1
|
Shen L, Li Z, Huang X, Zhang P, Zhang L, Zhao W, Wen Y, Liu H. Effects of polystyrene microplastic composite with florfenicol on photosynthetic carbon assimilation of rice (Oryza sativa L.) seedlings: Light reactions, carbon reactions, and molecular metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135470. [PMID: 39128152 DOI: 10.1016/j.jhazmat.2024.135470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The effects of co-exposure to antibiotics and microplastics in agricultural systems are still unclear. This study investigated the effects of florfenicol (FF) and polystyrene microplastics (PS-MPs) on photosynthetic carbon assimilation in rice seedlings. Both FF and PS-MPs inhibited photosynthesis, while PS-MPs can alleviate the toxicity of FF. Chlorophyll synthesis genes (HEMA, HEMG, CHLD, CHLG, CHLM, and CAO) were down-regulated, whereas electron transport chain genes (PGR5, PGRL1A, PGRL1B, petH, and ndhH) were up-regulated. FF inhibited linear electron transfer (LET) and activated cyclic electron transfer (CET), which was consistent with the results of the chlorophyll fluorescence parameters. The photosynthetic carbon assimilation pathway was altered, the C3 pathway enzyme Ribulose1,5-bisphosphatecarboxylase/oxygenase (RuBisCO) was affected, C4 enzyme ((phosphoenolpyruvate carboxykinase (PEPCK), pyruvate orthophosphate dikinase (PPDK), malate dehydrogenase (MDH), and phosphoenolpyruvate carboxylase (PEPC))) and related genes were significantly up-regulated, suggesting that the C3 pathway is converted to C4 pathway for self-protection. The key enzymes involved in photorespiration, glycolate oxidase (GO) and catalase (CAT), responded positively, photosynthetic phosphorylation was inhibited, and ATP content and H+-ATPase activity were suppressed, nutrient content (K, P, N, Ca, Mg, Fe, Cu, Zn, Mn, and Ni) significantly affected. Transcriptomic analysis showed that FF and PS-MPs severely affected the photosynthetic capacity of rice seedlings, including photosystem I, photosystem II, non-photochemical quenching coefficients, and photosynthetic electron transport.
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Xinting Huang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Liangyu Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
2
|
Gamarra Reinoso L, Majláth I, Dernovics M, Fábián A, Jose J, Jampoh EA, Hamow KÁ, Soós V, Sági L, Éva C. Root-based inorganic carbon uptake increases the growth of Arabidopsis thaliana and changes transporter expression and nitrogen and sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1448432. [PMID: 39309181 PMCID: PMC11412874 DOI: 10.3389/fpls.2024.1448432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Root-based uptake of inorganic carbon has been suggested as an additional carbon source. Our study aimed to characterize and understand the root-based uptake and fixation mechanisms and their impact on plant growth. 13C-labeled bicarbonate fed to Arabidopsis roots was assimilated into aspartic acid but mainly into sucrose, indicating that the added inorganic carbon was transported to the leaves. A hydroponic treatment was also established for A. thaliana using 2 mM NaHCO3 at pH 5.6, which enhanced the photosynthetic and growth parameters. According to transcriptome sequencing data, the observed enhancement in growth may be orchestrated by trehalose-6-phosphate signaling and supported by augmented nitrogen and sulfur assimilation. The analysis also revealed regulatory and transporter activities, including several nitrate (NRT2.1), and sulfate transporter (SULTR1;1 and SULTR1;2) candidates that could participate in bicarbonate uptake. Different transporters and carbon fixation mutants were assessed. Arabidopsis homologs of SLOW-TYPE ANION CHANNEL 1 (slah3) CARBONIC ANHYDRASE (βca4), and SULFATE TRANSPORTER (sultr1;2) mutants were shown to be inferior to the bicarbonate-treated wild types in several growth and root ultrastructural parameters. Besides, aquaporin genes PIP1;3 and PIP2;6 could play a negative role in the carbon uptake by venting carbon dioxide out of the plant. The findings support the hypothesis that the inorganic carbon is taken up by the root anion channels, mostly transported up to the shoots by the xylem, and fixed there by RuBisCo after the conversion to CO2 by carbonic anhydrases. The process boosts photosynthesis and growth by providing an extra carbon supply.
Collapse
Affiliation(s)
- Liesel Gamarra Reinoso
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- PhD School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Imre Majláth
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Mihály Dernovics
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Attila Fábián
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Jeny Jose
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Emmanuel Asante Jampoh
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Kamirán Áron Hamow
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Vilmos Soós
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - László Sági
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Csaba Éva
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
3
|
Feiz L, Shyu C, Wu S, Ahern KR, Gull I, Rong Y, Artymowicz CJ, Piñeros MA, Fei Z, Brutnell TP, Jander G. COI1 F-box proteins regulate DELLA protein levels, growth, and photosynthetic efficiency in maize. THE PLANT CELL 2024; 36:3237-3259. [PMID: 38801745 PMCID: PMC11371192 DOI: 10.1093/plcell/koae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in plants. To investigate the functions of the 6 maize (Zea mays) COI proteins (COI1a, COI1b, COI1c, COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The pollen of the coi2a coi2b double mutant was inviable. The coi1 quadruple mutant (coi1-4x) exhibited shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and accumulation of DWARF8 and/or DWARF9, 2 DELLA family proteins that repress the gibberellic acid (GA) signaling pathway. Coexpression of COI and DELLA in Nicotiana benthamiana showed that the COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in the coi1-4x mutant are GA-inducible. In addition, most of the proteins encoded by the downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding C4-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana showed that COI2a is nucleus-localized and interacts with maize jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins, the canonical COI repressor partners. However, maize COI1a and COI1c showed only partial nuclear localization and reduced binding efficiency to the tested JAZ proteins. Together, these results show the divergent functions of the 6 COI proteins in regulating maize growth and defense pathways.
Collapse
Affiliation(s)
- Leila Feiz
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Christine Shyu
- Crop Genome Editing, Regulatory Science, Bayer Crop Science, Chesterfield, MO 63017, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Kevin R Ahern
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Iram Gull
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Ying Rong
- KWS Gateway Research Center, St. Louis, MO 63132, USA
| | | | - Miguel A Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
4
|
Yiotis C, Chondrogiannis C. Reduced diffusional limitations in carnation stems facilitate higher photosynthetic rates and reduced photorespiratory losses compared with leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14573. [PMID: 39400364 DOI: 10.1111/ppl.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Green stem photosynthesis has been shown to be relatively inefficient but can occasionally contribute significantly to the carbon budget of desert plants. Although the possession of green photosynthetic stems is a common trait, little is known about their photosynthetic characteristics in non-desert species. Dianthus caryophyllus is a semi-woody species with prominent green stems, which show similar photosynthetic anatomy with leaves. In the present study, we used a combination of gas exchange and chlorophyll fluorescence measurements, some of which were taken under varying O2 and CO2 partial pressures, to investigate whether the apparent anatomical similarities between the species' leaves and stems translate into similar photosynthetic physiology and capacity for CO2 assimilation. Both organs displayed high photosynthetic electron transport rates (ETR) and similar values of steady-state non-photochemical quenching (NPQ), albeit leaves could attain them faster. The analysis of OJIP transients showed that the quantum efficiencies and energy fluxes along the photosynthetic electron transport chain are largely similar between leaves and stems. Stems displayed higher total conductance to CO2 diffusion, similar biochemical properties, significantly higher photosynthetic rates and lower water use efficiency than leaves. Leaf ETR was more sensitive to sub-ambient O2 and super-ambient CO2 partial pressures, while leaves also displayed a higher relative rate of Rubisco oxygenation. We conclude that the highly responsive NPQ and the enhanced photorespiration and WUE in leaves represent photoprotective and water-conserving adaptations to the high incident light intensities they experience naturally, at the expense of higher CO2 assimilation rates, which the vertically orientated stems can readily attain.
Collapse
Affiliation(s)
- Charilaos Yiotis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Christos Chondrogiannis
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
5
|
Li C, Wang J, Lan H, Yu Q. Enhanced drought tolerance and photosynthetic efficiency in Arabidopsis by overexpressing phosphoenolpyruvate carboxylase from a single-cell C4 halophyte Suaeda aralocaspica. FRONTIERS IN PLANT SCIENCE 2024; 15:1443691. [PMID: 39280952 PMCID: PMC11392766 DOI: 10.3389/fpls.2024.1443691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
In crop genetic improvement, the introduction of C4 plants' characteristics, known for high photosynthetic efficiency and water utilization, into C3 plants has been a significant challenge. This study investigates the effects of the desert halophyte Suaeda aralocaspica SaPEPC1 gene from a single-cell C4 photosythetic pathway, on drought resistance and photosynthetic performance in Arabidopsis. We used transgenic Arabidopsis with Zea mays ZmPEPC1 from C4 plant with classic Kranz anatomical structure and Arabidopsis AtPEPC1 from C3 photosynthetic cycle plants as controls. The results demonstrated that C4 photosynthetic-type PEPCs could improve drought resistance in plants through stomatal closure, promoting antioxidant enzyme accumulation, and reducing reactive oxygen species (ROS) accumulation. Overexpression of SaPEPC1 was significantly more effective than ZmPEPC1 in enhancing drought tolerance. Notably, overexpressed SaPEPC1 significantly improved light saturation intensity, electron transport rate (ETR), photosynthetic rate (Pn), and photoprotection ability under intense light. Furthermore, overexpression SaPEPC1 or ZmPEPC1 enhanced the activity of key C4 photosynthetic enzymes, including phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malic enzyme (NADP-ME), and promoted photosynthetic product sugar accumulation. However, with AtPEPC1 overexpression showing no obvious improvement effect on drought and photosynthetic performance. Therefore, these results indicated that introducing C4-type PEPC into C3 plants can significantly enhance drought resistance and photosynthetic performance. However, SaPEPC1 from a single-cell C4 cycle plant exhibits more significant effect in ETR and PSII photosynthesis performance than ZmPEPC1 from a classical C4 anatomical structure plant, although the underlying mechanism requires further exploration.
Collapse
Affiliation(s)
- Caixia Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
6
|
Dukat P, Hölttä T, Oren R, Salmon Y, Urbaniak M, Vesala T, Aalto J, Lintunen A. Partitioning seasonal stem carbon dioxide efflux into stem respiration, bark photosynthesis, and transport-related flux in Scots pine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4944-4959. [PMID: 38779859 PMCID: PMC11350082 DOI: 10.1093/jxb/erae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Stem CO2 efflux is an important component of the carbon balance in forests. The efflux is considered to principally reflect the net result of two dominating and opposing processes: stem respiration and stem photosynthesis. In addition, transport of CO2 in xylem sap is thought to play an appreciable role in affecting the net flux. This work presents an approach to partition stem CO2 efflux among these processes using sap-flux data and CO2-exchange measurements from dark and transparent chambers placed on mature Scots pine (Pinus sylvestris) trees. Seasonal changes and monthly parameters describing the studied processes were determined. Respiration contributed most to stem net CO2 flux, reaching up to 79% (considering the sum of the absolute values of stem respiration, stem photosynthesis, and flux from CO2 transported in xylem sap to be 100%) in June, when stem growth was greatest. The contribution of photosynthesis accounted for up to 13% of the stem net CO2 flux, increasing over the monitoring period. CO2 transported axially with sap flow decreased towards the end of the growing season. At a reference temperature, respiration decreased starting around midsummer, while its temperature sensitivity increased during the summer. A decline was observed for photosynthetic quantum yield around midsummer together with a decrease in light-saturation point. The proposed approach facilitates modeling net stem CO2 flux at a range of time scales.
Collapse
Affiliation(s)
- Paulina Dukat
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Laboratory of Meteorology, Department of Construction and Geoengineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Ram Oren
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham NC, USA
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Marek Urbaniak
- Laboratory of Meteorology, Department of Construction and Geoengineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anna Lintunen
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
8
|
Yang Y, Ahmed W, Wang G, Ye C, Li S, Zhao M, Zhang J, Wang J, Salmen SH, Wu L, Zhao Z. Transcriptome profiling reveals the impact of various levels of biochar application on the growth of flue-cured tobacco plants. BMC PLANT BIOLOGY 2024; 24:655. [PMID: 38987695 PMCID: PMC11234667 DOI: 10.1186/s12870-024-05321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Biochar, a carbon-rich source and natural growth stimulant, is usually produced by the pyrolysis of agricultural biomass. It is widely used to enhance plant growth, enzyme activity, and crop productivity. However, there are no conclusive studies on how different levels of biochar application influence these systems. METHODS AND RESULTS The present study elucidated the dose-dependent effects of biochar application on the physiological performance, enzyme activity, and dry matter accumulation of tobacco plants via field experiments. In addition, transcriptome analysis was performed on 60-day-old (early growth stage) and 100-day-old (late growth stage) tobacco leaves to determine the changes in transcript levels at the molecular level under various biochar application levels (0, 600, and 1800 kg/ha). The results demonstrated that optimum biochar application enhances plant growth, regulates enzymatic activity, and promotes biomass accumulation in tobacco plants, while higher biochar doses had adverse effects. Furthermore, transcriptome analysis revealed a total of 6561 differentially expressed genes (DEGs) that were up- or down-regulated in the groupwise comparison under different treatments. KEGG pathways analysis demonstrated that carbon fixation in photosynthetic organisms (ko00710), photosynthesis (ko00195), and starch and sucrose metabolism (ko00500) pathways were significantly up-regulated under the optimal biochar dosage (600 kg/ha) and down-regulated under the higher biochar dosage (1800 kg/ha). CONCLUSION Collectively, these results indicate that biochar application at an optimal rate (600 kg/ha) could positively affect photosynthesis and carbon fixation, which in turn increased the synthesis and accumulation of sucrose and starch, thus promoting the growth and dry matter accumulation of tobacco plants. However, a higher biochar dosage (1800 kg/ha) disturbs the crucial source-sink balance of organic compounds and inhibits the growth of tobacco plants.
Collapse
Affiliation(s)
- Yingfen Yang
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Waqar Ahmed
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, 224007, China
| | - Chenghu Ye
- Yunnan Revert Medical and Biotechnology Co., Ltd, Kunming, Yunnan, 65021, China
| | - Shichen Li
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Meiwei Zhao
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jinhao Zhang
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Junjie Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, 224007, China
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Lianzhang Wu
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673200, China
| | - Zhengxiong Zhao
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
9
|
Fu J, McKinley B, James B, Chrisler W, Markillie LM, Gaffrey MJ, Mitchell HD, Riaz MR, Marcial B, Orr G, Swaminathan K, Mullet J, Marshall-Colon A. Cell-type-specific transcriptomics uncovers spatial regulatory networks in bioenergy sorghum stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1668-1688. [PMID: 38407828 DOI: 10.1111/tpj.16690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about cell-type gene expression and regulation in stems was available to enable engineering. To obtain this information, laser capture microdissection was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type-specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type-specific gene regulatory networks (GRNs) revealed that unique transcription factor families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with known secondary cell wall (SCW) networks to identify the GRNs that differentially activate SCW formation in vascular sclerenchyma and epidermal cells. The spatial transcriptomic dataset provides a valuable source of information about the function of different sorghum cell types and GRNs that will enable the engineering of bioenergy sorghum stems, and an interactive web application developed during this project will allow easy access and exploration of the data (https://mc-lab.shinyapps.io/lcm-dataset/).
Collapse
Affiliation(s)
- Jie Fu
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843, USA
- DOE Great Lakes Bioenergy Resource Center, Madison, Wisconsin, 53726, USA
| | - Brandon James
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - William Chrisler
- Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | | | - Matthew J Gaffrey
- Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Hugh D Mitchell
- Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Muhammad Rizwan Riaz
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Brenda Marcial
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - Galya Orr
- Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Kankshita Swaminathan
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843, USA
- DOE Great Lakes Bioenergy Resource Center, Madison, Wisconsin, 53726, USA
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
| |
Collapse
|
10
|
Rangan P, Furtado A, Chinnusamy V, Henry R. A multi-cell model for the C 4 photosynthetic pathway in developing wheat grains based upon tissue-specific transcriptome data. Biosystems 2024; 238:105195. [PMID: 38555052 DOI: 10.1016/j.biosystems.2024.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
A non-Kranz C4 photosynthesis of the NAD-ME subtype, specifically in developing wheat grains (14 dpa, days post-anthesis) was originally demonstrated using transcriptome-based RNA-seq. Here we present a re-examination of evidence for C4 photosynthesis in the developing grains of wheat and, more broadly, the Pooideae and an investigation of the evolutionary processes and implications. The expression profiles for the genes associated with C4 photosynthesis (C4- and C3-specific) were evaluated using published transcriptome data for the outer pericarp, inner pericarp, and endosperm tissues of the developing wheat grains. The expression of the C4-specific genes across these three tissues revealed the involvement of all three tissues in an orderly fashion to accomplish the non-Kranz NAD-ME-dependent C4 photosynthesis. Based on their expression levels in RPKM (reads per kilobase per million mapped reads) values, a model involving multiple cell- and tissue-types is proposed for C4 photosynthesis involved in the refixation of the respired CO2 from the endosperm tissues in the developing wheat grains. This multi-cell C4 model, proposed to involve more than two cell types, requires further biochemical validation.
Collapse
Affiliation(s)
- Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia.
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia
| | | | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
11
|
Laihonen L, Rantala M, Ranasinghe U, Tyystjärvi E, Mulo P. Transcriptomic and proteomic analyses of distinct Arabidopsis organs reveal high PSI-NDH complex accumulation in stems. PHYSIOLOGIA PLANTARUM 2024; 176:e14227. [PMID: 38410876 DOI: 10.1111/ppl.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
In addition to leaves, the main site of photosynthetic reactions, active photosynthesis also takes place in stems, siliques and tree trunks. Although non-foliar photosynthesis has a marked effect on plant growth and yield, only limited information on the expression patterns of photosynthesis-related genes and the structure of photosynthetic machinery in different plant organs has been available. Here, we report the results of transcriptomic analysis of various organs of Arabidopsis thaliana and compare the gene expression profiles of young and mature leaves with a special focus on photosynthetic genes. Further, we analyzed the composition and organization of the photosynthetic electron transfer machinery in leaves, stems and green siliques at the protein level using BN-PAGE. RNA-Seq analysis revealed unique gene expression profiles in different plant organs and showed major differences in the expression of photosynthesis-related genes in young as compared to mature rosettes. Gel-based proteomic analysis of the thylakoid protein complex organization further showed that all studied plant organs contain the necessary components of the photosynthetic electron transfer chain. Intriguingly, stems accumulate high amounts of PSI-NDH complex, which has previously been implicated in cyclic electron transfer.
Collapse
Affiliation(s)
- Laura Laihonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Umanga Ranasinghe
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Esa Tyystjärvi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Salomón RL, Helm J, Gessler A, Grams TEE, Hilman B, Muhr J, Steppe K, Wittmann C, Hartmann H. The quandary of sources and sinks of CO2 efflux in tree stems-new insights and future directions. TREE PHYSIOLOGY 2024; 44:tpad157. [PMID: 38214910 DOI: 10.1093/treephys/tpad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes. In this Insight, we (i) describe processes affecting the quantification of RS, (ii) review common methodological approaches to quantify and model RS and (iii) develop a research agenda to fill the most relevant knowledge gaps that we identified. Dissolution, transport and accumulation of respired CO2 away from its production site, reassimilation of respired CO2 via stem photosynthesis and the enzyme phosphoenolpyruvate carboxylase, axial CO2 diffusion in the gas phase, shifts in the respiratory substrate and non-respiratory oxygen (O2) consumption are the most relevant processes causing divergence between RS and measured stem gas exchange (ECO2 or O2 influx, IO2). Two common methodological approaches to estimate RS, namely the CO2 mass balance approach and the O2 consumption technique, circumvent some of these processes but have yielded inconsistent results regarding the fate of respired CO2. Stem respiration modelling has recently progressed at the organ and tree levels. However, its implementation in large-scale models, commonly operated from a source-driven perspective, is unlikely to reflect adequate mechanisms. Finally, we propose hypotheses and approaches to advance the knowledge of the stem carbon balance, the role of sap pH on RS, the reassimilation of respired CO2, RS upscaling procedures, large-scale RS modelling and shifts in respiratory metabolism during environmental stress.
Collapse
Affiliation(s)
- Roberto L Salomón
- Universidad Politécnica de Madrid (UPM), Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Antonio Novais 10, 28040, Madrid, Spain
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Juliane Helm
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstr. 6, Basel CH-4056, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Rämistrasse 101, 8902 Zurich, Switzerland
| | - Thorsten E E Grams
- Technical University of Munich, Ecophysiology of Plants, Land Surface - Atmosphere Interactions, Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Boaz Hilman
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - Jan Muhr
- Department of Forest Botany and Tree Physiology, Laboratory for Radioisotopes, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Kathy Steppe
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Christiane Wittmann
- Faculty of Biology, Botanical Garden, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Henrik Hartmann
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Institute for Forest Protection, Julius Kühn Institute Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, 06484 Quedlinburg, Germany
| |
Collapse
|
13
|
Miszalski Z, Kaszycki P, Śliwa-Cebula M, Kaczmarczyk A, Gieniec M, Supel P, Kornaś A. Plasticity of Plantago lanceolata L. in Adaptation to Extreme Environmental Conditions. Int J Mol Sci 2023; 24:13605. [PMID: 37686411 PMCID: PMC10487448 DOI: 10.3390/ijms241713605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed at characterizing some adaptive changes in Plantago lanceolata L. exposed to harsh conditions of a desert-like environment generating physiological stress of limited water availability and exposure to strong light. It was clearly shown that the plants were capable of adapting their root system and vascular tissues to enable efficient vegetative performance. Soil analyses, as well as nitrogen isotope discrimination data show that P. lanceolata leaves in a desert-like environment had better access to nitrogen (nitrite/nitrate) and were able to fix it efficiently, as compared to the plants growing in the surrounding forest. The arbuscular mycorrhiza was also shown to be well-developed, and this was accompanied by higher bacterial frequency in the root zone, which might further stimulate plant growth. A closer look at the nitrogen content and leaf veins with a higher number of vessels and a greater vessel diameter made it possible to define the changes developed by the plants populating sandy habitats as compared with the vegetation sites located in the nearby forest. A determination of the photosynthesis parameters indicates that the photochemical apparatus in P. lanceolata inhabiting the desert areas adapted slightly to the desert-like environment and the time of day, with some changes of the reaction center (RC) size (photosystem II, PSII), while the plants' photochemical activity was at a similar level. No differences between the two groups of plants were observed in the dissipation of light energy. The exposure of plants to harsh conditions of a desert-like environment increased the water use efficiency (WUE) value in parallel with possible stimulation of the β-carboxylation pathway.
Collapse
Affiliation(s)
- Zbigniew Miszalski
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Marta Śliwa-Cebula
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Adriana Kaczmarczyk
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Miron Gieniec
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Paulina Supel
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
14
|
Han SY, Kim WY, Kim JS, Hwang I. Comparative transcriptomics reveals the role of altered energy metabolism in the establishment of single-cell C 4 photosynthesis in Bienertia sinuspersici. FRONTIERS IN PLANT SCIENCE 2023; 14:1202521. [PMID: 37476170 PMCID: PMC10354284 DOI: 10.3389/fpls.2023.1202521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Single-cell C4 photosynthesis (SCC4) in terrestrial plants without Kranz anatomy involves three steps: initial CO2 fixation in the cytosol, CO2 release in mitochondria, and a second CO2 fixation in central chloroplasts. Here, we investigated how the large number of mechanisms underlying these processes, which occur in three different compartments, are orchestrated in a coordinated manner to establish the C4 pathway in Bienertia sinuspersici, a SCC4 plant. Leaves were subjected to transcriptome analysis at three different developmental stages. Functional enrichment analysis revealed that SCC4 cycle genes are coexpressed with genes regulating cyclic electron flow and amino/organic acid metabolism, two key processes required for the production of energy molecules in C3 plants. Comparative gene expression profiling of B. sinuspersici and three other species (Suaeda aralocaspica, Amaranthus hypochondriacus, and Arabidopsis thaliana) showed that the direction of metabolic flux was determined via an alteration in energy supply in peripheral chloroplasts and mitochondria via regulation of gene expression in the direction of the C4 cycle. Based on these results, we propose that the redox homeostasis of energy molecules via energy metabolism regulation is key to the establishment of the SCC4 pathway in B. sinuspersici.
Collapse
Affiliation(s)
- Sang-Yun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21+) and Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
15
|
Wang S, Epron D, Kobayashi K, Takanashi S, Dannoura M. Sources of carbon supporting the fast growth of developing immature moso bamboo ( Phyllostachys edulis) culms: inference from carbon isotopes and anatomy. AOB PLANTS 2023; 15:plad046. [PMID: 37497441 PMCID: PMC10368343 DOI: 10.1093/aobpla/plad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
Phyllostachys edulis is a spectacularly fast-growing species that completes its height growth within 2 months after the shoot emerges without producing leaves (fast-growing period, FGP). This phase was considered heterotrophic, with the carbon necessary for the growth being transferred from the mature culms via the rhizomes, although previous studies observed key enzymes and anatomical features related to C4-carbon fixation in developing culms. We tested whether C4-photosynthesis or dark-CO2 fixation through anaplerotic reactions significantly contributes to the FGP, resulting in differences in the natural abundance of δ13C in bulk organic matter and organic compounds. Further, pulse-13CO2-labelling was performed on developing culms, either from the surface or from the internal hollow, to ascertain whether significant CO2 fixation occurs in developing culms. δ13C of young shoots and developing culms were higher (-26.3 to -26.9 ‰) compared to all organs of mature bamboos (-28.4 to -30.1 ‰). Developing culms contained chlorophylls, most observed in the skin tissues. After pulse-13CO2-labelling, the polar fraction extracted from the skin tissues was slightly enriched in 13C, and only a weak 13C enrichment was observed in inner tissues. Main carbon source sustaining the FGP was not assimilated by the developing culm, while a limited anaplerotic fixation of respired CO2 cannot be excluded and is more likely than C4-photosynthetic carbon fixation.
Collapse
Affiliation(s)
| | - Daniel Epron
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keito Kobayashi
- Kansai Research Centre, Forestry and Forest Products Research Institute, 68 Momoyamacho Nagaikyutaro, Fushimi-ku, Kyoto 612-0855, Japan
| | - Satoru Takanashi
- Kansai Research Centre, Forestry and Forest Products Research Institute, 68 Momoyamacho Nagaikyutaro, Fushimi-ku, Kyoto 612-0855, Japan
| | - Masako Dannoura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. PLANTS (BASEL, SWITZERLAND) 2023; 12:2393. [PMID: 37446953 DOI: 10.3390/plants12132393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Not only leaves but also other plant organs and structures typically considered as carbon sinks, including stems, roots, flowers, fruits and seeds, may exhibit photosynthetic activity. There is still a lack of a coherent and systematized body of knowledge and consensus on the role(s) of photosynthesis in these "sink" organs. With regard to fruits, their actual photosynthetic activity is influenced by a range of properties, including fruit anatomy, histology, physiology, development and the surrounding microclimate. At early stages of development fruits generally contain high levels of chlorophylls, a high density of functional stomata and thin cuticles. While some plant species retain functional chloroplasts in their fruits upon subsequent development or ripening, most species undergo a disintegration of the fruit chloroplast grana and reduction in stomata functionality, thus limiting gas exchange. In addition, the increase in fruit volume hinders light penetration and access to CO2, also reducing photosynthetic activity. This review aimed to compile information on aspects related to fruit photosynthesis, from fruit characteristics to ecological drivers, and to address the following challenging biological questions: why does a fruit show photosynthetic activity and what could be its functions? Overall, there is a body of evidence to support the hypothesis that photosynthesis in fruits is key to locally providing: ATP and NADPH, which are both fundamental for several demanding biosynthetic pathways (e.g., synthesis of fatty acids); O2, to prevent hypoxia in its inner tissues including seeds; and carbon skeletons, which can fuel the biosynthesis of primary and secondary metabolites important for the growth of fruits and for spreading, survival and germination of their seed (e.g., sugars, flavonoids, tannins, lipids). At the same time, both primary and secondary metabolites present in fruits and seeds are key to human life, for instance as sources for nutrition, bioactives, oils and other economically important compounds or components. Understanding the functions of photosynthesis in fruits is pivotal to crop management, providing a rationale for manipulating microenvironmental conditions and the expression of key photosynthetic genes, which may help growers or breeders to optimize development, composition, yield or other economically important fruit quality aspects.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ric C H De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research Centre (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Natale S, La Rocca N, Battistuzzi M, Morosinotto T, Nardini A, Alboresi A. Structure and function of bark and wood chloroplasts in a drought-tolerant tree (Fraxinus ornus L.). TREE PHYSIOLOGY 2023; 43:893-908. [PMID: 36738252 DOI: 10.1093/treephys/tpad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/31/2023] [Indexed: 06/11/2023]
Abstract
Leaves are the most important photosynthetic organs in most woody plants, but chloroplasts are also found in organs optimized for other functions. However, the actual photosynthetic efficiency of these chloroplasts is still unclear. We analyzed bark and wood chloroplasts of Fraxinus ornus L. saplings. Optical and spectroscopic methods were applied to stem samples and compared with leaves. A sharp light gradient was detected along the stem radial direction, with blue light mainly absorbed by the outer bark, and far-red-enriched light reaching the underlying xylem and pith. Chlorophylls were evident in the xylem rays and the pith and showed an increasing concentration gradient toward the bark. The stem photosynthetic apparatus showed features typical of acclimation to a low-light environment, such as larger grana stacks, lower chlorophyll a/b and photosystem I/II ratios compared with leaves. Despite likely receiving very few photons, wood chloroplasts were photosynthetically active and fully capable of generating a light-dependent electron transport. Our data provide a comprehensive scenario of the functional features of bark and wood chloroplasts in a woody species and suggest that stem photosynthesis is coherently optimized to the prevailing micro-environmental conditions at the bark and wood level.
Collapse
Affiliation(s)
- Sara Natale
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35121, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35121, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35121, Italy
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Alessandro Alboresi
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35121, Italy
| |
Collapse
|
18
|
Han H, Zhou Y, Liu H, Chen X, Wang Q, Zhuang H, Sun X, Ling Q, Zhang H, Wang B, Wang J, Tang Y, Wang H, Liu H. Transcriptomics and Metabolomics Analysis Provides Insight into Leaf Color and Photosynthesis Variation of the Yellow-Green Leaf Mutant of Hami Melon ( Cucumis melo L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1623. [PMID: 37111847 PMCID: PMC10143263 DOI: 10.3390/plants12081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways.
Collapse
Affiliation(s)
- Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yuan Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huifang Liu
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qiang Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hongmei Zhuang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xiaoxia Sun
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China
| | - Baike Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Juan Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yaping Tang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hao Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| |
Collapse
|
19
|
Doddrell NH, Lawson T, Raines CA, Wagstaff C, Simkin AJ. Feeding the world: impacts of elevated [CO 2] on nutrient content of greenhouse grown fruit crops and options for future yield gains. HORTICULTURE RESEARCH 2023; 10:uhad026. [PMID: 37090096 PMCID: PMC10116952 DOI: 10.1093/hr/uhad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Several long-term studies have provided strong support demonstrating that growing crops under elevated [CO2] can increase photosynthesis and result in an increase in yield, flavour and nutritional content (including but not limited to Vitamins C, E and pro-vitamin A). In the case of tomato, increases in yield by as much as 80% are observed when plants are cultivated at 1000 ppm [CO2], which is consistent with current commercial greenhouse production methods in the tomato fruit industry. These results provide a clear demonstration of the potential for elevating [CO2] for improving yield and quality in greenhouse crops. The major focus of this review is to bring together 50 years of observations evaluating the impact of elevated [CO2] on fruit yield and fruit nutritional quality. In the final section, we consider the need to engineer improvements to photosynthesis and nitrogen assimilation to allow plants to take greater advantage of elevated CO2 growth conditions.
Collapse
Affiliation(s)
- Nicholas H Doddrell
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 4SQ, UK
| | | | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Andrew J Simkin
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- School of Biosciences, University of Kent, Canterbury, United Kingdom CT2 7NJ, UK
| |
Collapse
|
20
|
Chen L, Yang Y, Zhao Z, Lu S, Lu Q, Cui C, Parry MAJ, Hu YG. Genome-wide identification and comparative analyses of key genes involved in C 4 photosynthesis in five main gramineous crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1134170. [PMID: 36993845 PMCID: PMC10040670 DOI: 10.3389/fpls.2023.1134170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Compared to C3 species, C4 plants showed higher photosynthetic capacity as well as water and nitrogen use efficiency due to the presence of the C4 photosynthetic pathway. Previous studies have shown that all genes required for the C4 photosynthetic pathway exist in the genomes of C3 species and are expressed. In this study, the genes encoding six key C4 photosynthetic pathway enzymes (β-CA, PEPC, ME, MDH, RbcS, and PPDK) in the genomes of five important gramineous crops (C4: maize, foxtail millet, and sorghum; C3: rice and wheat) were systematically identified and compared. Based on sequence characteristics and evolutionary relationships, their C4 functional gene copies were distinguished from non-photosynthetic functional gene copies. Furthermore, multiple sequence alignment revealed important sites affecting the activities of PEPC and RbcS between the C3 and C4 species. Comparisons of expression characteristics confirmed that the expression patterns of non-photosynthetic gene copies were relatively conserved among species, while C4 gene copies in C4 species acquired new tissue expression patterns during evolution. Additionally, multiple sequence features that may affect C4 gene expression and subcellular localization were found in the coding and promoter regions. Our work emphasized the diversity of the evolution of different genes in the C4 photosynthetic pathway and confirmed that the specific high expression in the leaf and appropriate intracellular distribution were the keys to the evolution of C4 photosynthesis. The results of this study will help determine the evolutionary mechanism of the C4 photosynthetic pathway in Gramineae and provide references for the transformation of C4 photosynthetic pathways in wheat, rice, and other major C3 cereal crops.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yang
- College of Agriculture, Shannxi Agricultural University (Institute of Crop Sciences), Taiyuan, Shanxi, China
| | - Zhangchen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiumei Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Martin A. J. Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Boussardon C, Keech O. Tissue-Specific Isolation of Tagged Arabidopsis Plastids. Curr Protoc 2023; 3:e673. [PMID: 36799650 DOI: 10.1002/cpz1.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Plastids are found in all plant cell types. However, most extraction methods to study these organelles are performed at the organ level (e.g., leaf, root, fruit) and do not allow for tissue-specific resolution, which hinders our understanding of their physiology. Therefore, IPTACT (Isolation of Plastids TAgged in specific Cell Types) was developed to isolate plastids in a tissue-specific manner in Arabidopsis thaliana (Arabidopsis). Plastids are biotinylated using one-shot transgenic lines, and tissue specificity is achieved with a suitable promoter as long as such a promoter exists. Cell-specific biotinylated plastids are then isolated with 2.8-µm streptavidin beads. Plastids extracted by IPTACT are suitable for RNA or protein isolation and subsequent tissue-specific OMICs analyses. This method provides the user with a powerful tool to investigate plastidial functions at cell-type resolution. Furthermore, it can easily be combined with studies using diverse genetic backgrounds and/or different developmental or stress conditions. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Promoter cloning and plant selection Basic Protocol 2: Isolation of biotinylated plastids Basic Protocol 3: Quality control of isolated plastids.
Collapse
Affiliation(s)
- Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Ma WT, Yu YZ, Wang X, Gong XY. Estimation of intrinsic water-use efficiency from δ 13C signature of C 3 leaves: Assumptions and uncertainty. FRONTIERS IN PLANT SCIENCE 2023; 13:1037972. [PMID: 36714771 PMCID: PMC9877432 DOI: 10.3389/fpls.2022.1037972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Carbon isotope composition (δ13C) has been widely used to estimate the intrinsic water-use efficiency (iWUE) of plants in ecosystems around the world, providing an ultimate record of the functional response of plants to climate change. This approach relies on established relationships between leaf gas exchange and isotopic discrimination, which are reflected in different formulations of 13C-based iWUE models. In the current literature, most studies have utilized the simple, linear equation of photosynthetic discrimination to estimate iWUE. However, recent studies demonstrated that using this linear model for quantitative studies of iWUE could be problematic. Despite these advances, there is a scarcity of review papers that have comprehensively reviewed the theoretical basis, assumptions, and uncertainty of 13C-based iWUE models. Here, we 1) present the theoretical basis of 13C-based iWUE models: the classical model (iWUEsim), the comprehensive model (iWUEcom), and the model incorporating mesophyll conductance (iWUEmes); 2) discuss the limitations of the widely used iWUEsim model; 3) and make suggestions on the application of the iWUEmes model. Finally, we suggest that a mechanistic understanding of mesophyll conductance associated effects and post-photosynthetic fractionation are the bottlenecks for improving the 13C-based estimation of iWUE.
Collapse
Affiliation(s)
- Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yong Zhi Yu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
23
|
Adachi S, Stata M, Martin DG, Cheng S, Liu H, Zhu XG, Sage RF. The Evolution of C4 Photosynthesis in Flaveria (Asteraceae): Insights from the Flaveria linearis Complex. PLANT PHYSIOLOGY 2023; 191:233-251. [PMID: 36200882 PMCID: PMC9806627 DOI: 10.1093/plphys/kiac467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.
Collapse
Affiliation(s)
- Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Matt Stata
- Department of Ecology and Evolution, The University of Toronto, Toronto, Ontario M5S3B2, Canada
| | - Duncan G Martin
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Institute for Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032 China
| | - Rowan F Sage
- Department of Ecology and Evolution, The University of Toronto, Toronto, Ontario M5S3B2, Canada
| |
Collapse
|
24
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
25
|
Pradhan B, Panda D, Bishi SK, Chakraborty K, Muthusamy SK, Lenka SK. Progress and prospects of C 4 trait engineering in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:920-931. [PMID: 35727191 DOI: 10.1111/plb.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Incorporating C4 photosynthetic traits into C3 crops is a rational approach for sustaining future demands for crop productivity. Using classical plant breeding, engineering this complex trait is unlikely to achieve its target. Therefore, it is critical and timely to implement novel biotechnological crop improvement strategies to accomplish this goal. However, a fundamental understanding of C3 , C4 , and C3 -C4 intermediate metabolism is crucial for the targeted use of biotechnological tools. This review assesses recent progress towards engineering C4 photosynthetic traits in C3 crops. We also discuss lessons learned from successes and failures of recent genetic engineering attempts in C3 crops, highlighting the pros and cons of using rice as a model plant for short-, medium- and long-term goals of genetic engineering. This review provides an integrated approach towards engineering improved photosynthetic efficiency in C3 crops for sustaining food, fibre and fuel production around the globe.
Collapse
Affiliation(s)
- B Pradhan
- Department of Agricultural Biotechnology, Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, India
| | - D Panda
- Department of Biodiversity & Conservation of Natural Resources, Central University of Odisha, Koraput, India
| | - S K Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - K Chakraborty
- Department of Plant Physiology, ICAR-National Rice Research Institute, Cuttack, India
| | - S K Muthusamy
- Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - S K Lenka
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gujarat, India
| |
Collapse
|
26
|
Rangan P, Wankhede DP, Subramani R, Chinnusamy V, Malik SK, Baig MJ, Singh K, Henry R. Evolution of an intermediate C 4 photosynthesis in the non-foliar tissues of the Poaceae. PHOTOSYNTHESIS RESEARCH 2022; 153:125-134. [PMID: 35648247 DOI: 10.1007/s11120-022-00926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.
Collapse
Affiliation(s)
- Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| | | | - Rajkumar Subramani
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | | | - Surendra K Malik
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | | | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
27
|
Maenpuen P, Katabuchi M, Onoda Y, Zhou C, Zhang JL, Chen YJ. Sources and consequences of mismatch between leaf disc and whole-leaf leaf mass per area (LMA). AMERICAN JOURNAL OF BOTANY 2022; 109:1242-1250. [PMID: 35862826 DOI: 10.1002/ajb2.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/20/2021] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Leaf mass per area (LMA), which is an important functional trait in leaf economic spectrum and plant growth analysis, is measured from leaf discs or whole leaves. Differences between the measurement methods may lead to large differences in the estimates of LMA values. METHODS We examined to what extent estimates of LMA based on whole leaves match those based on discs using 334 woody species from a wide range of biomes (tropics, subtropics, savanna, and temperate), whether the relationship varied by leaf morphology (tissue density, leaf area, leaf thickness), punch size (0.6- and 1.0-cm diameter), and whether the extent of intraspecifc variation for each species matches. RESULTS Disc-based estimates of species mean LMA matched the whole-leaf estimates well, and whole-leaf LMA tended to be 9.69% higher than leaf-disc LMA. The ratio of whole-leaf LMA to leaf-disc LMA was higher for species with higher leaf tissue density and larger leaves, and variance in the ratio was greater for species with lower leaf tissue density and thinner leaves. Estimates based on small leaf discs also inflated the ratio. The extent of the intraspecific variation only weakly matched between whole-leaf and disc-based estimates (R2 = 0.08). CONCLUSIONS Our results suggest that simple conversion between whole-leaf and leaf-disc LMA is difficult for species obtained with a small leaf punch, but it should be possible for species obtained with a large+ leaf punch. Accurately representing leaf traits will likely require careful selection between leaf-disc and whole-leaf traits depending on the objectives. Quantifying intraspecific variation using leaf discs should be also considered with caution.
Collapse
Affiliation(s)
- Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Cong Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
- Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, 6663300, China
| |
Collapse
|
28
|
Tian H, Zhou Q, Liu W, Zhang J, Chen Y, Jia Z, Shao Y, Wang H. Responses of photosynthetic characteristics of oat flag leaf and spike to drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:917528. [PMID: 35968085 PMCID: PMC9365945 DOI: 10.3389/fpls.2022.917528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
Raising crops production via improving photosynthesis has always been focused. Recently excavating and increasing the photosynthetic capacity of non-leaf organs becomes an important approach to crops yield increase. Here we studied the photosynthetic characteristics of the flag leaf and the non-leaf organs including the sheath, the glume and the lemma under greenhouse. The relative water content (RWC), the stomatal characteristics, the photosynthetic pigment contents, the enzyme activities in C3 and C4 pathway and the malate content of the flag leaf and the non-leaf organs on 7, 14, 21, and 28 days after anthesis (denoted by 7DAA, 14DAA, 21DAA, and 28DAA) were determined under well-watered (CK) and water-stressed (D) treatments. Drought stress significantly reduced the RWC of the flag leaf and the non-leaf organs, while the variation of RWC in the glume and the lemma was lower than in the flag leaf. The chlorophyll a content, the chlorophyll b content, the total chlorophyll content and the xanthophyll content in the flag leaf were significantly decreased under D. However, drought stress significantly increased the photosynthetic pigment contents in the glume at the late stage (21DAA and 28DAA). In addition, the induced activities of PEPC, NADP-MDH, NADP-ME, NAD-ME, and PPDK in non-leaf organs under drought stress suggested that the C4 photosynthetic pathway in non-leaf organs compensated the limited C3 photosynthesis in the flag leaf. Non-leaf organs, in particular the glume, showed the crucial function in maintaining the stable photosynthetic performance of oat.
Collapse
Affiliation(s)
- Haoqi Tian
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Wenhui Liu
- Academy of Animal Science and Veterinary Medicine of Qinghai Province, Xining, China
| | - Jing Zhang
- Sichuan Animal Science Academy, Chengdu, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Zhifeng Jia
- Academy of Animal Science and Veterinary Medicine of Qinghai Province, Xining, China
| | - Yuqiao Shao
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Hui Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| |
Collapse
|
29
|
Burgos A, Miranda E, Vilaprinyo E, Meza-Canales ID, Alves R. CAM Models: Lessons and Implications for CAM Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:893095. [PMID: 35812979 PMCID: PMC9260309 DOI: 10.3389/fpls.2022.893095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The evolution of Crassulacean acid metabolism (CAM) by plants has been one of the most successful strategies in response to aridity. On the onset of climate change, expanding the use of water efficient crops and engineering higher water use efficiency into C3 and C4 crops constitute a plausible solution for the problems of agriculture in hotter and drier environments. A firm understanding of CAM is thus crucial for the development of agricultural responses to climate change. Computational models on CAM can contribute significantly to this understanding. Two types of models have been used so far. Early CAM models based on ordinary differential equations (ODE) reproduced the typical diel CAM features with a minimal set of components and investigated endogenous day/night rhythmicity. This line of research brought to light the preponderant role of vacuolar malate accumulation in diel rhythms. A second wave of CAM models used flux balance analysis (FBA) to better understand the role of CO2 uptake in flux distribution. They showed that flux distributions resembling CAM metabolism emerge upon constraining CO2 uptake by the system. We discuss the evolutionary implications of this and also how CAM components from unrelated pathways could have integrated along evolution.
Collapse
Affiliation(s)
- Asdrubal Burgos
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Enoc Miranda
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ester Vilaprinyo
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Iván David Meza-Canales
- Departamento de Ecología Aplicada, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
- Unidad de Biología Molecular, Genómica y Proteómica, ITRANS-CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rui Alves
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
30
|
Drincovich MF, Maurino VG. Adjustments of carbon allocation and stomatal dynamics by target localized strategies to increase crop productivity under changing climates. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153685. [PMID: 35364488 DOI: 10.1016/j.jplph.2022.153685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Increasing crop productivity to ensure food security for future generations is one of the greatest challenges in current plant research. This challenge is even greater due to global climate changes, as enhancing crop yields must occur against the backdrop of increasingly changing environments, particularly rising temperatures and water constraints. Global crop yield growth depends on an improved dynamic balance between carbon and water usage. Here we discuss different approaches that highlight the role of vascular tissue and guard cells in attempting to mitigate the carbon-water trade-off. We argue that crop engineering in the future will require the incorporation of a combination of improved traits. Since targeted gene modifications generally produce fewer undesirable pleiotropic effects than constitutive modifications, we envision that modifications of specific cell types, such as phloem companion cells and guard cells, represent an effective approach for adding beneficial gene modifications in the same plant. This approach will enable trait stacking to design future crops with both high yield and resilience to various climate change stresses.
Collapse
Affiliation(s)
- Maria F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina.
| | - Veronica G Maurino
- Molekulare Pflanzenphysiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
31
|
Chu KL, Koley S, Jenkins LM, Bailey SR, Kambhampati S, Foley K, Arp JJ, Morley SA, Czymmek KJ, Bates PD, Allen DK. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab Eng 2022; 69:231-248. [PMID: 34920088 PMCID: PMC8761171 DOI: 10.1016/j.ymben.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Collapse
Affiliation(s)
- Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Sally R Bailey
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | - Kevin Foley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
32
|
Washburn JD, Strable J, Dickinson P, Kothapalli SS, Brose JM, Covshoff S, Conant GC, Hibberd JM, Pires JC. Distinct C 4 sub-types and C 3 bundle sheath isolation in the Paniceae grasses. PLANT DIRECT 2021; 5:e373. [PMID: 34988355 PMCID: PMC8711749 DOI: 10.1002/pld3.373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In C4 plants, the enzymatic machinery underpinning photosynthesis can vary, with, for example, three distinct C4 acid decarboxylases being used to release CO2 in the vicinity of RuBisCO. For decades, these decarboxylases have been used to classify C4 species into three biochemical sub-types. However, more recently, the notion that C4 species mix and match C4 acid decarboxylases has increased in popularity, and as a consequence, the validity of specific biochemical sub-types has been questioned. Using five species from the grass tribe Paniceae, we show that, although in some species transcripts and enzymes involved in multiple C4 acid decarboxylases accumulate, in others, transcript abundance and enzyme activity is almost entirely from one decarboxylase. In addition, the development of a bundle sheath isolation procedure for a close C3 species in the Paniceae enables the preliminary exploration of C4 sub-type evolution.
Collapse
Affiliation(s)
- Jacob D. Washburn
- Plant Genetics Research Unit, USDA‐ARSUniversity of MissouriColumbiaMOUSA
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Josh Strable
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | | | | | - Julia M. Brose
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Sarah Covshoff
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Gavin C. Conant
- Program in Genetics, Bioinformatics Research Center, Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | | | | |
Collapse
|
33
|
Ermakova M, Osborn H, Groszmann M, Bala S, Bowerman A, McGaughey S, Byrt C, Alonso-Cantabrana H, Tyerman S, Furbank RT, Sharwood RE, von Caemmerer S. Expression of a CO 2-permeable aquaporin enhances mesophyll conductance in the C 4 species Setaria viridis. eLife 2021; 10:70095. [PMID: 34842138 PMCID: PMC8648302 DOI: 10.7554/elife.70095] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/23/2021] [Indexed: 02/02/2023] Open
Abstract
A fundamental limitation of photosynthetic carbon fixation is the availability of CO2. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of Setaria viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.
Collapse
Affiliation(s)
- Maria Ermakova
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Hannah Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Soumi Bala
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Andrew Bowerman
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Samantha McGaughey
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Caitlin Byrt
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Hugo Alonso-Cantabrana
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Steve Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia
| | - Robert T Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Robert E Sharwood
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| |
Collapse
|
34
|
Liu J, Sun C, Zhai FF, Li Z, Qian Y, Gu L, Sun Z. Proteomic insights into the photosynthetic divergence between bark and leaf chloroplasts in Salix matsudana. TREE PHYSIOLOGY 2021; 41:2142-2152. [PMID: 33987679 DOI: 10.1093/treephys/tpab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Bark chloroplasts play important roles in carbon balancing by recycling internal stem CO2 into assimilated carbon. The photosynthetic response of bark chloroplasts to interior stem environments has been studied recently in woody plants. However, the molecular regulatory mechanisms underlying specific characteristics of bark photosynthesis remain unclear. To address this knowledge gap, differences in the structure, photosynthetic activity and protein expression profiles between bark and leaf chloroplasts were investigated in Salix matsudana in this study. Bark chloroplasts exhibited broader and lower grana stacks and higher levels of starch relative to leaf chloroplasts. Concomitantly, decreased oxygen evolution rates and decreased saturated radiation point were observed in bark chloroplasts. Furthermore, a total of 293 differentially expressed proteins (DEPs) were identified in bark and leaf chloroplast profile comparisons. These DEPs were significantly enriched in photosynthesis-related biological processes or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with photosynthesis. All 116 DEPs within the KEGG pathways associated with photosynthesis light reactions were downregulated in bark chloroplasts, including key proteins responsible for chlorophyll synthesis, light energy harvesting, nonphotochemical quenching, linear electron transport and photophosphorylation. Interestingly, seven upregulated proteins involved in dark reactions were identified in bark chloroplasts that comprised two kinds of malic enzymes typical of C4-type photosynthesis. These results provide comprehensive proteomic evidence to understand the low photochemical capability of bark chloroplasts and suggest that bark chloroplasts might fix CO2 derived from malate decarboxylation.
Collapse
Affiliation(s)
- Junxiang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Chao Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Fei-Fei Zhai
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Zhenjian Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Yongqiang Qian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Lin Gu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| |
Collapse
|
35
|
Salomón RL, De Roo L, Bodé S, Boeckx P, Steppe K. Efflux and assimilation of xylem-transported CO 2 in stems and leaves of tree species with different wood anatomy. PLANT, CELL & ENVIRONMENT 2021; 44:3494-3508. [PMID: 33822389 DOI: 10.1111/pce.14062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Determining the fate of CO2 respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO2 recycling mechanisms. An aqueous 13 C-enriched CO2 solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO2 via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO2 diffusivity and xylem [CO2 ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled 13 CO2 was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO2 diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO2 so far observed between taxonomic clades.
Collapse
Affiliation(s)
- Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Samuel Bodé
- Isotope Bioscience Laboratory-ISOFYS, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Takagi D, Ishiyama K, Suganami M, Ushijima T, Fujii T, Tazoe Y, Kawasaki M, Noguchi K, Makino A. Manganese toxicity disrupts indole acetic acid homeostasis and suppresses the CO 2 assimilation reaction in rice leaves. Sci Rep 2021; 11:20922. [PMID: 34686733 PMCID: PMC8536708 DOI: 10.1038/s41598-021-00370-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the essentiality of Mn in terrestrial plants, its excessive accumulation in plant tissues can cause growth defects, known as Mn toxicity. Mn toxicity can be classified into apoplastic and symplastic types depending on its onset. Symplastic Mn toxicity is hypothesised to be more critical for growth defects. However, details of the relationship between growth defects and symplastic Mn toxicity remain elusive. In this study, we aimed to elucidate the molecular mechanisms underlying symplastic Mn toxicity in rice plants. We found that under excess Mn conditions, CO2 assimilation was inhibited by stomatal closure, and both carbon anabolic and catabolic activities were decreased. In addition to stomatal dysfunction, stomatal and leaf anatomical development were also altered by excess Mn accumulation. Furthermore, indole acetic acid (IAA) concentration was decreased, and auxin-responsive gene expression analyses showed IAA-deficient symptoms in leaves due to excess Mn accumulation. These results suggest that excessive Mn accumulation causes IAA deficiency, and low IAA concentrations suppress plant growth by suppressing stomatal opening and leaf anatomical development for efficient CO2 assimilation in leaves.
Collapse
Affiliation(s)
- Daisuke Takagi
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| | - Keiki Ishiyama
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| | - Mao Suganami
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan ,grid.443549.b0000 0001 0603 1148Present Address: Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296 Japan
| | - Tomokazu Ushijima
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Takeshi Fujii
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Youshi Tazoe
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan ,grid.505732.60000 0004 6417 4827Present Address: Faculty of Agro-Food Science, Niigata Agro-Food University, Tainai, Niigata 959-2702 Japan
| | - Michio Kawasaki
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Ko Noguchi
- grid.410785.f0000 0001 0659 6325Department of Applied Life Science, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 Japan
| | - Amane Makino
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| |
Collapse
|
37
|
Sun W, Ma N, Huang H, Wei J, Ma S, Liu H, Zhang S, Zhang Z, Sui X, Li X. Photosynthetic contribution and characteristics of cucumber stems and petioles. BMC PLANT BIOLOGY 2021; 21:454. [PMID: 34615487 PMCID: PMC8493697 DOI: 10.1186/s12870-021-03233-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/29/2021] [Indexed: 06/11/2023]
Abstract
BACKGROUND Photosynthesis in the green leafless blade tissues or organs of plants has been studied in some plants, but the photosynthetic characteristics of stems and petioles are poorly understood. Cucurbitaceous plants are climbing plants that have substantial stem and petiole biomass. Understanding the photosynthetic contribution of cucumber stems and petioles to their growth and the underlying molecular mechanisms are important for the regulating of growth in cucumber production. RESULTS In this study, the photosynthetic capacity of cucumber stems and petioles were determined by 14CO2 uptake. The total carbon fixed by the stems and petioles was approximately 4% of that fixed by one leaf blade in the cucumber seedling stage, while the proportion of the carbon accumulated in the stems and petioles that redistributed to sink organs (roots and shoot apexes) obviously increased under leafless conditions. The photosynthetic properties of cucumber stems and petioles were studied using a combination of electron microscopy and isotope tracers to compare these properties of stems and petioles with those of leaf blade using two genotypes of cucumber (dark green and light green). Compared with those of the leaf blades, the chlorophyll contents of the cucumber stems and petioles were lower, and the stems and petioles had lower chloroplast numbers and lower stoma numbers but higher thylakoid grana lamella numbers and larger stoma sizes. The Chl a/b ratios were also decreased in the petioles and stems compared with those in the leaf blades. The total photosynthetic rates of the stems and petioles were equivalent to 6 ~ 8% of that of one leaf blade, but the respiration rates were similar in all the three organs, with an almost net 0 photosynthetic rate in the stems and petioles. Transcriptome analysis showed that compared with the leaf blades, the stems and petioles has significantly different gene expression levels in photosynthesis, porphyrin and chlorophyll metabolism; photosynthetic antenna proteins; and carbon fixation. PEPC enzyme activities were higher in the stems and petioles than in the leaf blades, suggesting that the photosynthetic and respiratory mechanisms in stems and petioles are different from those in leaf blade, and these results are consistent with the gene expression data. CONCLUSIONS In this study, we confirmed the photosynthetic contribution to the growth of cucumber stems and petioles, and showed their similar photosynthetic patterns in the terms of anatomy, molecular biology and physiology, which were different from those of cucumber leaf blades.
Collapse
Affiliation(s)
- Weike Sun
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Ning Ma
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Hongyu Huang
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Kernel Cucumber Research Institute, 301 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jingwei Wei
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Si Ma
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Huan Liu
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Shi Zhang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Zhenxian Zhang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Xiaolei Sui
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Xin Li
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China.
| |
Collapse
|
38
|
Furbank RT, Kelly S. Finding the C4 sweet spot: cellular compartmentation of carbohydrate metabolism in C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6018-6026. [PMID: 34142128 PMCID: PMC8411606 DOI: 10.1093/jxb/erab290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 05/10/2023]
Abstract
The two-cell type C4 photosynthetic pathway requires both anatomical and biochemical specialization to achieve a functional CO2-concentrating mechanism. While a great deal of research has been done on Kranz anatomy and cell-specific expression and activity of enzymes in the C4 pathway, less attention has been paid to partitioning of carbohydrate synthesis between the cell types of C4 leaves. As early as the 1970s it became apparent that, in the small number of species examined at the time, sucrose was predominantly synthesized in the mesophyll cells and starch in the bundle sheath cells. Here we discuss how this partitioning is achieved in C4 plants and explore whether this is a consequence of C4 metabolism or indeed a requirement for its evolution and efficient operation.
Collapse
Affiliation(s)
- Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
39
|
Jiang Z, Wang Y, Zheng Y, Cai M, Peng C, Li W. Physiological and transcriptomic responses of Mikania micrantha stem to shading yield novel insights into its invasiveness. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02546-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Hua L, Stevenson SR, Reyna-Llorens I, Xiong H, Kopriva S, Hibberd JM. The bundle sheath of rice is conditioned to play an active role in water transport as well as sulfur assimilation and jasmonic acid synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:268-286. [PMID: 33901336 DOI: 10.1111/tpj.15292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Leaves comprise multiple cell types but our knowledge of the patterns of gene expression that underpin their functional specialization is fragmentary. Our understanding and ability to undertake the rational redesign of these cells is therefore limited. We aimed to identify genes associated with the incompletely understood bundle sheath of C3 plants, which represents a key target associated with engineering traits such as C4 photosynthesis into Oryza sativa (rice). To better understand the veins, bundle sheath and mesophyll cells of rice, we used laser capture microdissection followed by deep sequencing. Gene expression of the mesophyll is conditioned to allow coenzyme metabolism and redox homeostasis, as well as photosynthesis. In contrast, the bundle sheath is specialized in water transport, sulphur assimilation and jasmonic acid biosynthesis. Despite the small chloroplast compartment of bundle sheath cells, substantial photosynthesis gene expression was detected. These patterns of gene expression were not associated with the presence or absence of specific transcription factors in each cell type, but were instead associated with gradients in expression across the leaf. Comparative analysis with C3 Arabidopsis identified a small gene set preferentially expressed in the bundle sheath cells of both species. This gene set included genes encoding transcription factors from 14 orthogroups and proteins allowing water transport, sulphate assimilation and jasmonic acid synthesis. The most parsimonious explanation for our findings is that bundle sheath cells from the last common ancestor of rice and Arabidopsis were specialized in this manner, and as the species diverged these patterns of gene expression have been maintained.
Collapse
Affiliation(s)
- Lei Hua
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Sean R Stevenson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Haiyan Xiong
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
41
|
Ferguson JN, Tidy AC, Murchie EH, Wilson ZA. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2066-2089. [PMID: 33538010 DOI: 10.1111/pce.14015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/20/2023]
Abstract
Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.
Collapse
Affiliation(s)
- John N Ferguson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison C Tidy
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Zoe A Wilson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
42
|
Xue J, Li T, Chen TT, Balamurugan S, Yang WD, Li HY. Regulation of malate-pyruvate pathway unifies the adequate provision of metabolic carbon precursors and NADPH in Tetradesmus obliquus. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Photosynthesis-independent production of reactive oxygen species in the rice bundle sheath during high light is mediated by NADPH oxidase. Proc Natl Acad Sci U S A 2021; 118:2022702118. [PMID: 34155141 PMCID: PMC8237631 DOI: 10.1073/pnas.2022702118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
When exposed to high light, plants produce reactive oxygen species (ROS). In Arabidopsis thaliana, local stress such as excess heat or light initiates a systemic ROS wave in phloem and xylem cells dependent on NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins. In the case of excess light, although the initial local accumulation of ROS preferentially takes place in bundle-sheath strands, little is known about how this response takes place. Using rice and the ROS probes diaminobenzidine and 2',7'-dichlorodihydrofluorescein diacetate, we found that, after exposure to high light, ROS were produced more rapidly in bundle-sheath strands than mesophyll cells. This response was not affected either by CO2 supply or photorespiration. Consistent with these findings, deep sequencing of messenger RNA (mRNA) isolated from mesophyll or bundle-sheath strands indicated balanced accumulation of transcripts encoding all major components of the photosynthetic apparatus. However, transcripts encoding several isoforms of the superoxide/H2O2-producing enzyme NADPH oxidase were more abundant in bundle-sheath strands than mesophyll cells. ROS production in bundle-sheath strands was decreased in mutant alleles of the bundle-sheath strand preferential isoform of OsRBOHA and increased when it was overexpressed. Despite the plethora of pathways able to generate ROS in response to excess light, NADPH oxidase-mediated accumulation of ROS in the rice bundle-sheath strand was detected in etiolated leaves lacking chlorophyll. We conclude that photosynthesis is not necessary for the local ROS response to high light but is in part mediated by NADPH oxidase activity.
Collapse
|
44
|
Tambussi EA, Maydup ML, Carrión CA, Guiamet JJ, Araus JL. Ear photosynthesis in C3 cereals and its contribution to grain yield: methodologies, controversies, and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3956-3970. [PMID: 33764460 DOI: 10.1093/jxb/erab125] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
In C3 cereals such as wheat and barley, grain filling was traditionally explained as being sustained by assimilates from concurrent leaf photosynthesis and remobilization from the stem. In recent decades, a role for ear photosynthesis as a contributor to grain filling has emerged. This review analyzes several aspects of this topic: (i) methodological approaches for estimation of ear photosynthetic contribution to grain filling; (ii) the existence of genetic variability in the contribution of the ear, and evidence of genetic gains in the past; (iii) the controversy of the existence of C4 metabolism in the ear; (iv) the response of ear photosynthesis to water deficit; and (v) morphological and physiological traits possibly related to ear temperature and thermal balance of the ear. The main conclusions are: (i) there are a number of methodologies to quantify ear photosynthetic activity (e.g. gas exchange and chlorophyll fluorescence) and the contribution of the ear to grain filling (individual ear shading, ear emergence in shaded canopies, and isotope composition); (ii) the contribution of ear photosynthesis seems to have increased in modern wheat germplasm; (iii) the contribution of the ear to grain filling increases under resource-limitation (water deficit, defoliation, or pathogen infection); (iv) there is genetic variability in the contribution of the ear in wheat, opening up the possibility to use this trait to ameliorate grain yield; (v) current evidence supports the existence of C3 metabolism rather than C4 metabolism; (vi) the ear is a 'dehydration avoider organ' under drought; and (vii) thermal balance in the ear is a relevant issue to explore, and more research is needed to clarify the underlying morphological and physiological traits.
Collapse
Affiliation(s)
- Eduardo A Tambussi
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), cc 327, 1900, La Plata, Argentina
| | - María L Maydup
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), cc 327, 1900, La Plata, Argentina
| | - Cristian A Carrión
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales. Universidad Nacional de Tierra del Fuego, Argentina
| | - Juan J Guiamet
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), cc 327, 1900, La Plata, Argentina
| | - Jose L Araus
- Unitat de Fisiología Vegetal, Departament de Botánica, Universitat de Barcelona, Barcelona, and AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198, Lleida,Spain
| |
Collapse
|
45
|
Sui X, Nie J, Liu H, Lin T, Yao X, Turgeon R. Complexity untwined: The structure and function of cucumber (Cucumis sativus L.) shoot phloem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1163-1176. [PMID: 33713355 DOI: 10.1111/tpj.15229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Cucurbit phloem is complex, with large sieve tubes on both sides of the xylem (bicollateral phloem), and extrafascicular elements that form an intricate web linking the rest of the vasculature. Little is known of the physical interconnections between these networks or their functional specialization, largely because the extrafascicular phloem strands branch and turn at irregular angles. Here, export in the phloem from specific regions of the lamina of cucumber (Cucumis sativus L.) was mapped using carboxyfluorescein and 14 C as mobile tracers. We also mapped vascular architecture by conventional microscopy and X-ray computed tomography using optimized whole-tissue staining procedures. Differential gene expression in the internal (IP) and external phloem (EP) was analyzed by laser-capture microdissection followed by RNA-sequencing. The vascular bundles of the lamina form a nexus at the petiole junction, emerging in a predictable pattern, each bundle conducting photoassimilate from a specific region of the blade. The vascular bundles of the stem interconnect at the node, facilitating lateral transport around the stem. Elements of the extrafascicular phloem traverse the stem and petiole obliquely, joining the IP and EP of adjacent bundles. Using pairwise comparisons and weighted gene coexpression network analysis, we found differences in gene expression patterns between the petiole and stem and between IP and EP, and we identified hub genes of tissue-specific modules. Genes related to transport were expressed primarily in the EP while those involved in cell differentiation and development as well as amino acid transport and metabolism were expressed mainly in the IP.
Collapse
Affiliation(s)
- Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tao Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
46
|
Healthy Photosynthetic Mechanism Suggests ISR Elicited by Bacillus spp. in Capsicum chinense Plants Infected with PepGMV. Pathogens 2021; 10:pathogens10040455. [PMID: 33920312 PMCID: PMC8069211 DOI: 10.3390/pathogens10040455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effect of inoculation with Bacillus spp. isolates on the photosynthetic apparatus of Capsicum chinense plants infected with PepGMV. In vitro and greenhouse experiments were performed to evaluate whether the inoculation improved plants’ performance through the increase in photosynthetic efficiency to control PepGMV. The results showed that despite PepGMV infection, the plants inoculated with some isolates of Bacillus spp. had a healthy photosynthetic mechanism, as the photochemical parameters and gas exchange increased. The maximum photochemical quantum yield of PSII (Fv/Fm) of plants with PepGMV and inoculated with Bacillus isolates (M9, K46, and K47) increased (7.85, 7.09, and 7.77%, respectively) with respect to uninoculated controls. In inoculated plants, the CO2 assimilation rate increased and the transpiration rate decreased, therefore indicating an increased water use efficiency. This effect was reflected by the less severe symptoms caused by PepGMV in the plants obtained from seeds inoculated with different Bacillus spp. Plants inoculated with K47 isolates showed an increase in fruit yield and quality. This study suggests that it is possible to protect, at the greenhouse level, C. chinense plants from PepGMV through selected rhizobacteria inoculation.
Collapse
|
47
|
Farssi O, Saih R, El Moukhtari A, Oubenali A, Mouradi M, Lazali M, Ghoulam C, Bouizgaren A, Berrougui H, Farissi M. Synergistic effect of Pseudomonas alkylphenolica PF9 and Sinorhizobium meliloti Rm41 on Moroccan alfalfa population grown under limited phosphorus availability. Saudi J Biol Sci 2021; 28:3870-3879. [PMID: 34220242 PMCID: PMC8241706 DOI: 10.1016/j.sjbs.2021.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
This study looked at the synergistic effect of Pseudomonas alkylphenolica PF9 and Sinorhizobium meliloti Rm41 on the Moroccan alfalfa population (Oued Lmaleh) grown under symbiotic nitrogen fixation and limited phosphorus (P) availability. The experiment was conducted in a growth chamber and after two weeks of sowing, the young seedlings were inoculated with Sinorhizobium meliloti Rm41 alone or combined with a suspension of Pseudomonas alkylphenolica PF9. Then, the seedlings were submitted to limited available P (insoluble P using Ca3HPO4) versus a soluble P form (KH2PO4) at a final concentration of 250 μmol P·plant−1·week−1. After two months of P stress, the experiment was evaluated through some agro-physiological and biochemical parameters. The results indicated that the inoculation of alfalfa plants with Sinorhizobium strain alone or combined with Pseudomonas strain significantly (p < 0.001) improved the plant growth, the physiological and the biochemical traits focused in comparison to the uninoculated and P-stressed plants. For most sets of parameters, the improvement was more obvious in plants co-inoculated with both strains than in those inoculated with Sinorhizobium meliloti Rm41 alone. In fact, under limited P-availability, the co-inoculation with two strains significantly (p < 0.01) enhanced the growth of alfalfa plants evaluated by fresh and dry biomasses, plant height and leaf area. The results indicated also that the enhancement noted in plant growth was positively correlated with the shoot and root P contents. Furthermore, the incensement in plant P contents in response to bacterial inoculation improved cell membrane stability, reflected by low malonyldialdehyde (MDA) and electrolyte leakage (EL) contents, and photosynthetic-related parameters such as chlorophyll contents, the maximum quantum yield of PS II (Fv/Fm) and stomatal conductance (gs). Our findings suggest that Pseudomonas alkylphenolica PF9 can act synergistically with Sinorhizobium meliloti Rm41 in promoting alfalfa growth under low-P availability.
Collapse
Affiliation(s)
- Omar Farssi
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
- Polyvalent Laboratory on R&D, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Rabie Saih
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Ahmed El Moukhtari
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Aziz Oubenali
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Mohammed Mouradi
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Mohamed Lazali
- ERP Research Laboratory, Faculty of Natural and Life Sciences and Earth Sciences, University of Khemis Miliana, Algeria
| | - Cherki Ghoulam
- Unit of Plant Biotechnology and Agro-physiology of Symbiosis, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakesh & Mohamed VI Polytechnic University, Ben-Guerir, Morocco
| | - Abdelaziz Bouizgaren
- Unit of Plant Breeding, National Institute for Agronomic Research, Marrakesh (INRA-Marrakech), Morocco
| | - Hicham Berrougui
- Polyvalent Laboratory on R&D, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Mohamed Farissi
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
- Corresponding author at: Polydisciplinary Faculty of Beni-Mella, Sultan Moulay Slimane University, Mghila, PO Box 592, Beni-Mellal 23000, Morocco.
| |
Collapse
|
48
|
Harding CJ, Cadby IT, Moynihan PJ, Lovering AL. A rotary mechanism for allostery in bacterial hybrid malic enzymes. Nat Commun 2021; 12:1228. [PMID: 33623032 PMCID: PMC7902834 DOI: 10.1038/s41467-021-21528-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Bacterial hybrid malic enzymes (MaeB grouping, multidomain) catalyse the transformation of malate to pyruvate, and are a major contributor to cellular reducing power and carbon flux. Distinct from other malic enzyme subtypes, the hybrid enzymes are regulated by acetyl-CoA, a molecular indicator of the metabolic state of the cell. Here we solve the structure of a MaeB protein, which reveals hybrid enzymes use the appended phosphotransacetylase (PTA) domain to form a hexameric sensor that communicates acetyl-CoA occupancy to the malic enzyme active site, 60 Å away. We demonstrate that allostery is governed by a large-scale rearrangement that rotates the catalytic subunits 70° between the two states, identifying MaeB as a new model enzyme for the study of ligand-induced conformational change. Our work provides the mechanistic basis for metabolic control of hybrid malic enzymes, and identifies inhibition-insensitive variants that may find utility in synthetic biology.
Collapse
Affiliation(s)
- Christopher John Harding
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Ian Thomas Cadby
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Patrick Joseph Moynihan
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Andrew Lee Lovering
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Cui C, Wang Z, Su Y, Wang T. New insight into the rapid growth of the Mikania micrantha stem based on DIA proteomic and RNA-Seq analysis. J Proteomics 2021; 236:104126. [PMID: 33540067 DOI: 10.1016/j.jprot.2021.104126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 01/29/2023]
Abstract
Mikania micrantha is one of the world's most invasive plants, which causes severe damage to natural ecosystems and agroforestry systems due to its rapid stem growth. This work investigated the proteomic and transcriptomic profiles of M. micrantha in different stem tissues (pre-internode, post-internode, and internode), as well as in adventitious roots and primary roots with the final goal of elucidating differentially expressed genes and proteins responsible for the rapid growth of stem. The objective was approached by using DIA-based proteomic and RNA-Seq technologies. More than seven giga-transcriptome clean reads were sequenced, and 5196 protein species were identified. Differentially expressed genes identified in all stem tissues were significantly enriched in photosynthesis and carbon fixation, suggesting that the stem possesses a strong photosynthetic capacity in order to maintain the energy supply for this species. Analysis of differentially expressed proteins showed that proteins related to photosystem I/II and the cytochrome b6/f complex, such as D1, D2, and cp43, were also highly accumulated in the adventitious roots, corroborating the transcriptome analysis results. These results provided basic proteomic and transcriptional expression information about the M. micrantha stem and adventitious root, thereby improving our understanding of the molecular mechanism underlying rapid growth in this species. SIGNIFICANCE: This is the first study to investigate the proteomic and transcriptomic profiles of Mikania micrantha, a highly invasive plant, in different stem tissues (pre-internode, post-internode, and internode), as well as in adventitious and primary roots, using the latest DIA-based (data-independent acquisition mode) proteomic and RNA-Seq technologies. A comprehensive study was carried out, and differentially expressed genes and differentially expressed proteins identified in the pre-internode, post-internode, and internode tissues were significantly enriched during photosynthesis and carbon fixation, suggesting that the M. micrantha stem possesses a strong photosynthetic capacity that allows the plant to maintain a high energy supply. Enriched plant hormone signal transduction pathway analysis revealed an interaction between auxin and other phytohormones involved in adventitious root development. The study provided basic data on the molecular mechanism of M. micrantha vegetative propagation and the rapid growth of its stem. The novel scientific content of this study successfully builds upon the limited information currently available on the subject, therefore warranting publication.
Collapse
Affiliation(s)
- Can Cui
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, Shenzhen 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Wushan 483, Guangzhou 510642, China.
| |
Collapse
|
50
|
Henry RJ, Furtado A, Rangan P. Pathways of Photosynthesis in Non-Leaf Tissues. BIOLOGY 2020; 9:E438. [PMID: 33276443 PMCID: PMC7760132 DOI: 10.3390/biology9120438] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 01/12/2023]
Abstract
Plants have leaves as specialised organs that capture light energy by photosynthesis. However, photosynthesis is also found in other plant organs. Photosynthesis may be found in the petiole, stems, flowers, fruits, and seeds. All photosynthesis can contribute to the capture of carbon and growth of the plant. The benefit to the plant of photosynthesis in these other tissues or organs may often be associated with the need to re-capture carbon especially in storage organs that have high respiration rates. Some plants that conduct C3 photosynthesis in the leaves have been reported to use C4 photosynthesis in petioles, stems, flowers, fruits, or seeds. These pathways of non-leaf photosynthesis may be especially important in supporting plant growth under stress and may be a key contributor to plant growth and survival. Pathways of photosynthesis have directionally evolved many times in different plant lineages in response to environmental selection and may also have differentiated in specific parts of the plant. This consideration may be useful in the breeding of crop plants with enhanced performance in response to climate change.
Collapse
Affiliation(s)
- Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; (A.F.); (P.R.)
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; (A.F.); (P.R.)
| | - Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; (A.F.); (P.R.)
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|