1
|
Salehi M, Neshati Z, Ahanchian H, Tafrishi R, Pasdar A, Safi M, Karimiani EG. Hyper IgE Syndromes: Understanding, Management, and Future Perspectives: A Narrative Review. Health Sci Rep 2025; 8:e70497. [PMID: 40114756 PMCID: PMC11922810 DOI: 10.1002/hsr2.70497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/09/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Background and Aim Hyper IgE syndromes (HIES) are rare primary immunodeficiency characterized by susceptibility to specific infections, eczema, and elevated IgE levels. Pathogenic mutations in STAT3, IL6R, IL6ST, ERBB2IP, PGM3, ZNF431, SPINK5, TGFBR1/2, and CARD11 have been identified as genetic factors contributing to phenotypes of HIES lead to hindered differentiation and activity, aberrant signaling cascades and disrupting immune regulation. HIES present a diverse clinical symptoms, challenging diagnosis and management; understanding its pathophysiology, genetics, and immunological abnormalities offer hope for improved outcomes. In this review we aim to provide a comprehensive understanding of the condition and also discuss latest updates on pathological features, clinical spectrum and its variability, immunological abnormalities, inheritance patterns, new candidate genes, challenges, management strategies, epidemiology and future directions of HIES. Methods This review conducted an extensive search of information from multiple databases, including PubMed, Scopus, WHO, and ClinVar to ensure comprehensive coverage. Preference was given to articles published recently to capture the latest research and developments. Endnote was employed as a reference manager. The relevant literature was meticulously reviewed to address the objectives of the study. Results Missense, nonsense, and frameshift variants are commonly observed in HIES. Understanding these genetic mutations is key to diagnosing and managing conditions such as Hyper-IgE recurrent infection syndromes (linked to IL6R, STAT3, and ZNF341 mutations), Atopy associated with ERBIN mutations which links STAT3 and TGF-β pathway, Immunodeficiency 23 (caused by PGM3 mutations), Netherton syndrome (resulting from SPINK5 mutations), and Loeys-Dietz syndrome (related to TGFBR mutations). Each year, new genes and variants responsible for this type of immune deficiency are added to the list. Conclusion Although rare, HIES significantly impacts patients due to its complex medical manifestations and need for lifelong management. Identifying casual variants is essential for effective clinical management of these complex conditions.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology Ferdowsi University of Mashhad Mashhad Iran
| | - Hamid Ahanchian
- Allergy Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Rana Tafrishi
- Allergy Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Faculty of Medicine, Medical Genetics Research Centre Mashhad University of Medical Sciences Mashhad Iran
| | - Mojtaba Safi
- Department of Genetics Next Generation Genetic Polyclinic Mashhad Iran
| | | |
Collapse
|
2
|
Horng HC, Xu JW, Kuo YS, Chen YS, Chiu YH, Tsui KH, Tung YT. Dual Mechanisms of Action: Anti-Candida and Anti-Inflammatory Potential of Lactobacillus Fermentation Broth in Treating Vulvovaginal Candidiasis. J Fungi (Basel) 2024; 11:18. [PMID: 39852437 PMCID: PMC11766182 DOI: 10.3390/jof11010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Vulvovaginal candidiasis (VVC), a condition predominantly caused by Candida albicans, affects millions of women worldwide, prompting the need for alternative treatments due to the side effects and increasing resistance associated with conventional imidazole antifungals. This study investigated VAGINNE®, a novel fermentation broth derived from Lactobacillus species, as a potential VVC treatment. Using a BALB/c mouse model of C. albicans infection, we evaluated VAGINNE®'s effects on vaginal microbiome composition, inflammatory markers, and tissue integrity. Our findings revealed that VAGINNE® treatment enhanced the growth of beneficial Lactobacillus species while suppressing C. albicans proliferation, leading to a more balanced vaginal microbiome. Additionally, VAGINNE® significantly reduced pro-inflammatory cytokines (IL-17A, IL-22, IL-23) in vaginal tissues and systemic inflammatory markers (IL-6, IL-1β) in plasma. Histological analysis showed minimal fungal invasion and preserved vaginal epithelial integrity in VAGINNE®-treated mice compared to untreated controls. These results suggest that VAGINNE® could serve as an effective anti-Candida and anti-inflammatory agent for managing VVC, offering a promising alternative to traditional antifungal treatments. By promoting a healthy vaginal microbiome, reducing inflammation, and maintaining tissue health, this probiotic-based approach presents a novel strategy for addressing VVC, particularly in cases of drug resistance or adverse reactions to standard therapies. This study underscores the potential of microbiome-modulating strategies in managing vaginal infections, paving the way for more targeted and side-effect-free VVC treatments.
Collapse
Affiliation(s)
- Huann-Cheng Horng
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
- Faculty of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Jin-Wei Xu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Shan Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Sin Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Hsuan Chiu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
3
|
Zeise KD, Falkowski NR, Metcalf JD, Brown CA, Huffnagle GB. Gene expression profiling reveals host defense strategies for restricting Candida albicans invasion and gastritis to the limiting ridge of the murine stomach. Infect Immun 2024; 92:e0043824. [PMID: 39535200 PMCID: PMC11629626 DOI: 10.1128/iai.00438-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Candida albicans is a fungal constituent of the human gastrointestinal microbiota that can tolerate acidic environments like the stomach, where it can be associated with ulcers and chronic gastritis. In mice, C. albicans induces gastritis without concurrent intestinal inflammation, suggesting that the stomach is particularly prone to fungal infection. We previously showed that C. albicans invasion in the limiting ridge does not extend to or elicit an inflammatory response in the adjacent glandular region, indicating regionalized gastritis in the murine stomach. However, the molecular pathways involved in the host response to C. albicans specifically in the limiting ridge have not been investigated. Here, we found that gastric dysbiosis was associated with C. albicans limiting ridge colonization and gastritis. We isolated the limiting ridge and evaluated the expression of over 90 genes involved in mucosal responses. C. albicans infection triggered a type 3 immune response marked by elevated Il17a, Il17f, Il1b, Tnf, and Il36g, as well as an upregulation of Il12a, Il4, Il10, and l13. Chemokine gene induction (including Ccl2, Ccl3, Ccl4, Ccl1l, Cxcl1, Cxcl2, Cxcl9, and Cxcl10) coincided with an influx of neutrophils, monocytes/macrophages, and eosinophils. Hyphal invasion caused tissue damage, epithelial remodeling, and upregulation of genes linked to epithelium signaling and antimicrobial responses in the limiting ridge. Our findings support a need for continued exploration into the interactions between the immunological milieu, the host microbiota, and clinical interventions such as the use of antibiotics and immunotherapeutic agents and their collective impact on invasive candidiasis risk.
Collapse
Affiliation(s)
- Karen D. Zeise
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph D. Metcalf
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A. Brown
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Advanced Research Computing, Information and Technology Services, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary B. Huffnagle
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Zeise KD, Falkowski NR, Stark KG, Brown CA, Huffnagle GB. Profiling inflammatory outcomes of Candida albicans colonization and food allergy induction in the murine glandular stomach. mBio 2024; 15:e0211324. [PMID: 39347572 PMCID: PMC11559088 DOI: 10.1128/mbio.02113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
We investigated the effects of Candida albicans colonization on inflammatory responses in the murine glandular stomach, which is similar to the glandular mucosa of the human stomach. We also explored whether the presence of a food allergy could exacerbate C. albicans-induced inflammation or if C. albicans would amplify allergic inflammation in the glandular stomach. C. albicans successfully colonized the stomach of amoxicillin-pre-treated BALB/c mice and induced gastritis in the limiting ridge with minimal inflammation in the glandular stomach. There was significant upregulation of Il18, calprotectin (S100a8 and S100a9), and several antimicrobial peptides, but minimal induction of type 1, 2, or 3 responses in the glandular stomach. A robust type 2 response, inflammatory cell recruitment, and tissue remodeling occurred in the glandular stomach following oral ovalbumin challenges in sensitized mice. The type 2 response was not augmented by C. albicans colonization, but there was significant upregulation of Il1b, Il12a, Tnf, and Il17a in C. albicans-colonized food allergic mice. The presence of C. albicans did not affect the expression of genes involved in barrier integrity and signaling, many of which were upregulated during food allergy. Overall, our data indicate that C. albicans colonization induces minimal inflammation in the glandular stomach but augments antimicrobial peptide expression. Induction of a food allergy results in robust type 2 inflammation in the glandular stomach, and while C. albicans colonization does not exacerbate type 2 inflammation, it does activate a number of innate and type 3 immune responses amid the backdrop of allergic inflammation. IMPORTANCE Food allergy continues to be a growing public health concern, affecting at least 1 in 10 individuals in the United States alone. However, little is known about the involvement of the gastric mucosa in food allergy. Gastrointestinal Candida albicans colonization has been reported to promote gastrointestinal inflammation in a number of chronic diseases. Using a mouse model of food allergy to egg white protein, we demonstrate regionalization of the inflammatory response to C. albicans colonization, induction of robust type 2 (allergic) inflammation in the stomach, and augmentation of innate and type 3 responses by C. albicans colonization during food allergy.
Collapse
Affiliation(s)
- Karen D. Zeise
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A. Brown
- Advanced Research Computing, Information and Technology Services, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary B. Huffnagle
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Zhou Y, Komnick MR, Sepulveda F, Liu G, Nieves-Ortiz E, Meador K, Ndatabaye O, Fatkhullina A, Wu-Woods NJ, Naydenkov PM, Kent J, Christiansen N, Madariaga ML, Witkowski P, Ismagilov RF, Esterházy D. Inducible, but not constitutive, pancreatic REG/Reg isoforms are regulated by intestinal microbiota and pancreatic diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619139. [PMID: 39484594 PMCID: PMC11526982 DOI: 10.1101/2024.10.18.619139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The REG / Reg gene locus encodes for a conserved family of potent antimicrobial but also pancreatitis-associated proteins. Here we investigated whether REG/Reg family members differ in their baseline expression levels and abilities to be regulated in the pancreas and gut upon perturbations. We found, in human and mouse, pancreas and gut differed in REG / Reg isoform levels and preferences, with duodenum most resembling the pancreas. Pancreatic acinar cells and intestinal enterocytes were the dominant REG producers. Intestinal symbiotic microbes regulated the expression of the same, select Reg members in gut and pancreas. These Reg members had the most STAT3-binding sites close to the transcription start sites and were partially IL-22 dependent. We thus categorized them as "inducible" and others as "constitutive". Indeed, also in models of pancreatic-ductal adenocarcinoma and pancreatitis, only inducible Reg members were upregulated in pancreas. While intestinal Reg expression remained unchanged upon pancreatic perturbation, pancreatitis altered the microbial composition of the duodenum and feces shortly after disease onset. Our study reveals differential usage and regulation of REG / Reg isoforms as a mechanism for tissue-specific innate immunity, highlights the intimate connection of pancreas and duodenum, and implies a gut-to-pancreas communication axis resulting in a coordinated Reg response.
Collapse
|
6
|
Campione E, Artosi F, Shumak RG, Giunta A, Argenziano G, Assorgi C, Balato A, Bernardini N, Brunasso AMG, Burlando M, Caldarola G, Campanati A, Carugno A, Castelli F, Conti A, Costanzo A, Cuccia A, Dapavo P, Dattola A, De Simone C, Di Lernia V, Dini V, Donini M, Errichetti E, Esposito M, Fargnoli MC, Foti A, Fiorella C, Gargiulo L, Gisondi P, Guarneri C, Legori A, Lembo S, Loconsole F, Malagoli P, Marzano AV, Mercuri SR, Megna M, Micali G, Mortato E, Musumeci ML, Narcisi A, Offidani AM, Orsini D, Paolino G, Pellacani G, Peris K, Potenza C, Prignano F, Quaglino P, Ribero S, Richetta AG, Romanelli M, Rossi A, Strippoli D, Trovato E, Venturini M, Bianchi L. Fast Clinical Response of Bimekizumab in Nail Psoriasis: A Retrospective Multicenter 36-Week Real-Life Study. Pharmaceuticals (Basel) 2024; 17:1378. [PMID: 39459016 PMCID: PMC11510175 DOI: 10.3390/ph17101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background/Objectives: Nail psoriasis (NP) is a chronic and difficult-to-treat disease, which causes significant social stigma and impairs the patients' quality of life. Moreover, nail psoriasis is a true therapeutic challenge for clinicians. The presence of nail psoriasis can be part of a severe form of psoriasis and can have predictive value for the development of psoriatic arthritis. Our real-world-evidence multicenter study aims to evaluate the efficacy of bimekizumab in nail psoriasis. (2) Methods: A retrospective analysis of a multicenter observational study included 834 patients affected by moderate-to-severe psoriasis, in 33 Dermatologic Units in Italy, treated with bimekizumab from December 2022 to September 2023. Clinimetric assessments were based on Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and Physician's Global Assessment of Fingernail Psoriasis (PGA-F) for the severity of nail psoriasis at 0, 12, 24, and 36 weeks. (3) Results: Psoriatic nail involvement was present in 27.95% of patients. The percentage of patients who achieved a complete clearance of NP in terms of PGA-F 0 was 31.7%, 57%, and 88.5% at week 4, 16, and 36, respectively. PASI 100 was achieved by 32.03% of patients at week 4, by 61.8% at week 16, and by 78.92% of patients at week 36. The mean baseline PASI was 16.24. The mean DLQI values for the entire group of patients at baseline, at week 4, at week 16, and at week 36 were 14.62, 3.02, 0.83, and 0.5, respectively. (4) Conclusions: Therapies that promote the healing of both the skin and nails in a short time can also ensure a lower risk of subsequently developing arthritis which is disabling over time. Bimekizumab proved to be particularly effective to treat NP, with a fast response in terms of complete clearance, with over 88.5% of patients free from NP after 36 weeks. The findings of our real-world study showed that patients with moderate-to-severe PsO and concomitant NP had significantly faster and more substantial improvements in NP up to 36 weeks with respect to previous research findings. Considering the rapid healing of the nail, the dual inhibition of IL17 A and F might have a great value in re-establishing the dysregulation of keratin 17 at the nail level.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| | - Fabio Artosi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| | - Ruslana Gaeta Shumak
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| | - Alessandro Giunta
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| | - Giuseppe Argenziano
- Dermatology Unit, University of Campania L. Vanvitelli, 80131 Naples, Italy; (G.A.); (A.B.)
| | - Chiara Assorgi
- Daniele Innocenzi, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University Dermatology ASL, 04100 Latina, Italy; (C.A.); (N.B.); (C.P.)
| | - Anna Balato
- Dermatology Unit, University of Campania L. Vanvitelli, 80131 Naples, Italy; (G.A.); (A.B.)
| | - Nicoletta Bernardini
- Daniele Innocenzi, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University Dermatology ASL, 04100 Latina, Italy; (C.A.); (N.B.); (C.P.)
| | | | - Martina Burlando
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60100 Ancona, Italy; (M.B.); (A.C.); (A.M.O.)
| | - Giacomo Caldarola
- Dermatology, Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00185 Rome, Italy; (G.C.); (C.D.S.); (K.P.)
- Dermatology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60100 Ancona, Italy; (M.B.); (A.C.); (A.M.O.)
| | - Andrea Carugno
- Dermatology Unit, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Franco Castelli
- Section of Dermatology, Koelliker Hospital, 47923 Turin, Italy; (F.C.); (A.C.)
| | - Andrea Conti
- Section of Dermatology, Koelliker Hospital, 47923 Turin, Italy; (F.C.); (A.C.)
| | - Antonio Costanzo
- Dermatology Unit, IRCCS Humanitas Research Hospital, 10134 Rozzano, Italy; (A.C.); (L.G.)
| | - Aldo Cuccia
- Unit of Dermatology, San Donato Hospital, 52100 Arezzo, Italy;
| | - Paolo Dapavo
- Second Dermatologic Clinic, Department of Biomedical Science and Human Oncology, University of Turin, 10124 Turin, Italy;
| | - Annunziata Dattola
- Dermatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Science, University of La Sapienza, 00161 Rome, Italy; (A.D.); (G.P.); (A.G.R.); (A.R.)
| | - Clara De Simone
- Dermatology, Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00185 Rome, Italy; (G.C.); (C.D.S.); (K.P.)
- Dermatology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vito Di Lernia
- Dermatology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Valentina Dini
- Dermatology Unit, Department of Clinical and Experimental Medicine Ospedale Santa Chiara, 56126 Pisa, Italy; (V.D.); (M.R.)
| | - Massimo Donini
- Dermatology Unit, Department of Medicine, Hospital S.S. Giovanni e Paolo, AULSS−3-Serenissima, 30122 Venezia, Italy;
| | - Enzo Errichetti
- Institute of Dermatology, Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Maria Esposito
- Section of Dermatology, Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy; (M.E.); (M.C.F.)
| | - Maria Concetta Fargnoli
- Section of Dermatology, Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy; (M.E.); (M.C.F.)
| | - Antonio Foti
- Unit of Dermatology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (S.R.M.); (G.P.)
| | - Carmen Fiorella
- Section of Dermatology, Oncology and Ematology Department Asl Bat, P.O. M.R. Dimiccoli, 70051 Barletta, Italy;
| | - Luigi Gargiulo
- Dermatology Unit, IRCCS Humanitas Research Hospital, 10134 Rozzano, Italy; (A.C.); (L.G.)
| | - Paolo Gisondi
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, 37129 Verona, Italy;
| | - Claudio Guarneri
- Department of Biomedical and Dental Sciences and Morpho Functional Imaging, Section of Dermatology, University of Messina, 98121 Verona, Italy;
| | - Agostina Legori
- UO Dermatologia IRCCS Ospedale Galeazzi & Università degli Studi di Milano, 20157 Milan, Italy;
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, 84084 Salerno, Italy;
| | - Francesco Loconsole
- Department of Dermatology, University of Bari, 70121 Bari, Italy; (F.L.); (E.M.)
| | - Piergiorigio Malagoli
- Department of Dermatology, Dermatology Unit Azienda Ospedaliera San Donato Milanese, 20097 Milan, Italy;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Santo Raffaele Mercuri
- Unit of Dermatology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (S.R.M.); (G.P.)
- Unit of Dermatologic Clinic, Università Vita-Salute, San Raffaele, 20132 Milan, Italy
| | - Matteo Megna
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naple, Italy;
| | - Giuseppe Micali
- UOC Dermatologia, University of Catania, PO “G. Rodolico”, AOU Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy; (G.M.); (M.L.M.)
| | - Edoardo Mortato
- Department of Dermatology, University of Bari, 70121 Bari, Italy; (F.L.); (E.M.)
| | - Maria Letizia Musumeci
- UOC Dermatologia, University of Catania, PO “G. Rodolico”, AOU Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy; (G.M.); (M.L.M.)
| | - Alessandra Narcisi
- Dermatology Unit, IRCCS Humanitas Research Hospital, 10134 Rozzano, Italy; (A.C.); (L.G.)
| | - Anna Maria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60100 Ancona, Italy; (M.B.); (A.C.); (A.M.O.)
| | - Diego Orsini
- Clinical Dermatology Unit, San Gallicano Dermatological Institute IRCCS, 00167 Rome, Italy;
| | - Giovanni Paolino
- Unit of Dermatology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (S.R.M.); (G.P.)
| | - Giovanni Pellacani
- Dermatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Science, University of La Sapienza, 00161 Rome, Italy; (A.D.); (G.P.); (A.G.R.); (A.R.)
| | - Ketty Peris
- Dermatology, Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00185 Rome, Italy; (G.C.); (C.D.S.); (K.P.)
- Dermatology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Concetta Potenza
- Daniele Innocenzi, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University Dermatology ASL, 04100 Latina, Italy; (C.A.); (N.B.); (C.P.)
| | - Francesca Prignano
- Department of Dermatological Sciences, Dermatology Section, University of Florence, 50121 Florence, Italy;
| | - Pietro Quaglino
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Torino, Italy; (P.Q.); (S.R.)
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Torino, Italy; (P.Q.); (S.R.)
| | - Antonio Giovanni Richetta
- Dermatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Science, University of La Sapienza, 00161 Rome, Italy; (A.D.); (G.P.); (A.G.R.); (A.R.)
| | - Marco Romanelli
- Dermatology Unit, Department of Clinical and Experimental Medicine Ospedale Santa Chiara, 56126 Pisa, Italy; (V.D.); (M.R.)
| | - Antonio Rossi
- Dermatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Science, University of La Sapienza, 00161 Rome, Italy; (A.D.); (G.P.); (A.G.R.); (A.R.)
| | - Davide Strippoli
- Dermatology Unit, Manzoni Hospital, ASST-Lecco, 23900 Lecco, Italy;
| | - Emanuele Trovato
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy;
| | - Marina Venturini
- Department of Clinical and Experimental Sciences, Section of Dermatology, University of Brescia, 25123 Brescia, Italy;
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| |
Collapse
|
7
|
Saki N, Hadi H, Keikhaei B, Mirzaei A, Purrahman D. Gut microbiome composition and dysbiosis in immune thrombocytopenia: A review of literature. Blood Rev 2024; 67:101219. [PMID: 38862311 DOI: 10.1016/j.blre.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by excessive reticuloendothelial platelet destruction and inadequate compensatory platelet production. However, the pathogenesis of ITP is relatively complex, and its exact mechanisms and etiology have not been definitively established. The gut microbiome, namely a diverse community of symbiotic microorganisms residing in the gastrointestinal system, affects health through involvement in human metabolism, immune modulation, and maintaining physiological balance. Emerging evidence reveals that the gut microbiome composition differs in patients with ITP compared to healthy individuals, which is related with platelet count, disease duration, and response to treatment. These findings suggest that the microbiome and metabolome profiles of individuals could unveil a new pathway for aiding diagnosis, predicting prognosis, assessing treatment response, and formulating personalized therapeutic approaches for ITP. However, due to controversial reports, definitive conclusions cannot be drawn, and further investigations are needed.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hakimeh Hadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bijan Keikhaei
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Laska J, Tota M, Łacwik J, Sędek Ł, Gomułka K. IL-22 in Atopic Dermatitis. Cells 2024; 13:1398. [PMID: 39195286 PMCID: PMC11353104 DOI: 10.3390/cells13161398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin condition characterized by a multifaceted pathophysiology that gives rise to diverse clinical manifestations. The management of AD remains challenging due to the suboptimal efficacy of existing treatment options. Nonetheless, recent progress in elucidating the underlying mechanisms of the disease has facilitated the identification of new potential therapeutic targets and promising drug candidates. In this review, we summarize the newest data, considering multiple connections between IL-22 and AD. The presence of circulating IL-22 has been found to correlate with the severity of AD and is identified as a critical factor driving the inflammatory response associated with the condition. Elevated levels of IL-22 in patients with AD are correlated with increased proliferation of keratinocytes, alterations in the skin microbiota, and impaired epidermal barrier function. Collectively, these factors contribute to the manifestation of the characteristic symptoms observed in AD.
Collapse
Affiliation(s)
- Julia Laska
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maciej Tota
- Student Research Group of Internal Medicine and Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
9
|
Pathakumari B, Liu W, Wang Q, Kong X, Liang G, Chokkakula S, Pathakamuri V, Nunna V. Comparative Evaluation of Candida Species-Specific T-Cell Immune Response in Human Peripheral Blood Mononuclear Cells. Biomedicines 2024; 12:1487. [PMID: 39062060 PMCID: PMC11274682 DOI: 10.3390/biomedicines12071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Non-albicans Candida (NAC) species are increasingly recognized as significant contributors to candidemia infections; however, relatively less is known about the immune responses induced by these species. In this study, we compared the cytokine production ability of human peripheral blood mononuclear cells (PBMCs) upon stimulation with different Candida species (Candida spp.). We measured secreted cytokines using ELISA and checked the functional profiles of T-cell responses using multicolor flow cytometry. Although there was a differential expression of cytokines against Candida spp., significant difference were observed in the levels of IFN-γ, TNF-α, IL-10, IL-12p40, and IL-23 (p < 0.05) between Candida spp. A significant difference was observed between C. albicans and C. glabrata (p = 0.026) in the levels of TNF-α. C. glabrata showed significant differences compared to C. albicans, C. parapsilosis, and C. krusei in the levels of IL-10 (p values of 0.02, 0.04, and 0.01, respectively). Despite the percentages of CD4+ and CD8+ expressing Th1, Th2, and Th17 cytokines being higher in stimulated PBMCs, none of the Candida spp. showed significant differences. The levels of secreted IL-17A and IL-23 were consistently lower in Candida spp. regardless of the stimulus used. Here, we showed the differential regulation of Th1, Th2, and Th17 during Candida spp. stimulation of the immune system ex vivo. Additionally, our findings suggest that C. albicans elicits an IFN-γ response, whereas C. glabrata promotes IL-10 cellular responses, but this warrants additional studies to conclude this association. This investigation holds the potential to advance our comprehension of the distinct immune responses induced by Candida spp., with probable implications in designing antifungal immunotherapeutics.
Collapse
Affiliation(s)
- Balaji Pathakumari
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
| | - Qiong Wang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
| | - Xue Kong
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
| | - Guanzhao Liang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Republic of Korea;
| | - Vasundhara Pathakamuri
- Department of Radio-Diagnosis, Sri Venkateshwara Medical College, Tirupathi 517507, India;
| | - Venkatrao Nunna
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
10
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
12
|
Khan S, Bilal H, Khan MN, Fang W, Chang W, Yin B, Song NJ, Liu Z, Zhang D, Yao F, Wang X, Wang Q, Cai L, Hou B, Wang J, Mao C, Liu L, Zeng Y. Interleukin inhibitors and the associated risk of candidiasis. Front Immunol 2024; 15:1372693. [PMID: 38605952 PMCID: PMC11007146 DOI: 10.3389/fimmu.2024.1372693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.
Collapse
Affiliation(s)
- Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenqiang Chang
- School of Pharmacy, Shandong University, Qingdao, Shandong, China
| | - Bin Yin
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ning-jing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhongrong Liu
- Department of Dermatology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong, China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Fen Yao
- Department of Pharmacy, Shantou University School Medical College, Shantou, China
| | - Xun Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Cai
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Hou
- Department of Clinical Laboratory, Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Jiayue Wang
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Mao
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Liu
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Kaveh-Samani A, Dalali S, Kaviani F, Piri-Gharaghie T, Doosti A. Oral administration of DNA alginate nanovaccine induced immune-protection against Helicobacter pylori in Balb/C mice. BMC Immunol 2024; 25:11. [PMID: 38310250 PMCID: PMC10838413 DOI: 10.1186/s12865-024-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. Pylori), is an established causative factor for the development of gastric cancer and the induction of persistent stomach infections that may lead to peptic ulcers. In recent decades, several endeavours have been undertaken to develop a vaccine for H. pylori, although none have advanced to the clinical phase. The development of a successful H. pylori vaccine is hindered by particular challenges, such as the absence of secure mucosal vaccines to enhance local immune responses, the absence of identified antigens that are effective in vaccinations, and the absence of recognized indicators of protection. METHODS The DNA vaccine was chemically cloned, and the cloning was verified using PCR and restriction enzyme digestion. The efficacy of the vaccination was investigated. The immunogenicity and immune-protective efficacy of the vaccination were assessed in BALB/c mice. This study demonstrated that administering a preventive Alginate/pCI-neo-UreH Nanovaccine directly into the stomach effectively triggered a robust immune response to protect against H. pylori infection in mice. RESULTS The level of immune protection achieved with this nano vaccine was similar to that observed when using the widely accepted formalin-killed H. pylori Hel 305 as a positive control. The Alginate/pCI-neo-UreH Nanovaccine composition elicited significant mucosal and systemic antigen-specific antibody responses and strong intestinal and systemic Th1 responses. Moreover, the activation of IL-17R signaling is necessary for the defensive Th1 immune responses in the intestines triggered by Alginate/pCI-neo-UreH. CONCLUSION Alginate/pCI-neo-UreH is a potential Nanovaccine for use in an oral vaccine versus H. pylori infection, according to our findings.
Collapse
Affiliation(s)
- Arezo Kaveh-Samani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Dalali
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Kaviani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Biotechnology Research Center, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
14
|
Yan JY, Lin TH, Jong YT, Hsueh JW, Wu SH, Lo HJ, Chen YC, Pan CH. Microbiota signatures associated with invasive Candida albicans infection in the gastrointestinal tract of immunodeficient mice. Front Cell Infect Microbiol 2024; 13:1278600. [PMID: 38298919 PMCID: PMC10828038 DOI: 10.3389/fcimb.2023.1278600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Candida albicans is a commensal microorganism in the human gut but occasionally causes invasive C. albicans infection (ICA), especially in immunocompromised individuals. Early initiation of antifungal therapy is associated with reduced mortality of ICA, but rapid diagnosis remains a challenge. The ICA-associated changes in the gut microbiota can be used as diagnostic and therapeutic targets but have been poorly investigated. In this study, we utilized an immunodeficient Rag2γc (Rag2-/-il2γc-/-) mouse model to investigate the gut microbiota alterations caused by C. albicans throughout its cycle, from its introduction into the gastrointestinal tract to invasion, in the absence of antibiotics. We observed a significant increase in the abundance of Firmicutes, particularly Lachnospiraceae and Ruminococcaceae, as well as a significant decrease in the abundance of Candidatus Arthromitus in mice exposed to either the wild-type SC5314 strain or the filamentation-defective mutant (cph1/cph1 efg1/efg1) HLC54 strain of C. albicans. However, only the SC5314-infected mice developed ICA. A linear discriminate analysis of the temporal changes in the gut bacterial composition revealed Bacteroides vulgatus as a discriminative biomarker associated with SC5314-infected mice with ICA. Additionally, a positive correlation between the B. vulgatus abundance and fungal load was found, and the negative correlation between the Candidatus Arthromitus abundance and fungal load after exposure to C. albicans suggested that C. albicans might affect the differentiation of intestinal Th17 cells. Our findings reveal the influence of pathogenic C. albicans on the gut microbiota and identify the abundance of B. vulgatus as a microbiota signature associated with ICA in an immunodeficient mouse model.
Collapse
Affiliation(s)
- Jia-Ying Yan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Han Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Tang Jong
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jun-Wei Hsueh
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Sze-Hsien Wu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Yee-Chun Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Sharifinejad N, Mahmoudi E. Dual function of fungi-derived cytokines in inflammatory bowel diseases: protection or inflammation. Gastroenterol Rep (Oxf) 2023; 11:goad068. [PMID: 38058517 PMCID: PMC10697736 DOI: 10.1093/gastro/goad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition involving both the innate and adaptive immune systems. Recently, the role of intestinal fungal flora and their downstream immune pathways has been highlighted in the pathogenesis of IBD. Cytokines as primary immune mediators require a delicate balance for maintaining intestinal homeostasis. Although most cytokines have a predictable role in either amplifying or attenuating inflammation in IBD, a few cytokines have shown a dual function in the inflammatory state of the intestine. Some of these dual-faced cytokines are also involved in mucosal anti-microbial defense pathways, particularly against intestinal fungal residents. Here, we reviewed the role of these cytokines in IBD pathogenesis to achieve a better understanding of the fungal interactions in the development of IBD.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elaheh Mahmoudi
- Department of Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
16
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
17
|
Chen HT, Li JS, Li J, Li L, Xu ZC, Zhang Y, Wang RR. Lactobacillus murinus: A key factor in suppression of enterogenous Candida albicans infections in Compound Agrimony enteritis capsules-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116361. [PMID: 36963475 DOI: 10.1016/j.jep.2023.116361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Agrimony (FuFangXianHeCao, FFXHC) Enteritis Capsules is an ethnomedicine that is derived from Yi Nationality Herbal Medicine for enteritis treatment. We found that FFXHC reduced the mortality outcomes in enterogenic Candida albicans infected mice models and increased the abundance of Lactobacillus murinus in the intestines. Lactobacillus murinus exhibited comparable therapeutic effects to those of FFXHC in enterogenic Candida albicans infected mice. This study provides novel perspectives into the pharmacological mechanisms of FFXHC. AIM OF THE STUDY We investigated the mechanisms via which FFXHC inhibits C. albicans infections and its effects on L. murinus. MATERIALS AND METHODS Enterogenous C. albicans infection mice models were established and various parameters, including survival rate, weight change, number of colonies, treatment effects on intestinal mucosa, microecology, and immune cytokines evaluated. Susceptibility of C. albicans to L. murinus was evaluated in vitro. RESULTS Treatment with FFXHC reduced the number of colonies, improved the health status, enhanced the survival rates, increased the abundance of L. murinus, reduced damage to the intestinal mucosa, and elevated occludin as well as claudin-1 levels. Interestingly, TNF-α, IFN-γ, IL-10, IL-22, and IL-17A levels were increased while IL-1β levels were suppressed in the intestinal mucosa without any change in peripheral blood cytokine levels. Moreover, FFXHC promoted L. murinus proliferation. This study also confirmed the incubation-dependent anti-C. albicans effects exerted by the metabolic supernatants of L. murinus. CONCLUSIONS FFXHC effectively alleviated intestinal infections of C. albicans in mice and increased the abundance of L. murinus. Supplementation of L. murinus in food can achieve the effects that are comparable to those of FFXHC. Thus, L. murinus maybe essential in FFXHC-based treatment of intestinal C. albicans infections.
Collapse
Affiliation(s)
- Hui-Ting Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jia-Sheng Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jun Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China; Hospital of Traditional Chinese Medicine and Western Medicine of Panzhihua, Panzhihua, 617099, China
| | - Li Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhi-Chang Xu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Rui-Rui Wang
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
18
|
Bogdanov IV, Fateeva SI, Voropaev AD, Ovchinnikova TV, Finkina EI. Immunomodulatory Effects of the Pea Defensin Psd1 in the Caco-2/Immune Cells Co-Culture upon Candida albicans Infection. Int J Mol Sci 2023; 24:7712. [PMID: 37175419 PMCID: PMC10178127 DOI: 10.3390/ijms24097712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Candidiasis is one of the most common fungal diseases that can pose a threat to life in immunodeficient individuals, particularly in its disseminated form. Not only fungal invasion but also fatal infection-related inflammation are common causes of systemic candidiasis. In this study, we investigated in vitro immunomodulatory properties of the antifungal pea defensin Psd1 upon Candida albicans infection. Using the real-time PCR, we showed that Psd1 inhibited the antimicrobial peptide HBD-2 and pro-inflammatory cytokines IL-1 and IL-8 downregulation at mRNA level in epithelium cells caused by C. albicans infection. By using the Caco-2/immune cells co-culture upon C. albicans infection and the multiplex xMAP assay, we demonstrated that this pathogenic fungus induced a pronounced host defense response; however, the cytokine responses were different in the presence of dendritic cells or monocytes. We revealed that Psd1 at a low concentration (2 µM) had a pronounced immunomodulatory effect on the Caco-2/immune cells co-culture upon fungal infection. Thus, we hypothesized that the pea defensin Psd1 might be an effective agent in the treatment of candidiasis not only due to its antifungal activity, but also owing to its ability to modulate a protective immune response upon infection.
Collapse
Affiliation(s)
- Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Serafima I. Fateeva
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander D. Voropaev
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov St. 10, 125212 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
19
|
Peng Q, Pan T, He R, Yi M, Feng L, Cui Z, Gao R, Wang H, Feng X, Li H, Wang Y, Zhang C, Cheng D, Du Y, Wang C. BTNL2 promotes colitis-associated tumorigenesis in mice by regulating IL-22 production. EMBO Rep 2023; 24:e56034. [PMID: 36629012 PMCID: PMC9986825 DOI: 10.15252/embr.202256034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Interleukin 22 (IL-22) has an important role in colorectal tumorigenesis and many colorectal diseases such as inflammatory bowel disease and certain infections. However, the regulation of IL-22 production in the intestinal system is still unclear. Here, we present evidence that butyrophilin-like protein 2 (BTNL2) is required for colorectal IL-22 production, and BTNL2 knockout mice show decreased colonic tumorigenesis and more severe colitis phenotypes than control mice due to defective production of IL-22. Mechanistically, BTNL2 acts on group 3 innate lymphoid cells (ILC3s), CD4+ T cells, and γδ T cells to promote the production of IL-22. Importantly, we find that a monoclonal antibody against BTNL2 attenuates colorectal tumorigenesis in mice and that the mBTNL2-Fc recombinant protein has a therapeutic effect in a dextran sulfate sodium (DSS)-induced colitis model. This study not only identifies a regulatory mechanism of IL-22 production in the colorectal system but also provides a potential therapeutic target for the treatment of human colorectal cancer and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ting Pan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Xiong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Hui Li
- Shandong PolytechnicJinanChina
| | - Yuan Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cun‐jin Zhang
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Du Cheng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| |
Collapse
|
20
|
Gupta C, Das S, Gaurav V, Singh PK, Rai G, Datt S, Tigga RA, Pandhi D, Bhattacharya SN, Ansari MA, Dar SA. Review on host-pathogen interaction in dermatophyte infections. J Mycol Med 2023; 33:101331. [PMID: 36272379 DOI: 10.1016/j.mycmed.2022.101331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Dermatophytosis is a common superficial fungal infection of the skin and its appendages caused by dermatophytes. Recent times have witnessed a dynamic evolution of dermatophytes driven by their ecology, reproduction, pathogenicity and host immune response, influenced by population migration and socioeconomic status. Dermatophytes establish infection following successful adherence of arthroconidia to the surface of keratinized tissues. The proteolytic enzymes released during adherence and invasion not only ascertain their survival but also allow the persistence of infection in the host. While the cutaneous immune surveillance mechanism, after antigen exposure and presentation, leads to activation of T lymphocytes and subsequent clonal expansion generating effector T cells that differentially polarize to a predominant Th17 response, the response fails to eliminate the pathogen despite the presence of high levels of IFN-γ. In chronic dermatophytosis, antigens are a constant source of stimulus promoting a dysregulated Th17 response causing inflammation. The host-derived iTreg response fails to counterbalance the inflammation and instead polarizes to Th17 lineage, aggravating the chronicity of the infection. Increasing antifungal resistance and recalcitrant dermatophytosis has impeded the overall clinical remission. Human genetic research has the potential to generate knowledge to explore new therapeutic targets. The review focuses on understanding specific virulence factors involved in pathogenesis and defining the role of dysregulated host immune response against chronic dermatophytic infections for future management strategies.
Collapse
Affiliation(s)
- Chhavi Gupta
- All India Institute of Medical Science, New Delhi, 110029, India; Present Address: Consultant Infectious Diseases, Fortis Hospital, Sector 62, Gautam Buddh Nagar, Noida, Uttar Pradesh, 201301, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India.
| | - Vishal Gaurav
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) and GTB Hospital, Delhi, 110095, India
| | - Praveen K Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Gargi Rai
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Shyama Datt
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Richa A Tigga
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Deepika Pandhi
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) and GTB Hospital, Delhi, 110095, India
| | - Sambit N Bhattacharya
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) and GTB Hospital, Delhi, 110095, India
| | - Mohammad A Ansari
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia.
| |
Collapse
|
21
|
Wu C, Jiang ML, Jiang R, Pang T, Zhang CJ. The roles of fungus in CNS autoimmune and neurodegeneration disorders. Front Immunol 2023; 13:1077335. [PMID: 36776399 PMCID: PMC9910218 DOI: 10.3389/fimmu.2022.1077335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Fungal infection or proliferation in our body is capable of initiation of strong inflammation and immune responses that result in different consequences, including infection-trigged organ injury and inflammation-related remote organ dysfunction. Fungi associated infectious diseases have been well recognized in the clinic. However, whether fungi play an important role in non-infectious central nervous system disease is still to be elucidated. Recently, a growing amount of evidence point to a non-negligible role of peripheral fungus in triggering unique inflammation, immune response, and exacerbation of a range of non-infectious CNS disorders, including Multiple sclerosis, Neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and Amyotrophic lateral sclerosis et al. In this review, we summarized the recent advances in recognizing patterns and inflammatory signaling of fungi in different subsets of immune cells, with a specific focus on its function in CNS autoimmune and neurodegeneration diseases. In conclusion, the fungus is capable of triggering unique inflammation by multiple mechanisms in the progression of a body of CNS non-infectious diseases, suggesting it serves as a key factor and critical novel target for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Chuyu Wu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Runqui Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Cun-Jin Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University of Chinese Medicine, Nanjing University, Nanjing, Jiangsu, China,Institute of Brain Sciences, Institute of Brain Disorder Translational Medicine, Nanjing University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| |
Collapse
|
22
|
Woodring T, Deepe GS, Levitz SM, Wuethrich M, Klein BS. They shall not grow mold: Soldiers of innate and adaptive immunity to fungi. Semin Immunol 2023; 65:101673. [PMID: 36459927 PMCID: PMC10311222 DOI: 10.1016/j.smim.2022.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Fungi are ubiquitous commensals, seasoned predators, and important agents of emerging infectious diseases [1 ]. The immune system assumes the essential responsibility for responding intelligently to the presence of known and novel fungi to maintain host health. In this Review, we describe the immune responses to pathogenic fungi and the varied array of fungal agents confronting the vertebrate host within the broader context of fungal and animal evolution. We provide an overview of the mechanistic details of innate and adaptive antifungal immune responses, as well as ways in which these basic mechanisms support the development of vaccines and immunotherapies.
Collapse
Affiliation(s)
- Therese Woodring
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - George S Deepe
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcel Wuethrich
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA.
| |
Collapse
|
23
|
Iraji D, Oftedal BE, Wolff ASB. Th17 Cells: Orchestrators of Mucosal Inflammation and Potential Therapeutic Targets. Crit Rev Immunol 2023; 43:25-52. [PMID: 37831521 DOI: 10.1615/critrevimmunol.2023050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
T helper 17 (Th17) cells represent a specialized subgroup of effector CD4+ T cells known for their role in provoking neutrophil-driven tissue inflammation, particularly within mucosal tissues. Although they are pivotal for defending the host against extracellular bacteria and fungi, they have also been associated with development of various T cell-mediated inflammatory conditions, autoimmune diseases, and even cancer. Notably, Th17 cells exhibit a dual nature, with different Th17 cell subtypes showcasing distinct effector functions and varying capacities to incite autoimmune tissue inflammation. Furthermore, Th17 cells exhibit significant plasticity, which carries important functional implications, both in terms of their expression of cytokines typically associated with other effector T cell subsets and in their interactions with regulatory CD4+ T cells. The intricate balance of Th17 cytokines can also be a double-edged sword in inflammation, autoimmunity, and cancer. Within this article, we delve into the mechanisms that govern the differentiation, function, and adaptability of Th17 cells. We culminate with an exploration of therapeutic potentials in harnessing the power of Th17 cells and their cytokines. Targeted interventions to modulate Th17 responses are emerging as promising strategies for autoimmunity, inflammation, and cancer treatment. By precisely fine-tuning Th17-related pathways, we may unlock new avenues for personalized therapeutic approaches, aiming to restore immune balance, alleviate the challenges of these disorders, and ultimately enhance the quality of life for individuals affected by them.
Collapse
Affiliation(s)
- Dorsa Iraji
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
24
|
Zaongo SD, Ouyang J, Isnard S, Zhou X, Harypursat V, Cui H, Routy JP, Chen Y. Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes 2023; 15:2167171. [PMID: 36722096 PMCID: PMC9897780 DOI: 10.1080/19490976.2023.2167171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous fungal commensal component of the human microbiota, and under certain circumstances, such as during an immunocompromised state, it may initiate different types of infection. Moreover, C. albicans continuously and reciprocally interacts with the host immune system as well as with other elements of the gut microbiota, thus contributing significantly to both gut homeostasis and host immunity. People living with HIV (PLWH), including those receiving antiretroviral therapy, are characterized by a depletion of CD4 + T-cells and dysbiosis in their gut. C. albicans colonization is frequent in PLWH, causing both a high prevalence and high morbidity. Gut barrier damage and elevated levels of microbial translocation are also fairly common in this population. Herein, we take a closer look at the reciprocity among C. albicans, gut microbiota, HIV, and the host immune system, thus throwing some light on this complex interplay.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Yaokai Chen Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
25
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
26
|
Al-Sayed SE, Abdel-Latif M, Abdel-Haleem HM, El-Shahawy G, Abdel-Tawab H. Therapeutic effects of Hirudo medicinalis extract antigens on modulation of CD4 +CD25 +Foxp3 T cell activity in murine eimeriosis. Vet Parasitol 2022; 309:109772. [PMID: 35917641 DOI: 10.1016/j.vetpar.2022.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Eimeriosis is a common parasitic disease in the chicken industry. The aim of this study was to assess the protective role of Hirudo extract antigens (HEA) against murine eimeriosis induced by Eimeria papillate. The oocyst output, developmental stages, goblet cells and oxidative stress, were investigated. Immunohistochemistry was used to detect anti-apoptotic Bcl2 marker and the number of both CD4+ and CD25+ cells in jejunal tissue, while ELISA was used to quantify TGF-β, IL-10 and IL-22 in jejunal tissue homogenate. Real-time PCR was also used to detect mRNA expression of mucin 2 (MUC2), inducible nitric oxide synthase (iNOS), IL-1β, IFN-γ, TNF-α, IL-6, and FoxP3. The most effective dose (5 µg/mice) reduced the oocyst output by 82.95 ± 1.02% (P ˂ 0.001). Similarly, the same dose reduced the jejunal developmental stages by 66.67 ± 0.49% (P ˂ 0.001). Furthermore, HEA therapy increased the number of jejunal goblet cells by 12.8 ± 1 (P ˂ 0.001) and the expression of MUC2 by 0.83 ± 0.06 (P ˂ 0.001). In contrast, TNF-α, IFN-γ, IL-6, iNOS, and IL-1β expression as well as apoptosis were reduced. The number of CD4+ and CD25+ in the jejunal tissue was increased (14.6 ± 1.2 (P ˂ 0.001), 6.84 ± 1 (P ˂ 0.01), respectively) after HEA therapy. The molecular analysis showed an increased expression of intestinal Foxp3 (3.2 ± 0.13 (P ˂ 0.001), while IL-22 was reduced (124 ± 10 (P ˂ 0.001)) versus an increase in TGF-β (250 ± 17 (P ˂ 0.01)) and IL-10 (236 ± 16 (P ˂ 0.001)) after HEA treatment in comparison to the non-treated infected group. With respect to the infected group, HEA reduced lipid peroxidation (LPO) (15.7 ± 1.12 (P ˂ 0.001)) and nitric oxide (NO) (13 ± 1.3 (P ˂ 0.001)) but increased reduced glutathione (GSH) (3.7 ± 0.26 (P ˂ 0.001)). In conclusion, HEA therapy protected against intestinal tissue damage by activation of CD4+CD25+Foxp3 cells which showed anti-inflammatory action. Hence, HEA can be recommended as a therapeutic treatment for eimeriosis.
Collapse
Affiliation(s)
- Shrouk E Al-Sayed
- Division of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| | - Mahmoud Abdel-Latif
- Division of Immunity, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Heba M Abdel-Haleem
- Division of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Gamal El-Shahawy
- Division of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Heba Abdel-Tawab
- Division of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
27
|
Spivak I, Fluhr L, Elinav E. Local and systemic effects of microbiome‐derived metabolites. EMBO Rep 2022; 23:e55664. [PMID: 36031866 PMCID: PMC9535759 DOI: 10.15252/embr.202255664] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Commensal microbes form distinct ecosystems within their mammalian hosts, collectively termed microbiomes. These indigenous microbial communities broadly expand the genomic and functional repertoire of their host and contribute to the formation of a “meta‐organism.” Importantly, microbiomes exert numerous biochemical reactions synthesizing or modifying multiple bioactive small molecules termed metabolites, which impact their host's physiology in a variety of contexts. Identifying and understanding molecular mechanisms of metabolite–host interactions, and how their disrupted signaling can contribute to diseases, may enable their therapeutic application, a modality termed “postbiotic” therapy. In this review, we highlight key examples of effects of bioactive microbe‐associated metabolites on local, systemic, and immune environments, and discuss how these may impact mammalian physiology and associated disorders. We outline the challenges and perspectives in understanding the potential activity and function of this plethora of microbially associated small molecules as well as possibilities to harness them toward the promotion of personalized precision therapeutic interventions.
Collapse
Affiliation(s)
- Igor Spivak
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Medical Clinic III University Hospital Aachen Aachen Germany
| | - Leviel Fluhr
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
| | - Eran Elinav
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Microbiome & Cancer Division, DKFZ Heidelberg Germany
| |
Collapse
|
28
|
Martins LRL, Grzech-Leśniak K, Castro dos Santos N, Suárez LJ, Giro G, Bastos MF, Shibli JA. Transcription Factor AhR, Cytokines IL-6 and IL-22 in Subjects with and without Peri-Implantitis: A Case Control-Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7434. [PMID: 35742682 PMCID: PMC9224299 DOI: 10.3390/ijerph19127434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
Peri-implantitis is a plaque-associated condition characterized by mucosal inflammation and subsequent progressive loss of supporting bone; it is caused by bacterial biofilm, but the host response triggered by bacterial stimulation promotes the release of cells and mediators that culminate in tissue destruction. The Aryl-hydrocarbon Receptor (AhR) is associated with IL-22 production by Th22 and Th17 CD4+ Th cells. The presence of IL-6 may promote the Th22 phenotype. The present case-control study evaluated the gene expression of AhR, IL-22, and IL-6 in the peri-implant tissues of healthy and peri-implantitis patients. Tissue biopsies were collected from thirty-five volunteers (15 healthy and 20 with peri-implantitis). A real-time PCR reaction was utilized to assess the AhR, IL-22, and IL-6 gene expression levels relative to the reference gene (GAPDH). The results were analyzed using the Mann-Whitney test with a significance level of 5%. Higher levels of gene expression of AhR and IL-6 were detected in peri-implantitis tissues. The IL-22 gene expression levels did not differ between groups. In conclusion, higher gene expression levels for AhR and IL-6 were detected in the soft tissues of peri-implantitis patients. IL-22 did not vary between conditions, which may indicate the loss of the immunomodulatory role of IL-22 in periimplantitis.
Collapse
Affiliation(s)
- Luis Ricardo Linard Martins
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (L.R.L.M.); (N.C.d.S.); (L.J.S.)
| | - Kinga Grzech-Leśniak
- Laser Laboratory at Dental Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland;
| | - Nidia Castro dos Santos
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (L.R.L.M.); (N.C.d.S.); (L.J.S.)
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Lina J. Suárez
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (L.R.L.M.); (N.C.d.S.); (L.J.S.)
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Cra 45 # 26-85, Bogota 11001, Colombia
| | - Gabriela Giro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (L.R.L.M.); (N.C.d.S.); (L.J.S.)
| | - Marta Ferreira Bastos
- Programa de Pós Graduação em Ciências do Envelhecimento, Universidade São Judas Tadeu, Rua Taquari, 546, Sao Paulo 03166-000, Brazil;
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (L.R.L.M.); (N.C.d.S.); (L.J.S.)
| |
Collapse
|
29
|
Li Y, Liu N, Ge Y, Yang Y, Ren F, Wu Z. Tryptophan and the innate intestinal immunity: Crosstalk between metabolites, host innate immune cells and microbiota. Eur J Immunol 2022; 52:856-868. [PMID: 35362153 DOI: 10.1002/eji.202149401] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
The intestinal mucosal barrier is critical for the absorption of nutrients and the health of both humans and animals. Recent publications from clinical and experimental studies have shown the importanceof the nutrients-bacteria-host interaction for the intestinal homeostasis. Dysfunction of these interactions has been reported to be associated with metabolic disorders and development of intestinal diseases, such as the irritable bowel syndrome and inflammatory bowel diseases. Tryptophan and its metabolites, including kynurenine, kynurenic acid, and 5-hydroxytrptamine, can influence the proliferation of enterocytes, intestinal integrity and immune response, as well as intestinal microbiota, therefore regulating and contributing to the intestinal health. In this review, we highlight recent findings on the effect of tryptophan and its metabolites on the mucosal barrier and intestinal homeostasis and its regulation of innate immune response. Moreover, we present the signaling pathways related to Trp metabolism, such as mammalian target of rapamycin, aryl hydrocarbon receptor, and pregnane X receptor, that contribute to the intestinal homeostasis and discuss future perspectives on spontaneous interference in host tryptophan metabolism as potential clinical strategies of intestinal diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yunke Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
30
|
Naqvi RA, Datta M, Khan SH, Naqvi AR. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol 2022; 124:34-47. [PMID: 34446356 PMCID: PMC11661912 DOI: 10.1016/j.semcdb.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Samia Haseeb Khan
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
31
|
Gershater M, Romero R, Arenas-Hernandez M, Galaz J, Motomura K, Tao L, Xu Y, Miller D, Pique-Regi R, Martinez G, Liu Y, Jung E, Para R, Gomez-Lopez N. IL-22 Plays a Dual Role in the Amniotic Cavity: Tissue Injury and Host Defense against Microbes in Preterm Labor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1595-1615. [PMID: 35304419 PMCID: PMC8976826 DOI: 10.4049/jimmunol.2100439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
IL-22 is a multifaceted cytokine with both pro- and anti-inflammatory functions that is implicated in multiple pathologies. However, the role of IL-22 in maternal-fetal immunity in late gestation is poorly understood. In this study, we first showed that IL-22+ T cells coexpressing retinoic acid-related orphan receptor γt (ROR-γt) are enriched at the human maternal-fetal interface of women with preterm labor and birth, which was confirmed by in silico analysis of single-cell RNA sequencing data. T cell activation leading to preterm birth in mice was preceded by a surge in IL-22 in the maternal circulation and amniotic cavity; however, systemic administration of IL-22 in mice did not induce adverse perinatal outcomes. Next, using an ex vivo human system, we showed that IL-22 can cross from the choriodecidua to the intra-amniotic space, where its receptors (Il22ra1, Il10rb, and Il22ra2) are highly expressed by murine gestational and fetal tissues in late pregnancy. Importantly, amniotic fluid concentrations of IL-22 were elevated in women with sterile or microbial intra-amniotic inflammation, suggesting a dual role for this cytokine. The intra-amniotic administration of IL-22 alone shortened gestation and caused neonatal death in mice, with the latter outcome involving lung maturation and inflammation. IL-22 plays a role in host response by participating in the intra-amniotic inflammatory milieu preceding Ureaplasma parvum-induced preterm birth in mice, which was rescued by the deficiency of IL-22. Collectively, these data show that IL-22 alone is capable of causing fetal injury leading to neonatal death and can participate in host defense against microbial invasion of the amniotic cavity leading to preterm labor and birth.
Collapse
Affiliation(s)
- Meyer Gershater
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI; and
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
| | - Gregorio Martinez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yesong Liu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Robert Para
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
32
|
Ma Q, Luan J, Bai Y, Xu C, Liu F, Chen B, Ju D, Xu H. Interleukin-22 in Renal Protection and Its Pathological Role in Kidney Diseases. Front Immunol 2022; 13:851818. [PMID: 35432360 PMCID: PMC9008451 DOI: 10.3389/fimmu.2022.851818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney injury has gradually become a worldwide public health problem currently affecting approximately 10% of the population and can eventually progress to chronic end-stage renal disease characteristic by the result of epithelial atrophy. Interleukin-22 (IL-22) is a cytokine produced by activated immune cells, while acting mainly on epithelial cells ranging from innate immune response to tissue regeneration to maintain barrier integrity and promote wound healing. Accumulating data suggests that IL-22 has emerged as a fundamental mediator of epithelial homeostasis in the kidney through promoting tissue repair and regeneration, inhibiting oxidative stress, and producing antimicrobial peptides. Binding of IL-22 to its transmembrane receptor complex triggers janus kinase/tyrosine kinase 2 phosphorylation, which further activates a number of downstream cascades, including signal transducer and activator of transcription 3, MAP kinase, and protein kinase B, and initiates a wide array of downstream effects. However, the activation of the IL-22 signaling pathways promotes the activation of complement systems and enhances the infiltration of chemokines, which does harm to the kidney and may finally result in chronic renal failure of different autoimmune kidney diseases, including lupus nephritis, and IgA nephropathy. This review describes current knowledge of the basic features of IL-22, including structure, cellular origin and associated signaling pathways. Also, we summarize the latest progress in understanding the physiological and pathological effects of IL-22 in the kidney, suggesting the potential strategies for the specific application of this cytokine in the treatment of kidney disease.
Collapse
Affiliation(s)
- Qianqian Ma
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jingyun Luan
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Bai
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Caili Xu
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangyu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bufeng Chen
- Department of Urology, Binzhou Medical University, Binzhou, China
| | - Dianwen Ju
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Xu
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
33
|
Tirado-Sánchez A, Vazquez-González D, Sáenz-Dávila B, Bonifaz A. Antifungal Vaccines: Current Status and Future Directions. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kanjanapruthipong T, Sukphopetch P, Reamtong O, Isarangkul D, Muangkaew W, Thiangtrongjit T, Sansurin N, Fongsodsri K, Ampawong S. Cytoskeletal Alteration Is an Early Cellular Response in Pulmonary Epithelium Infected with Aspergillus fumigatus Rather than Scedosporium apiospermum. MICROBIAL ECOLOGY 2022; 83:216-235. [PMID: 33890146 DOI: 10.1007/s00248-021-01750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.
Collapse
Affiliation(s)
- Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
35
|
Kumar A, Patel VS, Harding JN, You D, Cormier SA. Exposure to combustion derived particulate matter exacerbates influenza infection in neonatal mice by inhibiting IL22 production. Part Fibre Toxicol 2021; 18:43. [PMID: 34906172 PMCID: PMC8670221 DOI: 10.1186/s12989-021-00438-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) are formed during various combustion processes, including the thermal remediation of hazardous wastes. Exposure to PM adversely affects respiratory health in infants and is associated with increased morbidity and mortality due to acute lower respiratory tract infections. We previously reported that early-life exposure to PM damages the lung epithelium and suppresses immune responses to influenza virus (Flu) infection, thereby enhancing Flu severity. Interleukin 22 (IL22) is important in resolving lung injury following Flu infection. In the current study, we determined the effects of PM exposure on pulmonary IL22 responses using our neonatal mouse model of Flu infection. Results Exposure to PM resulted in an immediate (0.5–1-day post-exposure; dpe) increase in IL22 expression in the lungs of C57BL/6 neonatal mice; however, this IL22 expression was not maintained and failed to increase with either continued exposure to PM or subsequent Flu infection of PM-exposed mice. This contrasts with increased IL22 expression in age-matched mice exposed to vehicle and Flu infected. Activation of the aryl hydrocarbon receptor (AhR), which mediates the induction and release of IL22 from immune cells, was also transiently increased with PM exposure. The microbiome plays a major role in maintaining epithelial integrity and immune responses by producing various metabolites that act as ligands for AhR. Exposure to PM induced lung microbiota dysbiosis and altered the levels of indole, a microbial metabolite. Treatment with recombinant IL22 or indole-3-carboxaldehyde (I3A) prevented PM associated lung injury. In addition, I3A treatment also protected against increased mortality in Flu-infected mice exposed to PMs. Conclusions Together, these data suggest that exposure to PMs results in failure to sustain IL22 levels and an inability to induce IL22 upon Flu infection. Insufficient levels of IL22 may be responsible for aberrant epithelial repair and immune responses, leading to increased Flu severity in areas of high PM.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, USA
| | - Vivek S Patel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jeffrey N Harding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Dahui You
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA. .,Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, USA.
| |
Collapse
|
36
|
Colombo SAP, Hashad R, Denning DW, Kumararatne DS, Ceron-Gutierrez L, Barcenas-Morales G, MacDonald AS, Harris C, Doffinger R, Kosmidis C. Defective interferon-gamma production is common in chronic pulmonary aspergillosis. J Infect Dis 2021; 225:1822-1831. [PMID: 34850023 DOI: 10.1093/infdis/jiab583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Immune defects in chronic pulmonary aspergillosis (CPA) are poorly characterised. We compared peripheral blood cytokine profiles in patients with CPA vs healthy controls and explored the relationship with disease severity. METHODS Interferon-gamma (IFNγ), IL-17, TNFα, IL-6, IL-12 and IL-10 were measured after in vitro stimulation of whole blood with lipopolysaccharide (LPS), phytohaemagglutinin (PHA), β-glucan, zymosan (ZYM), IL-12 or IL-18, and combinations. Clinical parameters and mortality were correlated with cytokine production. RESULTS Cytokine profiles were evaluated in 133 patients (57.1% male, mean age 61 years). In comparison to controls, patients with CPA had significantly reduced production of IFNγ in response to stimulation with β-glucan+IL-12 (312 vs 988 pg/ml), LPS+IL-12 (252 vs 1033 pg/ml), ZYM+IL-12 (996 vs 2347 pg/ml), and IL-18+IL-12 (7193 vs 12330 pg/ml). Age >60 (p=0.05, HR 1.71, 95%CI 1.00-2.91) and COPD (p=0.039, HR 1.69, 95%CI 1.03-2.78) were associated with worse survival, whereas high IFNγ production in response to beta-glucan+IL-12 stimulation (p=0.026, HR 0.48, 95%CI 0.25-0.92) was associated with reduced mortality. CONCLUSION Patients with CPA show impaired IFNγ production in peripheral blood in response to stimuli. Defective IFNγ production ability correlates with worse outcomes. Immunotherapy with IFNγ could be beneficial for patients showing impaired IFNγ production in CPA.
Collapse
Affiliation(s)
- Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rola Hashad
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, UK.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK
| | - Dinakantha S Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | | | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Chris Harris
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Chris Kosmidis
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK.,National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
37
|
Mallela LS, Sharma P, Rao TSR, Roy S. Recombinant IL-22 promotes protection in a murine model of Aspergillus flavus keratitis and mediates host immune responses in human corneal epithelial cells. Cell Microbiol 2021; 23:e13367. [PMID: 34029434 DOI: 10.1111/cmi.13367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022]
Abstract
Aspergillus flavus is a leading cause of corneal infections in India and worldwide, resulting in severe visual impairment. We studied the host immune response towards A. flavus in immortalised human corneal epithelial cells (HCEC) and found increased expression of Toll-like receptors, antimicrobial peptides and proinflammatory cytokines like IL-6 and IL-8. Differential expressions of antimicrobial peptides were determined in corneal scrapings from A. flavus keratitis patients with significantly increased expression of LL-37, S100A12 and RNase 7. Increased levels of IL-22 expression were observed both in patients with A. flavus keratitis and in experimental mice model of corneal infections along with IL-17, IL-23 and IL-18. IL-22 is an important mediator of inflammation during microbial infections, and acts primarily on fibroblasts and epithelial cells. We observed constitutive expression of IL-22 receptors in HCEC, and IL-22 mediated activation of NF-κB, MAPK pathways and STAT3, along with increased expression of antimicrobial peptides in these cells. IL-22 also efficiently lessened cell deaths in corneal epithelial cells during A. flavus infection in vitro. Furthermore, recombinant IL-22 reduced fungal burden and corneal opacity in an experimental murine model of A. flavus keratitis.
Collapse
Affiliation(s)
| | - Prerana Sharma
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | | | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
38
|
Ventin-Holmberg R, Eberl A, Saqib S, Korpela K, Virtanen S, Sipponen T, Salonen A, Saavalainen P, Nissilä E. Bacterial and Fungal Profiles as Markers of Infliximab Drug Response in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:1019-1031. [PMID: 33300552 DOI: 10.1093/ecco-jcc/jjaa252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases [IBDs], Crohn's disease [CD] and ulcerative colitis [UC], are globally increasing chronic gastro-intestinal inflammatory disorders associated with altered gut microbiota. Infliximab [IFX], a tumour necrosis factor [TNF]-alpha blocker, is used to treat IBD patients successfully, though one-third of the patients do not respond to therapy. No reliable biomarkers are available for prediction of IFX response. Our aims were to investigate the faecal bacterial and fungal communities during IFX therapy and find predictors for IFX treatment response in IBD patients. METHODS A total of 72 IBD patients [25 CD and 47 UC] started IFX therapy and were followed for 1 year or until IFX treatment was discontinued. An amplicon sequencing approach, targeting the bacterial 16S rRNA gene and fungal ITS 1 region separately, was used to determine the microbiota profiles in faecal samples collected before IFX therapy and 2, 6, and 12 weeks and 1 year after initiation of therapy. The response to IFX was evaluated by colonoscopy and clinically at 12 weeks after initiation. RESULTS Both faecal bacterial and fungal profiles differed significantly between response groups before start of IFX treatment. Non-responders had lower abundances of short chain fatty acid producers, particularly of the class Clostridia, and higher abundances of pro-inflammatory bacteria and fungi, such as the genus Candida, compared with responders. This was further indicated by bacterial taxa predicting the response in both CD and UC patients [area under the curve >0.8]. CONCLUSIONS Faecal bacterial and fungal microbiota composition could provide a predictive tool to estimate IFX response in IBD patients.
Collapse
Affiliation(s)
| | - Anja Eberl
- Department of Gastroenterology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Schahzad Saqib
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Seppo Virtanen
- Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Taina Sipponen
- Department of Gastroenterology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Eija Nissilä
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
de Araújo EF, Loures FV, Preite NW, Feriotti C, Galdino NA, Costa TA, Calich VLG. AhR Ligands Modulate the Differentiation of Innate Lymphoid Cells and T Helper Cell Subsets That Control the Severity of a Pulmonary Fungal Infection. Front Immunol 2021; 12:630938. [PMID: 33936043 PMCID: PMC8085362 DOI: 10.3389/fimmu.2021.630938] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
In agreement with other fungal infections, immunoprotection in pulmonary paracoccidioidomycosis (PCM) is mediated by Th1/Th17 cells whereas disease progression by prevalent Th2/Th9 immunity. Treg cells play a dual role, suppressing immunity but also controlling excessive tissue inflammation. Our recent studies have demonstrated that the enzyme indoleamine 2,3 dioxygenase (IDO) and the transcription factor aryl hydrocarbon receptor (AhR) play an important role in the immunoregulation of PCM. To further evaluate the immunomodulatory activity of AhR in this fungal infection, Paracoccidioides brasiliensis infected mice were treated with two different AhR agonists, L-Kynurenin (L-Kyn) or 6-formylindole [3,2-b] carbazole (FICZ), and one AhR specific antagonist (CH223191). The disease severity and immune response of treated and untreated mice were assessed 96 hours and 2 weeks after infection. Some similar effects on host response were shared by FICZ and L-Kyn, such as the reduced fungal loads, decreased numbers of CD11c+ lung myeloid cells expressing activation markers (IA, CD40, CD80, CD86), and early increased expression of IDO and AhR. In contrast, the AhR antagonist CH223191 induced increased fungal loads, increased number of pulmonary CD11c+ leukocytes expressing activation markers, and a reduction in AhR and IDO production. While FICZ treatment promoted large increases in ILC3, L-Kyn and CH223191 significantly reduced this cell population. Each of these AhR ligands induced a characteristic adaptive immunity. The large expansion of FICZ-induced myeloid, lymphoid, and plasmacytoid dendritic cells (DCs) led to the increased expansion of all CD4+ T cell subpopulations (Th1, Th2, Th17, Th22, and Treg), but with a clear predominance of Th17 and Th22 subsets. On the other hand, L-Kyn, that preferentially activated plasmacytoid DCs, reduced Th1/Th22 development but caused a robust expansion of Treg cells. The AhR antagonist CH223191 induced a preferential expansion of myeloid DCs, reduced the number of Th1, Th22, and Treg cells, but increased Th17 differentiation. In conclusion, the present study showed that the pathogen loads and the immune response in pulmonary PCM can be modulated by AhR ligands. However, further studies are needed to define the possible use of these compounds as adjuvant therapy for this fungal infection.
Collapse
Affiliation(s)
- Eliseu F de Araújo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio V Loures
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nycolas W Preite
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cláudia Feriotti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nayane Al Galdino
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tânia A Costa
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vera L G Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Singh R, Chakraborty M, Gautam A, Roy SK, Halder I, Barber J, Garg A. Residual immune activation in HIV-Infected individuals expands monocytic-myeloid derived suppressor cells. Cell Immunol 2021; 362:104304. [PMID: 33610024 DOI: 10.1016/j.cellimm.2021.104304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022]
Abstract
HIV-infected individuals on combined antiretroviral therapy (ART) with virologic suppression exhibit sustained immune dysfunction. Our recent work has highlighted that monocytic myeloid derived suppressor cells (M-MDSC) are elevated in these individuals and suppress immune responses. Factors responsible for M-MDSC expansion in vivo are unknown. Here we compared circulating frequency of M-MDSC in HIV-infected persons from the US and India where HIV subtype-B or -C predominate, respectively. We further investigated soluble mediators of residual immune activation in two cohorts and determined their correlation with M-MDSC expansion. Our findings show that M-MDSC are elevated and correlate with plasma levels of IL-6 in both cohorts. Chemokines CXCL10, CCL4 and CXCL8 were also elevated in HIV-infected individuals, but did not correlate with M-MDSC. These findings support that IL-6 is important in M-MDSC expansion which is independent of HIV subtype.
Collapse
Affiliation(s)
- Ritesh Singh
- Department of Community and Family Medicine, All India Institute of Medical Sciences, India
| | - Mouli Chakraborty
- National Institute of Biomedical Genomics, Departments of Chest andRespiratory Diseases JN Medical College and Hospital, Kalyani West Bengal, India
| | - Anuradha Gautam
- National Institute of Biomedical Genomics, Departments of Chest andRespiratory Diseases JN Medical College and Hospital, Kalyani West Bengal, India
| | - Suman K Roy
- Community Medicine and Chest andRespiratory Diseases JN Medical College and Hospital, Kalyani West Bengal, India
| | - Indranil Halder
- Chest andRespiratory Diseases JN Medical College and Hospital, Kalyani West Bengal, India
| | - Jamie Barber
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, GA 30606, USA
| | - Ankita Garg
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, GA 30606, USA.
| |
Collapse
|
41
|
Kurilenko N, Fatkhullina AR, Mazitova A, Koltsova EK. Act Locally, Act Globally-Microbiota, Barriers, and Cytokines in Atherosclerosis. Cells 2021; 10:cells10020348. [PMID: 33562334 PMCID: PMC7915371 DOI: 10.3390/cells10020348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is characterized by the formation and progressive growth of atherosclerotic plaques in the wall of arteries. Atherosclerosis is a major predisposing factor for stroke and heart attack. Various immune-mediated mechanisms are implicated in the disease initiation and progression. Cytokines are key mediators of the crosstalk between innate and adaptive immune cells as well as non-hematopoietic cells in the aortic wall and are emerging players in the regulation of atherosclerosis. Progression of atherosclerosis is always associated with increased local and systemic levels of pro-inflammatory cytokines. The role of cytokines within atherosclerotic plaque has been extensively investigated; however, the cell-specific role of cytokine signaling, particularly the role of cytokines in the regulation of barrier tissues tightly associated with microbiota in the context of cardiovascular diseases has only recently come to light. Here, we summarize the knowledge about the function of cytokines at mucosal barriers and the interplay between cytokines, barriers, and microbiota and discuss their known and potential implications for atherosclerosis development.
Collapse
Affiliation(s)
- Natalia Kurilenko
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | | | - Aleksandra Mazitova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | - Ekaterina K. Koltsova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
- Correspondence:
| |
Collapse
|
42
|
Wunsch S, Zurl C, Strohmaier H, Meinitzer A, Rabensteiner J, Posch W, Lass-Flörl C, Cornely O, Pregartner G, König E, Feierl G, Hoenigl M, Prattes J, Zollner-Schwetz I, Valentin T, Krause R. Longitudinal Evaluation of Plasma Cytokine Levels in Patients with Invasive Candidiasis. J Fungi (Basel) 2021; 7:101. [PMID: 33535593 PMCID: PMC7912850 DOI: 10.3390/jof7020101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Interleukin (IL) 17A plays a decisive role in anti-Candida host defense. Previous data demonstrated significantly increased IL-17A values in candidemic patients. We evaluated levels and time courses of IL-17A, and other cytokines suggested to be involved in Candida-specific immunity (IL-6, IL-8, IL-10, IL-17F, IL-22, IL-23, interferon-γ, tumor necrosis factor-α, Pentraxin-related protein 3, transforming growth factor-β) in patients with invasive candidiasis (IC) compared to bacteremic patients (Staphylococcus aureus, Escherichia coli) and healthy controls (from previous 4 days up to day 14 relative to the index culture (-4; 14)). IL-17A levels were significantly elevated in all groups compared to healthy controls. In IC, the highest IL-17A values were measured around the date of index sampling (-1; 2), compared to significantly lower levels prior and after sampling the index culture. Candidemic patients showed significantly higher IL-17A values compared to IC other than candidemia at time interval (-1; 2) and (3; 7). No significant differences in IL-17A levels could be observed for IC compared to bacteremic patients. Candidemic patients had higher IL-8, IL-10, IL-22, IFN-γ, PTX3 and TNF-α values compared to non-candidemic. Based on the limited discriminating competence between candidemia and bacteremia, IL-17A has to be considered a biomarker for blood stream infection rather than invasive Candida infection.
Collapse
Affiliation(s)
- Stefanie Wunsch
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (C.Z.); (E.K.); (M.H.); (J.P.); (I.Z.-S.); (T.V.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Christoph Zurl
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (C.Z.); (E.K.); (M.H.); (J.P.); (I.Z.-S.); (T.V.)
- BioTechMed-Graz, 8010 Graz, Austria
- Department of Paediatrics and Adolescent Medicine, Division of General Paediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Heimo Strohmaier
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (A.M.); (J.R.)
| | - Jasmin Rabensteiner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (A.M.); (J.R.)
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (W.P.); (C.L.-F.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (W.P.); (C.L.-F.)
| | - Oliver Cornely
- Excellence Center for Medical Mycology (ECMM), Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Elisabeth König
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (C.Z.); (E.K.); (M.H.); (J.P.); (I.Z.-S.); (T.V.)
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Gebhard Feierl
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (C.Z.); (E.K.); (M.H.); (J.P.); (I.Z.-S.); (T.V.)
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (C.Z.); (E.K.); (M.H.); (J.P.); (I.Z.-S.); (T.V.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Ines Zollner-Schwetz
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (C.Z.); (E.K.); (M.H.); (J.P.); (I.Z.-S.); (T.V.)
| | - Thomas Valentin
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (C.Z.); (E.K.); (M.H.); (J.P.); (I.Z.-S.); (T.V.)
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (C.Z.); (E.K.); (M.H.); (J.P.); (I.Z.-S.); (T.V.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
43
|
Pan CH, Lo HJ, Yan JY, Hsiao YJ, Hsueh JW, Lin DW, Lin TH, Wu SH, Chen YC. Candida albicans Colonizes and Disseminates to the Gastrointestinal Tract in the Presence of the Microbiota in a Severe Combined Immunodeficient Mouse Model. Front Microbiol 2021; 11:619878. [PMID: 33488563 PMCID: PMC7819875 DOI: 10.3389/fmicb.2020.619878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is the leading cause of candidemia or other invasive candidiasis. Gastrointestinal colonization has been considered as the primary source of candidemia. However, few established mouse models that mimic this infection route are available. In the present study, we established a mouse model of disseminated candidiasis developed through the translocation of Candida from the gut. In this study, we developed a novel C. albicans GI colonization and dissemination animal model by using severe combined immunodeficient Rag2–/–IL2γc–/– (Rag2γc) mice, which lack functional T, B, NK cells, and IL2γc-dependent signaling. Rag2γc mice were highly susceptible to C. albicans gastrointestinal infection even in the presence of the gut microbiota. Within 4 weeks post infection, Rag2γc mice showed dose-dependent weight loss and disseminated candidiasis in more than 58% (7/12) of moribund mice. Histological analysis demonstrated abundant hyphae penetrating the mucosa, with significant neutrophilic infiltration in mice infected with wild-type C. albicans but not a filamentation-defective mutant. In moribund Rag2γc mice, the necrotic lesions and disrupted epithelial cells were associated with C. albicans hyphae. Notably, removal of the gut microbiota by antibiotics exacerbated the severity of fungal infection in Rag2γc mice, as demonstrated by elevated fungal burdens and accelerated weight loss and death. Furthermore, higher fungal burden and IL-1β expression were prominently noted in the stomach of Rag2γc mice. In fact, a significant increase in circulating proinflammatory cytokines, including IL-6, TNF-α, and IL-10, indicative of a septic response, was evident in infected Rag2γc mice. Additionally, Rag2γc mice exhibited significantly lower levels of IL-22 but not IFN-γ or IL-17A than wild-type B6 mice, suggesting that IL-22 plays a role in C. albicans gastrointestinal infection. Collectively, our analysis of the Rag2γc mouse model revealed features of C. albicans gastrointestinal colonization and dissemination without the interference from antibiotics or chemotherapeutic agents, thus offering a new investigative tool for delineating the pathogenesis of C. albicans and its cross-talk with the gut microbiota.
Collapse
Affiliation(s)
- Chien-Hsiung Pan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jia-Ying Yan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ju Hsiao
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jun-Wei Hsueh
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Di-Wei Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Han Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Sze-Hsien Wu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yee-Chun Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Department of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
44
|
Ekine-Afolabi BA, Njan AA, Rotimi SO, R. I. A, Elbehi AM, Cash E, Adeyeye A. The Impact of Diet on the Involvement of Non-Coding RNAs, Extracellular Vesicles, and Gut Microbiome-Virome in Colorectal Cancer Initiation and Progression. Front Oncol 2020; 10:583372. [PMID: 33381452 PMCID: PMC7769005 DOI: 10.3389/fonc.2020.583372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer is the major cause of morbidity and mortality in the world today. The third most common cancer and which is most diet related is colorectal cancer (CRC). Although there is complexity and limited understanding in the link between diet and CRC, the advancement in research methods have demonstrated the involvement of non-coding RNAs (ncRNAs) as key regulators of gene expression. MicroRNAs (miRNAs) which are a class of ncRNAs are key players in cancer related pathways in the context of dietary modulation. The involvement of ncRNA in cancer progression has recently been clarified throughout the last decade. ncRNAs are involved in biological processes relating to tumor onset and progression. The advances in research have given insights into cell to cell communication, by highlighting the pivotal involvement of extracellular vesicle (EV) associated-ncRNAs in tumorigenesis. The abundance and stability of EV associated ncRNAs act as a new diagnostic and therapeutic target for cancer. The understanding of the deranging of these molecules in cancer can give access to modulating the expression of the ncRNAs, thereby influencing the cancer phenotype. Food derived exosomes/vesicles (FDE) are gaining interest in the implication of exosomes in cell-cell communication with little or no understanding to date on the role FDE plays. There are resident microbiota in the colon; to which the imbalance in the normal intestinal occurrence leads to chronic inflammation and the production of carcinogenic metabolites that lead to neoplasm. Limited studies have shown the implication of various types of microbiome in CRC incidence, without particular emphasis on fungi and protozoa. This review discusses important dietary factors in relation to the expression of EV-associated ncRNAs in CRC, the impact of diet on the colon ecosystem with particular emphasis on molecular mechanisms of interactions in the ecosystem, the influence of homeostasis regulators such as glutathione, and its conjugating enzyme-glutathione S-transferase (GST) polymorphism on intestinal ecosystem, oxidative stress response, and its relationship to DNA adduct fighting enzyme-0-6-methylguanine-DNA methyltransferase. The understanding of the molecular mechanisms and interaction in the intestinal ecosystem will inform on the diagnostic, preventive and prognosis as well as treatment of CRC.
Collapse
Affiliation(s)
- Bene A. Ekine-Afolabi
- ZEAB Therapeutic, London, United Kingdom
- Cancer Biology and Therapeutics, High Impact Cancer Research Postgraduate Certificate Program, Harvard Medical School, Boston, MA, United States
| | - Anoka A. Njan
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Anu R. I.
- Cancer Biology and Therapeutics, High Impact Cancer Research Postgraduate Certificate Program, Harvard Medical School, Boston, MA, United States
- Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, India
| | - Attia M. Elbehi
- Cancer Biology and Therapeutics, High Impact Cancer Research Postgraduate Certificate Program, Harvard Medical School, Boston, MA, United States
- School of Care and Health Sciences, University of South Wales, Cardif, United Kingdom
| | - Elizabeth Cash
- Cancer Biology and Therapeutics, High Impact Cancer Research Postgraduate Certificate Program, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, KY, United States
| | - Ademola Adeyeye
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| |
Collapse
|
45
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
46
|
Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130:110550. [DOI: 10.1016/j.biopha.2020.110550] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
47
|
Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front Immunol 2020; 11:2148. [PMID: 33042126 PMCID: PMC7527413 DOI: 10.3389/fimmu.2020.02148] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.
Collapse
Affiliation(s)
- Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Richard Palek
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
48
|
Pulmonary paracoccidioidomycosis in AhR deficient hosts is severe and associated with defective Treg and Th22 responses. Sci Rep 2020; 10:11312. [PMID: 32647342 PMCID: PMC7347857 DOI: 10.1038/s41598-020-68322-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
AhR is a ligand-activated transcription factor that plays an important role in the innate and adaptive immune responses. In infection models, it has been associated with host responses that promote or inhibit disease progression. In pulmonary paracoccidioidomycosis, a primary fungal infection endemic in Latin America, immune protection is mediated by Th1/Th17 cells and disease severity with predominant Th2/Th9/Treg responses. Because of its important role at epithelial barriers, we evaluate the role of AhR in the outcome of a pulmonary model of paracoccidioidomycosis. AhR−/− mice show increased fungal burdens, enhanced tissue pathology and mortality. During the infection, AhR−/− mice have more pulmonary myeloid cells with activated phenotype and reduced numbers expressing indoleamine 2,3 dioxygenase 1. AhR-deficient lungs have altered production of cytokines and reduced numbers of innate lymphoid cells (NK, ILC3 and NCR IL-22). The lungs of AhR−/− mice showed increased presence Th17 cells concomitant with reduced numbers of Th1, Th22 and Foxp3+ Treg cells. Furthermore, treatment of infected WT mice with an AhR-specific antagonist (CH223191) reproduced the main findings obtained in AhR−/− mice. Collectively our data demonstrate that in pulmonary paracoccidioidomycosis AhR controls fungal burden and excessive tissue inflammation and is a possible target for antifungal therapy.
Collapse
|
49
|
Aggor FEY, Break TJ, Trevejo-Nuñez G, Whibley N, Coleman BM, Bailey RD, Kaplan DH, Naglik JR, Shan W, Shetty AC, McCracken C, Durum SK, Biswas PS, Bruno VM, Kolls JK, Lionakis MS, Gaffen SL. Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci Immunol 2020; 5:eaba0570. [PMID: 32503875 PMCID: PMC7340112 DOI: 10.1126/sciimmunol.aba0570] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/07/2020] [Indexed: 12/29/2022]
Abstract
Oropharyngeal candidiasis (OPC; thrush) is an opportunistic infection caused by the commensal fungus Candida albicans Interleukin-17 (IL-17) and IL-22 are cytokines produced by type 17 lymphocytes. Both cytokines mediate antifungal immunity yet activate quite distinct downstream signaling pathways. While much is now understood about how IL-17 promotes immunity in OPC, the activities of IL-22 are far less well delineated. We show that, despite having similar requirements for induction from type 17 cells, IL-22 and IL-17 function nonredundantly during OPC. We find that the IL-22 and IL-17 receptors are required in anatomically distinct locations within the oral mucosa; loss of IL-22RA1 or signal transducer and activator of transcription 3 (STAT3) in the oral basal epithelial layer (BEL) causes susceptibility to OPC, whereas IL-17RA is needed in the suprabasal epithelial layer (SEL). Transcriptional profiling of the tongue linked IL-22/STAT3 not only to oral epithelial cell proliferation and survival but also, unexpectedly, to driving an IL-17-specific gene signature. We show that IL-22 mediates regenerative signals on the BEL that replenish the IL-17RA-expressing SEL, thereby restoring the ability of the oral epithelium to respond to IL-17 and thus to mediate antifungal events. Consequently, IL-22 signaling in BEL "licenses" IL-17 signaling in the oral mucosa, revealing spatially distinct yet cooperative activities of IL-22 and IL-17 in oral candidiasis.
Collapse
Affiliation(s)
- Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | | | - Natasha Whibley
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel D Bailey
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Wei Shan
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott K Durum
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University, New Orleans, LA, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Prado MK, Fontanari C, Souza CO, Gardinassi LG, Zoccal KF, de Paula-Silva FW, Peti AP, Sorgi CA, Meirelles AF, Ramos SG, Alves-Filho JC, Faccioli LH. IL-22 Promotes IFN-γ-Mediated Immunity against Histoplasma capsulatum Infection. Biomolecules 2020; 10:E865. [PMID: 32517114 PMCID: PMC7356283 DOI: 10.3390/biom10060865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Histoplasma capsulatum is the agent of histoplasmosis, one of the most frequent mycoses in the world. The infection initiates with fungal spore inhalation, transformation into yeasts in the lungs and establishment of a granulomatous disease, which is characterized by a Th1 response. The production of Th1 signature cytokines, such as IFN-γ, is crucial for yeast clearance from the lungs, and to prevent dissemination. Recently, it was demonstrated that IL-17, a Th17 signature cytokine, is also important for fungal control, particularly in the absence of Th1 response. IL-22 is another cytokine with multiple functions on host response and disease progression. However, little is known about the role of IL-22 during histoplasmosis. In this study, we demonstrated that absence of IL-22 affected the clearance of yeasts from the lungs and increased the spreading to the spleen. In addition, IL-22 deficient mice (Il22-/-) succumbed to infection, which correlated with reductions in the numbers of CD4+ IFN-γ+ T cells, reduced IFN-γ levels, and diminished nitric oxide synthase type 2 (NOS2) expression in the lungs. Importantly, treatment with rIFN-γ mitigated the susceptibility of Il22-/- mice to H. capsulatum infection. These data indicate that IL-22 is crucial for IFN-γ/NO production and resistance to experimental histoplasmosis.
Collapse
Affiliation(s)
- Morgana K.B. Prado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Caroline Fontanari
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Camila O.S. Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Luiz G. Gardinassi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Karina F. Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Francisco W.G. de Paula-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Ana P.F. Peti
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Carlos A. Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Alyne F.G. Meirelles
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Simone G. Ramos
- Departamento de Patologia e Medicina Legal da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| | - José C. Alves-Filho
- Departamento de Farmacologia da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| | - Lúcia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| |
Collapse
|