, and 24 h. Meloxicam prevented the increase of mRNA abundance of key inflammatory mediators in response to LPS and lipoteichoic acid, such as tumor necrosis factor, serum amyloid A, inducible nitric oxide synthase, and the chemokines IL-8 and CXC chemokine ligands 3 and 5. The prostaglandin E2 synthesis in challenged and nonchallenged cells was reduced by MEL within 24 h. Furthermore, MEL reduced the viability and consequently the total RNA yield of the cells. However, mRNA abundance of apoptosis-related enzymes was not affected by any treatment. Meloxicam had clear dose-dependent effects on the immune response of MEC to pathogen-associated molecular patterns of common mastitis pathogens by preventing increased expression of important factors involved in inflammation. This nonsteroidal anti-inflammatory drug also has detrimental effects on cell viability. How these effects would influence the elimination of pathogens from an infected mammary gland during mastitis therapy with meloxicam needs to be further investigated.
Collapse
Affiliation(s)
- M O Caldeira
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Graduate School for Cellular and Biomedical Science, University of Bern, 3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|
47
|
Kobrzycka A, Napora P, Pearson BL, Pierzchała-Koziec K, Szewczyk R, Wieczorek M. Peripheral and central compensatory mechanisms for impaired vagus nerve function during peripheral immune activation. J Neuroinflammation 2019; 16:150. [PMID: 31324250 PMCID: PMC6642550 DOI: 10.1186/s12974-019-1544-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Determining the etiology and possible treatment strategies for numerous diseases requires a comprehensive understanding of compensatory mechanisms in physiological systems. The vagus nerve acts as a key interface between the brain and the peripheral internal organs. We set out to identify mechanisms compensating for a lack of neuronal communication between the immune and the central nervous system (CNS) during infection. METHODS We assessed biochemical and central neurotransmitter changes resulting from subdiaphragmatic vagotomy and whether they are modulated by intraperitoneal infection. We performed a series of subdiaphragmatic vagotomy or sham operations on male Wistar rats. Next, after full, 30-day recovery period, they were randomly assigned to receive an injection of Escherichia coli lipopolysaccharide or saline. Two hours later, animal were euthanized and we measured the plasma concentration of prostaglandin E2 (with HPLC-MS), interleukin-6 (ELISA), and corticosterone (RIA). We also had measured the concentration of monoaminergic neurotransmitters and their metabolites in the amygdala, brainstem, hippocampus, hypothalamus, motor cortex, periaqueductal gray, and prefrontal medial cortex using RP-HPLC-ED. A subset of the animals was evaluated in the elevated plus maze test immediately before euthanization. RESULTS The lack of immunosensory signaling of the vagus nerve stimulated increased activity of discrete inflammatory marker signals, which we confirmed by quantifying biochemical changes in blood plasma. Behavioral results, although preliminary, support the observed biochemical alterations. Many of the neurotransmitter changes observed after vagotomy indicated that the vagus nerve influences the activity of many brain areas involved in control of immune response and sickness behavior. Our studies show that these changes are largely eliminated during experimental infection. CONCLUSIONS Our results suggest that in vagotomized animals with blocked CNS, communication may transmit via a pathway independent of the vagus nerve to permit restoration of CNS activity for peripheral inflammation control.
Collapse
Affiliation(s)
- Anna Kobrzycka
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Napora
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Brandon L. Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | | | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
48
|
Lazarus M, Oishi Y, Bjorness TE, Greene RW. Gating and the Need for Sleep: Dissociable Effects of Adenosine A 1 and A 2A Receptors. Front Neurosci 2019; 13:740. [PMID: 31379490 PMCID: PMC6650574 DOI: 10.3389/fnins.2019.00740] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
Roughly one-third of the human lifetime is spent in sleep, yet the reason for sleep remains unclear. Understanding the physiologic function of sleep is crucial toward establishing optimal health. Several proposed concepts address different aspects of sleep physiology, including humoral and circuit-based theories of sleep-wake regulation, the homeostatic two-process model of sleep regulation, the theory of sleep as a state of adaptive inactivity, and observations that arousal state and sleep homeostasis can be dissociated in pathologic disorders. Currently, there is no model that places the regulation of arousal and sleep homeostasis in a unified conceptual framework. Adenosine is well known as a somnogenic substance that affects normal sleep-wake patterns through several mechanisms in various brain locations via A1 or A2A receptors (A1Rs or A2ARs). Many cells and processes appear to play a role in modulating the extracellular concentration of adenosine at neuronal A1R or A2AR sites. Emerging evidence suggests that A1Rs and A2ARs have different roles in the regulation of sleep. In this review, we propose a model in which A2ARs allow the brain to sleep, i.e., these receptors provide sleep gating, whereas A1Rs modulate the function of sleep, i.e., these receptors are essential for the expression and resolution of sleep need. In this model, sleep is considered a brain state established in the absence of arousing inputs.
Collapse
Affiliation(s)
- Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Theresa E Bjorness
- Research and Development, VA North Texas Health Care System, Dallas, TX, United States.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert W Greene
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
49
|
Wang TA, Teo CF, Åkerblom M, Chen C, Tynan-La Fontaine M, Greiner VJ, Diaz A, McManus MT, Jan YN, Jan LY. Thermoregulation via Temperature-Dependent PGD 2 Production in Mouse Preoptic Area. Neuron 2019; 103:309-322.e7. [PMID: 31151773 DOI: 10.1016/j.neuron.2019.04.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
Body temperature control is essential for survival. In mammals, thermoregulation is mediated by the preoptic area of anterior hypothalamus (POA), with ∼30% of its neurons sensitive to brain temperature change. It is still unknown whether and how these temperature-sensitive neurons are involved in thermoregulation, because for eight decades they have only been identified via electrophysiological recording. By combining single-cell RNA-seq with whole-cell patch-clamp recordings, we identified Ptgds as a genetic marker for temperature-sensitive POA neurons. Then, we demonstrated these neurons' role in thermoregulation via chemogenetics. Given that Ptgds encodes the enzyme that synthesizes prostaglandin D2 (PGD2), we further explored its role in thermoregulation. Our study revealed that rising temperature of POA alters the activity of Ptgds-expressing neurons so as to increase PGD2 production. PGD2 activates its receptor DP1 and excites downstream neurons in the ventral medial preoptic area (vMPO) that mediates body temperature decrease, a negative feedback loop for thermoregulation.
Collapse
Affiliation(s)
- Tongfei A Wang
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chin Fen Teo
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Malin Åkerblom
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Chen
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marena Tynan-La Fontaine
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vanille Juliette Greiner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
50
|
Abstract
Tumor tissue is composed of tumor cells and surrounding non-tumor endothelial and immune cells, collectively known as the tumor microenvironment. Tumor cells manipulate tumor microenvironment to obtain sufficient oxygen and nutrient supply, and evade anti-tumor immunosurveillance. Various types of signaling molecules, including cytokines, chemokines, growth factors, and lipid mediators, are secreted, which co-operate to make up the complex tumor microenvironment. Prostaglandins, cyclooxygenase metabolites of arachidonic acid, are abundantly produced in tumor tissues. Ever since treatment with nonsteroidal anti-inflammatory drugs showed anti-tumor effect in mouse models and human patients by inhibiting whole prostaglandin production, investigators have focused on the importance of prostaglandins in tumor malignancies. However, most studies that followed focused on the role of an eminent prostaglandin, prostaglandin E2, in tumor onset, growth, and metastasis. It remained unclear how other prostaglandin species affected tumor malignancies. Recently, we identified prostaglandin D2, a well-known sleep-inducing prostaglandin, as a factor with strong anti-angiogenic and anti-tumor properties, in genetically modified mice. In this review, we summarize recent studies focusing on the importance of prostaglandins and their metabolites in the tumor microenvironment.
Collapse
Affiliation(s)
- Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Omori
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|