1
|
Zhang X, Tao L, Nygaard AH, Dong Y, Groves T, Hong X, Goddard CM, He C, Postnov D, Allodi I, Lauritzen MJ, Cai C. Aging alters calcium signaling in vascular mural cells and drives remodeling of neurovascular coupling in the awake brain. J Cereb Blood Flow Metab 2025:271678X251320455. [PMID: 39947907 PMCID: PMC11826828 DOI: 10.1177/0271678x251320455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/11/2024] [Accepted: 01/26/2025] [Indexed: 02/16/2025]
Abstract
Brain aging leads to reduced cerebral blood flow and cognitive decline, but how normal aging affects neurovascular coupling (NVC) in the awake brain is unclear. Here, we investigated NVC in relation to calcium changes in vascular mural cells (VMCs) in awake adult and aged mice. We show that NVC responses are reduced and prolonged in the aged brain and that this is more pronounced at the capillary level than in arterioles. However, the overall NVC response, measured as the time integral of vasodilation, is the same in the two age groups. In adult, but not in aged mice, the NVC response correlated with Ca2+ signaling in VMCs, while the overall Ca2+ kinetics were slower in aged than in adult mice. In particular, the rate of Ca2+ transport, and the Ca2+ sensitivity of VMCs were reduced in aged mice, explaining the reduced and prolonged vasodilation. Spontaneous locomotion was less frequent and reduced in aged mice as compared to young adult mice, and this was reflected in the 'slow but prolonged' NVC and vascular Ca2+ responses. Taken together, our data characterize the NVC in the aged, awake brain as slow but prolonged, highlighting the remodeling processes associated with aging.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lechan Tao
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Amalie H Nygaard
- Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yiqiu Dong
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Copenhagen, Denmark
| | - Teddy Groves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Xiaoqi Hong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carolyn M Goddard
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Chen He
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry Postnov
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Copenhagen, Denmark
| | - Ilary Allodi
- Neural Circuits of Disease Laboratory, School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Martin J Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dienel GA, Nowak TS. Setting standards for brain collection procedures in metabolomic studies. J Cereb Blood Flow Metab 2025:271678X251314331. [PMID: 39862175 PMCID: PMC11765310 DOI: 10.1177/0271678x251314331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Current metabolomics technologies can measure hundreds of chemical entities in tissue extracts with good reliability. However, long-recognized requirements to halt enzyme activities during the initial moments of sample preparation are usually overlooked, allowing marked postmortem shifts in levels of labile metabolites representing diverse pathways. In brain many such changes occur in a matter of seconds. These comments overview the concern, contrast representative studies, and specify approaches to consider as standards in the field going forward. Comparison with established metabolite signatures of in vivo brain is an essential validation step when implementing any collection method.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Thaddeus S Nowak
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Wang Y, Lowerison MR, Huang Z, You Q, Lin BZ, Llano DA, Song P. Longitudinal Awake Imaging of Mouse Deep Brain Microvasculature with Super-resolution Ultrasound Localization Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555789. [PMID: 37732191 PMCID: PMC10508721 DOI: 10.1101/2023.09.01.555789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Ultrasound localization microscopy (ULM) is an emerging imaging modality that resolves microvasculature in deep tissues with high spatial resolution. However, existing preclinical ULM applications are largely constrained to anesthetized animals, introducing confounding vascular effects such as vasodilation and altered hemodynamics. As such, ULM quantifications (e.g., vessel diameter, density, and flow velocity) may be confounded by the use of anesthesia, undermining the usefulness of ULM in practice. Here we introduce a method to address this limitation and achieve ULM imaging in awake mouse brain. Pupillary monitoring was used to support the presence of the awake state during ULM imaging. Vasodilation induced by isoflurane was observed by ULM. Upon recovery to the awake state, reductions in vessel density and flow velocity were observed across different brain regions. In the cortex, the effects induced by isoflurane are more pronounced on venous flow than on arterial flow. In addition, serial in vivo imaging of the same animal brain at weekly intervals demonstrated the highly robust longitudinal imaging capability of the proposed technique. The consistency was further verified through quantitative analysis on individual vessels, cortical regions of arteries and veins, and subcortical regions. This study demonstrates longitudinal ULM imaging in the awake mouse brain, which is crucial for many ULM brain applications that require awake and behaving animals.
Collapse
|
4
|
Martineau É, Malescot A, Elmkinssi N, Rungta RL. Distal activity patterns shape the spatial specificity of neurovascular coupling. Nat Neurosci 2024; 27:2101-2114. [PMID: 39232066 DOI: 10.1038/s41593-024-01756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Neurovascular coupling links brain activity to local changes in blood flow, forming the basis for non-invasive brain mapping. Using multiscale imaging, we investigated how vascular activity spatially relates to neuronal activity elicited by single whiskers across different columns and layers of mouse cortex. Here we show that mesoscopic hemodynamic signals quantitatively reflect neuronal activity across space but are composed of a highly heterogeneous pattern of responses across individual vessel segments that is poorly predicted by local neuronal activity. Rather, this heterogeneity is dependent on vessel directionality, specifically in thalamocortical input layer 4, where capillaries respond preferentially to neuronal activity patterns along their downstream perfusion domain. Thus, capillaries fine-tune blood flow based on distant activity and encode laminar-specific activity patterns. These findings imply that vascular anatomy sets a resolution limit on functional imaging signals, where individual blood vessels inaccurately report neuronal activity in their immediate vicinity but, instead, integrate activity patterns along the vascular arbor.
Collapse
Affiliation(s)
- Éric Martineau
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology and Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - Antoine Malescot
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology and Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - Nouha Elmkinssi
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada
| | - Ravi L Rungta
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada.
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Wesley CD, Sansonetti A, Neutel CHG, Krüger DN, De Meyer GRY, Martinet W, Guns PJ. Short-Term Proteasome Inhibition: Assessment of the Effects of Carfilzomib and Bortezomib on Cardiac Function, Arterial Stiffness, and Vascular Reactivity. BIOLOGY 2024; 13:844. [PMID: 39452152 PMCID: PMC11504385 DOI: 10.3390/biology13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Proteasome inhibitors such as bortezomib and carfilzomib induce apoptosis and are a cornerstone in the treatment of relapsed or refractory multiple myeloma. However, concerns have emerged concerning their link to cancer therapy-related cardiovascular dysfunction (CTRCD). Bortezomib, a reversible first-generation inhibitor, and carfilzomib, a second-generation irreversible inhibitor, are associated with hypertension, heart failure, and cardiac arrhythmias. The current study investigated the effects of bortezomib and carfilzomib on cardiac (left ventricular ejection fraction, LVEF) and vascular (arterial stiffness, vascular reactivity) function. Cardiac function assessment aimed to build upon existing evidence of proteasome inhibitors CTRCD, while arterial stiffness served as an early indicator of potential vascular remodeling. Groups of 12-week-old C57BL/6J male mice (n = 8 per group) were randomly assigned to receive vehicle, carfilzomib (8 mg/kg I.P.), or bortezomib (0.5 mg/kg I.P.). Additionally, proteasome inhibition was assessed in mice treated with L-NAME (0.5 mg/kg) to induce hypertension. Cardiac and vascular parameters were evaluated via echocardiography on days 0 and 3. On day 6, mice were sacrificed for ex vivo analysis of arterial stiffness and vascular reactivity. Overall, no changes in arterial stiffness were detected either in vivo or ex vivo at basal pressures. However, a steeper pressure-stiffness curve was observed for carfilzomib in normotensive (p < 0.01) and hypertensive (p < 0.0001) mice ex vivo. Additionally, in hypertensive mice, carfilzomib decreased LVEF (p = 0.06), with bortezomib exhibiting similar trends. Vascular reactivity remained largely unchanged, but proteasome inhibition tended to enhance endothelial-independent relaxations in both control and hypertensive mice. In conclusion, short-term treatment with carfilzomib and bortezomib is considered relatively safe for the protocols assessed in the study.
Collapse
Affiliation(s)
- Callan D. Wesley
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences University of Antwerp, Campus Drie Eiken, 2610 Antwerp, Belgium; (A.S.); (C.H.G.N.); (D.N.K.); (G.R.Y.D.M.); (W.M.); (P.-J.G.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Ramos-Torres K, Sun Y, Takahashi K, Zhou YP, Brugarolas P. Common anesthetic used in preclinical PET imaging inhibits metabolism of the PET tracer [ 18F]3F4AP. J Neurochem 2024; 168:2577-2586. [PMID: 38690718 PMCID: PMC11482445 DOI: 10.1111/jnc.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Positron emission tomography (PET) imaging studies in laboratory animals are almost always performed under isoflurane anesthesia to ensure that the subject stays still during the image acquisition. Isoflurane is effective, safe, and easy to use, and it is generally assumed to not have an impact on the imaging results. Motivated by marked differences observed in the brain uptake and metabolism of the PET tracer 3-[18F]fluoro-4-aminopyridine [(18F]3F4AP) between human and nonhuman primate studies, this study investigates the possible effect of isoflurane on this process. Mice received [18F]3F4AP injection while awake or under anesthesia and the tracer brain uptake and metabolism was compared between groups. A separate group of mice received the known cytochrome P450 2E1 inhibitor disulfiram prior to tracer administration. Isoflurane was found to largely abolish tracer metabolism in mice (74.8 ± 1.6 vs. 17.7 ± 1.7% plasma parent fraction, % PF) resulting in a 4.0-fold higher brain uptake in anesthetized mice at 35 min post-radiotracer administration. Similar to anesthetized mice, animals that received disulfiram showed reduced metabolism (50.0 ± 6.9% PF) and a 2.2-fold higher brain signal than control mice. The higher brain uptake and lower metabolism of [18F]3F4AP observed in anesthetized mice compared to awake mice are attributed to isoflurane's interference in the CYP2E1-mediated breakdown of the tracer, which was confirmed by reproducing the effect upon treatment with the known CYP2E1 inhibitor disulfiram. These findings underscore the critical need to examine the effect of isoflurane in PET imaging studies before translating tracers to humans that will be scanned without anesthesia.
Collapse
Affiliation(s)
- Karla Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yang Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Swissa E, Monsonego U, Yang LT, Schori L, Kamintsky L, Mirloo S, Burger I, Uzzan S, Patel R, Sudmant PH, Prager O, Kaufer D, Friedman A. Cortical plasticity is associated with blood-brain barrier modulation. eLife 2024; 12:RP89611. [PMID: 39024007 PMCID: PMC11257677 DOI: 10.7554/elife.89611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Brain microvessels possess the unique properties of a blood-brain barrier (BBB), tightly regulating the passage of molecules from the blood to the brain neuropil and vice versa. In models of brain injury, BBB dysfunction and the associated leakage of serum albumin to the neuropil have been shown to induce pathological plasticity, neuronal hyper-excitability, and seizures. The effect of neuronal activity on BBB function and whether it plays a role in plasticity in the healthy brain remain unclear. Here we show that neuronal activity induces modulation of microvascular permeability in the healthy brain and that it has a role in local network reorganization. Combining simultaneous electrophysiological recording and vascular imaging with transcriptomic analysis in rats, and functional and BBB-mapping MRI in human subjects, we show that prolonged stimulation of the limb induces a focal increase in BBB permeability in the corresponding somatosensory cortex that is associated with long-term synaptic plasticity. We further show that the increased microvascular permeability depends on neuronal activity and involves caveolae-mediated transcytosis and transforming growth factor β signaling. Our results reveal a role of BBB modulation in cortical plasticity in the healthy brain, highlighting the importance of neurovascular interactions for sensory experience and learning.
Collapse
Affiliation(s)
- Evyatar Swissa
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Uri Monsonego
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lynn T Yang
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Lior Schori
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Sheida Mirloo
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Itamar Burger
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Rishi Patel
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ofer Prager
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| |
Collapse
|
9
|
Mosneag IE, Flaherty SM, Wykes RC, Allan SM. Stroke and Translational Research - Review of Experimental Models with a Focus on Awake Ischaemic Induction and Anaesthesia. Neuroscience 2024; 550:89-101. [PMID: 38065289 DOI: 10.1016/j.neuroscience.2023.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Animal models are an indispensable tool in the study of ischaemic stroke with hundreds of drugs emerging from the preclinical pipeline. However, all of these drugs have failed to translate into successful treatments in the clinic. This has brought into focus the need to enhance preclinical studies to improve translation. The confounding effects of anaesthesia on preclinical stroke modelling has been raised as an important consideration. Various volatile and injectable anaesthetics are used in preclinical models during stroke induction and for outcome measurements such as imaging or electrophysiology. However, anaesthetics modulate several pathways essential in the pathophysiology of stroke in a dose and drug dependent manner. Most notably, anaesthesia has significant modulatory effects on cerebral blood flow, metabolism, spreading depolarizations, and neurovascular coupling. To minimise anaesthetic complications and improve translational relevance, awake stroke induction has been attempted in limited models. This review outlines anaesthetic strategies employed in preclinical ischaemic rodent models and their reported cerebral effects. Stroke related complications are also addressed with a focus on infarct volume, neurological deficits, and thrombolysis efficacy. We also summarise routinely used focal ischaemic stroke rodent models and discuss the attempts to induce some of these models in awake rodents.
Collapse
Affiliation(s)
- Ioana-Emilia Mosneag
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom.
| | - Samuel M Flaherty
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Robert C Wykes
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Schoknecht K, Maechler M, Wallach I, Dreier JP, Liotta A, Berndt N. Isoflurane lowers the cerebral metabolic rate of oxygen and prevents hypoxia during cortical spreading depolarization in vitro: An integrative experimental and modeling study. J Cereb Blood Flow Metab 2024; 44:1000-1012. [PMID: 38140913 PMCID: PMC11318408 DOI: 10.1177/0271678x231222306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Cortical spreading depolarization (SD) imposes a massive increase in energy demand and therefore evolves as a target for treatment following acute brain injuries. Anesthetics are empirically used to reduce energy metabolism in critical brain conditions, yet their effect on metabolism during SD remains largely unknown. We investigated oxidative metabolism during SD in brain slices from Wistar rats. Extracellular potassium ([K+]o), local field potential and partial tissue oxygen pressure (ptiO2) were measured simultaneously. The cerebral metabolic rate of oxygen (CMRO2) was calculated using a reaction-diffusion model. By that, we tested the effect of clinically relevant concentrations of isoflurane on CMRO2 during SD and modeled tissue oxygenation for different capillary pO2 values. During SD, CMRO2 increased 2.7-fold, resulting in transient hypoxia in the slice core. Isoflurane decreased CMRO2, reduced peak [K+]o, and prolonged [K+]o clearance, which indicates reduced synaptic transmission and sodium-potassium ATPase inhibition. Modeling tissue oxygenation during SD illustrates the need for increased capillary pO2 levels to prevent hypoxia. In the absence thereof, isoflurane could improve tissue oxygenation by lowering CMRO2. Therefore, isoflurane is a promising candidate for pre-clinical studies on neuronal survival in conditions involving SD.
Collapse
Affiliation(s)
- Karl Schoknecht
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Mathilde Maechler
- Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Agustin Liotta
- Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Department of Molecular Toxicology, Nuthetal, Germany
| |
Collapse
|
11
|
Anumba N, Kelberman MA, Pan W, Marriott A, Zhang X, Xu N, Weinshenker D, Keilholz S. The Effects of Locus Coeruleus Optogenetic Stimulation on Global Spatiotemporal Patterns in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595327. [PMID: 38826205 PMCID: PMC11142206 DOI: 10.1101/2024.05.23.595327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Whole-brain intrinsic activity as detected by resting-state fMRI can be summarized by three primary spatiotemporal patterns. These patterns have been shown to change with different brain states, especially arousal. The noradrenergic locus coeruleus (LC) is a key node in arousal circuits and has extensive projections throughout the brain, giving it neuromodulatory influence over the coordinated activity of structurally separated regions. In this study, we used optogenetic-fMRI in rats to investigate the impact of LC stimulation on the global signal and three primary spatiotemporal patterns. We report small, spatially specific changes in global signal distribution as a result of tonic LC stimulation, as well as regional changes in spatiotemporal patterns of activity at 5 Hz tonic and 15 Hz phasic stimulation. We also found that LC stimulation had little to no effect on the spatiotemporal patterns detected by complex principal component analysis. These results show that the effects of LC activity on the BOLD signal in rats may be small and regionally concentrated, as opposed to widespread and globally acting.
Collapse
Affiliation(s)
- Nmachi Anumba
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Michael A Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
- Molecular Cellular and Developmental Biology Department, University of Colorado Boulder, Boulder, CO, United States
| | - Wenju Pan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Alexia Marriott
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Xiaodi Zhang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Nan Xu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Tiefenbach J, Shannon L, Lobosky M, Johnson S, Chan HH, Byram N, Machado AG, Androjna C, Baker KB. A novel restrainer device for acquistion of brain images in awake rats. Neuroimage 2024; 289:120556. [PMID: 38423263 PMCID: PMC10935597 DOI: 10.1016/j.neuroimage.2024.120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Functional neuroimaging methods like fMRI and PET are vital in neuroscience research, but require that subjects remain still throughout the scan. In animal research, anesthetic agents are typically applied to facilitate the acquisition of high-quality data with minimal motion artifact. However, anesthesia can have profound effects on brain metabolism, selectively altering dynamic neural networks and confounding the acquired data. To overcome the challenge, we have developed a novel head fixation device designed to support awake rat brain imaging. A validation experiment demonstrated that the device effectively minimizes animal motion throughout the scan, with mean absolute displacement and mean relative displacement of 0.0256 (SD: 0.001) and 0.009 (SD: 0.002), across eight evaluated subjects throughout fMRI image acquisition (total scanning time per subject: 31 min, 12 s). Furthermore, the awake scans did not induce discernable stress to the animals, with stable physiological parameters throughout the scan (Mean HR: 344, Mean RR: 56, Mean SpO2: 94 %) and unaltered serum corticosterone levels (p = 0.159). In conclusion, the device presented in this paper offers an effective and safe method of acquiring functional brain images in rats, allowing researchers to minimize the confounding effects of anesthetic use.
Collapse
Affiliation(s)
- Jakov Tiefenbach
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH 44195, USA.
| | - Logan Shannon
- Engineering Core, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Mark Lobosky
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Sadie Johnson
- Engineering Core, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Hugh H Chan
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Nicole Byram
- Cleveland Clinic Innovations, Cleveland Clinic, OH 44195, USA
| | - Andre G Machado
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Charlie Androjna
- Engineering Core, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Kenneth B Baker
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| |
Collapse
|
13
|
Rivera DA, Buglione AE, Ray SE, Schaffer CB. MousePZT: A simple, reliable, low-cost device for vital sign monitoring and respiratory gating in mice under anesthesia. PLoS One 2024; 19:e0299047. [PMID: 38437201 PMCID: PMC10911610 DOI: 10.1371/journal.pone.0299047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Small animal studies in biomedical research often require anesthesia to reduce pain or stress experienced by research animals and to minimize motion artifact during imaging or other measurements. Anesthetized animals must be closely monitored for the safety of the animals and to prevent unintended effects of altered physiology on experimental outcomes. Many currently available monitoring devices are expensive, invasive, or interfere with experimental design. Here, we present MousePZT, a low-cost device based on a simple piezoelectric sensor, with a custom circuit and computer software that allows for measurements of both respiratory rate and heart rate in a non-invasive, minimal contact manner. We find the accuracy of the MousePZT device in measuring respiratory and heart rate matches those of commercial systems. Using the widely-used gas isoflurane and injectable ketamine/xylazine combination, we also demonstrate that changes in respiratory rate are more easily detected and can precede changes in heart rate associated with variations in anesthetic depth. Additional circuitry on the device outputs a respiration-locked trigger signal for respiratory-gating of imaging or other data acquisition and has high sensitivity and specificity for detecting respiratory cycles. We provide detailed instruction documents and all necessary microcontroller and computer software, enabling straightforward construction and utilization of this device.
Collapse
Affiliation(s)
- Daniel A. Rivera
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Anne E. Buglione
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Sadie E. Ray
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
14
|
Le TT, Im GH, Lee CH, Choi SH, Kim SG. Mapping cerebral perfusion in mice under various anesthesia levels using highly sensitive BOLD MRI with transient hypoxia. SCIENCE ADVANCES 2024; 10:eadm7605. [PMID: 38416820 PMCID: PMC10901365 DOI: 10.1126/sciadv.adm7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Cerebral perfusion is critical for the early detection of neurological diseases and for effectively monitoring disease progression and treatment responses. Mouse models are widely used in brain research, often under anesthesia, which can affect vascular physiology. However, the impact of anesthesia on regional cerebral blood volume and flow in mice has not been thoroughly investigated. In this study, we have developed a whole-brain perfusion MRI approach by using a 5-second nitrogen gas stimulus under inhalational anesthetics to induce transient BOLD dynamic susceptibility contrast (DSC). This method proved to be highly sensitive, repeatable within each imaging session, and across four weekly sessions. Relative cerebral blood volumes measured by BOLD DSC agree well with those by contrast agents. Quantitative cerebral blood volume and flow metrics were successfully measured in mice under dexmedetomidine and various isoflurane doses using both total vasculature-sensitive gradient-echo and microvasculature-sensitive spin-echo BOLD MRI. Dexmedetomidine reduces cerebral perfusion, while isoflurane increases cerebral perfusion in a dose-dependent manner.
Collapse
Affiliation(s)
- Thuy Thi Le
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Chan Hee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Sang Han Choi
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
15
|
Cerri DH, Albaugh DL, Walton LR, Katz B, Wang TW, Chao THH, Zhang W, Nonneman RJ, Jiang J, Lee SH, Etkin A, Hall CN, Stuber GD, Shih YYI. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat Commun 2024; 15:1916. [PMID: 38429266 PMCID: PMC10907631 DOI: 10.1038/s41467-024-46088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.
Collapse
Affiliation(s)
- Domenic H Cerri
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Albaugh
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lindsay R Walton
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany Katz
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randal J Nonneman
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sung-Ho Lee
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Catherine N Hall
- Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Garret D Stuber
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Ramos-Torres K, Sun Y, Takahashi K, Zhou YP, Brugarolas P. Common anesthetic used in preclinical PET imaging inhibits metabolism of the PET tracer [ 18 F]3F4AP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571690. [PMID: 38168265 PMCID: PMC10760107 DOI: 10.1101/2023.12.14.571690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PET imaging studies in laboratory animals are almost always performed under isoflurane anesthesia to ensure that the subject stays still during the image acquisition. Isoflurane is effective, safe, and easy to use, and it is generally assumed to not have an impact on the imaging results. Motivated by marked differences observed in [ 18 F]3F4AP brain uptake and metabolism between human and nonhuman primate studies, this study investigates the possible effect of isoflurane on [ 18 F]3F4AP metabolism and brain uptake. Isoflurane was found to largely abolish tracer metabolism in mice resulting in a 3.3-fold higher brain uptake in anesthetized mice at 35 min post radiotracer administration, which replicated the observed effect in unanesthetized humans and anesthetized monkeys. This effect is attributed to isoflurane's interference in the CYP2E1-mediated breakdown of [ 18 F]3F4AP, which was confirmed by reproducing a higher brain uptake and metabolic stability upon treatment with the known CYP2E1 inhibitor disulfiram. These findings underscore the critical need to examine the effect of isoflurane in PET imaging studies before translating tracers to humans that will be scanned without anesthesia.
Collapse
|
17
|
Anumba N, Maltbie E, Pan WJ, LaGrow TJ, Xu N, Keilholz S. Spatial and Spectral Components of the BOLD Global Signal in Rat Resting-State Functional MRI. Magn Reson Med 2023; 90:2486-2499. [PMID: 37582301 PMCID: PMC10543609 DOI: 10.1002/mrm.29824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE In resting-state fMRI (rs-fMRI), the global signal average captures widespread fluctuations related to unwanted sources of variance such as motion and respiration, as well as widespread neural activity; however, relative contributions of neural and non-neural sources to the global signal remain poorly understood. This study sought to tackle this problem through the comparison of the BOLD global signal to an adjacent non-brain tissue signal, where neural activity was absent, from the same rs-fMRI scan obtained from anesthetized rats. In this dataset, motion was minimal and ventilation was phase-locked to image acquisition to minimize respiratory fluctuations. Data were acquired using three different anesthetics: isoflurane, dexmedetomidine, and a combination of dexmedetomidine and light isoflurane. METHODS A power spectral density estimate, a voxel-wise spatial correlation via Pearson's correlation, and a co-activation pattern analysis were performed using the global signal and the non-brain tissue signal. Functional connectivity was calculated using Pearson's linear correlation on default mode network (DMN) regions. RESULTS We report differences in the spectral composition of the two signals and show spatial selectivity within DMN structures that show an increased correlation to the global signal and decreased intra-network connectivity after global signal regression. All of the observed differences between the global signal and the non-brain tissue signal were maintained across anesthetics. CONCLUSION These results show that the global signal is distinct from the noise contained in the tissue signal, as support for a neural contribution. This study provides a unique perspective to the contents of the global signal and their origins.
Collapse
Affiliation(s)
- Nmachi Anumba
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Eric Maltbie
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Wen-Ju Pan
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Theodore J. LaGrow
- School of Electrical and Computer Engineering at Georgia Institute of Technology
| | - Nan Xu
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Shella Keilholz
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| |
Collapse
|
18
|
Brunner C, Montaldo G, Urban A. Functional ultrasound imaging of stroke in awake rats. eLife 2023; 12:RP88919. [PMID: 37988288 PMCID: PMC10662948 DOI: 10.7554/elife.88919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Anesthesia is a major confounding factor in preclinical stroke research as stroke rarely occurs in sedated patients. Moreover, anesthesia affects both brain functions and the stroke outcome acting as neurotoxic or protective agents. So far, no approaches were well suited to induce stroke while imaging hemodynamics along with simultaneous large-scale recording of brain functions in awake animals. For this reason, the first critical hours following the stroke insult and associated functional alteration remain poorly understood. Here, we present a strategy to investigate both stroke hemodynamics and stroke-induced functional alterations without the confounding effect of anesthesia, i.e., under awake condition. Functional ultrasound (fUS) imaging was used to continuously monitor variations in cerebral blood volume (CBV) in +65 brain regions/hemispheres for up to 3 hr after stroke onset. The focal cortical ischemia was induced using a chemo-thrombotic agent suited for permanent middle cerebral artery occlusion in awake rats and followed by ipsi- and contralesional whiskers stimulation to investigate on the dynamic of the thalamocortical functions. Early (0-3 hr) and delayed (day 5) fUS recording enabled to characterize the features of the ischemia (location, CBV loss), spreading depolarizations (occurrence, amplitude) and functional alteration of the somatosensory thalamocortical circuits. Post-stroke thalamocortical functions were affected at both early and later time points (0-3 hr and 5 days) after stroke. Overall, our procedure facilitates early, continuous, and chronic assessments of hemodynamics and cerebral functions. When integrated with stroke studies or other pathological analyses, this approach seeks to enhance our comprehension of physiopathologies towards the development of pertinent therapeutic interventions.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Gabriel Montaldo
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Alan Urban
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| |
Collapse
|
19
|
Theriault JE, Shaffer C, Dienel GA, Sander CY, Hooker JM, Dickerson BC, Barrett LF, Quigley KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci Biobehav Rev 2023; 153:105373. [PMID: 37634556 PMCID: PMC10591873 DOI: 10.1016/j.neubiorev.2023.105373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.
Collapse
Affiliation(s)
- Jordan E Theriault
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Clare Shaffer
- Northeastern University, Department of Psychology, Boston, MA, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Northeastern University, Department of Psychology, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Northeastern University, Department of Psychology, Boston, MA, USA; VA Bedford Healthcare System, Bedford, MA, USA
| |
Collapse
|
20
|
Ahn SJ, Anfray A, Anrather J, Iadecola C. Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice. J Cereb Blood Flow Metab 2023; 43:1633-1647. [PMID: 37149758 PMCID: PMC10581240 DOI: 10.1177/0271678x231173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS), a Ca2+ dependent enzyme, is expressed by distinct populations of neocortical neurons. Although neuronal NO is well known to contribute to the blood flow increase evoked by neural activity, the relationships between nNOS neurons activity and vascular responses in the awake state remain unclear. We imaged the barrel cortex in awake, head-fixed mice through a chronically implanted cranial window. The Ca2+ indicator GCaMP7f was expressed selectively in nNOS neurons using adenoviral gene transfer in nNOScre mice. Air-puffs directed at the contralateral whiskers or spontaneous motion induced Ca2+ transients in 30.2 ± 2.2% or 51.6 ± 3.3% of nNOS neurons, respectively, and evoked local arteriolar dilation. The greatest dilatation (14.8 ± 1.1%) occurred when whisking and motion occurred simultaneously. Ca2+ transients in individual nNOS neurons and local arteriolar dilation showed various degrees of correlation, which was strongest when the activity of whole nNOS neuron ensemble was examined. We also found that some nNOS neurons became active immediately prior to arteriolar dilation, while others were activated gradually after arteriolar dilatation. Discrete nNOS neuron subsets may contribute either to the initiation or to the maintenance of the vascular response, suggesting a previously unappreciated temporal specificity to the role of NO in neurovascular coupling.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
21
|
Deckers PT, Siero JCW, Mensink MO, Kronenburg A, Braun KPJ, van der Zwan A, Bhogal AA. Anesthesia Depresses Cerebrovascular Reactivity to Acetazolamide in Pediatric Moyamoya Vasculopathy. J Clin Med 2023; 12:4393. [PMID: 37445429 DOI: 10.3390/jcm12134393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Measurements of cerebrovascular reactivity (CVR) are essential for treatment decisions in moyamoya vasculopathy (MMV). Since MMV patients are often young or cognitively impaired, anesthesia is commonly used to limit motion artifacts. Our aim was to investigate the effect of anesthesia on the CVR in pediatric MMV. We compared the CVR with multidelay-ASL and BOLD MRI, using acetazolamide as a vascular stimulus, in all awake and anesthesia pediatric MMV scans at our institution. Since a heterogeneity in disease and treatment influences the CVR, we focused on the (unaffected) cerebellum. Ten awake and nine anesthetized patients were included. The post-acetazolamide CBF and ASL-CVR were significantly lower in anesthesia patients (47.1 ± 15.4 vs. 61.4 ± 12.1, p = 0.04; 12.3 ± 8.4 vs. 23.7 ± 12.2 mL/100 g/min, p = 0.03, respectively). The final BOLD-CVR increase (0.39 ± 0.58 vs. 3.6 ± 1.2% BOLD-change (mean/SD), p < 0.0001), maximum slope of increase (0.0050 ± 0.0040%/s vs. 0.017 ± 0.0059%, p < 0.0001), and time to maximum BOLD-increase (~463 ± 136 and ~697 ± 144 s, p = 0.0028) were all significantly lower in the anesthesia group. We conclude that the response to acetazolamide is distinctively different between awake and anesthetized MMV patients, and we hypothesize that these findings can also apply to other diseases and methods of measuring CVR under anesthesia. Considering that treatment decisions heavily depend on CVR status, caution is warranted when assessing CVR under anesthesia.
Collapse
Affiliation(s)
- Pieter T Deckers
- Department of Neurosurgery, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Radiology and Nuclear Medicine, Meander Medisch Centrum, 3813 TZ Amersfoort, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, 1105 BK Amsterdam, The Netherlands
| | - Maarten O Mensink
- Pediatric Anesthesiology, Prinses Máxima Centrum, 3584 CS Utrecht, The Netherlands
| | - Annick Kronenburg
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| | - Kees P J Braun
- Department of Pediatric Neurology, Wilhelmina Children's Hospital, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| | - Albert van der Zwan
- Department of Neurosurgery, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| | - Alex A Bhogal
- Department of Radiology, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
22
|
Qiu B, Zhao Z, Wang N, Feng Z, Chen XJ, Chen W, Sun W, Ge WP, Wang Y. A systematic observation of vasodynamics from different segments along the cerebral vasculature in the penumbra zone of awake mice following cerebral ischemia and recanalization. J Cereb Blood Flow Metab 2023; 43:665-679. [PMID: 36524693 PMCID: PMC10108196 DOI: 10.1177/0271678x221146128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Different segments of the cerebral vascular network may react distinctly to brain ischemia and recanalization. However, there are limited systematic observations of these vascular responses in mice under a physiological state following ischemic stroke. Herein, we aimed to investigate the vasodynamics among several segments along the cerebral vessels in awake mice following cerebral ischemia/recanalization via two-photon imaging. Plasma in the blood vessels were labelled with fluorescein isothiocyanate dextran. Smooth muscle cells and pericytes were labelled via a genetic mouse line (PDGFRβ-tdTomato). We observed a no-reflow phenomenon in downstream microcirculation, and the vasodynamics of different segments of larger cerebral vessels varied in the penumbra area following cerebral ischemia-reperfusion. Despite obtaining reperfusion from the middle cerebral artery, there were significant constrictions of the downstream blood vessels in the ischemic penumbra zone. Interestingly, we observed an extensive constriction of the capillaries 3 hours following recanalization, both at the site covered by pericyte soma and by the pericyte process alone. In addition, we did not observe a significant positive correlation between the changed capillary diameter and pericyte coverage along the capillary. Taken together, abnormal constrictions and vasodynamics of cerebral large and small vessels may directly contribute to microcirculation failure following recanalization in ischemic stroke.
Collapse
Affiliation(s)
- Baoshan Qiu
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Zichen Zhao
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Nan Wang
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Ziyan Feng
- Chinese Institute for Brain Research,
Beijing, China
| | - Xing-jun Chen
- Chinese Institute for Brain Research,
Beijing, China
- Academy for Advanced Interdisciplinary
Studies (AAIS), Peking University, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research,
Beijing, China
- School of Basic Medical Sciences, Capital
Medical University, Beijing, China
| | - Woo-ping Ge
- Chinese Institute for Brain Research,
Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
- China National Clinical Research Centre for
Neurological Diseases, Beijing, China
- Advanced Innovation Centre for Human Brain
Protection, Capital Medical University, Beijing, China
- National Centre for Neurological Diseases,
Beijing, China
| |
Collapse
|
23
|
Nguyen A, Mandavalli A, Diaz MJ, Root KT, Patel A, Casauay J, Perisetla P, Lucke-Wold B. Neurosurgical Anesthesia: Optimizing Outcomes with Agent Selection. Biomedicines 2023; 11:372. [PMID: 36830909 PMCID: PMC9953550 DOI: 10.3390/biomedicines11020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
Anesthesia in neurosurgery embodies a vital element in the development of neurosurgical intervention. This undisputed interest has offered surgeons and anesthesiologists an array of anesthetic selections to utilize, though with this allowance comes the equally essential requirement of implementing a maximally appropriate agent. To date, there remains a lack of consensus and official guidance on optimizing anesthetic choice based on operating priorities including hemodynamic parameters (e.g., CPP, ICP, MAP) in addition to the route of procedure and pathology. In this review, the authors detail the development of neuroanesthesia, summarize the advantages and drawbacks of various anesthetic classes and agents, while lastly cohesively organizing the current literature of randomized trials on neuroanesthesia across various procedures.
Collapse
Affiliation(s)
- Andrew Nguyen
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Akhil Mandavalli
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | | | - Kevin Thomas Root
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jed Casauay
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
24
|
Sten S, Podéus H, Sundqvist N, Elinder F, Engström M, Cedersund G. A quantitative model for human neurovascular coupling with translated mechanisms from animals. PLoS Comput Biol 2023; 19:e1010818. [PMID: 36607908 PMCID: PMC9821752 DOI: 10.1371/journal.pcbi.1010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Neurons regulate the activity of blood vessels through the neurovascular coupling (NVC). A detailed understanding of the NVC is critical for understanding data from functional imaging techniques of the brain. Many aspects of the NVC have been studied both experimentally and using mathematical models; various combinations of blood volume and flow, local field potential (LFP), hemoglobin level, blood oxygenation level-dependent response (BOLD), and optogenetics have been measured and modeled in rodents, primates, or humans. However, these data have not been brought together into a unified quantitative model. We now present a mathematical model that describes all such data types and that preserves mechanistic behaviors between experiments. For instance, from modeling of optogenetics and microscopy data in mice, we learn cell-specific contributions; the first rapid dilation in the vascular response is caused by NO-interneurons, the main part of the dilation during longer stimuli is caused by pyramidal neurons, and the post-peak undershoot is caused by NPY-interneurons. These insights are translated and preserved in all subsequent analyses, together with other insights regarding hemoglobin dynamics and the LFP/BOLD-interplay, obtained from other experiments on rodents and primates. The model can predict independent validation-data not used for training. By bringing together data with complementary information from different species, we both understand each dataset better, and have a basis for a new type of integrative analysis of human data.
Collapse
Affiliation(s)
- Sebastian Sten
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Henrik Podéus
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Nicolas Sundqvist
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Fredrik Elinder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
25
|
Vedaei F, Alizadeh M, Tantawi M, Romo V, Mohamed FB, Wu C. Vascular and neuronal effects of general anesthesia on the brain: An fMRI study. J Neuroimaging 2023; 33:109-120. [PMID: 36097249 DOI: 10.1111/jon.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE A number of functional magnetic resonance imaging (fMRI) studies rely on application of anesthetic agents during scanning that can modulate and complicate interpretation of the measured hemodynamic blood oxygenation level-dependent (BOLD) response. The purpose of the present study was to investigate the effect of general anesthesia on two main components of BOLD signal including neuronal activity and vascular response. METHODS Breath-holding (BH) fMRI was conducted in wakefulness and under anesthesia states in 9 patients with drug-resistant epilepsy who needed to get scanned under anesthesia during laser interstitial thermal therapy. BOLD and BOLD cerebrovascular reactivity (BOLD-CVR) maps were compared using t-test between two states to assess the effect of anesthesia on neuronal activity and vascular factors (p < .05). RESULTS Overall, our findings revealed an increase in BOLD-CVR and decrease in BOLD response under anesthesia in several brain regions. The results proposed that the modulatory mechanism of anesthetics on neuronal and vascular components of BOLD signal may work in different ways. CONCLUSION This experiment for the first human study showed that anesthesia may play an important role in dissociation between neuronal and vascular responses contributed to hemodynamic BOLD signal using BH fMRI imaging that may assist the implication of general anesthesia and interpretation of outcomes in clinical setting.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mohamed Tantawi
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Victor Romo
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chengyuan Wu
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Shim HJ, Im GH, Jung WB, Moon HS, Dinh TNA, Lee JY, Kim SG. Protocol for mouse optogenetic fMRI at ultrahigh magnetic fields. STAR Protoc 2022; 3:101846. [PMID: 36595930 PMCID: PMC9768354 DOI: 10.1016/j.xpro.2022.101846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mouse optogenetic functional magnetic resonance imaging (opto-fMRI) is critical for linking genes and functions and for mapping cell-type-specific neural circuits in the whole brain. Herein, we describe how opto-fMRI images can be reliably obtained in anesthetized mice with minimal distortions at ultrahigh magnetic fields. The protocol includes surgical and anesthesia procedures, animal cradle modification, animal preparation and setup, animal physiology maintenance, and pilot fMRI scanning. This protocol will enable reproducible mouse opto-fMRI experiments. For complete details on the use and execution of this protocol, please refer to Jung et al. (2021),1 Jung et al. (2022),2 and Moon et al. (2021).3.
Collapse
Affiliation(s)
- Hyun-Ji Shim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea,Corresponding author
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Hyun Seok Moon
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thi Ngoc Anh Dinh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeong-Yun Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea,Corresponding author
| |
Collapse
|
27
|
Margalit SN, Golomb NG, Tsur O, Ben Yehoshua E, Raz A, Slovin H. Spatiotemporal patterns of population response in the visual cortex under isoflurane: from wakefulness to loss of consciousness. Cereb Cortex 2022; 32:5512-5529. [PMID: 35169840 DOI: 10.1093/cercor/bhac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
Anesthetic drugs are widely used in medicine and research to mediate loss of consciousness (LOC). Isoflurane is a commonly used anesthetic drug; however, its effects on cortical sensory processing, in particular around LOC, are not well understood. Using voltage-sensitive dye imaging, we measured visually evoked neuronal population response from the visual cortex in awake and anesthetized mice at 3 increasing concentrations of isoflurane, thus controlling the level of anesthesia from wakefulness to deep anesthesia. At low concentration of isoflurane, the effects on neuronal measures were minor relative to the awake condition. These effects augmented with increasing isoflurane concentration, while around LOC point, they showed abrupt and nonlinear changes. At the network level, we found that isoflurane decreased the stimulus-evoked intra-areal spatial spread of local neural activation, previously reported to be mediated by horizontal connections, and also reduced intra-areal synchronization of neuronal population. The synchronization between different visual areas decreased with higher isoflurane levels. Isoflurane reduced the population response amplitude and prolonged their latencies while higher visual areas showed increased vulnerability to isoflurane concentration. Our results uncover the changes in neural activity and synchronization at isoflurane concentrations leading to LOC and suggest reverse hierarchical shutdown of cortical areas.
Collapse
Affiliation(s)
- Shany Nivinsky Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Neta Gery Golomb
- Department of Anesthesiology, Rambam Health Care Campus, Haifa, 3109601, Israel and The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Omer Tsur
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eve Ben Yehoshua
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Campus, Haifa, 3109601, Israel and The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
28
|
Jiang L, Liu X, Zhou L, Busoy JMF, Khine MT, Dan YS, Ke M, Brennan NA, Catbagan KJV, Schmetterer L, Barathi VA, Hoang QV. Choroidal Thickness in Early Postnatal Guinea Pigs Predicts Subsequent Naturally Occurring and Form-Deprivation Myopia. Invest Ophthalmol Vis Sci 2022; 63:10. [PMID: 36239975 PMCID: PMC9586133 DOI: 10.1167/iovs.63.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify choroidal characteristics associated with susceptibility to development of naturally occurring and experimentally induced myopia. Methods We compared choroidal properties between pigmented and albino guinea pig (GP) strains. Biometry, cycloplegic refractive error (RE), and eye wall sublayer thickness were measured from 171 GPs at postnatal day (P)6, 14, and 28. Forty-three P14 GPs underwent two-week monocular form-deprivation myopia (FDM). En face images of choroidal vasculature were obtained with a customized swept-source optical coherence tomography. Multivariate regression analyses were performed, with P28 RE as the outcome and P14 choroidal thickness (ChT) as the main predictor variable. Proteomic analysis was performed on choroidal tissue from P14 albino and pigmented GPs. Results At P14, RE was correlated with thickness of the choroid (β = 0.06), sclera (β = 0.12), and retina (β = 0.27; all P < 0.001). P14 ChT was correlated with P28 RE both with (β = 0.06, P = 0.0007) and without FDM (β = 0.05, P = 0.008). Multivariate regression analysis, taking into account FDM (versus physiological growth) and strain, revealed that for every 10-µm greater ChT at P14, P28 RE was 0.50D more positive (P = 0.005, n = 70). En face images of choroidal sublayers showed that albino choroids were relatively underdeveloped, with frequent avascular regions. Consistent with this finding, proteomic analysis suggested abnormalities of the nitric oxide system in the albino GP choroid. Conclusions Current results are consistent with the notion that greater ChT could protect from or delay the onset of myopia, while lower ChT is associated with greater susceptibility to myopia development. The underlying mechanism could be related to dysfunction of the choroidal vascular system.
Collapse
Affiliation(s)
- Liqin Jiang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Xinyu Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joanna M Fianza Busoy
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Myo Thu Khine
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Yee Shan Dan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Mengyuan Ke
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Noel A Brennan
- Johnson & Johnson Vision, Jacksonville, Florida, United States
| | - Karen J V Catbagan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Ophthalmology, Columbia University, New York, New York, United States
| |
Collapse
|
29
|
Wang Y, Tsai CH, Chu TS, Hung YT, Lee MY, Chen HH, Chen LT, Ger TR, Wang YH, Chiang NJ, Liao LD. Revisiting the cerebral hemodynamics of awake, freely moving rats with repeated ketamine self-administration using a miniature photoacoustic imaging system. NEUROPHOTONICS 2022; 9:045003. [PMID: 36338453 PMCID: PMC9623815 DOI: 10.1117/1.nph.9.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Revealing the dynamic associations between brain functions and behaviors is a significant challenge in neurotechnology, especially for awake subjects. Imaging cerebral hemodynamics in awake animal models is important because the collected data more realistically reflect human disease states. AIM We previously reported a miniature head-mounted scanning photoacoustic imaging (hmPAI) system. In the present study, we utilized this system to investigate the effects of ketamine on the cerebral hemodynamics of normal rats and rats subjected to prolonged ketamine self-administration. APPROACH The cortical superior sagittal sinus (SSS) was continuously monitored. The full-width at half-maximum (FWHM) of the photoacoustic (PA) A-line signal was used as an indicator of the SSS diameter, and the number of pixels in PA B-scan images was used to investigate changes in the cerebral blood volume (CBV). RESULTS We observed a significantly higher FWHM (blood vessel diameter) and CBV in normal rats injected with ketamine than in normal rats injected with saline. For rats subjected to prolonged ketamine self-administration, no significant changes in either the blood vessel diameter or CBV were observed. CONCLUSIONS The lack of significant change in prolonged ketamine-exposed rats was potentially due to an increased ketamine tolerance. Our device can reliably detect changes in the dilation of cortical blood vessels and the CBV. This study validates the utility of the developed hmPAI system in an awake, freely moving rat model for behavioral, cognitive, and preclinical cerebral disease studies.
Collapse
Affiliation(s)
- Yuhling Wang
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Tsung-Sheng Chu
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yun-Ting Hung
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Yi Lee
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Hwei-Hsien Chen
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Li-Tzong Chen
- Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Tzong-Rong Ger
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yung-Hsuan Wang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Nai-Jung Chiang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
- Taipei Veterans General Hospital, Department of Oncology, Taipei City, Taiwan
| | - Lun-De Liao
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
30
|
Wood TC, Cash D, MacNicol E, Simmons C, Kim E, Lythgoe DJ, Zelaya F, Turkheimer F. Non-Invasive measurement of the cerebral metabolic rate of oxygen using MRI in rodents. Wellcome Open Res 2022; 6:109. [PMID: 36081865 PMCID: PMC9428501 DOI: 10.12688/wellcomeopenres.16734.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Malfunctions of oxygen metabolism are suspected to play a key role in a number of neurological and psychiatric disorders, but this hypothesis cannot be properly investigated without an in-vivo non-invasive measurement of brain oxygen consumption. We present a new way to measure the Cerebral Metabolic Rate of Oxygen (CMRO2) by combining two existing magnetic resonance imaging techniques, namely arterial spin-labelling and oxygen extraction fraction mapping. This method was validated by imaging rats under different anaesthetic regimes and was strongly correlated to glucose consumption measured by autoradiography.
Collapse
Affiliation(s)
- Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| |
Collapse
|
31
|
Vedaei F, Alizadeh M, Romo V, Mohamed FB, Wu C. The effect of general anesthesia on the test–retest reliability of resting-state fMRI metrics and optimization of scan length. Front Neurosci 2022; 16:937172. [PMID: 36051647 PMCID: PMC9425911 DOI: 10.3389/fnins.2022.937172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 01/01/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) has been known as a powerful tool in neuroscience. However, exploring the test–retest reliability of the metrics derived from the rs-fMRI BOLD signal is essential, particularly in the studies of patients with neurological disorders. Here, two factors, namely, the effect of anesthesia and scan length, have been estimated on the reliability of rs-fMRI measurements. A total of nine patients with drug-resistant epilepsy (DRE) requiring interstitial thermal therapy (LITT) were scanned in two states. The first scan was performed in an awake state before surgery on the same patient. The second scan was performed 2 weeks later under general anesthesia necessary for LITT surgery. At each state, two rs-fMRI sessions were obtained that each one lasted 15 min, and the effect of scan length was evaluated. Voxel-wise rs-fMRI metrics, including the amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency fluctuation (fALFF), functional connectivity (FC), and regional homogeneity (ReHo), were measured. Intraclass correlation coefficient (ICC) was calculated to estimate the reliability of the measurements in two states of awake and under anesthesia. Overall, it appeared that the reliability of rs-fMRI metrics improved under anesthesia. From the 15-min data, we found mean ICC values in awake state including 0.81, 0.51, 0.65, and 0.84 for ALFF, fALFF, FC, and ReHo, respectively, as well as 0.80, 0.59, 0.83, and 0.88 for ALFF, fALFF, FC, and ReHo, respectively, under anesthesia. Additionally, our findings revealed that reliability increases as the function of scan length. We showed that the optimized scan length to achieve less variability of rs-fMRI measurements was 3.1–7.5 min shorter in an anesthetized, compared to a wakeful state.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Faezeh Vedaei
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Victor Romo
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chengyuan Wu
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
32
|
Fadel LC, Patel IV, Romero J, Tan IC, Kesler SR, Rao V, Subasinghe SAAS, Ray RS, Yustein JT, Allen MJ, Gibson BW, Verlinden JJ, Fayn S, Ruggiero N, Ortiz C, Hipskind E, Feng A, Iheanacho C, Wang A, Pautler RG. A Mouse Holder for Awake Functional Imaging in Unanesthetized Mice: Applications in 31P Spectroscopy, Manganese-Enhanced Magnetic Resonance Imaging Studies, and Resting-State Functional Magnetic Resonance Imaging. BIOSENSORS 2022; 12:616. [PMID: 36005011 PMCID: PMC9406174 DOI: 10.3390/bios12080616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Anesthesia is often used in preclinical imaging studies that incorporate mouse or rat models. However, multiple reports indicate that anesthesia has significant physiological impacts. Thus, there has been great interest in performing imaging studies in awake, unanesthetized animals to obtain accurate results without the confounding physiological effects of anesthesia. Here, we describe a newly designed mouse holder that is interfaceable with existing MRI systems and enables awake in vivo mouse imaging. This holder significantly reduces head movement of the awake animal compared to previously designed holders and allows for the acquisition of improved anatomical images. In addition to applications in anatomical T2-weighted magnetic resonance imaging (MRI), we also describe applications in acquiring 31P spectra, manganese-enhanced magnetic resonance imaging (MEMRI) transport rates and resting-state functional magnetic resonance imaging (rs-fMRI) in awake animals and describe a successful conditioning paradigm for awake imaging. These data demonstrate significant differences in 31P spectra, MEMRI transport rates, and rs-fMRI connectivity between anesthetized and awake animals, emphasizing the importance of performing functional studies in unanesthetized animals. Furthermore, these studies demonstrate that the mouse holder presented here is easy to construct and use, compatible with standard Bruker systems for mouse imaging, and provides rigorous results in awake mice.
Collapse
Affiliation(s)
- Lindsay C. Fadel
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivany V. Patel
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- School of Humanities, Rice University, Houston, TX 77005, USA
| | - Jonathan Romero
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
| | - I-Chih Tan
- Bioengineering Core, Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelli R. Kesler
- School of Nursing, University of Texas at Austin, Austin, TX 78712, USA
| | - Vikram Rao
- School of Nursing, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Russell S. Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing, Houston, TX 77030, USA
- Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Brian W. Gibson
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin J. Verlinden
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Augustana College, Rock Island, IL 61201, USA
| | - Stanley Fayn
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicole Ruggiero
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caitlyn Ortiz
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Elizabeth Hipskind
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron Feng
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chijindu Iheanacho
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alex Wang
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robia G. Pautler
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
33
|
Du Y, Shi H, Yang X, Wu W. Machine learning for infection risk prediction in postoperative patients with non-mechanical ventilation and intravenous neurotargeted drugs. Front Neurol 2022; 13:942023. [PMID: 35979059 PMCID: PMC9376287 DOI: 10.3389/fneur.2022.942023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 01/30/2023] Open
Abstract
Drug efficacy can be improved by understanding the effects of anesthesia on the neurovascular system. In this study, we used machine learning algorithms to predict the risk of infection in postoperative intensive care unit (ICU) patients who are on non-mechanical ventilation and are receiving hydromorphone analgesia. In this retrospective study, 130 patients were divided into high and low dose groups of hydromorphone analgesic pump patients admitted after surgery. The white blood cells (WBC) count and incidence rate of infection was significantly higher in the high hydromorphone dosage group compared to the low hydromorphone dosage groups (p < 0.05). Furthermore, significant differences in age (P = 0.006), body mass index (BMI) (P = 0.001), WBC count (P = 0.019), C-reactive protein (CRP) (P = 0.038), hydromorphone dosage (P = 0.014), and biological sex (P = 0.024) were seen between the infected and non-infected groups. The infected group also had a longer hospital stay and an extended stay in the intensive care unit compared to the non-infected group. We identified important risk factors for the development of postoperative infections by using machine learning algorithms, including hydromorphone dosage, age, biological sex, BMI, and WBC count. Logistic regression analysis was applied to incorporate these variables to construct infection prediction models and nomograms. The area under curves (AUC) of the model were 0.835, 0.747, and 0.818 in the training group, validation group, and overall pairwise column group, respectively. Therefore, we determined that hydromorphone dosage, age, biological sex, BMI, WBC count, and CRP are significant risk factors in developing postoperative infections.
Collapse
|
34
|
Kosten L, Emmi SA, Missault S, Keliris GA. Combining magnetic resonance imaging with readout and/or perturbation of neural activity in animal models: Advantages and pitfalls. Front Neurosci 2022; 16:938665. [PMID: 35911983 PMCID: PMC9334914 DOI: 10.3389/fnins.2022.938665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
One of the main challenges in brain research is to link all aspects of brain function: on a cellular, systemic, and functional level. Multimodal neuroimaging methodology provides a continuously evolving platform. Being able to combine calcium imaging, optogenetics, electrophysiology, chemogenetics, and functional magnetic resonance imaging (fMRI) as part of the numerous efforts on brain functional mapping, we have a unique opportunity to better understand brain function. This review will focus on the developments in application of these tools within fMRI studies and highlight the challenges and choices neurosciences face when designing multimodal experiments.
Collapse
Affiliation(s)
- Lauren Kosten
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Serena Alexa Emmi
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephan Missault
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Foundation for Research & Technology – Hellas, Heraklion, Greece
| |
Collapse
|
35
|
Wood TC, Cash D, MacNicol E, Simmons C, Kim E, Lythgoe DJ, Zelaya F, Turkheimer F. Non-Invasive measurement of the cerebral metabolic rate of oxygen using MRI in rodents. Wellcome Open Res 2022; 6:109. [PMID: 36081865 PMCID: PMC9428501 DOI: 10.12688/wellcomeopenres.16734.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 08/17/2023] Open
Abstract
Malfunctions of oxygen metabolism are suspected to play a key role in a number of neurological and psychiatric disorders, but this hypothesis cannot be properly investigated without an in-vivo non-invasive measurement of brain oxygen consumption. We present a new way to measure the Cerebral Metabolic Rate of Oxygen (CMRO 2) by combining two existing magnetic resonance imaging techniques, namely arterial spin-labelling and oxygen extraction fraction mapping. This method was validated by imaging rats under different anaesthetic regimes and was strongly correlated to glucose consumption measured by autoradiography.
Collapse
Affiliation(s)
- Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, UK
| |
Collapse
|
36
|
Wood TC, Cash D, MacNicol E, Simmons C, Kim E, Lythgoe DJ, Zelaya F, Turkheimer F. Non-Invasive measurement of the cerebral metabolic rate of oxygen using MRI in rodents. Wellcome Open Res 2022; 6:109. [DOI: 10.12688/wellcomeopenres.16734.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Malfunctions of oxygen metabolism are suspected to play a key role in a number of neurological and psychiatric disorders, but this hypothesis cannot be properly investigated without an in-vivo non-invasive measurement of brain oxygen consumption. We present a new way to measure the Cerebral Metabolic Rate of Oxygen (CMRO2) by combining two existing magnetic resonance imaging techniques, namely arterial spin-labelling and oxygen extraction fraction mapping. This method was validated by imaging rats under different anaesthetic regimes and was strongly correlated to glucose consumption measured by autoradiography.
Collapse
|
37
|
Ioanas HI, Schlegel F, Skachokova Z, Schroeter A, Husak T, Rudin M. Hybrid fiber optic-fMRI for multimodal cell-specific recording and manipulation of neural activity in rodents. NEUROPHOTONICS 2022; 9:032206. [PMID: 35355657 PMCID: PMC8936941 DOI: 10.1117/1.nph.9.3.032206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/19/2022] [Indexed: 05/08/2023]
Abstract
Significance: Multiscale imaging holds particular relevance to neuroscience, where it helps integrate the cellular and molecular biological scale, which is most accessible to interventions, with holistic organ-level evaluations, most relevant with respect to function. Being inextricably interdisciplinary, multiscale imaging benefits substantially from incremental technology adoption, and a detailed overview of the state-of-the-art is vital to an informed application of imaging methods. Aim: In this article, we lay out the background and methodological aspects of multimodal approaches combining functional magnetic resonance imaging (fMRI) with simultaneous optical measurement or stimulation. Approach: We focus on optical techniques as these allow, in conjunction with genetically encoded proteins (e.g. calcium indicators or optical signal transducers), unprecedented read-out and control specificity for individual cell-types during fMRI experiments, while leveraging non-interfering modalities. Results: A variety of different solutions for optical/fMRI methods has been reported ranging from bulk fluorescence recordings via fiber photometry to high resolution microscopy. In particular, the plethora of optogenetic tools has enabled the transformation of stimulus-evoked fMRI into a cell biological interrogation method. We discuss the capabilities and limitations of these genetically encoded molecular tools in the study of brain phenomena of great methodological and neuropsychiatric interest-such as neurovascular coupling (NVC) and neuronal network mapping. We provide a methodological description of this interdisciplinary field of study, and focus in particular on the limitations of the widely used blood oxygen level dependent (BOLD) signal and how multimodal readouts can shed light on the contributions arising from neurons, astrocytes, or the vasculature. Conclusion: We conclude that information from multiple signaling pathways must be incorporated in future forward models of the BOLD response to prevent erroneous conclusions when using fMRI as a surrogate measure for neural activity. Further, we highlight the potential of direct neuronal stimulation via genetically defined brain networks towards advancing neurophysiological understanding and better estimating effective connectivity.
Collapse
Affiliation(s)
- Horea-Ioan Ioanas
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
- Dartmouth College, Center for Open Neuroscience, Hanover, New Hampshire, United States
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| | - Felix Schlegel
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Zhiva Skachokova
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Aileen Schroeter
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- University of Zurich, USZ Innovation Hub, Zurich, Switzerland
| | - Tetiana Husak
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, United States
| | - Markus Rudin
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- The LOOP Zurich, Zurich, Switzerland
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| |
Collapse
|
38
|
Chao THH, Zhang WT, Hsu LM, Cerri DH, Wang TW, Shih YYI. Computing hemodynamic response functions from concurrent spectral fiber-photometry and fMRI data. NEUROPHOTONICS 2022; 9:032205. [PMID: 35005057 PMCID: PMC8734587 DOI: 10.1117/1.nph.9.3.032205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 05/31/2023]
Abstract
Significance: Although emerging evidence suggests that the hemodynamic response function (HRF) can vary by brain region and species, a single, canonical, human-based HRF is widely used in animal studies. Therefore, the development of flexible, accessible, brain-region specific HRF calculation approaches is paramount as hemodynamic animal studies become increasingly popular. Aim: To establish an fMRI-compatible, spectral, fiber-photometry platform for HRF calculation and validation in any rat brain region. Approach: We used our platform to simultaneously measure (a) neuronal activity via genetically encoded calcium indicators (GCaMP6f), (b) local cerebral blood volume (CBV) from intravenous Rhodamine B dye, and (c) whole brain CBV via fMRI with the Feraheme contrast agent. Empirical HRFs were calculated with GCaMP6f and Rhodamine B recordings from rat brain regions during resting-state and task-based paradigms. Results: We calculated empirical HRFs for the rat primary somatosensory, anterior cingulate, prelimbic, retrosplenial, and anterior insular cortical areas. Each HRF was faster and narrower than the canonical HRF and no significant difference was observed between these cortical regions. When used in general linear model analyses of corresponding fMRI data, the empirical HRFs showed better detection performance than the canonical HRF. Conclusions: Our findings demonstrate the viability and utility of fiber-photometry-based HRF calculations. This platform is readily scalable to multiple simultaneous recording sites, and adaptable to study transfer functions between stimulation events, neuronal activity, neurotransmitter release, and hemodynamic responses.
Collapse
Affiliation(s)
- Tzu-Hao H. Chao
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
| | - Wei-Ting Zhang
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
| | - Li-Ming Hsu
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
| | - Domenic H. Cerri
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
| | - Tzu-Wen Wang
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
| | - Yen-Yu I. Shih
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill. North Carolina, United States
| |
Collapse
|
39
|
Brunner C, Macé E, Montaldo G, Urban A. Quantitative Hemodynamic Measurements in Cortical Vessels Using Functional Ultrasound Imaging. Front Neurosci 2022; 16:831650. [PMID: 35495056 PMCID: PMC9039668 DOI: 10.3389/fnins.2022.831650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/23/2022] [Indexed: 01/17/2023] Open
Abstract
Red blood cell velocity (RBCv), cerebral blood flow (CBF), and volume (CBV) are three key parameters when describing brain hemodynamics. Functional ultrasound imaging is a Doppler-based method allowing for real-time measurement of relative CBV at high spatiotemporal resolution (100 × 110 × 300 μm3, up to 10 Hz) and large scale. Nevertheless, the measure of RBCv and CBF in small cortical vessels with functional ultrasound imaging remains challenging because of their orientation and size, which impairs the ability to perform precise measurements. We designed a directional flow filter to overpass these limitations allowing us to measure RBCv in single vessels using a standard functional ultrasound imaging system without contrast agents (e.g., microbubbles). This method allows to quickly extract the number of vessels in the cortex that was estimated to be approximately 650/cm3 in adult rats, with a 55-45% ratio for penetrating arterioles versus ascending venules. Then, we analyzed the changes in RBCv in these vessels during forepaw stimulation. We observed that ∼40 vessels located in the primary somatosensory forelimb cortex display a significant increase of the RBCv (median ΔRBCv ∼15%, maximal ΔRBCv ∼60%). As expected, we show that RBCv was higher for penetrating arterioles located in the center than in the periphery of the activated area. The proposed approach extends the capabilities of functional ultrasound imaging, which may contribute to a better understanding of the neurovascular coupling at the brain-wide scale.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Abstract
Sensory stimulation generates a robust decrease in oxygen concentration (pO2 initial dip) in brain tissue of anesthetized cats and rodents. This dip reports local activation of neurons much better than the delayed pO2 increase associated with functional hyperemia. Here, we reinvestigated the issue in animals that recovered from acute surgery using two-photon lifetime microscopy. Targeting a distinct neuronal network that is the site of strong activation and energy consumption, we show that in anesthetized animals the pO2 initial dip is present but extremely small in juxtasynaptic capillaries. In awake animals, it is no longer detectable in vessels or in the neuropil. This demonstrates that in healthy animals, neurovascular coupling is too fast and efficient to reveal a pO2 initial dip. An ongoing controversy in brain metabolism is whether increases in neural activity cause a local and rapid decrease in oxygen concentration (i.e., the “initial dip”) preceding functional hyperemia. This initial dip has been suggested to cause a transient increase in vascular deoxyhemoglobin with several imaging techniques and stimulation paradigms, but not consistently. Here, we investigate contributors to this initial dip in a distinct neuronal network, an olfactory bulb (OB) glomerulus most sensitive to a specific odorant (ethyl tiglate [ET]) and a site of strong activation and energy consumption upon ET stimulation. Combining two-photon fluorescence and phosphorescence lifetime microscopy, and calcium, blood flow, and pO2 measurements, we characterized this initial dip in pO2 in mice chronically implanted with a glass cranial window, during both awake and anesthetized conditions. In anesthetized mice, a transient dip in vascular pO2 was detected in this glomerulus when functional hyperemia was slightly delayed, but its amplitude was minute (0.3 SD of resting baseline). This vascular pO2 dip was not observed in other glomeruli responding nonspecifically to ET, and it was poorly influenced by resting pO2. In awake mice, the dip in pO2 was absent in capillaries as well as, surprisingly, in the neuropil. These high-resolution pO2 measurements demonstrate that in awake mice recovered from brain surgery, neurovascular coupling was too fast and efficient to reveal an initial dip in pO2.
Collapse
|
41
|
Chen X, Zheng X, Cai J, Yang X, Lin Y, Wu M, Deng X, Peng YG. Effect of Anesthetics on Functional Connectivity of Developing Brain. Front Hum Neurosci 2022; 16:853816. [PMID: 35360283 PMCID: PMC8963106 DOI: 10.3389/fnhum.2022.853816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
The potential anesthetic neurotoxicity on the neonate is an important focus of research investigation in the field of pediatric anesthesiology. It is essential to understand how these anesthetics may affect the development and growth of neonatal immature and vulnerable brains. Functional magnetic resonance imaging (fMRI) has suggested that using anesthetics result in reduced functional connectivity may consider as core sequence for the neurotoxicity and neurodegenerative changes in the developed brain. Anesthetics either directly impact the primary structures and functions of the brain or indirectly alter the hemodynamic parameters that contribute to cerebral blood flow (CBF) in neonatal patients. We hypothesis that anesthetic agents may either decrease the brain functional connectivity in neonatal patients or animals, which was observed by fMRI. This review will summarize the effect and mechanism of anesthesia on the rapid growth and development infant and neonate brain with fMRI through functional connectivity. It is possible to provide the new mechanism of neuronal injury induced by anesthetics and objective imaging evidence in animal developing brain.
Collapse
Affiliation(s)
- Xu Chen
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuemei Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianghui Cai
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- Department of Obstetrics, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghong Lin
- Department of Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengjun Wu
- Department of Anesthesiology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Mengjun Wu,
| | - Xiaofan Deng
- Center of Organ Transplantation, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, China
| | - Yong G. Peng
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
42
|
Im C, Shin J, Lee WR, Kim JM. Machine learning-based feature combination analysis for odor-dependent hemodynamic responses of rat olfactory bulb. Biosens Bioelectron 2022; 197:113782. [PMID: 34814029 DOI: 10.1016/j.bios.2021.113782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Rodents have a well-developed sense of smell and are used to detect explosives, mines, illegal substances, hidden currency, and contraband, but it is impossible to keep their concentration constantly. Therefore, there is an ongoing effort to infer odors detected by animals without behavioral readings with brain-computer interface (BCI) technology. However, the invasive BCI technique has the disadvantage that long-term studies are limited by the immune response and electrode movement. On the other hand, near-infrared spectroscopy (NIRS)-based BCI technology is a non-invasive method that can measure neuronal activity without worrying about the immune response or electrode movement. This study confirmed that the NIRS-based BCI technology can be used as an odor detection and identification from the rat olfactory system. In addition, we tried to present features optimized for machine learning models by extracting six features, such as slopes, peak, variance, mean, kurtosis, and skewness, from the hemodynamic response, and analyzing the importance of individuals or combinations. As a result, the feature with the highest F1-Score was indicated as slopes, and it was investigated that the combination of the features including slopes and mean was the most important for odor inference. On the other hand, the inclusion of other features with a low correlation with slopes had a positive effect on the odor inference, but most of them resulted in insignificant or rather poor performance. The results presented in this paper are expected to serve as a basis for suggesting the development direction of the hemodynamic response-based bionic nose in the future.
Collapse
Affiliation(s)
- Changkyun Im
- Bio & Medical Health Division, Korea Testing Laboratory, Seoul, 08389, Republic of Korea
| | - Jaewoo Shin
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Woo Ram Lee
- Department of Electronic Engineering, Gyeonggi University of Science and Technology, Siheung, 15073, Republic of Korea.
| | - Jun-Min Kim
- Department of Mechanical Systems Engineering Electronics, Hansung University, Seoul, 02876, Republic of Korea.
| |
Collapse
|
43
|
Hyppönen V, Stenroos P, Nivajärvi R, Ardenkjaer-Larsen JH, Gröhn O, Paasonen J, Kettunen MI. Metabolism of hyperpolarised [1- 13 C]pyruvate in awake and anaesthetised rat brains. NMR IN BIOMEDICINE 2022; 35:e4635. [PMID: 34672399 DOI: 10.1002/nbm.4635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The use of hyperpolarised 13 C pyruvate for nononcological neurological applications has not been widespread so far, possibly due to delivery issues limiting the visibility of metabolites. First proof-of-concept results have indicated that metabolism can be detected in human brain, and this may supersede the results obtained in preclinical settings. One major difference between the experimental setups is that preclinical MRI/MRS routinely uses anaesthesia, which alters both haemodynamics and metabolism. Here, we used hyperpolarised [1-13 C]pyruvate to compare brain metabolism in awake rats and under isoflurane, urethane or medetomidine anaesthesia. Spectroscopic [1-13 C]pyruvate time courses measured sequentially showed that pyruvate-to-bicarbonate and pyruvate-to-lactate labelling rates were lower in isoflurane animals than awake animals. An increased bicarbonate-to-lactate ratio was observed in the medetomidine group compared with other groups. The study shows that hyperpolarised [1-13 C]pyruvate experiments can be performed in awake rats, thus avoiding anaesthesia-related issues. The results suggest that haemodynamics probably dominate the observed pyruvate-to-metabolite labelling rates and area-under-time course ratios of referenced to pyruvate. On the other hand, the results obtained with medetomidine suggest that the ratios are also modulated by the underlying cerebral metabolism. However, the ratios between intracellular metabolites were unchanged in awake compared with isoflurane-anaesthetised rats.
Collapse
Affiliation(s)
- Viivi Hyppönen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Stenroos
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Nivajärvi
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jan Henrik Ardenkjaer-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Olli Gröhn
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Paasonen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
44
|
Sullender CT, Richards LM, He F, Luan L, Dunn AK. Dynamics of isoflurane-induced vasodilation and blood flow of cerebral vasculature revealed by multi-exposure speckle imaging. J Neurosci Methods 2022; 366:109434. [PMID: 34863840 PMCID: PMC9258779 DOI: 10.1016/j.jneumeth.2021.109434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Anesthetized animal models are used extensively during neurophysiological and behavioral studies despite systemic effects from anesthesia that undermine both accurate interpretation and translation to awake human physiology. The majority of work examining the impact of anesthesia on cerebral blood flow (CBF) has been restricted to before and after measurements with limited spatial resolution. NEW METHOD We used multi-exposure speckle imaging (MESI), an advanced form of laser speckle contrast imaging (LSCI), to characterize the dynamics of isoflurane anesthesia induction on cerebral vasculature and blood flow in the mouse brain. RESULTS The large anatomical changes caused by isoflurane are depicted with wide-field imagery and video highlighting the induction of general anesthesia. Within minutes of exposure, both vessel diameter and blood flow increased drastically compared to the awake state and remained elevated for the duration of imaging. An examination of the dynamics of anesthesia induction reveals that blood flow increased faster in arteries than in veins or parenchyma regions. COMPARISON WITH EXISTING METHODS MESI offers robust hemodynamic measurements across large fields-of-view and high temporal resolutions sufficient for continuous visualization of cerebrovascular events featuring major changes in blood flow. CONCLUSION The large alterations caused by isoflurane anesthesia to the cortical vasculature and CBF are readily characterized using MESI. These changes are unrepresentative of normal physiology and provide further evidence that neuroscience experiments would benefit from transitioning to un-anesthetized awake animal models.
Collapse
Affiliation(s)
- Colin T Sullender
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States
| | - Lisa M Richards
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States
| | - Fei He
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States.
| |
Collapse
|
45
|
Mulkey DK, Olsen ML, Ou M, Cleary CM, Du G. Putative Roles of Astrocytes in General Anesthesia. Curr Neuropharmacol 2022; 20:5-15. [PMID: 33588730 PMCID: PMC9199541 DOI: 10.2174/1570159x19666210215120755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a mainstay of modern medicine, and although much progress has been made towards identifying molecular targets of anesthetics and neural networks contributing to endpoints of general anesthesia, our understanding of how anesthetics work remains unclear. Reducing this knowledge gap is of fundamental importance to prevent unwanted and life-threatening side-effects associated with general anesthesia. General anesthetics are chemically diverse, yet they all have similar behavioral endpoints, and so for decades, research has sought to identify a single underlying mechanism to explain how anesthetics work. However, this effort has given way to the 'multiple target hypothesis' as it has become clear that anesthetics target many cellular proteins, including GABAA receptors, glutamate receptors, voltage-independent K+ channels, and voltagedependent K+, Ca2+ and Na+ channels, to name a few. Yet, despite evidence that astrocytes are capable of modulating multiple aspects of neural function and express many anesthetic target proteins, they have been largely ignored as potential targets of anesthesia. The purpose of this brief review is to highlight the effects of anesthetic on astrocyte processes and identify potential roles of astrocytes in behavioral endpoints of anesthesia (hypnosis, amnesia, analgesia, and immobilization).
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA;,Address correspondence to this author at the Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, USA; E-mail:
| | | | | | - Colin M. Cleary
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA
| | | |
Collapse
|
46
|
Functional ultrasound imaging: A useful tool for functional connectomics? Neuroimage 2021; 245:118722. [PMID: 34800662 DOI: 10.1016/j.neuroimage.2021.118722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Functional ultrasound (fUS) is a hemodynamic-based functional neuroimaging technique, primarily used in animal models, that combines a high spatiotemporal resolution, a large field of view, and compatibility with behavior. These assets make fUS especially suited to interrogating brain activity at the systems level. In this review, we describe the technical capabilities offered by fUS and discuss how this technique can contribute to the field of functional connectomics. First, fUS can be used to study intrinsic functional connectivity, namely patterns of correlated activity between brain regions. In this area, fUS has made the most impact by following connectivity changes in disease models, across behavioral states, or dynamically. Second, fUS can also be used to map brain-wide pathways associated with an external event. For example, fUS has helped obtain finer descriptions of several sensory systems, and uncover new pathways implicated in specific behaviors. Additionally, combining fUS with direct circuit manipulations such as optogenetics is an attractive way to map the brain-wide connections of defined neuronal populations. Finally, technological improvements and the application of new analytical tools promise to boost fUS capabilities. As brain coverage and the range of behavioral contexts that can be addressed with fUS keep on increasing, we believe that fUS-guided connectomics will only expand in the future. In this regard, we consider the incorporation of fUS into multimodal studies combining diverse techniques and behavioral tasks to be the most promising research avenue.
Collapse
|
47
|
Kreis SL, Luhmann HJ, Ciolac D, Groppa S, Muthuraman M. Translational Model of Cortical Premotor-Motor Networks. Cereb Cortex 2021; 32:2621-2634. [PMID: 34689188 PMCID: PMC9201593 DOI: 10.1093/cercor/bhab369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Deciphering the physiological patterns of motor network connectivity is a prerequisite to elucidate aberrant oscillatory transformations and elaborate robust translational models of movement disorders. In the proposed translational approach, we studied the connectivity between premotor (PMC) and primary motor cortex (M1) by recording high-density electroencephalography in humans and between caudal (CFA) and rostral forelimb (RFA) areas by recording multi-site extracellular activity in mice to obtain spectral power, functional and effective connectivity. We identified a significantly higher spectral power in β- and γ-bands in M1compared to PMC and similarly in mice CFA layers (L) 2/3 and 5 compared to RFA. We found a strong functional β-band connectivity between PMC and M1 in humans and between CFA L6 and RFA L5 in mice. We observed that in both humans and mice the direction of information flow mediated by β- and γ-band oscillations was predominantly from PMC toward M1 and from RFA to CFA, respectively. Combining spectral power, functional and effective connectivity, we revealed clear similarities between human PMC-M1 connections and mice RFA-CFA network. We propose that reciprocal connectivity of mice RFA-CFA circuitry presents a suitable model for analysis of motor control and physiological PMC-M1 functioning or pathological transformations within this network.
Collapse
Affiliation(s)
- Svenja L Kreis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55128, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55128, Germany
| | - Dumitru Ciolac
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55131, Germany.,Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau MD-2001, Republic of Moldova
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55131, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55131, Germany
| |
Collapse
|
48
|
Dhaya I, Griton M, Konsman JP. Magnetic resonance imaging under isoflurane anesthesia alters cortical cyclooxygenase-2 expression and glial cell morphology during sepsis-associated neurological dysfunction in rats. Animal Model Exp Med 2021; 4:249-260. [PMID: 34557651 PMCID: PMC8446714 DOI: 10.1002/ame2.12167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) of rodents combined with histology allows to determine what mechanisms underlie functional and structural brain changes during sepsis-associated encephalopathy. However, the effects of MRI performed in isoflurane-anesthetized rodents on modifications of the blood-brain barrier and the production of vasoactive prostaglandins and glia cells, which have been proposed to mediate sepsis-associated brain dysfunction, are unknown. Methods This study addressed the effect of MRI under isoflurane anesthesia on blood-brain barrier integrity, cyclooxygenase-2 expression, and glial cell activation during cecal ligature and puncture-induced sepsis-associated brain dysfunction in rats. Results Cecal ligature and puncture reduced food intake and the righting reflex. MRI under isoflurane anesthesia reduced blood-brain barrier breakdown, decreased circularity of white matter astrocytes, and increased neuronal cyclooxygenase-2 immunoreactivity in the cortex 24 hours after laparotomy. In addition, it annihilated cecal ligature and puncture-induced increased circularity of white matter microglia. MRI under isoflurane anesthesia, however, did not alter sepsis-associated perivascular cyclooxygenase-2 induction. Conclusion These findings indicate that MRI under isoflurane anesthesia of rodents can modify neurovascular and glial responses and should, therefore, be interpreted with caution.
Collapse
Affiliation(s)
- Ibtihel Dhaya
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
- Laboratoire de Neurophysiologie Fonctionnelle et PathologiesUR/11ES09Faculté des Sciences MathématiquesPhysiques et NaturellesUniversité de Tunis El ManarTunisTunisie
| | - Marion Griton
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
- Service de Réanimation Anesthésie NeurochirurgicaleCentre Hospitalier Universitaire (CHU) de BordeauxBordeauxFrance
| | - Jan Pieter Konsman
- INCIAInstitut de Neurosciences Cognitives et Intégratives d'AquitaineCNRS UMR 5287BordeauxFrance
- Univ. BordeauxINCIAUMR 5287BordeauxFrance
| |
Collapse
|
49
|
Autio JA, Zhu Q, Li X, Glasser MF, Schwiedrzik CM, Fair DA, Zimmermann J, Yacoub E, Menon RS, Van Essen DC, Hayashi T, Russ B, Vanduffel W. Minimal specifications for non-human primate MRI: Challenges in standardizing and harmonizing data collection. Neuroimage 2021; 236:118082. [PMID: 33882349 PMCID: PMC8594288 DOI: 10.1016/j.neuroimage.2021.118082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Recent methodological advances in MRI have enabled substantial growth in neuroimaging studies of non-human primates (NHPs), while open data-sharing through the PRIME-DE initiative has increased the availability of NHP MRI data and the need for robust multi-subject multi-center analyses. Streamlined acquisition and analysis protocols would accelerate and improve these efforts. However, consensus on minimal standards for data acquisition protocols and analysis pipelines for NHP imaging remains to be established, particularly for multi-center studies. Here, we draw parallels between NHP and human neuroimaging and provide minimal guidelines for harmonizing and standardizing data acquisition. We advocate robust translation of widely used open-access toolkits that are well established for analyzing human data. We also encourage the use of validated, automated pre-processing tools for analyzing NHP data sets. These guidelines aim to refine methodological and analytical strategies for small and large-scale NHP neuroimaging data. This will improve reproducibility of results, and accelerate the convergence between NHP and human neuroimaging strategies which will ultimately benefit fundamental and translational brain science.
Collapse
Affiliation(s)
- Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium; Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Xiaolian Li
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
| | - Matthew F Glasser
- Departments of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Departments of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077 Göttingen, Germany; Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Damien A Fair
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - David C Van Essen
- Departments of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Brian Russ
- Department of Psychiatry, New York University Langone, New York City, New York, USA; Center for the Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York, USA; Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York City, New York, USA
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
50
|
Yang F, Li J, Song Y, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Ma H, Schwartz TH. Mesoscopic Mapping of Ictal Neurovascular Coupling in Awake Behaving Mice Using Optical Spectroscopy and Genetically Encoded Calcium Indicators. Front Neurosci 2021; 15:704834. [PMID: 34366781 PMCID: PMC8343016 DOI: 10.3389/fnins.2021.704834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Unambiguously identifying an epileptic focus with high spatial resolution is a challenge, especially when no anatomic abnormality can be detected. Neurovascular coupling (NVC)-based brain mapping techniques are often applied in the clinic despite a poor understanding of ictal NVC mechanisms, derived primarily from recordings in anesthetized animals with limited spatial sampling of the ictal core. In this study, we used simultaneous wide-field mesoscopic imaging of GCamp6f and intrinsic optical signals (IOS) to record the neuronal and hemodynamic changes during acute ictal events in awake, behaving mice. Similar signals in isoflurane-anesthetized mice were compared to highlight the unique characteristics of the awake condition. In awake animals, seizures were more focal at the onset but more likely to propagate to the contralateral hemisphere. The HbT signal, derived from an increase in cerebral blood volume (CBV), was more intense in awake mice. As a result, the “epileptic dip” in hemoglobin oxygenation became inconsistent and unreliable as a mapping signal. Our data indicate that CBV-based imaging techniques should be more accurate than blood oxygen level dependent (BOLD)-based imaging techniques for seizure mapping in awake behaving animals.
Collapse
Affiliation(s)
- Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Yan Song
- School of Nursing, Beihua University, Jilin City, China
| | - Mingrui Zhao
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - James E Niemeyer
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Ma
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Theodore H Schwartz
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| |
Collapse
|