1
|
Bachmann M, Schusser GF, Wensch-Dorendorf M, Pisch C, Bochnia M, Santo MM, Netzker H, Woitow G, Thielebein J, Kesting S, Riehl G, Greef JM, Heinichen K, Zeyner A. Carbohydrate digestion in the stomach of horses grazed on pasture, fed hay or hay and oats. J Equine Vet Sci 2024; 141:105152. [PMID: 39074692 DOI: 10.1016/j.jevs.2024.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Concentrations of starch, mono- and disaccharides, fructans, hemicellulose and cellulose were analysed in feed and gastric digesta of horses in relation to acid insoluble ash as a marker indigestible in the stomach. Twenty-four horses were allocated to pasture 24 h/d (PST; n = 4), hay ad libitum (HAY; n = 8), hay ad lib. and oats at 1 g starch/kg body weight (BWT)/meal (OS1; n = 6) and hay ad lib. and oats at 2 g starch/kg BWT/meal (OS2; n = 5). One horse was excluded from the analysis. The horses were fed the ration a minimum of 34 days. Following euthanasia and dissection, digesta was sampled from Pars nonglandularis (PNG) and Pars glandularis (PG). Oat starch concentration in gastric digesta decreased from 309 to 174 g/kg dry matter (DM) in OS1 (44 %-reduction) and from 367 to 261 g/kg DM in OS2 (29 %-reduction) (P < 0.001). Glucose, fructose and sucrose disappeared from gastric digesta distinctly more in PST, HAY and OS1 than in OS2. In PST and HAY, sucrose concentration was completely cleared (P < 0.001). The concentration of fructans was reduced predominantly in PST (84 %-reduction) and HAY (54 %-reduction), mainly in the PNG (P < 0.05). Fructan degradation did not occur in the high-starch diet (OS2). Some evidence for fibre degradation was observed in PST (P < 0.01). Soluble carbohydrates disappear from the stomach dependent on the type of ration, which may lead to changes in the composition of the gastric microbial community and the endogenous response.
Collapse
Affiliation(s)
- Martin Bachmann
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Gerald Fritz Schusser
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Monika Wensch-Dorendorf
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Caroline Pisch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Mandy Bochnia
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Milena Marie Santo
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Hanna Netzker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gerhard Woitow
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jens Thielebein
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Kesting
- Saxon State Office for Environment, Agriculture and Geology, 08543 Pöhl, Germany
| | - Gerhard Riehl
- Saxon State Office for Environment, Agriculture and Geology, 08543 Pöhl, Germany
| | - Jörg Michael Greef
- Institute for Crop and Soil Science, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, 38116 Braunschweig, Germany
| | - Karin Heinichen
- Oberholz Farm for Teaching and Research, University of Leipzig, 04463 Großpösna, Germany
| | - Annette Zeyner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Hadzi-Petrushev N, Stojchevski R, Jakimovska A, Stamenkovska M, Josifovska S, Stamatoski A, Sazdova I, Sopi R, Kamkin A, Gagov H, Mladenov M, Avtanski D. GLUT5-overexpression-related tumorigenic implications. Mol Med 2024; 30:114. [PMID: 39107723 PMCID: PMC11304774 DOI: 10.1186/s10020-024-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5's involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.
Collapse
Affiliation(s)
- Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Anastasija Jakimovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Slavica Josifovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Aleksandar Stamatoski
- Faculty of Dental Medicine, University Clinic for Maxillofacial Surgery in Skopje, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina, 10 000, Kosovo
| | - Andre Kamkin
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
3
|
Ting KKY. Fructose-induced metabolic reprogramming of cancer cells. Front Immunol 2024; 15:1375461. [PMID: 38711514 PMCID: PMC11070519 DOI: 10.3389/fimmu.2024.1375461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Qi D, Zou S, Lu D, Pei X, Huang S, Huang DL, Liu J, Si H, Li Z. Long-term high fructose intake promotes lacrimal gland dysfunction by inducing gut dysbiosis in mice. Exp Eye Res 2023; 234:109573. [PMID: 37442219 DOI: 10.1016/j.exer.2023.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The lacrimal gland is essential for maintaining ocular surface health through the secretion of the aqueous layer of the tear film. It is therefore important to explore the intrinsic and extrinsic factors that affect the structure and function of the lacrimal gland and the mechanisms underlying them. With the prevalence of Westernized diets characterized by high sugar and fat content, the susceptibility to many diseases, including ocular diseases, is increased by inducing dysbiosis of the gut microbiome. Here, we found that the composition, abundance, and diversity of the gut microbiome was significantly altered in mice by drinking 15% high fructose water for one month, as determined by 16S rRNA sequencing. This was accompanied by a significant increase in lipid deposition and inflammatory cell infiltration in the extraorbital lacrimal glands (ELGs) of mice. Transcriptome analysis based on bulk RNA-sequencing revealed abnormal activation of some of several metabolic and immune-related pathways. In addition, the secretory response to stimulation with the cholinergic receptor agonist pilocarpine was significantly reduced. However, when the composition and diversity of the gut microbiome of high fructose intake (HFI)-treated mice were improved by transplanting feces from normal young healthy mice, the pathological alterations in ELG structure, inflammatory cell infiltration, secretory function and transcriptome analysis described above were significantly reversed compared to age-matched control mice. In conclusion, our data suggest that prolonged HFI may cause pathological damage to the structure and function of the ELG through the induction of gut dysbiosis. Restoration of intestinal dysbiosis in HFI-treated mice by fecal transplantation has a potential role in ameliorating these pathological impairments.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Du-Liurui Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Hongli Si
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
5
|
Guccini I, Tang G, To TT, Di Rito L, Le Blanc S, Strobel O, D’Ambrosio M, Pasquini E, Bolis M, Silva P, Kabakci HA, Godbersen S, Alimonti A, Schwank G, Stoffel M. Genetic ablation of ketohexokinase C isoform impairs pancreatic cancer development. iScience 2023; 26:107368. [PMID: 37559908 PMCID: PMC10407955 DOI: 10.1016/j.isci.2023.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Although dietary fructose is associated with an elevated risk for pancreatic cancer, the underlying mechanisms remain elusive. Here, we report that ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, is a driver of PDAC development. We demonstrate that fructose triggers KHK and induces fructolytic gene expression in mouse and human PDAC. Genetic inactivation of KhkC enhances the survival of KPC-driven PDAC even in the absence of high fructose diet. Furthermore, it decreases the viability, migratory capability, and growth of KPC cells in a cell autonomous manner. Mechanistically, we demonstrate that genetic ablation of KHKC strongly impairs the activation of KRAS-MAPK pathway and of rpS6, a downstream target of mTORC signaling. Moreover, overexpression of KHKC in KPC cells enhances the downstream KRAS pathway and cell viability. Our data provide new insights into the role of KHK in PDAC progression and imply that inhibiting KHK could have profound implications for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ilaria Guccini
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Guanghui Tang
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Trang Thuy To
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Laura Di Rito
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, 20156 Milano, Italy
| | - Solange Le Blanc
- European Pancreas Center, Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- European Pancreas Center, Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mariantonietta D’Ambrosio
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland
- Universita’ della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland
- Universita’ della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland
- Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI, 6500 Bellinzona, Switzerland
| | - Pamuditha Silva
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Hasan Ali Kabakci
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland
- Universita’ della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Medicine, University of Padua, 35128 Padua, Italy
- Department of Health Sciences and Technology (D-HEST) ETH Zurich, 8093 Zurich, Switzerland
| | - Gerald Schwank
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Protasoni M, Taanman JW. Remodelling of the Mitochondrial Bioenergetic Pathways in Human Cultured Fibroblasts with Carbohydrates. BIOLOGY 2023; 12:1002. [PMID: 37508431 PMCID: PMC10376623 DOI: 10.3390/biology12071002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mitochondrial oxidative phosphorylation defects underlie many neurological and neuromuscular diseases. Patients' primary dermal fibroblasts are one of the most commonly used in vitro models to study mitochondrial pathologies. However, fibroblasts tend to rely more on glycolysis than oxidative phosphorylation for their energy when cultivated in standard high-glucose medium, rendering it difficult to expose mitochondrial dysfunctions. This study aimed to systematically investigate to which extent the use of galactose- or fructose-based medium switches the fibroblasts' energy metabolism to a more oxidative state. Highly proliferative cells depend more on glycolysis than less proliferative cells. Therefore, we investigated two primary dermal fibroblast cultures from healthy subjects: a highly proliferative neonatal culture and a slower-growing adult culture. Cells were cultured with 25 mM glucose, galactose or fructose, and 4 mM glutamine as carbon sources. Compared to glucose, both galactose and fructose reduce the cellular proliferation rate, but the galactose-induced drop in proliferation is much more profound than the one observed in cells cultivated in fructose. Both galactose and fructose result in a modest increase in mitochondrial content, including mitochondrial DNA, and a disproportionate increase in protein levels, assembly, and activity of the oxidative phosphorylation enzyme complexes. Galactose- and fructose-based media induce a switch of the prevalent biochemical pathway in cultured fibroblasts, enhancing aerobic metabolism when compared to glucose-based medium. While both galactose and fructose stimulate oxidative phosphorylation to a comparable degree, galactose decreases the cellular proliferation rate more than fructose, suggesting that a fructose-based medium is a better choice when studying partial oxidative phosphorylation defects in patients' fibroblasts.
Collapse
Affiliation(s)
- Margherita Protasoni
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus (M12), Rowland Hill Street, London NW3 2PF, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus (M12), Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
7
|
Knowledge of fermentation dynamics allows for reducing sugar levels in yeast-leavened pastry. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2022.103601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Chen C, Zhang Z, Liu C, Wang B, Liu P, Fang S, Yang F, You Y, Li X. ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nat Commun 2022; 13:6108. [PMID: 36245009 PMCID: PMC9573865 DOI: 10.1038/s41467-022-33859-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Excessive consumption of fructose in the Western diet contributes to cancer development. However, it is still unclear how cancer cells coordinate glucose and fructose metabolism during tumor malignant progression. We demonstrate here that glioblastoma multiforme (GBM) cells switch their energy supply from glycolysis to fructolysis in response to glucose deprivation. Mechanistically, glucose deprivation induces expression of two essential fructolytic proteins GLUT5 and ALDOB through selectively activating translation of activating transcription factor 4 (ATF4). Functionally, genetic or pharmacological disruption of ATF4-dependent fructolysis significantly inhibits growth and colony formation of GBM cells in vitro and GBM growth in vivo. In addition, ATF4, GLUT5, and ALDOB levels positively correlate with each other in GBM specimens and are poor prognostic indicators in GBM patients. This work highlights ATF4-dependent fructolysis as a metabolic feature and a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Chao Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhenxing Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Caiyun Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bin Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shu Fang
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fan Yang
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yongping You
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China ,grid.89957.3a0000 0000 9255 8984Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Xinjian Li
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
9
|
Competing paradigms of obesity pathogenesis: energy balance versus carbohydrate-insulin models. Eur J Clin Nutr 2022; 76:1209-1221. [PMID: 35896818 PMCID: PMC9436778 DOI: 10.1038/s41430-022-01179-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
The obesity pandemic continues unabated despite a persistent public health campaign to decrease energy intake (“eat less”) and increase energy expenditure (“move more”). One explanation for this failure is that the current approach, based on the notion of energy balance, has not been adequately embraced by the public. Another possibility is that this approach rests on an erroneous paradigm. A new formulation of the energy balance model (EBM), like prior versions, considers overeating (energy intake > expenditure) the primary cause of obesity, incorporating an emphasis on “complex endocrine, metabolic, and nervous system signals” that control food intake below conscious level. This model attributes rising obesity prevalence to inexpensive, convenient, energy-dense, “ultra-processed” foods high in fat and sugar. An alternative view, the carbohydrate-insulin model (CIM), proposes that hormonal responses to highly processed carbohydrates shift energy partitioning toward deposition in adipose tissue, leaving fewer calories available for the body’s metabolic needs. Thus, increasing adiposity causes overeating to compensate for the sequestered calories. Here, we highlight robust contrasts in how the EBM and CIM view obesity pathophysiology and consider deficiencies in the EBM that impede paradigm testing and refinement. Rectifying these deficiencies should assume priority, as a constructive paradigm clash is needed to resolve long-standing scientific controversies and inform the design of new models to guide prevention and treatment. Nevertheless, public health action need not await resolution of this debate, as both models target processed carbohydrates as major drivers of obesity.
Collapse
|
10
|
Gomez-Pinilla F. Editorial to special issue of BBADIS: Brain-gut interaction and cognitive control. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166396. [PMID: 35306166 DOI: 10.1016/j.bbadis.2022.166396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, USA.
| |
Collapse
|
11
|
Quantification of Glucose, fructose and 1,5-Anhydroglucitol in plasma of diabetic patients by ultra performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1200:123277. [PMID: 35533424 DOI: 10.1016/j.jchromb.2022.123277] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 05/01/2022] [Indexed: 11/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM), a worldwide disease that affects the quality of human life and social development. Glucose, fructose and 1,5-anhydroglucitol are closely related to diabetes mellitus. However, few methods have been reported to achieve these three carbohydrates in the blood simultaneously. In this study, a UPLC-MS/MS method allowing to quantify glucose, fructose, and 1,5-anhydroglucitol simultaneously in human plasma was developed. The analysis was performed by UPLC-MS/MS system with HILIC column. This new method provided satisfactory results in terms of calibration curves with good linearity (R2 > 0.99) over 3 order of magnitude range, precision (coefficient of variation of intra-day and inter-day: 0.72-10.23% and 2.21-13.8%), accuracy (results of intra-day and inter-day: 97-113%, 100-107%), matrix effects (87-109%), recovery (93-119%), carry-over (0.004-0.014%), as well as stability (0.04-6.9%) within the acceptance criteria. The reproducible, precise and accurate method with suitable dynamic ranges was successfully applied to the analysis of glucose, fructose and 1,5-anhydroglucitol in T2DM under different pathophysiological conditions.
Collapse
|
12
|
Tee SS, Kim N, Cullen Q, Eskandari R, Mamakhanyan A, Srouji RM, Chirayil R, Jeong S, Shakiba M, Kastenhuber ER, Chen S, Sigel C, Lowe SW, Jarnagin WR, Thompson CB, Schietinger A, Keshari KR. Ketohexokinase-mediated fructose metabolism is lost in hepatocellular carcinoma and can be leveraged for metabolic imaging. SCIENCE ADVANCES 2022; 8:eabm7985. [PMID: 35385296 PMCID: PMC8985914 DOI: 10.1126/sciadv.abm7985] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The ability to break down fructose is dependent on ketohexokinase (KHK) that phosphorylates fructose to fructose-1-phosphate (F1P). We show that KHK expression is tightly controlled and limited to a small number of organs and is down-regulated in liver and intestinal cancer cells. Loss of fructose metabolism is also apparent in hepatocellular adenoma and carcinoma (HCC) patient samples. KHK overexpression in liver cancer cells results in decreased fructose flux through glycolysis. We then developed a strategy to detect this metabolic switch in vivo using hyperpolarized magnetic resonance spectroscopy. Uniformly deuterating [2-13C]-fructose and dissolving in D2O increased its spin-lattice relaxation time (T1) fivefold, enabling detection of F1P and its loss in models of HCC. In summary, we posit that in the liver, fructolysis to F1P is lost in the development of cancer and can be used as a biomarker of tissue function in the clinic using metabolic imaging.
Collapse
Affiliation(s)
- Sui Seng Tee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathaniel Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quinlan Cullen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arsen Mamakhanyan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rami M. Srouji
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Chirayil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sangmoo Jeong
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mojdeh Shakiba
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward R. Kastenhuber
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shuibing Chen
- Weill Cornell Medical College, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlie Sigel
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R. Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B. Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayvan R. Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
13
|
Febbraio MA, Karin M. "Sweet death": Fructose as a metabolic toxin that targets the gut-liver axis. Cell Metab 2021; 33:2316-2328. [PMID: 34619076 PMCID: PMC8665123 DOI: 10.1016/j.cmet.2021.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Glucose and fructose are closely related simple sugars, but fructose has been associated more closely with metabolic disease. Until the 1960s, the major dietary source of fructose was fruit, but subsequently, high-fructose corn syrup (HFCS) became a dominant component of the Western diet. The exponential increase in HFCS consumption correlates with the increased incidence of obesity and type 2 diabetes mellitus, but the mechanistic link between these metabolic diseases and fructose remains tenuous. Although dietary fructose was thought to be metabolized exclusively in the liver, evidence has emerged that it is also metabolized in the small intestine and leads to intestinal epithelial barrier deterioration. Along with the clinical manifestations of hereditary fructose intolerance, these findings suggest that, along with the direct effect of fructose on liver metabolism, the gut-liver axis plays a key role in fructose metabolism and pathology. Here, we summarize recent studies on fructose biology and pathology and discuss new opportunities for prevention and treatment of diseases associated with high-fructose consumption.
Collapse
Affiliation(s)
- Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
14
|
Ludwig DS, Aronne LJ, Astrup A, de Cabo R, Cantley LC, Friedman MI, Heymsfield SB, Johnson JD, King JC, Krauss RM, Lieberman DE, Taubes G, Volek JS, Westman EC, Willett WC, Yancy WS, Ebbeling CB. The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am J Clin Nutr 2021; 114:1873-1885. [PMID: 34515299 PMCID: PMC8634575 DOI: 10.1093/ajcn/nqab270] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
According to a commonly held view, the obesity pandemic is caused by overconsumption of modern, highly palatable, energy-dense processed foods, exacerbated by a sedentary lifestyle. However, obesity rates remain at historic highs, despite a persistent focus on eating less and moving more, as guided by the energy balance model (EBM). This public health failure may arise from a fundamental limitation of the EBM itself. Conceptualizing obesity as a disorder of energy balance restates a principle of physics without considering the biological mechanisms that promote weight gain. An alternative paradigm, the carbohydrate-insulin model (CIM), proposes a reversal of causal direction. According to the CIM, increasing fat deposition in the body-resulting from the hormonal responses to a high-glycemic-load diet-drives positive energy balance. The CIM provides a conceptual framework with testable hypotheses for how various modifiable factors influence energy balance and fat storage. Rigorous research is needed to compare the validity of these 2 models, which have substantially different implications for obesity management, and to generate new models that best encompass the evidence.
Collapse
Affiliation(s)
- David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Louis J Aronne
- Comprehensive Weight Control Center, Weill Cornell Medicine, New York, NY, USA
| | - Arne Astrup
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mark I Friedman
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Nutrition Science Initiative, San Diego, CA, USA
| | - Steven B Heymsfield
- Metabolism & Body Composition Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Personalized Therapeutic Nutrition, Vancouver, British Columbia, Canada
| | - Janet C King
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, USA
| | - Ronald M Krauss
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gary Taubes
- Nutrition Science Initiative, San Diego, CA, USA
| | - Jeff S Volek
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Eric C Westman
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Walter C Willett
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - William S Yancy
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Cara B Ebbeling
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Dakic T, Lakic I, Zec M, Takic M, Stojiljkovic M, Jevdjovic T. Fructose-rich diet and walnut supplementation differently regulate rat hypothalamic and hippocampal glucose transporters expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5984-5991. [PMID: 33856052 DOI: 10.1002/jsfa.11252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nutritional modulations may be considered a strategy to protect mental health. Neuronal homeostasis is highly dependent on the availability of glucose, which represents the primary energy source for the brain. In this study, we evaluated the effects of walnut intake and fructose-rich diet on the expression of glucose transporters (GLUTs) in two rat brain regions: hypothalamus and hippocampus. RESULTS Our results show that walnut supplementation of fructose-fed animals restored the hypothalamic content of GLUT1 and GLUT3 protein. Furthermore, walnut intake did not affect increased hypothalamic GLUT2 content upon fructose consumption. These effects were accompanied by distinctive alterations of hippocampal GLUTs levels. Specifically, walnut intake increased GLUT1 content, whereas GLUT2 protein was decreased within the rat hippocampus after both individual and combined treatments. CONCLUSION Overall, our study suggests that walnut supplementation exerted modulatory effects on the glucose transporters within specific brain regions in the presence of developed metabolic disorder. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry 'Ivan Djaja', Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry 'Ivan Djaja', Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Manja Zec
- Centre of Excellence for Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Takic
- Centre of Excellence for Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Department for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry 'Ivan Djaja', Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Li Z, Hoshino Y, Tran L, Gaucher EA. Phylogenetic articulation of uric acid evolution in mammals and how it informs a therapeutic uricase. Mol Biol Evol 2021; 39:6413644. [PMID: 34718698 PMCID: PMC8760943 DOI: 10.1093/molbev/msab312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The role of uric acid during primate evolution has remained elusive ever since it was discovered over 100 years ago that humans have unusually high levels of the small molecule in our serum. It has been difficult to generate a neutral or adaptive explanation in part because the uricase enzyme evolved to become a pseudogene in apes thus masking typical signals of sequence evolution. Adding to the difficulty is a lack of clarity on the functional role of uric acid in apes. One popular hypothesis proposes that uric acid is a potent antioxidant that increased in concentration to compensate for the lack of vitamin C synthesis in primate species ∼65 million years ago (Mya). Here, we have expanded on our previous work with resurrected ancient uricase proteins to better resolve the reshaping of uricase enzymatic activity prior to ape evolution. Our results suggest that the pivotal death-knell to uricase activity occurred between 20-30 Mya despite small sequential modifications to its catalytic efficiency for the tens of millions of years since primates lost their ability to synthesize vitamin C, and thus the two appear uncorrelated. We also use this opportunity to demonstrate how molecular evolution can contribute to biomedicine by presenting ancient uricases to human immune cells that assay for innate reactivity against foreign antigens. A highly stable and highly catalytic ancient uricase is shown to elicit a lower immune response in more human haplotypes than other uricases currently in therapeutic development.
Collapse
Affiliation(s)
- Ze Li
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Yosuke Hoshino
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Lily Tran
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Eric A Gaucher
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| |
Collapse
|
17
|
Jiang H, Lin Q, Ma L, Luo S, Jiang X, Fang J, Lu Z. Fructose and fructose kinase in cancer and other pathologies. J Genet Genomics 2021; 48:531-539. [PMID: 34326012 DOI: 10.1016/j.jgg.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
Fructose metabolism and fructose kinase KHK-C/A are key factors in the development of lipid oversynthesis-promoted metabolic disorders and cancer. Here, we summarize and discuss the current knowledge about the specific features of fructose metabolism and the distinct roles of KHK-C and KHK-A in metabolic liver diseases and their relevant metabolic disorders and cancer, and we highlight the specific protein kinase activity of KHK-A in tumor development. In addition, different approaches that have been used to inhibit KHK and the exploration of KHK inhibitors in clinical treatment are introduced.
Collapse
Affiliation(s)
- Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Qian Lin
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Leina Ma
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Shudi Luo
- Zhejiang University Cancer Center, Hangzhou 310029, China
| | - Xiaoming Jiang
- Zhejiang University Cancer Center, Hangzhou 310029, China
| | - Jing Fang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China.
| |
Collapse
|
18
|
Effects of School-Based Interventions on Reducing Sugar-Sweetened Beverage Consumption among Chinese Children and Adolescents. Nutrients 2021; 13:nu13061862. [PMID: 34070736 PMCID: PMC8226445 DOI: 10.3390/nu13061862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
We set up a series of school-based interventions on the basis of an ecological model targeting sugar-sweetened beverage (SSB) reduction in Chinese elementary and middle schools and evaluated the effects. A total of 1046 students from Chinese elementary and middle schools were randomly recruited in an intervention group, as were 1156 counterparts in a control group. The interventions were conducted in the intervention schools for one year. The participants were orally instructed to answer all the questionnaires by themselves at baseline and after intervention. The difference in difference statistical approach was used to identify the effects exclusively attributable to the interventions. There were differences in grade composition and no difference in sex distribution between the intervention and control groups. After adjusting for age, sex, and group differences at baseline, a significant reduction in SSB intake was found in the intervention group post intervention, with a decrease of 35.0 mL/day (p = 0.034). Additionally, the frequency of SSB consumption decreased by 0.2 times/day (p = 0.071). The students in the elementary schools with interventions significantly reduced their SSB intake by 61.6 mL/day (p = 0.002) and their frequency of SSB consumption by 0.3 times/day (p = 0.017) after the intervention. The boys in the intervention group had an intervention effect of a 50.2 mL/day reduction in their SSB intake (p = 0.036). School-based interventions were effective in reducing SSB consumption, especially among younger ones. The boys were more responsive to the interventions than the girls. (ChiCTR, ChiCTR1900020781.)
Collapse
|
19
|
Waehler R. Fatty acids: facts vs. fiction. INT J VITAM NUTR RES 2021:1-21. [PMID: 34041926 DOI: 10.1024/0300-9831/a000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the last 100 years official dietary guidelines have recommended an increased consumption of fats derived from seeds while decreasing the consumption of traditional fats, especially saturated fats. These recommendations are being challenged by recent studies. Furthermore, the increased use of refining processes in fat production had deleterious health effects. Today, the number of high-quality studies on fatty acids is large enough to make useful recommendations on clinical application and everyday practice. Saturated fats have many beneficial functions and palmitic acid appears to be problematic only when it is synthesized due to excess fructose consumption. Trans fatty acids were shown to be harmful when they are manmade but beneficial when of natural origin. Conjugated linoleic acid has many benefits but the isomer mix that is available in supplement form differs from its natural origin and may better be avoided. The ω3 fatty acid linolenic acid has rather limited use as an anti-inflammatory agent - a fact that is frequently overlooked. On the other hand, the targeted use of long chain ω3 fatty acids based on blood analysis has great potential to supplement or even be an alternative to various pharmacological therapies. At the same time ω6 fatty acids like linoleic acid and arachidonic acid have important physiological functions and should not be avoided but their consumption needs to be balanced with long chain ω3 fatty acids. The quality and quantity of these fats together with appropriate antioxidative protection are critical for their positive health effects.
Collapse
|
20
|
Shepherd EL, Saborano R, Northall E, Matsuda K, Ogino H, Yashiro H, Pickens J, Feaver RE, Cole BK, Hoang SA, Lawson MJ, Olson M, Figler RA, Reardon JE, Nishigaki N, Wamhoff BR, Günther UL, Hirschfield G, Erion DM, Lalor PF. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. JHEP Rep 2020; 3:100217. [PMID: 33490936 PMCID: PMC7807164 DOI: 10.1016/j.jhepr.2020.100217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Increasing evidence highlights dietary fructose as a major driver of non-alcoholic fatty liver disease (NAFLD) pathogenesis, the majority of which is cleared on first pass through the hepatic circulation by enzymatic phosphorylation to fructose-1-phosphate via the ketohexokinase (KHK) enzyme. Without a current approved therapy, disease management emphasises lifestyle interventions, but few patients adhere to such strategies. New targeted therapies are urgently required. Methods We have used a unique combination of human liver specimens, a murine dietary model of NAFLD and human multicellular co-culture systems to understand the hepatocellular consequences of fructose administration. We have also performed a detailed nuclear magnetic resonance-based metabolic tracing of the fate of isotopically labelled fructose upon administration to the human liver. Results Expression of KHK isoforms is found in multiple human hepatic cell types, although hepatocyte expression predominates. KHK knockout mice show a reduction in serum transaminase, reduced steatosis and altered fibrogenic response on an Amylin diet. Human co-cultures exposed to fructose exhibit steatosis and activation of lipogenic and fibrogenic gene expression, which were reduced by pharmacological inhibition of KHK activity. Analysis of human livers exposed to 13C-labelled fructose confirmed that steatosis, and associated effects, resulted from the accumulation of lipogenic precursors (such as glycerol) and enhanced glycolytic activity. All of these were dose-dependently reduced by administration of a KHK inhibitor. Conclusions We have provided preclinical evidence using human livers to support the use of KHK inhibition to improve steatosis, fibrosis, and inflammation in the context of NAFLD. Lay summary We have used a mouse model, human cells, and liver tissue to test how exposure to fructose can cause the liver to store excess fat and become damaged and scarred. We have then inhibited a key enzyme within the liver that is responsible for fructose metabolism. Our findings show that inhibition of fructose metabolism reduces liver injury and fibrosis in mouse and human livers and thus this may represent a potential route for treating patients with fatty liver disease in the future.
Collapse
Key Words
- ALD, alcohol-related cirrhosis
- ALT, alanine transaminase
- APRI, AST to Platelet Ratio Index
- AST, aspartate transaminase
- BEC, biliary epithelial cells
- BSA, bovine serum albumin
- CT, computed tomography
- DNL, de novo lipogenesis
- FIB4, fibrosis-4
- Fibrosis
- Fructose
- G/F, glucose/fructose
- HSCs, hepatic stellate cells
- HSECs, hepatic sinusoidal endothelial cells
- HSQC, heteronuclear single quantum coherence
- IGF, insulin-like growth factor
- KHK, ketohexokinase
- KO, knockout
- LGLI, low glucose and insulin
- Metabolism
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- NPCs, non-parenchymal cells
- PBC, primary biliary cholangitis
- PDGF, platelet-derived growth factor
- PSC, primary sclerosing cholangitis
- TG, triglyceride
- TGFB, transforming growth factor beta
- TIMP-1, Tissue Inhibitor of Matrix metalloproteinase-1
- Treatment
- WT, wild-type
- aLMF, activated liver myofibroblasts
Collapse
Affiliation(s)
- Emma L Shepherd
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Raquel Saborano
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ellie Northall
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kae Matsuda
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | - Hitomi Ogino
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | - Hiroaki Yashiro
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | - Jason Pickens
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Nobuhiro Nishigaki
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | | | - Ulrich L Günther
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gideon Hirschfield
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Toronto Centre for Liver Disease, University of Toronto, Toronto General Hospital, Toronto, Canada
| | - Derek M Erion
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | - Patricia F Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Shah A, Dagdeviren S, Lewandowski JP, Schmider AB, Ricci-Blair EM, Natarajan N, Hundal H, Noh HL, Friedline RH, Vidoudez C, Kim JK, Wagers AJ, Soberman RJ, Lee RT. Thioredoxin Interacting Protein Is Required for a Chronic Energy-Rich Diet to Promote Intestinal Fructose Absorption. iScience 2020; 23:101521. [PMID: 32927265 PMCID: PMC7495107 DOI: 10.1016/j.isci.2020.101521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
Increased consumption of fats and added sugars has been associated with an increase in metabolic syndromes. Here we show that mice chronically fed an energy-rich diet (ERD) with high fat and moderate sucrose have enhanced the absorption of a gastrointestinal fructose load, and this required expression of the arrestin domain protein Txnip in the intestinal epithelial cells. ERD feeding induced gene and protein expression of Glut5, and this required the expression of Txnip. Furthermore, Txnip interacted with Rab11a, a small GTPase that facilitates the apical localization of Glut5. We also demonstrate that ERD promoted Txnip/Glut5 complexes in the apical intestinal epithelial cell. Our findings demonstrate that ERD facilitates fructose absorption through a Txnip-dependent mechanism in the intestinal epithelial cell, suggesting that increased fructose absorption could potentially provide a mechanism for worsening of metabolic syndromes in the setting of a chronic ERD.
Collapse
Affiliation(s)
- Anu Shah
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jordan P. Lewandowski
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Angela B. Schmider
- Molecular Imaging Core and Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Elisabeth M. Ricci-Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Niranjana Natarajan
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Henna Hundal
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Randall H. Friedline
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Jason K. Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Roy J. Soberman
- Molecular Imaging Core and Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Yang J, Yang S, Wang Q, Pang J, Wang Y, Wang H, Fu X. KHK-A promotes the proliferation of oesophageal squamous cell carcinoma through the up-regulation of PRPS1. Arab J Gastroenterol 2020; 22:40-46. [PMID: 32928708 DOI: 10.1016/j.ajg.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND STUDY AIMS The metabolism of dietary fructose by ketohexokinase (KHK) is an important step in glucose metabolism in various tumour types. However, the expression, function and underlying mechanisms of KHK in oesophageal squamous cell carcinoma (ESCC) remain largely unclear. The objective of this study was to investigate the effects of KHK-A, a peripheral isoform of KHK, on the proliferation of ESCC cell lines. MATERIAL AND METHODS The function and mechanism of KHK-A in ESCC cells were investigated by constructing stable KHK-A-knockdown and -overexpressing ESCC cell lines (KYSE410 and KYSE150, respectively). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and colony formation assays were used to analyse the effects of KHK-A on cell proliferation, cell cycle and colony formation, respectively. KHK-A and phosphoribosyl pyrophosphate synthetase isoform 1 (PRPS1) mRNA and protein expressions in several ESCC cell lines were determined using routine reverse transcription-polymerase chain reaction and immunoblotting, respectively. KHK and PRPS1 expressions in ESCC tumour tissues and corresponding adjacent non-tumour tissues were evaluated according to the gene expression omnibus (GEO) database (GSE20347). RESULTS In vitro experiments showed that KHK-A significantly promoted cell proliferation by modulating the G1/S phase transition in the cell cycle, which was probably regulated by PRPS1 expression. GEO database-based analysis showed that KHK levels were significantly higher in the ESCC tissues than in the corresponding adjacent non-tumour tissues. Pearson's correlation coefficient analysis showed that KHK expression in ESCC cell lines and tissues was significantly positively associated with the up-regulation of PRPS1, suggesting that KHK-A levels regulate PRPS1 expression in ESCC. CONCLUSION KHK-A may serve as a driving gene in ESCC for the activation of PRPS1, resulting in the up-regulation of PRPS1. This could lead to enhanced nucleic acid synthesis for tumourigenesis. Our study showed that KHK-A is a potential target for ESCC diagnosis and therapy.
Collapse
Affiliation(s)
- Jie Yang
- Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Senlin Yang
- Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Qi Wang
- Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jing Pang
- Endoscopy Center, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yuan Wang
- Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Huimin Wang
- Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Xiaohong Fu
- Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
23
|
Zhu Z, He Y, Wang Z, He X, Zang J, Guo C, Jia X, Ren Y, Shan C, Sun J, Huang J, Ding G, Wu F. The associations between sugar-sweetened beverage intake and cardiometabolic risks in Chinese children and adolescents. Pediatr Obes 2020; 15:e12634. [PMID: 32196990 DOI: 10.1111/ijpo.12634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/08/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The intake of sugar-sweetened beverages (SSBs) has been linked to an increased risk of cardiometabolic diseases. OBJECTIVES This study aims to examine associations between SSB intake and cardiometabolic risks among Chinese children and adolescences. METHODS Data from 3958 participants aged 6-17 years old were obtained in Shanghai, China, from September to October 2015. A 3-day dietary record and a food-frequency questionnaire (FFQ) were applied to assess SSB consumption and frequency. Anthropometric and laboratory measurements were conducted to measure cardiometabolic indicators. RESULTS After adjusting for age, sex, daily energy intake, pubertal stage, sedentary time, maternal education, and household income, SSB consumption was positively associated with serum total cholesterol and low-density lipoprotein-cholesterol (LDL-C), while it was inversely associated with systolic blood pressure (P < .05). The participants in the highest intake category (≥201.7 mL/day) of SSB consumption had 0.10 (95%CI, 0.02-0.18) mmol/L higher total cholesterol and 0.09 (95%CI, 0.03-0.16) mmol/L higher LDL-C levels than the nonconsumption group (0 mL/day). There was a quasi-U-shaped trend in LDL-C across the categories of >0 mL/day SSB consumption. SSB frequency was positively associated with BMI (P = .04). CONCLUSIONS SSB intake was positively associated with serum cholesterol and was weakly associated with BMI in Chinese children and adolescents, independent of energy intake.
Collapse
Affiliation(s)
- Zhenni Zhu
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China.,National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yuna He
- National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Zhengyuan Wang
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Xin He
- Division of Non-Communicable Diseases Prevention and Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Jiajie Zang
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Changyi Guo
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Xiaodong Jia
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Yaping Ren
- Department of Public Health, Shanghai Pudong District Centre for Disease Control and Prevention, Shanghai, China
| | - Chengdi Shan
- Department of Public Health, Shanghai Huangpu District Centre for Disease Control and Prevention, Shanghai, China
| | - Jing Sun
- National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Jian Huang
- National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Gangqiang Ding
- National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Fan Wu
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
24
|
Jang C, Wada S, Yang S, Gosis B, Zeng X, Zhang Z, Shen Y, Lee G, Arany Z, Rabinowitz JD. The small intestine shields the liver from fructose-induced steatosis. Nat Metab 2020; 2:586-593. [PMID: 32694791 PMCID: PMC8020332 DOI: 10.1038/s42255-020-0222-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Per capita fructose consumption has increased 100-fold over the last century1. Epidemiological studies suggest that excessive fructose consumption, and especially consumption of sweet drinks, is associated with hyperlipidaemia, non-alcoholic fatty liver disease, obesity and diabetes2-7. Fructose metabolism begins with its phosphorylation by the enzyme ketohexokinase (KHK), which exists in two alternatively spliced forms8. The more active isozyme, KHK-C, is expressed most strongly in the liver, but also substantially in the small intestine9,10 where it drives dietary fructose absorption and conversion into other metabolites before fructose reaches the liver11-13. It is unclear whether intestinal fructose metabolism prevents or contributes to fructose-induced lipogenesis and liver pathology. Here we show that intestinal fructose catabolism mitigates fructose-induced hepatic lipogenesis. In mice, intestine-specific KHK-C deletion increases dietary fructose transit to the liver and gut microbiota and sensitizes mice to fructose's hyperlipidaemic effects and hepatic steatosis. In contrast, intestine-specific KHK-C overexpression promotes intestinal fructose clearance and decreases fructose-induced lipogenesis. Thus, intestinal fructose clearance capacity controls the rate at which fructose can be safely ingested. Consistent with this, we show that the same amount of fructose is more strongly lipogenic when drunk than eaten, or when administered as a single gavage, as opposed to multiple doses spread over 45 min. Collectively, these data demonstrate that fructose induces lipogenesis when its dietary intake rate exceeds the intestinal clearance capacity. In the modern context of ready food availability, the resulting fructose spillover drives metabolic syndrome. Slower fructose intake, tailored to intestinal capacity, can mitigate these consequences.
Collapse
Affiliation(s)
- Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Shogo Wada
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Yang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bridget Gosis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xianfeng Zeng
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Zhaoyue Zhang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yihui Shen
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gina Lee
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
25
|
Tajan M, Vousden KH. Dietary Approaches to Cancer Therapy. Cancer Cell 2020; 37:767-785. [PMID: 32413275 DOI: 10.1016/j.ccell.2020.04.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/25/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
The concept that dietary changes could improve the response to cancer therapy is extremely attractive to many patients, who are highly motivated to take control of at least some aspect of their treatment. Growing insight into cancer metabolism is highlighting the importance of nutrient supply to tumor development and therapeutic response. Cancers show diverse metabolic requirements, influenced by factors such as tissue of origin, microenvironment, and genetics. Dietary modulation will therefore need to be matched to the specific characteristics of both cancers and treatment, a precision approach requiring a detailed understanding of the mechanisms that determine the metabolic vulnerabilities of each cancer.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
26
|
Effects of PKB/Akt inhibitors on insulin-stimulated lipogenesis and phosphorylation state of lipogenic enzymes in white adipose tissue. Biochem J 2020; 477:1373-1389. [PMID: 32215608 DOI: 10.1042/bcj20190788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022]
Abstract
We investigated acute effects of two allosteric protein kinase B (PKB) inhibitors, MK-2206 and Akti-1/2, on insulin-stimulated lipogenesis in rat epididymal adipocytes incubated with fructose as carbohydrate substrate. In parallel, the phosphorylation state of lipogenic enzymes in adipocytes and incubated epididymal fat pads was monitored by immunoblotting. Preincubation of rat epididymal adipocytes with PKB inhibitors dose-dependently inhibited the following: insulin-stimulated lipogenesis, increased PKB Ser473 phosphorylation, increased PKB activity and decreased acetyl-CoA carboxylase (ACC) Ser79 phosphorylation. In contrast, the effect of insulin to decrease the phosphorylation of pyruvate dehydrogenase (PDH) at Ser293 and Ser300 was not abolished by PKB inhibition. Insulin treatment also induced ATP-citrate lyase (ACL) Ser454 phosphorylation, but this effect was less sensitive to PKB inhibitors than ACC dephosphorylation by insulin. In incubated rat epididymal fat pads, Akti-1/2 treatment reversed insulin-induced ACC dephosphorylation, while ACL phosphorylation by insulin was maintained. ACL and ACC purified from white adipose tissue were poor substrates for PKBα in vitro. However, effects of wortmannin and torin, along with Akti-1/2 and MK-2206, on recognized PKB target phosphorylation by insulin were similar to their effects on insulin-induced ACL phosphorylation, suggesting that PKB could be the physiological kinase for ACL phosphorylation by insulin. In incubated epididymal fat pads from wild-type versus ACC1/2 S79A/S212A knockin mice, effects of insulin to increase lipogenesis from radioactive fructose or from radioactive acetate were reduced but not abolished. Together, the results support a key role for PKB in mediating insulin-stimulated lipogenesis by decreasing ACC phosphorylation, but not by decreasing PDH phosphorylation.
Collapse
|
27
|
Pérez-Corredor PA, Gutiérrez-Vargas JA, Ciro-Ramírez L, Balcazar N, Cardona-Gómez GP. High fructose diet-induced obesity worsens post-ischemic brain injury in the hippocampus of female rats. Nutr Neurosci 2020; 25:122-136. [DOI: 10.1080/1028415x.2020.1724453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- P. A. Pérez-Corredor
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, SIU, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - J. A. Gutiérrez-Vargas
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, SIU, Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Faculty of Health Sciences, Corporación Universitaria Remington, Medellin, Colombia
| | - L. Ciro-Ramírez
- Faculty of Health Sciences, Corporación Universitaria Remington, Medellin, Colombia
| | - Norman Balcazar
- Molecular Genetics Group, University of Antioquia, Medellin, Colombia
- Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - G. P. Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, SIU, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| |
Collapse
|
28
|
Kroemer G, López-Otín C, Madeo F, de Cabo R. Carbotoxicity-Noxious Effects of Carbohydrates. Cell 2019; 175:605-614. [PMID: 30340032 DOI: 10.1016/j.cell.2018.07.044] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/18/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Modern nutrition is often characterized by the excessive intake of different types of carbohydrates ranging from digestible polysaccharides to refined sugars that collectively mediate noxious effects on human health, a phenomenon that we refer to as "carbotoxicity." Epidemiological and experimental evidence combined with clinical intervention trials underscore the negative impact of excessive carbohydrate uptake, as well as the beneficial effects of reducing carbs in the diet. We discuss the molecular, cellular, and neuroendocrine mechanisms that link exaggerated carbohydrate intake to disease and accelerated aging as we outline dietary and pharmacologic strategies to combat carbotoxicity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
29
|
Jin C, Gong X, Shang Y. GLUT5 increases fructose utilization in ovarian cancer. Onco Targets Ther 2019; 12:5425-5436. [PMID: 31371983 PMCID: PMC6635899 DOI: 10.2147/ott.s205522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Fructose is one of the most common dietary carbohydrates in the whole world, and recent studies have found that fructose consumption is closely related to the oncogenesis and development of tumors, however, very few studies have focused on the fructose in ovarian cancer. GLUT5 (Glucose transporter type 5), as a specific fructose transporter in mammalian cells, has also been found highly expressed in many cancers. Methods: In this study, we investigated the abilities of proliferation, colony formation, and migration of ovarian cancer cells in fructose medium, and then silenced GLUT5 in ovarian cancer cells to explore the role GLUT5 in fructose metabolism in ovarian cancer. Results: The results showed that the ovarian cancer cells had similar abilities of proliferation and migration in fructose medium and glucose medium, but silencing GLUT5 could significantly inhibit these abilities in fructose medium. Meanwhile, we found that GLUT5 was higher expressed in ovarian cancer tissues, and its expression correlated significantly with tumor malignancy and poor survival of ovarian cancer patients. Furthermore, the results of animal experiments also demonstrated that intake too much fructose could prominently increase tumor volume, and silencing GLUT5 could significantly inhibit tumor proliferation. Conclusion: In conclusion, we demonstrate that ovarian cancer cells could utilize fructose for their growth, and restricting the fructose intake or targeting GLUT5 may be efficacious strategies for ovarian cancer therapy.
Collapse
Affiliation(s)
- Cuiping Jin
- Department of Gynaecology and Obstetrics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Xiaojin Gong
- Department of Gynaecology and Obstetrics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Yumin Shang
- Department of Gynaecology and Obstetrics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| |
Collapse
|
30
|
Effective Treatment of Diabetic Cardiomyopathy and Heart Failure with Reconstituted HDL (Milano) in Mice. Int J Mol Sci 2019; 20:ijms20061273. [PMID: 30871282 PMCID: PMC6470758 DOI: 10.3390/ijms20061273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
The risk of heart failure (HF) is prominently increased in patients with type 2 diabetes mellitus. The objectives of this study were to establish a murine model of diabetic cardiomyopathy induced by feeding a high-sugar/high-fat (HSHF) diet and to evaluate the effect of reconstituted HDLMilano administration on established HF in this model. The HSHF diet was initiated at the age of 12 weeks and continued for 16 weeks. To investigate the effect of reconstituted HDLMilano on HF, eight intraperitoneal administrations of MDCO-216 (100 mg/kg protein concentration) or of an identical volume of control buffer were executed with a 48-h interval starting at the age of 28 weeks. The HSHF diet-induced obesity, hyperinsulinemia, and type 2 diabetes mellitus. Diabetic cardiomyopathy was present in HSHF diet mice as evidenced by cardiac hypertrophy, increased interstitial and perivascular fibrosis, and decreased myocardial capillary density. Pressure-volume loop analysis indicated the presence of both systolic and diastolic dysfunction and of decreased cardiac output in HSHF diet mice. Treatment with MDCO-216 reversed pathological remodelling and cardiac dysfunction and normalized wet lung weight, indicating effective treatment of HF. No effect of control buffer injection was observed. In conclusion, reconstituted HDLMilano reverses HF in type 2 diabetic mice.
Collapse
|
31
|
Feng H, Zhang S, Wan JMF, Gui L, Ruan M, Li N, Zhang H, Liu Z, Wang H. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice. Carbohydr Polym 2018; 200:144-153. [DOI: 10.1016/j.carbpol.2018.07.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 01/19/2023]
|
32
|
Gomez-Pinilla F, Yang X. System biology approach intersecting diet and cell metabolism with pathogenesis of brain disorders. Prog Neurobiol 2018; 169:76-90. [PMID: 30059718 PMCID: PMC6231047 DOI: 10.1016/j.pneurobio.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/15/2018] [Indexed: 12/21/2022]
Abstract
The surge in meals high in calories has prompted an epidemic of metabolic disorders around the world such that the elevated incidence of obese and diabetic individuals is alarming. New research indicates that metabolic disorders pose a risk for neurological and psychiatric conditions including stroke, Alzheimer's disease, Huntington's disease, and depression, all of which have a metabolic component. These relationships are rooted to a dysfunctional interaction between molecular processes that regulate energy metabolism and synaptic plasticity. The strong adaptive force of dietary factors on shaping the brain during evolution can be manipulated to transform the interaction between cell bioenergetics and epigenome with the aptitude to promote long-lasting brain healthiness. A thorough understanding of the association between the broad action of nutrients and brain fitness requires high level data processing empowered with the capacity to integrate information from a multitude of molecular entities and pathways. Nutritional systems biology is emerging as a viable approach to elucidate the multiple molecular layers involved in information processing in cells, tissues, and organ systems in response to diet. Information about the wide range of cellular and molecular interactions elicited by foods on the brain and cognitive plasticity is crucial for the design of public health initiatives for curtailing the epidemic of metabolic and brain disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
33
|
Gao W, Li N, Li Z, Xu J, Su C. Ketohexokinase is involved in fructose utilization and promotes tumor progression in glioma. Biochem Biophys Res Commun 2018; 503:1298-1306. [PMID: 30031605 DOI: 10.1016/j.bbrc.2018.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 12/28/2022]
Abstract
Many studies have pinpointed that fructose could be utilized as a carbon source in some cancers, and we also defined that glioma cells could utilize fructose to maintain themselves survival and proliferation depending on GLUT5 expression recently. However, ketohexokinase (KHK), as a key enzyme involved in fructose catabolism, drew less attention in cancers, especially in glioma. In the present study, we first analyzed the expression levels of KHK in glioma tissues and the correlations of KHK expression with clinicopathological variables of patients with glioma. Meanwhile, we detected the effect of silencing KHK on the biological functions of glioma cells in fructose medium. From the results, we found that KHK was expressed at significantly higher level in glioma tissues than in non-tumor brain, and KHK expression was significantly correlated with tumor malignancy and poor survival of glioma patients (p < 0.01). Functionally, knockdown of KHK could significantly inhibit cell proliferation and migration of glioma cells in fructose medium. Furthermore, we investigated the KHK expression level after long-time treatment with fructose, and detected the change of cell biological behaviour, then we found that the expression level of KHK was significantly increased and these cells showed more malignant properties. Taken together, our results suggest that high fructose diet and KHK overexpression are correlated with glioma malignant progression and patients' poor survival, and we believe this hypothesis would open the door for novel therapeutic agents and mentalities for glioma.
Collapse
Affiliation(s)
- Wenbo Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Na Li
- Central Laboratory, Binzhou Medical University Hospital, Binzhou 256600, Shandong, China
| | - Zefu Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Jun Xu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Chunhai Su
- Department of Neurosurgery, Jining NO.1 People's Hospital, Jining, 272011, Shandong, China.
| |
Collapse
|
34
|
Banerjee A, Arvinrad P, Darley M, Laversin SA, Parker R, Rose-Zerilli MJ, Townsend PA, Cutress RI, Beers SA, Houghton FD, Birts CN, Blaydes JP. The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells. Oncotarget 2018; 9:23274-23288. [PMID: 29796188 PMCID: PMC5955399 DOI: 10.18632/oncotarget.25299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
Altered glycolysis is a characteristic of many cancers, and can also be associated with changes in stem cell-like cancer (SCLC) cell populations. We therefore set out to directly examine the effect of glycolysis on SCLC cell phenotype, using a model where glycolysis is stably reduced by adapting the cells to a sugar source other than glucose. Restricting glycolysis using this approach consistently resulted in cells with increased oncogenic potential; including an increase in SCLC cells, proliferation in 3D matrigel, invasiveness, chemoresistance, and altered global gene expression. Tumorigenicity in vivo was also markedly increased. SCLC cells exhibited increased dependence upon alternate metabolic pathways. They also became c-KIT dependent, indicating that their apparent state of maturation is regulated by glycolysis. Single-cell mRNA sequencing identified altered networks of metabolic-, stem- and signaling- gene expression within SCLC-enriched populations in response to glycolytic restriction. Therefore, reduced glycolysis, which may occur in niches within tumors where glucose availability is limiting, can promote tumor aggressiveness by increasing SCLC cell populations, but can also introduce novel, potentially exploitable, vulnerabilities in SCLC cells.
Collapse
Affiliation(s)
- Arindam Banerjee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Pardis Arvinrad
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew Darley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Stéphanie A. Laversin
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Antibody & Vaccine Group, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rachel Parker
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J.J. Rose-Zerilli
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul A. Townsend
- Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, M20 4QL, UK
| | - Ramsey I. Cutress
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stephen A. Beers
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Antibody & Vaccine Group, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Franchesca D. Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charles N. Birts
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jeremy P. Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
35
|
Li D. Is it really good for you to eat fat as much as you could? SCIENCE CHINA. LIFE SCIENCES 2018; 61:363-364. [PMID: 29143278 DOI: 10.1007/s11427-017-9194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
36
|
Ginieis R, Franz EA, Oey I, Peng M. The “sweet” effect: Comparative assessments of dietary sugars on cognitive performance. Physiol Behav 2018; 184:242-247. [DOI: 10.1016/j.physbeh.2017.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
|
37
|
Qian X, Li X, Tan L, Lee JH, Xia Y, Cai Q, Zheng Y, Wang H, Lorenzi PL, Lu Z. Conversion of PRPS Hexamer to Monomer by AMPK-Mediated Phosphorylation Inhibits Nucleotide Synthesis in Response to Energy Stress. Cancer Discov 2018; 8:94-107. [PMID: 29074724 PMCID: PMC5760453 DOI: 10.1158/2159-8290.cd-17-0712] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/12/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
Tumors override energy stress to grow. However, how nucleotide synthesis is regulated under energy stress is unclear. We demonstrate here that glucose deprivation or hypoxia results in the AMPK-mediated phosphorylation of phosphoribosyl pyrophosphate synthetase 1 (PRPS1) S180 and PRPS2 S183, leading to conversion of PRPS hexamers to monomers and thereby inhibiting PRPS1/2 activity, nucleotide synthesis, and nicotinamide adenine dinucleotide (NAD) production. Knock-in of nonphosphorylatable PRPS1/2 mutants, which have uninhibited activity, in brain tumor cells under energy stress exhausts cellular ATP and NADPH and increases reactive oxygen species levels, thereby promoting cell apoptosis. The expression of those mutants inhibits brain tumor formation and enhances the inhibitory effect of the glycolysis inhibitor 2-deoxy-d-glucose on tumor growth. Our findings highlight the significance of recalibrating tumor cell metabolism by fine-tuning nucleotide and NAD synthesis in tumor growth.Significance: Our findings elucidate an instrumental function of AMPK in direct regulation of nucleic acid and NAD synthesis in tumor cells in response to energy stress. AMPK phosphorylates PRPS1/2, converts PRPS1/2 hexamers to monomers, and inhibits PRPS1/2 activity and subsequent nucleotide and NAD synthesis to maintain tumor cell growth and survival. Cancer Discov; 8(1); 94-107. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Xu Qian
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qingsong Cai
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongxia Wang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Cancer Biology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
| |
Collapse
|
38
|
Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, DePinho RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol 2017; 18:e653-e706. [PMID: 29208398 PMCID: PMC6178838 DOI: 10.1016/s1470-2045(17)30698-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.
Collapse
Affiliation(s)
| | - Chi Van Dang
- Ludwig Institute for Cancer Research New York, NY; Wistar Institute, Philadelphia, PA, USA.
| | - David B Agus
- University of Southern California, Beverly Hills, CA, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Alan Ashworth
- University of California San Francisco, San Francisco, CA, USA
| | | | - Roshan Bastani
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Sangeeta Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey A Bluestone
- University of California San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Atul J Butte
- University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - Mark Davis
- California Institute for Technology, Pasadena, CA, USA
| | | | | | - Giulio Draetta
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Lindsay Frazier
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Patricia A Ganz
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Levi Garraway
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Eli Lilly and Company, Boston, MA, USA
| | | | - Sumit Gupta
- Division of Haematology/Oncology, Hospital for Sick Children, Faculty of Medicine and IHPME, University of Toronto, Toronto, Canada
| | - James Heath
- California Institute for Technology, Pasadena, CA, USA
| | - Ruth I Hoffman
- American Childhood Cancer Organization, Beltsville, MD, USA
| | - Cliff Hudis
- Breast Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chanita Hughes-Halbert
- Medical University of South Carolina and the Hollings Cancer Center, Charleston, SC, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Hossein Jadvar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Rick Kittles
- College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Scott M Lippman
- University of California San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Mankoff
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine at Nationwide Children's Hospital Columbus, OH, USA; College of Medicine, Ohio State University, Columbus, OH, USA
| | - Deborah K Mayer
- University of North Carolina Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Kelly McMasters
- The Hiram C Polk Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dean Ornish
- University of California San Francisco, San Francisco, CA, USA
| | - Timothy M Pawlik
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | | | - Martin G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Raghavan
- Levine Cancer Institute, Carolinas HealthCare, Charlotte, NC, USA
| | | | - Sally W Schwarz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jedd D Wolchok
- Ludwig Center for Cancer Immunotherapy, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sandra L Wong
- Department of Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alfred Yung
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Kerr J, Anderson C, Lippman SM. Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol 2017; 18:e457-e471. [PMID: 28759385 PMCID: PMC10441558 DOI: 10.1016/s1470-2045(17)30411-4] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
The lifestyle factors of physical activity, sedentary behaviour, and diet are increasingly being studied for their associations with cancer. Physical activity is inversely associated with and sedentary behaviour is positively (and independently) associated with an increased risk of more than ten types of cancer, including colorectal cancer (and advanced adenomas), endometrial cancers, and breast cancer. The most consistent dietary risk factor for premalignant and invasive breast cancer is alcohol, whether consumed during early or late adult life, even at low levels. Epidemiological studies show that the inclusion of wholegrain, fibre, fruits, and vegetables within diets are associated with reduced cancer risk, with diet during early life (age <8 years) having the strongest apparent association with cancer incidence. However, randomised controlled trials of diet-related factors have not yet shown any conclusive associations between diet and cancer incidence. Obesity is a key contributory factor associated with cancer risk and mortality, including in dose-response associations in endometrial and post-menopausal breast cancer, and in degree and duration of fatty liver disease-related hepatocellular carcinoma. Obesity produces an inflammatory state, characterised by macrophages clustered around enlarged hypertrophied, dead, and dying adipocytes, forming crown-like structures. Increased concentrations of aromatase and interleukin 6 in inflamed breast tissue and an increased number of macrophages, compared with healthy tissue, are also observed in women with normal body mass index, suggesting a metabolic obesity state. Emerging randomised controlled trials of physical activity and dietary factors and mechanistic studies of immunity, inflammation, extracellular matrix mechanics, epigenetic or transcriptional regulation, protein translation, circadian disruption, and interactions of the multibiome with lifestyle factors will be crucial to advance this field.
Collapse
Affiliation(s)
- Jacqueline Kerr
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA; Department of Family Medicine and Public Health, University of California, La Jolla, San Diego, CA, USA
| | - Cheryl Anderson
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA; Department of Family Medicine and Public Health, University of California, La Jolla, San Diego, CA, USA
| | - Scott M Lippman
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA; Department of Medicine, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
40
|
Crescenzo R, Mazzoli A, Di Luccia B, Bianco F, Cancelliere R, Cigliano L, Liverini G, Baccigalupi L, Iossa S. Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food Nutr Res 2017; 61:1331657. [PMID: 28659742 PMCID: PMC5475320 DOI: 10.1080/16546628.2017.1331657] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Objective: The link between metabolic derangement of the gut-2013liver-visceral white adipose tissue (v-WAT) axis and gut microbiota was investigated. Methods: Rats were fed a fructose-rich diet and treated with an antibiotic mix. Inflammation was measured in portal plasma, ileum, liver, and v-WAT, while insulin signalling was analysed by measuring levels of phosphorylated kinase Akt. The function and oxidative status of hepatic mitochondria and caecal microbiota composition were also evaluated. Results: Ileal inflammation, increase in plasma transaminases, plasma peroxidised lipids, portal concentrations of tumour necrosis factor alpha, lipopolysaccharide, and non-esterified fatty acids, were induced by fructose and were reversed by antibiotic. The increased hepatic ceramide content, inflammation and decreased insulin signaling in liver and v-WAT induced by fructose was reversed by antibiotic. Antibiotic also blunted the increase in hepatic mitochondrial efficiency and oxidative damage of rats fed fructose-rich diet. Three genera, Coprococcus, Ruminococcus, and Clostridium, significantly increased, while the Clostridiaceae family significantly decreased in rats fed a fructose-rich diet, and antibiotic abolished these variations Conclusions: When gut microbiota modulation by fructose is prevented by antibiotic, inflammatory flow from the gut to the liver and v-WAT are reversed.
Collapse
Affiliation(s)
| | - Arianna Mazzoli
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Blanda Di Luccia
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Francesca Bianco
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Rosa Cancelliere
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Giovanna Liverini
- Department of Biology, Federico II University of Naples, Naples, Italy
| | | | - Susanna Iossa
- Department of Biology, Federico II University of Naples, Naples, Italy
| |
Collapse
|
41
|
Shen L, Han B, Geng Y, Wang J, Wang Z, Wang M. Amelioration of cognitive impairments in APPswe/PS1dE9 mice is associated with metabolites alteration induced by total salvianolic acid. PLoS One 2017; 12:e0174763. [PMID: 28358909 PMCID: PMC5373599 DOI: 10.1371/journal.pone.0174763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Purpose Total salvianolic acid (TSA) is extracted from salvia miltiorrhiza; however, to date, there has been limited characterization of its effects on metabolites in Alzheimer’s disease model-APPswe/PS1dE9 mice. The main objective of this study was to investigate the metabolic changes in 7-month-old APPswe/PS1dE9 mice treated with TSA, which protects against learning and memory impairment. Methods APPswe/PS1dE9 mice were treated with TSA (30 mg/kg·d and 60 mg/kg·d, i.p.) and saline (i.p.) daily from 3.5 months old for 14 weeks; saline-treated (i.p.) WT mice were included as the controls. The effects of TSA on learning and memory were assessed by a series of behavioral tests, including the NOR, MWM and step-through tasks. The FBG and plasma lipid levels were subsequently assessed using the GOPOD and enzymatic color methods, respectively. Finally, the concentrations of Aβ42, Aβ40 and metabolites in the hippocampus of the mice were detected via ELISA and GC-TOF-MS, respectively. Results At 7 months of age, the APPswe/PS1dE9 mice treated with TSA exhibited an improvement in the preference index (PI) one hour after the acquisition phase in the NOR and the preservation of spatial learning and memory in the MWM. Treatment with TSA substantially decreased the LDL-C level, and 60 mg/kg TSA decreased the CHOL level compared with the plasma level of the APPswe/PS1dE9 group. The Aβ42 and Aβ40 levels in the hippocampus were decreased in the TSA-treated group compared with the saline-treated APPswe/PS1dE9 group. The regulation of metabolic pathways relevant to TSA predominantly included carbohydrate metabolism, such as sorbitol, glucose-6-phosphate, sucrose-6-phosphate and galactose, vitamin metabolism involved in cholecalciferol and ascorbate in the hippocampus. Conclusions TSA induced a remarkable amelioration of learning and memory impairments in APPswe/PS1dE9 mice through the regulation of Aβ42, Aβ40, carbohydrate and vitamin metabolites in the hippocampus and LDL-C and CHOL in the plasma.
Collapse
Affiliation(s)
- Li Shen
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Bing Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yuan Geng
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jinhua Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhengmin Wang
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- * E-mail:
| |
Collapse
|
42
|
Delbridge LMD, Benson VL, Ritchie RH, Mellor KM. Diabetic Cardiomyopathy: The Case for a Role of Fructose in Disease Etiology. Diabetes 2016; 65:3521-3528. [PMID: 27879401 DOI: 10.2337/db16-0682] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022]
Abstract
A link between excess dietary sugar and cardiac disease is clearly evident and has been largely attributed to systemic metabolic dysregulation. Now a new paradigm is emerging, and a compelling case can be made that fructose-associated heart injury may be attributed to the direct actions of fructose on cardiomyocytes. Plasma and cardiac fructose levels are elevated in patients with diabetes, and evidence suggests that some unique properties of fructose (vs. glucose) have specific cardiomyocyte consequences. Investigations to date have demonstrated that cardiomyocytes have the capacity to transport and utilize fructose and express all of the necessary proteins for fructose metabolism. When dietary fructose intake is elevated and myocardial glucose uptake compromised by insulin resistance, increased cardiomyocyte fructose flux represents a hazard involving unregulated glycolysis and oxidative stress. The high reactivity of fructose supports the contention that fructose accelerates subcellular hexose sugar-related protein modifications, such as O-GlcNAcylation and advanced glycation end product formation. Exciting recent discoveries link heart failure to induction of the specific high-affinity fructose-metabolizing enzyme, fructokinase, in an experimental setting. In this Perspective, we review key recent findings to synthesize a novel view of fructose as a cardiopathogenic agent in diabetes and to identify important knowledge gaps for urgent research focus.
Collapse
Affiliation(s)
- Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Vicky L Benson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Xu MX, Yu R, Shao LF, Zhang YX, Ge CX, Liu XM, Wu WY, Li JM, Kong LD. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: Suppression by curcumin. Brain Behav Immun 2016; 58:69-81. [PMID: 26765996 DOI: 10.1016/j.bbi.2016.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/08/2015] [Accepted: 01/01/2016] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that diet-induced fractalkine (FKN) stimulates neuroinflammation in animal models of obesity, yet how it occurs is unclear. This study investigated the role of FKN and it receptor, CX3CR1, in fructose-induced neuroinflammation, and examined curcumin's beneficial effect. Fructose feeding was found to induce hippocampal microglia activation with neuroinflammation through the activation of the Toll-like receptor 4 (TLR4)/nuclear transcription factor κB (NF-κB) signaling, resulting in the reduction of neurogenesis in the dentate gyrus (DG) of mice. Serum FKN levels, as well as hypothalamic FKN and CX3CR1 gene expression, were significantly increased in fructose-fed mice with hypothalamic microglia activation. Hippocampal gene expression of FKN and CX3CR1 was also up-regulated at 14d and normalized at 56d in mice fed with fructose, which were consistent with the change of GFAP. Furthermore, immunostaining showed that GFAP and FKN expression was increased in cornu amonis 1, but decreased in DG in fructose-fed mice. In vitro studies showed that GFAP and FKN expression was stimulated in astrocytes, and suppressed in mixed glial cells exposed to 48h-fructose, with the continual increase of pro-inflammatory cytokines. Thus, increased FKN and CX3CR1 may cause a cross-talk between activated glial cells and neurons, playing an important role in the development of neuroinflammation in fructose-fed mice. Curcumin protected against neuronal damage in hippocampal DG of fructose-fed mice by inhibiting microglia activation and suppressed FKN/CX3CR1 up-regulation in the neuronal network. These results suggest a new therapeutic approach to protect against neuronal damage associated with dietary obesity-associated neuroinflammation.
Collapse
Affiliation(s)
- Min-Xuan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Li-Fei Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yan-Xiu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Chen-Xu Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Xin-Meng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Wen-Yuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
44
|
Li X, Qian X, Lu Z. Fructokinase A acts as a protein kinase to promote nucleotide synthesis. Cell Cycle 2016; 15:2689-90. [PMID: 27356213 DOI: 10.1080/15384101.2016.1204861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xinjian Li
- a Department of Neuro-Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Xu Qian
- a Department of Neuro-Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Zhimin Lu
- a Department of Neuro-Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Molecular and Cellular Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,c Cancer Biology Program , The University of Texas Graduate School of Biomedical Sciences at Houston , Houston , TX , USA
| |
Collapse
|
45
|
A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation. Nat Cell Biol 2016; 18:561-71. [PMID: 27088854 DOI: 10.1038/ncb3338] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 03/11/2016] [Indexed: 12/14/2022]
Abstract
Dietary fructose is primarily metabolized in the liver. Here we demonstrate that, compared with normal hepatocytes, hepatocellular carcinoma (HCC) cells markedly reduce the rate of fructose metabolism and the level of reactive oxygen species, as a result of a c-Myc-dependent and heterogeneous nuclear ribonucleoprotein (hnRNP) H1- and H2-mediated switch from expression of the high-activity fructokinase (KHK)-C to the low-activity KHK-A isoform. Importantly, KHK-A acts as a protein kinase, phosphorylating and activating phosphoribosyl pyrophosphate synthetase 1 (PRPS1) to promote pentose phosphate pathway-dependent de novo nucleic acid synthesis and HCC formation. Furthermore, c-Myc, hnRNPH1/2 and KHK-A expression levels and PRPS1 Thr225 phosphorylation levels correlate with each other in HCC specimens and are associated with poor prognosis for HCC. These findings reveal a pivotal mechanism underlying the distinct fructose metabolism between HCC cells and normal hepatocytes and highlight the instrumental role of KHK-A protein kinase activity in promoting de novo nucleic acid synthesis and HCC development.
Collapse
|
46
|
Meng Q, Ying Z, Noble E, Zhao Y, Agrawal R, Mikhail A, Zhuang Y, Tyagi E, Zhang Q, Lee JH, Morselli M, Orozco L, Guo W, Kilts TM, Zhu J, Zhang B, Pellegrini M, Xiao X, Young MF, Gomez-Pinilla F, Yang X. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders. EBioMedicine 2016; 7:157-66. [PMID: 27322469 PMCID: PMC4909610 DOI: 10.1016/j.ebiom.2016.04.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/30/2022] Open
Abstract
Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient–host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Fructose promotes transcriptomic and epigenomic reprogramming to perturb brain networks linking metabolism and brain function. The extracellular matrix genes Bgn and Fmod emerge as key regulators of gene networks responsive to fructose. The omega-3 fatty acid DHA reverses fructose-induced genomic and network reprogramming.
Meng et al. report fructose as a powerful inducer of genomic and epigenomic variability with the capacity to reorganize gene networks critical for central metabolic regulation and neuronal processes in the brain; conversely, an omega-3 fatty acid, DHA, has the potential to normalize the genomic impact of fructose. Our findings help explain the pathogenic actions of fructose on prevalent metabolic and brain disorders and provide proof-of-concept for nutritional remedies supported by nutrigenomics evidence. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.
Collapse
Affiliation(s)
- Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Noble
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rahul Agrawal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew Mikhail
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yumei Zhuang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ethika Tyagi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qing Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701, Korea
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luz Orozco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weilong Guo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Synthetic & Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Tina M Kilts
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
AbuKhader MM. Snack foods and beverages for children: Eat or not to eat? MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2015. [DOI: 10.3233/mnm-150042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Shimony MK, Schliep KC, Schisterman EF, Ahrens KA, Sjaarda LA, Rotman Y, Perkins NJ, Pollack AZ, Wactawski-Wende J, Mumford SL. The relationship between sugar-sweetened beverages and liver enzymes among healthy premenopausal women: a prospective cohort study. Eur J Nutr 2015; 55:569-576. [PMID: 25801628 DOI: 10.1007/s00394-015-0876-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE To prospectively assess the association between sugar-sweetened beverages (SSB), added sugar, and total fructose and serum concentrations of liver enzymes among healthy, reproductive-age women. METHODS A prospective cohort of 259 premenopausal women (average age 27.3 ± 8.2 years; BMI 24.1 ± kg/m(2)) were followed up for up to two menstrual cycles, providing up to eight fasting blood specimens/cycle and four 24-h dietary recalls/cycle. Women with a history of chronic disease were excluded. Alanine and aspartate aminotransferases (ALT and AST, respectively) were measured in serum samples. Linear mixed models estimated associations between average SSB, added sugar, and total fructose intake and log-transformed liver enzymes adjusting for age, race, body mass index, total energy and alcohol intake, and Mediterranean diet score. RESULTS For every 1 cup/day increase in SSB consumption and 10 g/day increase in added sugar and total fructose, log ALT increased by 0.079 U/L (95 % CI 0.022, 0.137), 0.012 U/L (95 % CI 0.002, 0.022), and 0.031 (0.012, 0.050), respectively, and log AST increased by 0.029 U/L (-0.011, 0.069), 0.007 U/L (0.000, 0.014), and 0.017 U/L (0.004, 0.030), respectively. Women who consumed ≥1.50 cups/day (12 oz can) SSB versus less had 0.127 U/L (95 % CI 0.001, 0.254) higher ALT [percent change 13.5 % (95 % CI 0.1, 28.9)] and 0.102 (95 % CI 0.015, 0.190) higher AST [percent change 10.8 % (95 % CI 1.5, 20.9)]. CONCLUSIONS Sugar-sweetened beverages were associated with higher serum ALT and AST concentrations among healthy premenopausal women, indicating that habitual consumption of even moderate SSB may elicit hepatic lipogenesis.
Collapse
Affiliation(s)
- Maya K Shimony
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, 7B03M, Rockville, MD, 20852, USA
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Karen C Schliep
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, 7B03M, Rockville, MD, 20852, USA
| | - Enrique F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, 7B03M, Rockville, MD, 20852, USA
| | - Katherine A Ahrens
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, 7B03M, Rockville, MD, 20852, USA
| | - Lindsey A Sjaarda
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, 7B03M, Rockville, MD, 20852, USA
| | - Yaron Rotman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville, MD, USA
| | - Neil J Perkins
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, 7B03M, Rockville, MD, 20852, USA
| | - Anna Z Pollack
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, VA, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, 7B03M, Rockville, MD, 20852, USA.
| |
Collapse
|
49
|
Hassel B, Elsais A, Frøland AS, Taubøll E, Gjerstad L, Quan Y, Dingledine R, Rise F. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro. J Neurochem 2015; 133:572-81. [PMID: 25708447 DOI: 10.1111/jnc.13079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 12/11/2022]
Abstract
Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was expressed too. Neocortical cells also took up and metabolized glyceraldehyde oxidatively.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Norwegian Defence Research Establishment, Kjeller, Norway
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sun RQ, Wang H, Zeng XY, Chan SMH, Li SP, Jo E, Leung SL, Molero JC, Ye JM. IRE1 impairs insulin signaling transduction of fructose-fed mice via JNK independent of excess lipid. Biochim Biophys Acta Mol Basis Dis 2014; 1852:156-65. [PMID: 25458704 DOI: 10.1016/j.bbadis.2014.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/28/2014] [Accepted: 11/21/2014] [Indexed: 12/17/2022]
Abstract
The unfolded protein response (UPR) pathways have been implicated in the development of hepatic insulin resistance during high fructose (HFru) feeding. The present study investigated their roles in initiating impaired insulin signaling transduction in the liver induced by HFru feeding in mice. HFru feeding resulted in hepatic steatosis, increased de novo lipogenesis and activation of two arms of the UPR pathways (IRE1/XBP1 and PERK/eIF2α) in similar patterns from 3days to 8weeks. In order to identify the earliest trigger of impaired insulin signaling in the liver, we fed mice a HFru diet for one day and revealed that only the IRE1 branch was activated (by 2-fold) and insulin-mediated Akt phosphorylation was blunted (~25%) in the liver. There were significant increases in phosphorylation of JNK (~50%) and IRS at serine site (~50%), protein content of ACC and FAS (up to 2.5-fold) and triglyceride level (2-fold) in liver (but not in muscle or fat). Blocking IRE1 activity abolished increases in JNK activity, IRS serine phosphorylation and protected insulin-stimulated Akt phosphorylation without altering hepatic steatosis or PKCε activity, a key link between lipids and insulin resistance. Our findings together suggest that activation of IRE1-JNK pathway is a key linker of impaired hepatic insulin signaling transduction induced by HFru feeding.
Collapse
Affiliation(s)
- Ruo-Qiong Sun
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hao Wang
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiao-Yi Zeng
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Song-Pei Li
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Eunjung Jo
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sit-Lam Leung
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Juan C Molero
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ji-Ming Ye
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|