1
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
2
|
Zhao M, Wang J, Zhu S, Wang M, Chen C, Wang L, Liu J. Mitochondrion-based organellar therapies for central nervous system diseases. Cell Commun Signal 2024; 22:487. [PMID: 39390521 PMCID: PMC11468137 DOI: 10.1186/s12964-024-01843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
As most traditional drugs used to treat central nervous system (CNS) diseases have a single therapeutic target, many of them cannot treat complex diseases or diseases whose mechanism is unknown and cannot effectively reverse the root changes underlying CNS diseases. This raises the question of whether multiple functional components are involved in the complex pathological processes of CNS diseases. Organelles are the core functional units of cells, and the replacement of damaged organelles with healthy organelles allows the multitargeted and integrated modulation of cellular functions. The development of therapies that target independent functional units in the cell, specifically, organelle-based therapies, is rapidly progressing. This article comprehensively discusses the pathogenesis of mitochondrial homeostasis disorders, which involve mitochondria, one of the most important organelles in CNS diseases, and the machanisms of mitochondrion-based therapies, as well as current preclinical and clinical studies on the efficacy of therapies targeting mitochondrial to treat CNS diseases, to provide evidence for use of organelle-based treatment strategies in the future.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Chong Chen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| |
Collapse
|
3
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Zhang L, Guo Q, An R, Shen S, Yin L. In vitro ischemic preconditioning mediates the Ca 2+/CaN/NFAT pathway to protect against oxygen-glucose deprivation-induced cellular damage and inflammatory responses. Brain Res 2024; 1826:148736. [PMID: 38141801 DOI: 10.1016/j.brainres.2023.148736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Oxygen-glucose deprivation (OGD) is a critical model for studying hypoxic-ischemic cerebrovascular disease in vitro. This paper is to investigate the protection of OGD-induced cellular damage and inflammatory responses by OGD preconditioning in vitro, to provide a theoretical basis for OGD preconditioning to improve the prevention and prognosis of ischemic stroke. OGD or OGD preconditioning model was established by culturing the PC12 cell line in vitro, followed by further adding A23187 (calcium ion carrier) or CsA (calcium ion antagonist). Cell viability was detected by MTT, apoptosis by Hoechst 33,258 staining, the levels of TNF-α and IL-1β mRNA by RT-qPCR and ELISA, and the levels of CaN, NFAT, COX-2 by RT-qPCR and Western blot. Cell viability was decreased, and apoptosis, inflammatory cytokines, and CaN, NFAT, and COX-2 levels were notably increased upon OGD, while OGD pretreatment significantly increased cell viability and decreased apoptosis, inflammation, and the Ca2+/CaN/NFAT pathway. Treatment with A23187 decreased cell viability, promoted apoptosis, and significantly increased TNF-α, IL-1β, CaN, NFAT, and COX-2 levels, while CsA treatment reduced the opposite results. In vitro OGD preconditioning mediates the Ca2+/CaN/NFAT pathway to protect against OGD-induced cellular damage and inflammatory responses.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital, Affiliated to Dalian University of Technology, Dalian, China; Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China
| | - Qingzi Guo
- Deprtment of Cardiothoracic Surgery, Royal Stoke University Hospital, Stoke-on-Trent ST4 6QG, UK
| | - Ran An
- Department of Neurology, Taihe Hospital, Shiyan 442099, Hubei, China
| | - Shuhan Shen
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, Liaoning, China
| | - Lin Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China.
| |
Collapse
|
5
|
Pawar A, Pardasani KR. Study of disorders in regulatory spatiotemporal neurodynamics of calcium and nitric oxide. Cogn Neurodyn 2023; 17:1661-1682. [PMID: 37974582 PMCID: PMC10640555 DOI: 10.1007/s11571-022-09902-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Experimental studies have reported the dependence of nitric oxide (NO) on the regulation of neuronal calcium ([Ca2+]) dynamics in neurons. But, there is no model available to estimate the disorders caused by various parameters in their regulatory dynamics leading to various neuronal disorders. A mathematical model to analyze the impacts due to alterations in various parameters like buffer, ryanodine receptor, serca pump, source influx, etc. leading to regulation and dysregulation of the spatiotemporal calcium and NO dynamics in neuron cells is constructed using a system of reaction-diffusion equations. The numerical simulation is performed with the finite element approach. The disturbances in the different constitutive processes of [Ca2+] and nitric oxide including source influx, buffer mechanism, ryanodine receptor, serca pump, IP3 receptor, etc. can be responsible for the dysregulation in the [Ca2+] and NO dynamics in neurons. Also, the results reveal novel information about the magnitude and intensity of disorders in response to a range of alterations in various parameters of this neuronal dynamics, which can cause dysregulation leading to neuronal diseases like Parkinson's, cerebral ischemia, trauma, etc.
Collapse
Affiliation(s)
- Anand Pawar
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| | - Kamal Raj Pardasani
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| |
Collapse
|
6
|
Cao J, Grover P, Kainerstorfer JM. A model of neurovascular coupling and its application to cortical spreading depolarization. J Theor Biol 2023; 572:111580. [PMID: 37459953 DOI: 10.1016/j.jtbi.2023.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Cortical spreading depolarization (CSD) is a neuropathological condition involving propagating waves of neuronal silence, and is related to multiple diseases, such as migraine aura, traumatic brain injury (TBI), stroke, and cardiac arrest, as well as poor outcome of patients. While CSDs of different severity share similar roots on the ion exchange level, they can lead to different vascular responses (namely spreading hyperemia and spreading ischemia). In this paper, we propose a mathematical model relating neuronal activities to predict vascular changes as measured with near-infrared spectroscopy (NIRS) and fMRI recordings, and apply it to the extreme case of CSD, where sustained near-complete neuronal depolarization is seen. We utilize three serially connected models (namely, ion exchange, neurovascular coupling, and hemodynamic model) which are described by differential equations. Propagating waves of ion concentrations, as well as the associated vasodynamics and hemodynamics, are simulated by solving these equations. Our proposed model predicts vasodynamics and hemodynamics that agree both qualitatively and quantitatively with experimental literature. Mathematical modeling and simulation offer a powerful tool to help understand the underlying mechanisms of CSD and help interpret the data. In addition, it helps develop novel monitoring techniques prior to data collection. Our simulated results strongly suggest that fMRI is unable to reliably distinguish between spreading hyperemia and spreading ischemia, while NIRS signals are substantially distinct in the two cases.
Collapse
Affiliation(s)
- Jiaming Cao
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States
| | - Pulkit Grover
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, PA, United States
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, PA, United States.
| |
Collapse
|
7
|
Pawar A, Pardasani KR. Mechanistic insights of neuronal calcium and IP 3 signaling system regulating ATP release during ischemia in progression of Alzheimer's disease. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023:10.1007/s00249-023-01660-1. [PMID: 37222773 DOI: 10.1007/s00249-023-01660-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
The mechanisms of calcium ([Ca2+]) signaling in various human cells have been widely analyzed by scientists due to its crucial role in human organs like the heartbeat, muscle contractions, bone activity, brain functionality, etc. No study is reported for interdependent [Ca2+] and IP3 mechanics regulating the release of ATP in neuron cells during Ischemia in Alzheimer's disease advancement. In the present investigation, a finite element method (FEM) is framed to explore the interdependence of spatiotemporal [Ca2+] and IP3 signaling mechanics and its role in ATP release during Ischemia as well as in the advancement of Alzheimer's disorder in neuron cells. The results provide us insights of the mutual spatiotemporal impacts of [Ca2+] and IP3 mechanics as well as their contributions to ATP release during Ischemia in neuron cells. The results obtained for the mechanics of interdependent systems differ significantly from the results of simple independent system mechanics and provide new information about the processes of the two systems. From this study, it is concluded that neuronal disorders cannot only be simply attributed to the disturbance caused directly in the processes of calcium signaling mechanics, but also to the disturbances caused in IP3 regulation mechanisms impacting the calcium regulation in the neuron cell and ATP release.
Collapse
Affiliation(s)
- Anand Pawar
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, 462003, India.
| | - Kamal Raj Pardasani
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, 462003, India
| |
Collapse
|
8
|
Jiang RQ, Li QQ, Sheng R. Mitochondria associated ER membrane and cerebral ischemia: molecular mechanisms and therapeutic strategies. Pharmacol Res 2023; 191:106761. [PMID: 37028777 DOI: 10.1016/j.phrs.2023.106761] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in mammalian cells. The physical connection between them is mitochondria associated ER membranes (MAM). In recent years, studies on endoplasmic reticulum and mitochondria have shifted from independent division to association and comparison, especially MAM has gradually become a research hotspot. MAM connects the two organelles, not only to maintain their independent structure and function, but also to promote metabolism and signal transduction between them. This paper reviews the morphological structure and protein localization of MAM, and briefly analyzes the functions of MAM in regulating Ca2+ transport, lipid synthesis, mitochondrial fusion and fission, endoplasmic reticulum stress and oxidative stress, autophagy and inflammation. Since ER stress and mitochondrial dysfunction are important pathological events in neurological diseases including ischemic stroke, MAM is likely to play an important role in cerebral ischemia by regulating the signaling of the two organelles and the crosstalk of the two pathological events.
Collapse
Affiliation(s)
- Rui-Qi Jiang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Zhang Q, Li J, Sun Y, Song S, Li X, Chen G. Neoagarohexaose Protects against Amyloid β-Induced Oxidative Stress and Aggregation. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
10
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
11
|
Zeng HF, Xu J, Wang XL, Li SJ, Han ZY. Nicotinamide mononucleotide alleviates heat stress-induced oxidative stress and apoptosis in BMECs through reducing mitochondrial damage and endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113441. [PMID: 35358918 DOI: 10.1016/j.ecoenv.2022.113441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Heat stress is directly correlated to mammary gland dysfunction in dairy cows, especially in summer. Abnormally high environmental temperature induces oxidative stress and apoptosis in bovine mammary epithelial cells (BMECs). Nicotinamide mononucleotide (NMN) has beneficial effects in maintaining the cellular physiological functions. In this study, we evaluate the protective effect of NMN on heat stress-induced apoptosis of BMECs and explore the potential underlying mechanisms. Our results showed that heat stress considerably decreased cell viability in BMECs, whereas pretreatment of BMECs with NMN (150 μM) for 24 h significantly alleviated the negative effects of heat stress on cells. NMN protected BMECs from heat stress-induced oxidative stress by inhibiting the excessive accumulation of reactive oxygen species (ROS) and increasing the activity of antioxidant enzymes. It also inhibited apoptosis by reducing the ratio of Bax/Bcl2 and blocking proteolytic the cleavage of Caspase-3 in heat stressed-BMECs. Importantly, NMN treatment could reduce mitochondrial damage through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (MFN1, 2); and suppress endoplasmic reticulum stress through unfolded protein response regulator Glucose regulated protein 78 (GRP78), and downstream elements Recombinant activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). Above all, our results demonstrate that NMN supplemention attenuates heat stress-induced oxidative stress and apoptosis in BMECs by maintaining mitochondrial fission and fusion, and regulating endoplasmic reticulum stress, which provides the convincing evidence that NMN has valuable potential in alleviating mammary gland injury of dairy cows caused by environmental heat stress.
Collapse
Affiliation(s)
- Han-Fang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu-Jie Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao-Yu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Garcia JD, Gookin SE, Crosby KC, Schwartz SL, Tiemeier E, Kennedy MJ, Dell'Acqua ML, Herson PS, Quillinan N, Smith KR. Stepwise disassembly of GABAergic synapses during pathogenic excitotoxicity. Cell Rep 2021; 37:110142. [PMID: 34936876 PMCID: PMC8824488 DOI: 10.1016/j.celrep.2021.110142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/17/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
GABAergic synaptic inhibition controls neuronal firing, excitability, and synaptic plasticity to regulate neuronal circuits. Following an acute excitotoxic insult, inhibitory synapses are eliminated, reducing synaptic inhibition, elevating circuit excitability, and contributing to the pathophysiology of brain injuries. However, mechanisms that drive inhibitory synapse disassembly and elimination are undefined. We find that inhibitory synapses are disassembled in a sequential manner following excitotoxicity: GABAARs undergo rapid nanoscale rearrangement and are dispersed from the synapse along with presynaptic active zone components, followed by the gradual removal of the gephyrin scaffold, prior to complete elimination of the presynaptic terminal. GABAAR nanoscale reorganization and synaptic declustering depends on calcineurin signaling, whereas disassembly of gephyrin relies on calpain activation, and blockade of both enzymes preserves inhibitory synapses after excitotoxic insult. Thus, inhibitory synapse disassembly occurs rapidly, with nanoscale precision, in a stepwise manner and most likely represents a critical step in the progression of hyperexcitability following excitotoxicity.
Collapse
Affiliation(s)
- Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Samantha L Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Erika Tiemeier
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Barta BA, Ruppert M, Fröhlich KE, Cosenza-Contreras M, Oláh A, Sayour AA, Kovács K, Karvaly GB, Biniossek M, Merkely B, Schilling O, Radovits T. Sex-related differences of early cardiac functional and proteomic alterations in a rat model of myocardial ischemia. J Transl Med 2021; 19:507. [PMID: 34895263 PMCID: PMC8666068 DOI: 10.1186/s12967-021-03164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Reduced cardiovascular risk in premenopausal women has been the focus of research in recent decades. Previous hypothesis-driven experiments have highlighted the role of sex hormones on distinct inflammatory responses, mitochondrial proteins, extracellular remodeling and estrogen-mediated cardioprotective signaling pathways related to post-ischemic recovery, which were associated with better cardiac functional outcomes in females. We aimed to investigate the early, sex-specific functional and proteomic changes following myocardial ischemia in an unbiased approach. METHODS Ischemia was induced in male (M-Isch) and female (F-Isch) rats with sc. injection of isoproterenol (85 mg/kg) daily for 2 days, while controls (M-Co, F-Co) received sc. saline solution. At 48 h after the first injection pressure-volume analysis was carried out to assess left ventricular function. FFPE tissue slides were scanned and analyzed digitally, while myocardial proteins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using isobaric labeling. Concentrations of circulating steroid hormones were measured with LC-MS/MS. Feature selection (PLS and PLS-DA) was used to examine associations among functional, proteomic and hormonal datasets. RESULTS Induction of ischemia resulted in 38% vs 17% mortality in M-Isch and F-Isch respectively. The extent of ischemic damage to surviving rats was comparable between the sexes. Systolic dysfunction was more pronounced in males, while females developed a more severe impairment of diastolic function. 2224 proteins were quantified, with 520 showing sex-specific differential regulation. Our analysis identified transcriptional, cytoskeletal, contractile, and mitochondrial proteins, molecular chaperones and the extracellular matrix as sources of disparity between the sexes. Bioinformatics highlighted possible associations of estrogens and their metabolites with early functional and proteomic alterations. CONCLUSIONS Our study has highlighted sex-specific alterations in systolic and diastolic function shortly after ischemia, and provided a comprehensive look at the underlying proteomic changes and the influence of estrogens and their metabolites. According to our bioinformatic analysis, inflammatory, mitochondrial, chaperone, cytoskeletal, extracellular and matricellular proteins are major sources of intersex disparity, and may be promising targets for early sex-specific pharmacologic interventions.
Collapse
Affiliation(s)
- Bálint András Barta
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary. .,Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Klemens Erwin Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,MeInBio Graduate School, University of Freiburg, Freiburg, Germany
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Alex Ali Sayour
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gellért Balázs Karvaly
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Martin Biniossek
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| |
Collapse
|
14
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, Bezprozvanny I, Kavalali ET. Presynaptic store-operated Ca 2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 2021; 109:1314-1332.e5. [PMID: 33711258 PMCID: PMC8068669 DOI: 10.1016/j.neuron.2021.02.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Store-operated calcium entry (SOCE) is activated by depletion of Ca2+ from the endoplasmic reticulum (ER) and mediated by stromal interaction molecule (STIM) proteins. Here, we show that in rat and mouse hippocampal neurons, acute ER Ca2+ depletion increases presynaptic Ca2+ levels and glutamate release through a pathway dependent on STIM2 and the synaptic Ca2+ sensor synaptotagmin-7 (syt7). In contrast, synaptotagmin-1 (syt1) can suppress SOCE-mediated spontaneous release, and STIM2 is required for the increase in spontaneous release seen during syt1 loss of function. We also demonstrate that chronic ER stress activates the same pathway leading to syt7-dependent potentiation of spontaneous glutamate release. During ER stress, inhibition of SOCE or syt7-driven fusion partially restored basal neurotransmission and decreased expression of pro-apoptotic markers, indicating that these processes participate in the amplification of ER-stress-related damage. Taken together, we propose that presynaptic SOCE links ER stress and augmented spontaneous neurotransmission, which may, in turn, facilitate neurodegeneration.
Collapse
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Elena Nosyreva
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ok-Ho Shin
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Hua Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA,FOE Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ilya Bezprozvanny
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.,Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Ege T. Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.,Vanderbilt Brain Institute.,Corresponding author: Ege T. Kavalali, Ph.D., Department of Pharmacology, Vanderbilt University, 465 21st Avenue South, 7130A MRBIII, PMB407933 Nashville, TN 37240-7933, phone: 615-343-5480,
| |
Collapse
|
16
|
Henderson MJ, Trychta KA, Yang SM, Bäck S, Yasgar A, Wires ES, Danchik C, Yan X, Yano H, Shi L, Wu KJ, Wang AQ, Tao D, Zahoránszky-Kőhalmi G, Hu X, Xu X, Maloney D, Zakharov AV, Rai G, Urano F, Airavaara M, Gavrilova O, Jadhav A, Wang Y, Simeonov A, Harvey BK. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell Rep 2021; 35:109040. [PMID: 33910017 DOI: 10.1016/j.celrep.2021.109040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum (ER) dysregulation is associated with pathologies including neurodegenerative, muscular, and diabetic conditions. Depletion of ER calcium can lead to the loss of resident proteins in a process termed exodosis. To identify compounds that attenuate the redistribution of ER proteins under pathological conditions, we performed a quantitative high-throughput screen using the Gaussia luciferase (GLuc)-secreted ER calcium modulated protein (SERCaMP) assay, which monitors secretion of ER-resident proteins triggered by calcium depletion. We identify several clinically used drugs, including bromocriptine, and further characterize them using assays to measure effects on ER calcium, ER stress, and ER exodosis. Bromocriptine elicits protective effects in cell-based models of exodosis as well as in vivo models of stroke and diabetes. Bromocriptine analogs with reduced dopamine receptor activity retain similar efficacy in stabilizing the ER proteome, indicating a non-canonical mechanism of action. This study describes a strategic approach to identify small-molecule drugs capable of improving ER proteostasis in human disease conditions.
Collapse
Affiliation(s)
- Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Kathleen A Trychta
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Susanne Bäck
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carina Danchik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xiaokang Yan
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Gergely Zahoránszky-Kőhalmi
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - David Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE & Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Oksana Gavrilova
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Brandon K Harvey
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
17
|
Santos-Galdiano M, González-Rodríguez P, Font-Belmonte E, Ugidos IF, Anuncibay-Soto B, Pérez-Rodríguez D, Fernández-López A. Celecoxib-Dependent Neuroprotection in a Rat Model of Transient Middle Cerebral Artery Occlusion (tMCAO) Involves Modifications in Unfolded Protein Response (UPR) and Proteasome. Mol Neurobiol 2021; 58:1404-1417. [PMID: 33184783 DOI: 10.1007/s12035-020-02202-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Stroke is one of the main causes of death and disability worldwide. Ischemic stroke results in unfolded/misfolded protein accumulation in endoplasmic reticulum (ER), a condition known as ER stress. We hypothesized that previously reported neuroprotection of celecoxib, a selective inhibitor of cyclooxygenase-2, in transient middle cerebral artery occlusion (tMCAO) model, relies on the ER stress decrease. To probe this hypothesis, Sprague-Dawley rats were subjected to 1 h of tMCAO and treated with celecoxib or vehicle 1 and 24 h after ischemia. Protein and mRNA levels of the main hallmarks of ER stress, unfolded protein response (UPR) activation, UPR-induced cell death, and ubiquitin proteasome system (UPS) and autophagy, the main protein degradation pathways, were measured at 12 and 48 h of reperfusion. Celecoxib treatment decreased polyubiquitinated protein load and ER stress marker expression such as glucose-related protein 78 (GRP78), C/EBP (CCAAT/enhancer-binding protein) homologous protein (CHOP), and caspase 12 after 48 h of reperfusion. Regarding the UPR activation, celecoxib promoted inositol-requiring enzyme 1 (IRE1) pathway instead of double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway. Furthermore, celecoxib treatment increased proteasome catalytic subunits transcript levels and decreased p62 protein levels, while the microtubule-associated protein 1 light chain 3 (LC3B) II/I ratio remained unchanged. Thus, the ability of celecoxib treatment on reducing the ER stress correlates with the enhancement of IRE1-UPR pathway and UPS degradation. These data support the ability of anti-inflammatory therapy in modulating ER stress and reveal the IRE1 pathway as a promising therapeutic target in stroke therapy.Graphical abstract.
Collapse
Affiliation(s)
- María Santos-Galdiano
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Paloma González-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Enrique Font-Belmonte
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Irene F Ugidos
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at AIV Institute, University of Eastern Finland, Kuopio, Finland
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at Department of Life Sciences, Imperial College London (ICL), London, UK
| | - Diego Pérez-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
- Currently at Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| | - Arsenio Fernández-López
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
| |
Collapse
|
18
|
Wang L, Lei Q, Zhao S, Xu W, Dong W, Ran J, Shi Q, Fu J. Ginkgolide B Maintains Calcium Homeostasis in Hypoxic Hippocampal Neurons by Inhibiting Calcium Influx and Intracellular Calcium Release. Front Cell Neurosci 2021; 14:627846. [PMID: 33679323 PMCID: PMC7928385 DOI: 10.3389/fncel.2020.627846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Ginkgolide B (GB), a terpene lactone and active ingredient of Ginkgo biloba, shows protective effects in neuronal cells subjected to hypoxia. We investigated whether GB might protect neurons from hypoxic injury through regulation of neuronal Ca2+ homeostasis. Primary hippocampal neurons subjected to chemical hypoxia (0.7 mM CoCl2) in vitro exhibited an increase in cytoplasmic Ca2+ (measured from the fluorescence of fluo-4), but this effect was significantly diminished by pre-treatment with 0.4 mM GB. Electrophysiological recordings from the brain slices of rats exposed to hypoxia in vivo revealed increases in spontaneous discharge frequency, action potential frequency and calcium current magnitude, and all these effects of hypoxia were suppressed by pre-treatment with 12 mg/kg GB. Western blot analysis demonstrated that hypoxia was associated with enhanced mRNA and protein expressions of Cav1.2 (a voltage-gated Ca2+ channel), STIM1 (a regulator of store-operated Ca2+ entry) and RyR2 (isoforms of Ryanodine Receptor which mediates sarcoplasmic reticulum Ca2+ release), and these actions of hypoxia were suppressed by GB. Taken together, our in vitro and in vivo data suggest that GB might protect neurons from hypoxia, in part, by regulating Ca2+ influx and intracellular Ca2+ release to maintain Ca2+ homeostasis.
Collapse
Affiliation(s)
- Li Wang
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Quan Lei
- The Department of Medical Administration, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Shuai Zhao
- The Department of Medical Administration, General Hospital of Xinjiang Military Command, Urumqi, China
| | - WenJuan Xu
- The Department of Medical Administration, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Wei Dong
- The First Division Health Team, Anti-aircraft Artillery of Liaoning Reserve, Shenyang, China
| | - JiHua Ran
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| | - QingHai Shi
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| | - JianFeng Fu
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| |
Collapse
|
19
|
YE J, GONG H, WANG L, HUANG Z, QIU F, ZHONG X. [Protective effect of iridoid glycosides of radix scrophulariae on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:705-713. [PMID: 33448173 PMCID: PMC10412414 DOI: 10.3785/j.issn.1008-9292.2020.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/16/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the regulatory effect of iridoid glycoside of radix scrophulariae (IGRS) on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model. METHODS Rat pheochromocytoma PC12 cells were pretreated with IGRS (50, 100, 200 μg/mL) for 24h, and the in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R) was applied. The cell viability was determined by MTT and lactate dehydrogenase (LDH) assay. The apoptotic rate was detected by flow cytometry. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), C/EBP homologous protein (CHOP), caspase-12 protein, and glucose-regulated protein-78(GRP78)were detected by Western blotting. The mRNA expression levels of sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2), 1, 4, 5-triphosphate inositol receptor 1 (IP3R1), and ryanodine receptor 2 (RyR2)were detected by real-time RT-PCR. Free Ca2+ concentration [Ca2+]i was determined by using laser scanning confocal microscopy. RESULTS The damage caused by OGD/R to PC12 cells was significantly reduced by IGRS, with significant effect on increasing survival rate and reducing LDH release (all P<0.01). The expression of GRP78, CHOP, Bax, and caspase-12 were down-regulated (all P<0.01), and the expression of Bcl-2 and Bcl-2/Bax ratio was up-regulated (all P<0.01); IGRS increased the expression of SERCA2 mRNA in PC12 cells after OGD/R injury (P<0.01), decreased [Ca2+]i and down-regulated the expression of RyR2 mRNA and IP3R1 mRNA. CONCLUSIONS IGRS has neuroprotective effect, which may alleviate cerebral ischemia-reperfusion injury by regulating SERCA2, maintaining calcium balance, and inhibiting endoplasmic reticulum stress-mediated apoptosis.
Collapse
|
20
|
Wang K, Lou Y, Xu H, Zhong X, Huang Z. Harpagide from Scrophularia protects rat cortical neurons from oxygen-glucose deprivation and reoxygenation-induced injury by decreasing endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112614. [PMID: 32007630 DOI: 10.1016/j.jep.2020.112614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Harpagide is the main ingredient in Scrophularia ningpoensis Hemsl which is used for the therapeutic purpose of treating encephalopathy. Harpagide has shown promise in the treatment of oxygen-glucose deprivation and reoxygenation (OGD/R)-induced brain injury. However, the underlying mechanisms remain unclear. AIM OF STUDY In this study, we aimed to determine the neuroprotective effect of harpagide on rat cortical neurons under OGD/R conditions that induce the development of ischaemia-reperfusion (I/R). MATERIALS AND METHODS To explore the biological function of harpagide in cerebral ischaemia-reperfusion injury (CIRI), The CIRI model was established by oxygen-glucose deprivation and reoxygenation (OGD/R) on rat cortical neurons. It tested cell survival rate by 3-(4,5-dimethylthiazol-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, apoptosis by flow cytometry, intracellular Ca2+ concentration [Ca2+] i by cofocal laser, and expressions related to endoplasmic reticulum stress (ERS) by RT-PCR and Western blot. RESULTS We found that pretreatment with harpagide (50 μM) prevented OGD/R-induced apoptotic cell death. Harpagide also significantly decreased the gene expression levels and protein production of ERS-related proteins. We found that harpagide also exerted a neuroprotective effect on TG-induced apoptosis in rat cortical neurons and decreased the gene expression levels and protein production of GRP78, caspase-12 and CHOP. We also measured the intracellular calcium ion concentration ([Ca2+]i) in neurons and found that harpagide significantly decreased the [Ca2+]i induced by OGD/R and TG. CONCLUSION These results suggest that harpagide protects against OGD/R-induced cell apoptosis, likely by decreasing ERS. Collectively, harpagide was demonstrated to be a prominent suppressor of ERS and prevented the apoptosis of rat cortical neurons. Based on the results, harpagide could potentially serve as a therapeutic agent of ischaemia-like injury associated with excessive ERS and apoptosis.
Collapse
Affiliation(s)
- Ke Wang
- Medical College, Jiaxing University, Jiaxing, 314001, China.
| | - Yeliang Lou
- Institute of Traditional She Medicine, Department of Pharmacy, Lishui People's Hospital, Lishui, 323000, China.
| | - Huang Xu
- Medical College, Jiaxing University, Jiaxing, 314001, China.
| | - Xiaoming Zhong
- College of Pharmacy, Zhe Jiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhen Huang
- College of Pharmacy, Zhe Jiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
21
|
Xiong Y, Xin DQ, Hu Q, Wang LX, Qiu J, Yuan HT, Chu XL, Liu DX, Li G, Wang Z. Neuroprotective mechanism of L-cysteine after subarachnoid hemorrhage. Neural Regen Res 2020; 15:1920-1930. [PMID: 32246641 PMCID: PMC7513988 DOI: 10.4103/1673-5374.280321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide, which can be generated in the central nervous system from the sulfhydryl-containing amino acid, L-cysteine, by cystathionine-β-synthase, may exert protective effects in experimental subarachnoid hemorrhage; however, the mechanism underlying this effect is unknown. This study explored the mechanism using a subarachnoid hemorrhage rat model induced by an endovascular perforation technique. Rats were treated with an intraperitoneal injection of 100 mM L-cysteine (30 μL) 30 minutes after subarachnoid hemorrhage. At 48 hours after subarachnoid hemorrhage, hematoxylin-eosin staining was used to detect changes in prefrontal cortex cells. L-cysteine significantly reduced cell edema. Neurological function was assessed using a modified Garcia score. Brain water content was measured by the wet-dry method. L-cysteine significantly reduced neurological deficits and cerebral edema after subarachnoid hemorrhage. Immunofluorescence was used to detect the number of activated microglia. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the levels of interleukin 1β and CD86 mRNA in the prefrontal cortex. L-cysteine inhibited microglial activation in the prefrontal cortex and reduced the mRNA levels of interleukin 1β and CD86. RT-PCR and western blot analysis of the complement system showed that L-cysteine reduced expression of the complement factors, C1q, C3α and its receptor C3aR1, and the deposition of C1q in the prefrontal cortex. Dihydroethidium staining was applied to detect changes in reactive oxygen species, and immunohistochemistry was used to detect the number of NRF2- and HO-1-positive cells. L-cysteine reduced the level of reactive oxygen species in the prefrontal cortex and the number of NRF2- and HO-1-positive cells. Western blot assays and immunohistochemistry were used to detect the protein levels of CHOP and GRP78 in the prefrontal cortex and the number of CHOP- and GRP78-positive cells. L-cysteine reduced CHOP and GRP78 levels and the number of CHOP- and GRP78-positive cells. The cystathionine-β-synthase inhibitor, aminooxyacetic acid, significantly reversed the above neuroprotective effects of L-cysteine. Taken together, L-cysteine can play a neuroprotective role by regulating neuroinflammation, complement deposition, oxidative stress and endoplasmic reticulum stress. The study was approved by the Animals Ethics Committee of Shandong University, China on February 22, 2016 (approval No. LL-201602022).
Collapse
Affiliation(s)
- Ye Xiong
- Department of Physiology, School of Basic Medical Sciences; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong Province, China
| | - Dan-Qing Xin
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Quan Hu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan; Department of Neurosurgery, Taian Central Hospital, Taian, Shandong Province, China
| | - Ling-Xiao Wang
- Department of Physiology, School of Basic Medical Sciences; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong Province, China
| | - Jie Qiu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Hong-Tao Yuan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Xi-Li Chu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - De-Xiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Shandong University, Jinan, Shandong Province, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
22
|
Zhang T, Wu C, Yang X, Liu Y, Yang H, Yuan L, Liu Y, Sun S, Yang J. Pseudoginsenoside-F11 Protects against Transient Cerebral Ischemia Injury in Rats Involving Repressing Calcium Overload. Neuroscience 2019; 411:86-104. [DOI: 10.1016/j.neuroscience.2019.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023]
|
23
|
Shakib N, Khadem Ansari MH, Karimi P, Rasmi Y. Neuroprotective mechanism of low-dose sodium nitrite in oxygen-glucose deprivation model of cerebral ischemic stroke in PC12 cells. EXCLI JOURNAL 2019; 18:229-242. [PMID: 31217786 PMCID: PMC6558507 DOI: 10.17179/excli2018-1947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to clarify the mechanisms of the protective effects of low-dose sodium nitrite (SN) on oxygen and glucose deprivation (OGD)-induced endoplasmic reticulum (ER) stress in PC12 cells. The PC12 cells were exposed to 4 h of OGD and treated with 100 μmol SN. The expression and activity of ER stress markers, including PKR-like endoplasmic reticulum kinase (PERK), transcription factor 6 (ATF6), CCAAT/enhancer binding protein homologous protein (CHOP), as well as caspase-12 and -3, were detected by immunoblotting assay. Fluorescence staining was used to detect the levels of reactive oxygen species (ROS) and Ca2+ release from the ER. Cell viability was also evaluated by MTT assay. It was found that SN significantly inhibited ROS production and Ca2+ release from the ER in OGD-injured PC12 cells. Moreover, ER stress marker expression and cleaved fragments of caspase-3 and -12 in OGD-injured PC12 cells were decreased after SN treatment. These findings were accompanied by a significant increase in cell viability. It seems that SN exerts a neuroprotective effect at least partially through reduction of ROS-mediated ER stress caused by OGD insult.
Collapse
Affiliation(s)
- Nader Shakib
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
24
|
Huang Q, Lan T, Lu J, Zhang H, Zhang D, Lou T, Xu P, Ren J, Zhao D, Sun L, Li X, Wang J. DiDang Tang Inhibits Endoplasmic Reticulum Stress-Mediated Apoptosis Induced by Oxygen Glucose Deprivation and Intracerebral Hemorrhage Through Blockade of the GRP78-IRE1/PERK Pathways. Front Pharmacol 2018; 9:1423. [PMID: 30564125 PMCID: PMC6288198 DOI: 10.3389/fphar.2018.01423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
DiDang Tang (DDT), a Chinese traditional medicine formula, contains 4 Chinese traditional medicine substances, has been widely used to treat intracerebral hemorrhage (ICH) patients. However, the molecular mechanisms of DDT for protecting neurons from oxygen and glucose deprivation (OGD)-induced endoplasmic reticulum (ER) stress and apoptosis after ICH still remains elusive. In this study, high-performance liquid chromatography fingerprint analysis was performed to learn the features of the chemical compositions of DDT. OGD-induced ER stress, Ca2+ overload, and mitochondrial apoptosis were investigated in nerve growth factor -induced PC12, primary neuronal cells, and ICH rats to evaluate the protective effect of DDT. We found that DDT treatment protected neurons against OGD-induced damage and apoptosis by increasing cell viability and reducing the release of lactate dehydrogenase. DDT decreased OGD-induced Ca2+ overload and ER stress through the blockade of the glucose-regulated protein 78 (GRP78)- inositol-requiring protein 1α (IRE1)/ protein kinase RNA-like ER kinase (PERK) pathways and also inhibited apoptosis by decreasing mitochondrial damage. Moreover, we observed similar findings when we studied DDT for inhibition of ER stress in a rat model of ICH. In addition, our experiments further confirmed the neuroprotective potential of DDT against tunicamycin (TM)-induced neural damage. Our in vitro and in vivo results indicated that the neuroprotective effect of DDT against ER stress damage and apoptosis occurred mainly by blocking the GPR78-IRE1/PERK pathways. Taken together, it provides reliable experimental evidence and explains the molecular mechanism of DDT for the treatment of patients with ICH.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Tianye Lan
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Scientific Research Office, Changchun University of Chinese Medicine, Changchun, China
| | - Tingting Lou
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Xu
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun, China
| | - Jixiang Ren
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
Effects of environmental pollutants on calcium release and uptake by rat cortical microsomes. Neurotoxicology 2018; 69:266-277. [DOI: 10.1016/j.neuro.2018.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
|
26
|
Estrogen and propofol combination therapy inhibits endoplasmic reticulum stress and remarkably attenuates cerebral ischemia-reperfusion injury and OGD injury in hippocampus. Biomed Pharmacother 2018; 108:1596-1606. [PMID: 30372862 DOI: 10.1016/j.biopha.2018.09.167] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023] Open
Abstract
AIM Endoplasmic reticulum stress (ERS) is vital in inducing apoptosis via caspase-12 and C/EBP homologous protein (CHOP) apoptotic pathway in the hippocampus after ischemia-reperfusion injury. The study aimed to estimate the efficacy of estrogen and propofol combination therapy against ERS-induced apoptosis after cerebral ischemia-reperfusion injury and oxygen-glucose deprivation (OGD) injury in the hippocampus in vivo and in vitro. METHODS Rat model of cerebral ischemia-reperfusion injury was generated by middle cerebral artery occlusion (MCAO) strategy with ischemic intervention for 90 min and reperfusion for 24 h. Propofol processing ischemia-reperfusion group (Propofol group) infused 50 mg/kg/h of propofol via the femoral vein at the onset of reperfusion for 30 min. Estrogen processing ischemia-reperfusion group (estrogen group) received 0.0125 mg/kg of estrogen via tail vein at 30 min prior to MCAO. Combination therapy for ischemia-reperfusion group (combination group) received simultaneous processing with propofol and estrogen. In vitro, brain slices were randomly exposed to dimethylsulfoxide (DSMO), 10 μm of propofol, 10 nm of estrogen, or propofol and estrogen. Changes in the orthodromic population spike (OPS) at the end of reoxygenation were recorded. Neurological deficit examination, Nissl staining, and 2,3,5-triphenyltetrazolium chloride (TTC) staining were employed to evaluate the level of cerebral ischemia-reperfusion injury. The expression of caspase-3, caspase-12, glucose-regulated protein 78 (GRP78), and CHOP were investigated by Western blot and immunofluorescence staining assays. Neural apoptotic rate in hippocampus was detected by the flow cytometry trial. RESULTS Neurological deficit score, infarct volume, the expression of caspase-3 (P < 0.05), caspase-12, GRP78, CHOP, and neural apoptotic rate of I/R group increased markedly (P < 0.01). When obtaining drug treatment, neurological deficit score (P < 0.05), infarct volume, the expression levels of caspase-12 and GRP78, and neural apoptotic rate of the propofol group decreased significantly (P < 0.01). Furthermore, neurological deficit score, infarct volume, expression levels of caspase-3, caspase-12, GRP78, and CHOP (P < 0.05), and neural apoptotic rate decreased in the estrogen group (P < 0.01) and especially in the combination group (P < 0.01). Compared with the propofol group, the neurological deficit score (P < 0.05), infarct volume, caspase-3, caspase-12, GRP78, CHOP, and neural apoptotic rate of the combination group decreased (P < 0.01). Compared with the estrogen group, the infarct volume, caspase-3 (P < 0.05), GRP78, CHOP, and neural apoptotic rate (P < 0.05) of the combination group decreased (P < 0.01). Compared with the propofol group, the infarct volume, caspase-3, caspase-12 (P < 0.05), and GRP78 (P < 0.05) of the estrogen group decreased (P < 0.01). Propofol and estrogen treatment can delay the abolishing time of OPS and increase the recovery rate and amplitude of OPS, compared with OGD group (P < 0.01), especially in the combination therapy (P < 0.01). CONCLUSION The neuroprotection of propofol and estrogen combination therapy inhibited excessive ERS-induced apoptosis against cerebral ischemia-reperfusion injury and OGD injury in the hippocampus of rats. Furthermore, the outcomes demonstrated that combination therapy yielded synergistic effects.
Collapse
|
27
|
Sun C, Fukushi Y, Wang Y, Yamamoto S. Astrocytes Protect Neurons in the Hippocampal CA3 Against Ischemia by Suppressing the Intracellular Ca 2+ Overload. Front Cell Neurosci 2018; 12:280. [PMID: 30197589 PMCID: PMC6118169 DOI: 10.3389/fncel.2018.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023] Open
Abstract
In the hippocampus, delayed neuronal death is normally seen in neurons of the CA1 region but not in those of the CA3 region. Astrocytes have been reported to play multiple supporting or pathological roles in neuronal functioning. While evidence indicates that astrocytes could exert neuroprotective effects following ischemia, the possible underlying mechanisms remain unclear. We aimed to investigate the roles of astrocytes in the process of delayed neuronal death following transient forebrain ischemia. L-α-aminoadipic acid (L-α-AAA), an astrocyte-selective gliotoxin, was injected into the hippocampal CA3 region of rats through a cranial window to selectively damage astrocytes. Immunofluorescence staining of glial fibrillary acidic protein (GFAP) was used to evaluate the effect of L-α-AAA on astrocyte numbers. Three days after the L-α-AAA injection, transient forebrain ischemia was induced by a modification of the four-vessel occlusion procedure. Seven days after transient forebrain ischemia, hematoxylin-eosin staining was performed to reveal the morphology of hippocampal pyramidal neurons. In rats with ischemia and reperfusion, regional cerebral blood flow (rCBF) and change in intracellular Ca2+ concentration ([Ca2+]i) were separately measured in CA1 and CA3 regions. L-α-AAA injection significantly decreased the number of astrocytes in CA3, but did not affect the pattern of rCBF changes upon ischemia/reperfusion. Seven days after transient forebrain ischemia, in rats receiving L-α-AAA, delayed neuronal death comparable with that in CA1 was observed in the CA3 region. In addition, the pattern of increase in [Ca2+]i due to transient forebrain ischemia was completely changed in the hippocampal CA3. The loss of astrocytes induced a persistent increase in [Ca2+]i in the CA3 region following transient ischemia, similar to what is observed in the CA1 region. Our study indicates that astrocytes in the hippocampal CA3 region exert neuroprotective effects following transient forebrain ischemia and act by suppressing the intracellular Ca2+ overload. Furthermore, our study will most likely provide a new therapeutic strategy for brain ischemic diseases, targeted to astrocytes.
Collapse
Affiliation(s)
- Chuanqi Sun
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fukushi
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yong Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Seiji Yamamoto
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
28
|
Phillips KF, Deshpande LS, DeLorenzo RJ. Hypothermia Reduces Mortality, Prevents the Calcium Plateau, and Is Neuroprotective Following Status Epilepticus in Rats. Front Neurol 2018; 9:438. [PMID: 29942282 PMCID: PMC6005175 DOI: 10.3389/fneur.2018.00438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Status Epilepticus (SE) is a major neurological emergency and is considered a leading cause of Acquired Epilepsy (AE). We have shown that SE produces neuronal injury and prolonged alterations in hippocampal calcium levels ([Ca2+]i) that may underlie the development of AE. Interventions preventing the SE-induced Ca2+ plateau could therefore prove to be beneficial in lowering the development of AE after SE. Hypothermia is used clinically to prevent neurological complications associated with Traumatic Brain Injury, cardiac arrest, and stroke. Here, we investigated whether hypothermia prevented the development of Ca2+ plateau following SE. SE was induced in hippocampal neuronal cultures (HNC) by exposing them to no added MgCl2 solution for 3 h. To terminate SE, low Mg2+ solution was washed off with 31°C (hypothermic) or 37°C (normothermic) physiological recording solution. [Ca2+]i was estimated with ratiometric Fura-2 imaging. HNCs washed with hypothermic solution exhibited [Ca2+]i ratios, which were significantly lower than ratios obtained from HNCs washed with normothermic solution. For in vivo SE, the rat pilocarpine (PILO) model was used. Moderate hypothermia (30–33°C) in rats was induced at 30-min post-SE using chilled ethanol spray in a cold room. Hypothermia following PILO-SE significantly reduced mortality. Hippocampal neurons isolated from hypothermia-treated PILO SE rats exhibited [Ca2+]i ratios which were significantly lower than ratios obtained from PILO SE rats. Hypothermia also provided significant neuroprotection against SE-induced delayed hippocampal injury as characterized by decreased FluoroJade C labeling in hypothermia-treated PILO SE rats. We previously demonstrated that hypothermia reduced Ca2+ entry via N-methyl-D-aspartate and ryanodine receptors in HNC. Together, our studies indicate that by targeting these two receptor systems hypothermia could interfere with epileptogenesis and prove to be an effective therapeutic intervention for reducing SE-induced AE.
Collapse
Affiliation(s)
- Kristin F Phillips
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laxmikant S Deshpande
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
29
|
Şekerdağ E, Solaroğlu I, Gürsoy-Özdemir Y. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr Neuropharmacol 2018; 16:1396-1415. [PMID: 29512465 PMCID: PMC6251049 DOI: 10.2174/1570159x16666180302115544] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/18/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
As a result of ischemia or hemorrhage, blood supply to neurons is disrupted which subsequently promotes a cascade of pathophysiological responses resulting in cell loss. Many mechanisms are involved solely or in combination in this disorder including excitotoxicity, mitochondrial death pathways, and the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy and inflammation. Besides neuronal cell loss, damage to and loss of astrocytes as well as injury to white matter contributes also to cerebral injury. The core problem in stroke is the loss of neuronal cells which makes recovery difficult or even not possible in the late states. Acute treatment options that can be applied for stroke are mainly targeting re-establishment of blood flow and hence, their use is limited due to the effective time window of thrombolytic agents. However, if the acute time window is exceeded, neuronal loss starts due to the activation of cell death pathways. This review will explore the most updated cellular death mechanisms leading to neuronal loss in stroke. Ischemic and hemorrhagic stroke as well as subarachnoid hemorrhage will be debated in the light of cell death mechanisms and possible novel molecular and cellular treatment options will be discussed.
Collapse
Affiliation(s)
- Emine Şekerdağ
- Address correspondence to this author at the Neuroscience Research Lab, Research Center for Translational Medicine, Koç University, Istanbul, Turkey; Tel: +90 850 250 8250; E-mail:
| | | | | |
Collapse
|
30
|
Laskar K, Faisal SM, Rauf A, Ahmed A, Owais M. Undec-10-enoic acid functionalized chitosan based novel nano-conjugate: An enhanced anti-bacterial/biofilm and anti-cancer potential. Carbohydr Polym 2017; 166:14-23. [PMID: 28385217 DOI: 10.1016/j.carbpol.2017.02.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022]
Abstract
Fatty acid functionalized chitosan conjugates are of great interest in cancer therapeutics because of its internalization through receptor mediated endocytosis into the cancer cells. Keeping the above fact into consideration, herein we synthesized the undec-10-enoic acid functionalized chitosan based undecyl-chitosan (U-CS) nano-bioconjugate with the use of DCC as a coupling agent. The U-CS conjugate synthesized was confirmed and characterized by FTIR, 1H NMR, TGA, XRD, SEM and TEM analysis. Generally, it is well established that conjugates of oleic acid with human Alpha-lactalbumin (HAMLET) induce cytotoxicity in the altered cells, but not in healthy cells. To check our presumptions, anti-bacterial and anti-cancer potential of U-CS was evaluated against bacterial pathogens (Gram +ve and Gram -ve) and human cancer cell lines (HeLa, MDA-MB-231 and Hep3B). The results of our study clearly revealed that conjugate showed enhance anti-bacterial, anti-biofilm as well as anti-cancer efficacy as compared to pure and free form of the chitosan.
Collapse
Affiliation(s)
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Abdul Rauf
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Anees Ahmed
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
31
|
Kumar S, Paul A, Kalita S, Ghosh AK, Mandal B, Mondal AC. Protective effects of β-sheet breaker α/β-hybrid peptide against amyloid β-induced neuronal apoptosis in vitro. Chem Biol Drug Des 2016; 89:888-900. [PMID: 27995757 DOI: 10.1111/cbdd.12912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/13/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is most common neurodegenerative disorder and is characterized by increased production of soluble amyloid-β oligomers, the main toxic species predominantly formed from aggregation of monomeric amyloid-β (Aβ). Increased production of Aβ invokes a cascade of oxidative damages to neurons and eventually leads to neuronal death. This study was aimed to investigate the neuroprotective effects of a β-sheet breaker α/β-hybrid peptide (BSBHp) and the underlying mechanisms against Aβ40 -induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Cells were pretreated with the peptide Aβ40 to induce neurotoxicity. Assays for cell viability, cell membrane damage, cellular apoptosis, generation of reactive oxygen species (ROS), intracellular free Ca2+ , and key apoptotic protein levels were performed in vitro. Our results showed that pretreatment with BSBHp significantly attenuates Aβ40 -induced toxicity by retaining cell viability, suppressing generation of ROS, Ca2+ levels, and effectively protects neuronal apoptosis by suppressing pro-apoptotic protein Bax and up-regulating antiapoptotic protein Bcl-2. These results suggest that α/β-hybrid peptide has neuroprotective effects against Aβ40 -induced oxidative stress, which might be a potential therapeutic agent for treating or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Sourav Kumar
- Neuroscience Research Unit, Department of Physiology, Raja Peary Mohan College, Uttarpara, Hooghly, West Bengal, India
| | - Ashim Paul
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, India
| | - Sourav Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, India
| | - Anup Kumar Ghosh
- Department of Instrumentation Science, Jadavpur University, Kolkata, West Bengal, India
| | - Bhubaneswar Mandal
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, India
| | - Amal Chandra Mondal
- Neuroscience Research Unit, Department of Physiology, Raja Peary Mohan College, Uttarpara, Hooghly, West Bengal, India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
32
|
Hunt NJ, Waters KA, Machaalani R. Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression. Mol Neurobiol 2016; 54:7171-7185. [PMID: 27796753 DOI: 10.1007/s12035-016-0234-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/16/2016] [Indexed: 01/08/2023]
Abstract
We previously demonstrated that sudden infant death syndrome (SIDS) infants have decreased orexin immunoreactivity within the hypothalamus and pons compared to non-SIDS infants. In this study, we examined multiple mechanisms that may promote loss of orexin expression including programmed cell death, impaired maturation/structural stability, neuroinflammation and impaired unfolding protein response (UPR). Immunofluorescent and immunohistochemical staining for a number of markers was performed in the tuberal hypothalamus and pons of infants (1-10 months) who died from SIDS (n = 27) compared to age- and sex-matched non-SIDS infants (n = 19). The markers included orexin A (OxA), dynorphin (Dyn), cleaved caspase 3 (CC3), cleaved caspase 9 (CC9), glial fibrillary acid protein (GFAP), tubulin beta chain 3 (TUBB3), myelin basic protein (MBP), interleukin 1β (IL-1β), terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), c-fos and the UPR activation markers: phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (pPERK), and activating transcription factor 4 (ATF4). It was hypothesised that pPERK and ATF4 would be upregulated in Ox neurons in SIDS compared to non-SIDS. Within the hypothalamus, OxA and Dyn co-localised with a 20 % decrease in expression in SIDS infants (P = 0.001). pPERK and ATF4 expression in OxA neurons were increased by 35 % (P = 0.001) and 15 % (P = 0.001) respectively, with linear relationships between the decreased OxA/Dyn expression and the percentages of co-localised pPERK/OxA and ATF4/OxA evident (P = 0.01, P = 0.01). No differences in co-localisation with CC9, CC3, TUNEL or c-fos, nor expression of MBP, TUBB3, IL-1β and GFAP, were observed in the hypothalamus. In the pons, there were 40 % and 20 % increases in pPERK expression in the locus coeruleus (P = 0.001) and dorsal raphe (P = 0.022) respectively; ATF4 expression was not changed. The findings that decreased orexin levels in SIDS infants may be associated with an accumulation of pPERK suggest decreased orexin translation. As pPERK may inhibit multiple neuronal groups in the pons in SIDS infants, it could also indicate that a common pathway promotes loss of protein expression and impaired functionality of multiple brainstem neuronal groups.
Collapse
Affiliation(s)
- Nicholas J Hunt
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia.,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia
| | - Karen A Waters
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia.,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia.,The Children's Hospital, Westmead, NSW, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia. .,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia. .,The Children's Hospital, Westmead, NSW, Australia.
| |
Collapse
|
33
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
34
|
Barakat R, Redzic Z. The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out? Med Princ Pract 2016; 25 Suppl 1:3-14. [PMID: 26303836 PMCID: PMC5588523 DOI: 10.1159/000435858] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Paracrine signaling in the neurovascular unit (NVU) is aimed to adjust the supply of oxygen and nutrients to metabolic demands of the brain in a feed-forward manner. Cerebral ischemia (CI) severely disrupts this homeostatic mechanism and also causes activation of microglia and resident macrophages in the brain. Contradictory data exist on the time pattern of microglial activation and polarization during CI, on molecular mechanisms that trigger them and on effects of microglia-derived cytokines on brain cells. It appears that conditions that occur during transient ischemia or in the penumbra of focal ischemia in vivo or equivalent conditions in vitro trigger polarization of resting microglia/macrophages into the M2 phenotype, which mainly exerts anti-inflammatory and protective effects in the brain, while prolonged ischemia with abundant necrosis promotes microglial polarization into the M1 phenotype. During the later stages of recovery, microglia that polarized initially into the M2 phenotype can shift into the M1 phenotype. Thus, it appears that cells with both phenotypes are present in the affected area, but their relative amount changes in time and probably depends on the proximity to the ischemic core. It was assumed that cells with the M1 phenotype exert detrimental effects on neurons and contribute to the blood-brain barrier opening. Several M1 phenotype-specific cytokines exert protective effects on astrocytes, which could be important for reactive gliosis occurring after ischemia. Thus, whether or not suppression of microglial activity after CI is beneficial for neurological outcome still remains unclear and current evidence suggests that no simple answer could be given to this question.
Collapse
Affiliation(s)
| | - Zoran Redzic
- *Dr. Zoran Redzic, Department of Physiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
35
|
Zhu X, Zelmer A, Kapfhammer JP, Wellmann S. Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB J 2015; 30:624-34. [PMID: 26472337 DOI: 10.1096/fj.15-274639] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 01/01/2023]
Abstract
The cold-inducible RNA-binding motif protein 3 (RBM3) is involved in the protection of neurons in hypoxic-ischemic and neurodegenerative disorders. RBM3 belongs to a small group of proteins whose synthesis increases during hypothermia while global protein production is slowed down. To investigate the molecular mechanisms underlying RBM3 action, we subjected hippocampal organotypic slice cultures from RBM3 knockout mice to various stressors and found exuberant signaling of the endoplasmic reticulum (ER) stress pathway PRKR-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-CCAAT/enhancer-binding protein homologous protein (CHOP) as compared with wild-type mice. Further, blocking RBM3 expression in human embryonic kidney HEK293 cells by specific small interfering RNAs increased phosphorylation of PERK and eIF2α, whereas overexpression of RBM3 prevented PERK-eIF2α-CHOP signaling during ER stress induced by thapsigargin or tunicamycin. RBM3 did not affect expression of the ER stress sensor immunoglobulin binding protein/GRP78. However, based on affinity purification coupled with mass spectrometry, coimmunoprecipitation, and proximity ligation assay, we revealed that nuclear factor 90 (NF90) is a novel protein interactor of PERK and that this interaction is essential for RBM3-mediated regulation of PERK activity, which requires an RNA-dependent interaction. In conclusion, our data provide evidence for a central role of RBM3 in preventing cell death by inhibiting the PERK-eIF2α-CHOP ER stress pathway through cooperation with NF90.
Collapse
Affiliation(s)
- Xinzhou Zhu
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andrea Zelmer
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josef P Kapfhammer
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sven Wellmann
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress. Mol Neurobiol 2015; 53:4713-27. [PMID: 26319559 DOI: 10.1007/s12035-015-9389-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
This study was aimed at evaluating the role of increased iron accumulation in oligodendrocytes and its role in their apoptosis in the periventricular white matter damage (PWMD) following a hypoxic injury to the neonatal brain. In response to hypoxia, in the PWM, there was increased expression of proteins involved in iron acquisition, such as iron regulatory proteins (IRP1, IRP2) and transferrin receptor in oligodendrocytes. Consistent with this, following a hypoxic exposure, there was increased accumulation of iron in primary cultured oligodendrocytes. The increased concentration of iron within hypoxic oligodendrocytes was found to elicit ryanodine receptor (RyR) expression, and the expression of endoplasmic reticulum (ER) stress markers such as binding-immunoglobulin protein (BiP) and inositol-requiring enzyme (IRE)-1α. Associated with ER stress, there was reduced adenosine triphosphate (ATP) levels within hypoxic oligodendrocytes. However, treatment with deferoxamine reduced the increased expression of RyR, BiP, and IRE-1α and increased ATP levels in hypoxic oligodendrocytes. Parallel to ER stress there was enhanced reactive oxygen species production within mitochondria of hypoxic oligodendrocytes, which was attenuated when these cells were treated with deferoxamine. At the ultrastructural level, hypoxic oligodendrocytes frequently showed dilated ER and disrupted mitochondria, which became less evident in those treated with deferoxamine. Associated with these subcellular changes, the apoptosis of hypoxic oligodendrocytes was evident with an increase in p53 and caspase-3 expression, which was attenuated when these cells were treated with deferoxamine. Thus, the present study emphasizes that the excess iron accumulated within oligodendrocytes in hypoxic PWM could result in their death by eliciting ER stress and mitochondrial disruption.
Collapse
|
37
|
Abstract
Endoplasmic reticulum (ER) stress is an intricate mechanism that mediates numerous responses during brain ischemia, thus being essential to determine the fate of neurons. In recent years, studies of the mechanisms of brain ischemic injury have centered on ER stress, glutamate excitotoxicity, dysfunction of mitochondria, inflammatory reactions, calcium overload and death receptor pathways. The role of ER stress is highly important. In addition to resulting in neuronal cell death through calcium toxicity and apoptotic pathways, ER stress also triggers a series of adaptive responses including unfolded protein response (UPR), autophagy, the expression of pro-survival proteins and the enhancement of ER self-repair ability, leading to less ischemic brain damage. This paper provides an overview of recent advances in understanding of the relations between ER stress and brain ischemia.
Collapse
Affiliation(s)
- Yingchao Su
- a Department of Neurology, the Second Affiliated Hospital of Harbin Medical University , Harbin 150086 , China
| | - Feng Li
- a Department of Neurology, the Second Affiliated Hospital of Harbin Medical University , Harbin 150086 , China
| |
Collapse
|
38
|
Liu J, Han P, Li M, Yan W, Liu J, He J, Gong J, Wang Y, Tian D. Histidine-rich calcium binding protein promotes growth of hepatocellular carcinoma in vitro and in vivo. Cancer Sci 2015; 106:1288-95. [PMID: 26176291 PMCID: PMC4638025 DOI: 10.1111/cas.12743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
We have recently shown that the histidine-rich calcium binding protein (HRC) promotes the invasion and metastasis of hepatocellular carcinoma (HCC). In the current study, we evaluated whether HRC may also affect the growth of HCC. We found that ectopic expression of HRC obviously enhanced proliferation and colony formation, while suppression of HRC exhibited inhibitory effects. Furthermore, we demonstrated that HRC promoted tumor growth in nude mice. These effects may result from the ability of HRC to upregulate cyclinD1 and cyclin-dependent kinase 2 (CDK2) expressions and promote G1/S transition. Further study showed that MEK/ERK signaling pathway was involved in HRC-induced cell proliferation. Interestingly, overexpression or depletion of HRC revealed its regulation on endoplasmic reticulum stress (ERS) and apoptosis, which was partially dependent on PERK/ATF4/CHOP signaling pathway. In addition, blocking ERS using 4-phenylbutyric acid (4-PBA) not only downregulated the expression of PERK, ATF4 and CHOP, but also significantly decreased apoptosis induced by HRC silence, whereas ERS inducer thapsigargin (TG) exerted the opposite effects. Our study thus demonstrates a role of HRC in promoting HCC growth, besides its role in inducing HCC metastasis, and highlights HRC as a promising intervention target for HCC.
Collapse
Affiliation(s)
- Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiqiao Liu
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Gong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunwu Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Katakam PVG, Gordon AO, Sure VNLR, Rutkai I, Busija DW. Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats. Am J Physiol Heart Circ Physiol 2015; 307:H493-503. [PMID: 24929852 DOI: 10.1152/ajpheart.00091.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial depolarization following ATP-sensitive potassium (mitoKATP) channel activation has been shown to induce cerebral vasodilation by generation of mitochondrial reactive oxygen species (ROS), which sequentially promotes frequency of calcium sparks and activation of large conductance calcium-activated potassium channels (BKCa) in vascular smooth muscle (VSM). We previously demonstrated that cerebrovascular insulin resistance accompanies aging and obesity. It is unclear whether mitochondrial depolarization without the ROS generation enhances calcium sparks and vasodilation in phenotypically normal [Sprague Dawley (SD); Zucker lean (ZL)] and insulin-resistant [Zucker obese (ZO)] rats. We compared the mechanisms underlying the vasodilation to ROS-dependent (diazoxide) and ROS-independent [BMS-191095 (BMS)] mitoKATP channel activators in normal and ZO rats. Arterial diameter studies from SD, ZL, and ZO rats showed that BMS as well as diazoxide induced vasodilation in endothelium-denuded cerebral arteries. In normal rats, BMS-induced vasodilation was mediated by mitochondrial depolarization and calcium sparks generation in VSM and was reduced by inhibition of BKCa channels. However, unlike diazoxide-induced vasodilation, scavenging of ROS had no effect on BMS-induced vasodilation. Electron spin resonance spectroscopy confirmed that diazoxide but not BMS promoted vascular ROS generation. BMS- as well as diazoxide-induced vasodilation, mitochondrial depolarization, and calcium spark generation were diminished in cerebral arteries from ZO rats. Thus pharmacological depolarization of VSM mitochondria by BMS promotes ROS-independent vasodilation via generation of calcium sparks and activation of BKCa channels. Diminished generation of calcium sparks and reduced vasodilation in ZO arteries in response to BMS and diazoxide provide new insights into mechanisms of cerebrovascular dysfunction in insulin resistance.
Collapse
|
40
|
Aune SE, Herr DJ, Kutz CJ, Menick DR. Histone Deacetylases Exert Class-Specific Roles in Conditioning the Brain and Heart Against Acute Ischemic Injury. Front Neurol 2015; 6:145. [PMID: 26175715 PMCID: PMC4485035 DOI: 10.3389/fneur.2015.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (IR) injury comprises a significant portion of morbidity and mortality from heart and brain diseases worldwide. This enduring clinical problem has inspired myriad reports in the scientific literature of experimental interventions seeking to elucidate the pathology of IR injury. Elective cardiac surgery presents perhaps the most viable scenario for protecting the heart and brain from IR injury due to the opportunity to condition the organs prior to insult. The physiological parameters for the preconditioning of vital organs prior to insult through mechanical and pharmacological maneuvers have been heavily examined. These investigations have revealed new insights into how preconditioning alters cellular responses to IR injury. However, the promise of preconditioning remains unfulfilled at the clinical level, and research seeking to implicate cell signals essential to this protection continues. Recent discoveries in molecular biology have revealed that gene expression can be controlled through posttranslational modifications, without altering the chemical structure of the genetic code. In this scenario, gene expression is repressed by enzymes that cause chromatin compaction through catalytic removal of acetyl moieties from lysine residues on histones. These enzymes, called histone deacetylases (HDACs), can be inhibited pharmacologically, leading to the de-repression of protective genes. The discovery that HDACs can also alter the function of non-histone proteins through posttranslational deacetylation has expanded the potential impact of HDAC inhibitors for the treatment of human disease. HDAC inhibitors have been applied in a very small number of experimental models of IR. However, the scientific literature contains an increasing number of reports demonstrating that HDACs converge on preconditioning signals in the cell. This review will describe the influence of HDACs on major preconditioning signaling pathways in the heart and brain.
Collapse
Affiliation(s)
- Sverre E Aune
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Daniel J Herr
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Craig J Kutz
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Donald R Menick
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
41
|
Thorsen K, Agafonov O, Selstø CH, Jolma IW, Ni XY, Drengstig T, Ruoff P. Robust concentration and frequency control in oscillatory homeostats. PLoS One 2014; 9:e107766. [PMID: 25238410 PMCID: PMC4169565 DOI: 10.1371/journal.pone.0107766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable A robustly (i.e. perturbation-independent) at a given set-point A(set) by feeding the integrated error back into the process that generates A. The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators ("oscillatory homeostats") to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation.
Collapse
Affiliation(s)
- Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Oleg Agafonov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | | - Ingunn W. Jolma
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Xiao Y. Ni
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| |
Collapse
|
42
|
Feng X, Krogh KA, Wu CY, Lin YW, Tsai HC, Thayer SA, Wei LN. Receptor-interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death. Nat Commun 2014; 5:4487. [PMID: 25066731 PMCID: PMC4200015 DOI: 10.1038/ncomms5487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/23/2014] [Indexed: 12/29/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca(2+) release from the endoplasmic reticulum (ER) triggers many physiological responses in neurons, and when uncontrolled can cause ER stress that contributes to neurological disease. Here we show that the unfolded protein response (UPR) in neurons induces rapid translocation of nuclear receptor-interacting protein 140 (RIP140) to the cytoplasm. In the cytoplasm, RIP140 localizes to the ER by binding to the IP3R. The carboxyl-terminal RD4 domain of RIP140 interacts with the carboxyl-terminal gate-keeping domain of the IP3R. This molecular interaction disrupts the IP3R's 'head-tail' interaction, thereby suppressing channel opening and attenuating IP3R-mediated Ca(2+) release. This contributes to a rapid suppression of the ER stress response and provides protection from apoptosis in both hippocampal neurons in vitro and in an animal model of ER stress. Thus, RIP140 translocation to the cytoplasm is an early response to ER stress and provides protection against neuronal death.
Collapse
Affiliation(s)
- Xudong Feng
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly A. Krogh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, R.O.C
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
43
|
Yang T, Gu J, Kong B, Kuang Y, Cheng L, Cheng J, Xia X, Ma Y, Zhang J. Gene expression profiles of patients with cerebral hematoma following spontaneous intracerebral hemorrhage. Mol Med Rep 2014; 10:1671-8. [PMID: 25069764 PMCID: PMC4148373 DOI: 10.3892/mmr.2014.2421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 03/27/2014] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the gene functions and expression profiles in perihematomal (PH) brain regions following spontaneous intracerebral hemorrhage. The gene expression profiles were downloaded from the Gene Expression Omnibus database under accession number GSE24265, which includes 11 brain samples from different regions, including four samples from PH areas, four from contralateral grey matter (CG) and three from contralateral white matter (CW). The gene expression profiles were pre-processed and the differentially expressed genes (DEGs) between PH and CG tissue, and PH and CW tissue were identified using R packages. The expression of genes in different tissues was analyzed by hierarchical clustering. Then, the interaction network between the DEGs was constructed using String software. Finally, Gene Ontology was performed and pathway analysis was conducted using FuncAssociate and Expression Analysis Systematic Explorer to identify the gene function. As a result, 399 DEGs were obtained between PH and CG, and 756 DEGs were identified between PH and CW. There were 35 common DEGs between the two groups. These DEGs may be involved in PH edema by regulating the calcium signaling pathway [calcium channel, voltage-dependent, T-type, α1I subunit, Ca2+/calmodulin-dependent protein kinase II α (CAMK2A), ryanodine receptor 2 (RYR2) and inositol 1,4,5-trisphosphate receptor, type 1 (ITPR1)], cell proliferation (sphingosine kinase 1), neuron differentiation (Ephrin-A5) or extracellular matrix-receptor interaction [collagen, type I, α 2, laminin B1 (LAMB1), syndecan 2, fibronectin 1 and integrin α5 (ITGA5)]. A number of genes may cooperate to participate in the same pathway, such as ITPR1-RYR2, CAMK2A-RYR2 and ITGA5-LAMB1 interaction pairs. The present study provides several potential targets to decrease hematoma expansion and alleviate neuronal cell death following spontaneous intracerebral hemorrhage.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Jianwen Gu
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Bin Kong
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Yongqin Kuang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Lin Cheng
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Jingmin Cheng
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Xun Xia
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Yuan Ma
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Junhai Zhang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
44
|
Yan F, Li J, Chen J, Hu Q, Gu C, Lin W, Chen G. Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci Lett 2014; 563:160-5. [PMID: 24513235 DOI: 10.1016/j.neulet.2014.01.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/08/2014] [Accepted: 01/29/2014] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress might play an important role in a range of neurological diseases; however, this phenomenon's role in subarachnoid hemorrhage (SAH) remains unclear. In this study, we explored the potential role of endoplasmic reticulum stress in early brain injury following SAH.84 rats were used for an endovascular perforation-induced subarachnoid hemorrhage model. The rats were intraperitoneally pretreated with the ER stress inducer tunicamycin (Tm) or with the inhibitor tauroursodeoxycholic acid (TUDCA) before SAH onset. An intracerebral ventricular infusion of autophagy inhibitor 3-methyladenine (3-MA) was also used to determine the relation between autophagy and ER stress in early brain injury following SAH. At 24h, rats were neurologically evaluated, and their brains were extracted for molecular biological and histological studies. ER stress was activated in rats after 24h of SAH. Enhanced ER stress via Tm pretreatment significantly improved neurological deficits, attenuated the expression of pro-apoptotic molecules of caspase-3 and reduced the number of TUNEL-positive cells. In contrast, the ER stress inhibitor TUDCA aggravated neurological deficits and apoptotic cell death. Western blot analysis revealed that levels of the autophagic protein Beclin 1 and the ratio of LC3-II to LC3-I were both increased by Tm infusion and reduced by TUDCA administration. The suppression of autophagic activity with 3-MA attenuated Tm-induced anti-apoptotic effects. Our study indicates that ER stress alleviates early brain injury following SAH via inhibiting apoptosis. This neuroprotective effect is most likely exerted by autophagy activation.
Collapse
Affiliation(s)
- Feng Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, 310009 Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, 310009 Hangzhou, China
| | - Jingyin Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, 310009 Hangzhou, China
| | - Qiang Hu
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, 310009 Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, 310009 Hangzhou, China
| | - Wang Lin
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, 310009 Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, 310009 Hangzhou, China.
| |
Collapse
|