1
|
Wiarda JE, Shircliff AL, Becker SR, Stasko JB, Sivasankaran SK, Ackermann MR, Loving CL. Conserved B cell signaling, activation, and differentiation in porcine jejunal and ileal Peyer's patches despite distinct immune landscapes. Mucosal Immunol 2024; 17:1222-1241. [PMID: 39147277 DOI: 10.1016/j.mucimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Peyer's patches (PPs) are B cell-rich sites of intestinal immune induction, yet PP-associated B cell signaling, activation, and differentiation are poorly defined. Single-cell and spatial transcriptomics were completed to study B cells from porcine jejunum and ileum containing PPs. Intestinal locations had distinct immune landscapes, including more follicular B cells in ileum and increased MHC-II-encoding gene expression in jejunal B cells. Despite distinct landscapes, conserved B cell dynamics were detected across intestinal locations, including B cell signaling to CD4+ macrophages that are putative phagocytic, cytotoxic, effector cells and deduced routes of B cell activation/differentiation, including resting B cells migrating into follicles to replicate/divide or differentiate into antibody-secreting cells residing in intestinal crypts. A six-biomarker panel recapitulated transcriptomics findings of B cell phenotypes, frequencies, and spatial locations via ex vivo and in situ staining. Findings convey conserved B cell dynamics across intestinal locations containing PPs, despite location-specific immune environments. Results establish a benchmark of B cell dynamics for understanding intestinal immune induction important to promoting gut/overall health.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Adrienne L Shircliff
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sage R Becker
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA; Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
| | - Judith B Stasko
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Mark R Ackermann
- Office of the Director, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| |
Collapse
|
2
|
Musial SC, Kleist SA, Degefu HN, Ford MA, Chen T, Isaacs JF, Boussiotis VA, Skorput AGJ, Rosato PC. Alarm Functions of PD-1+ Brain-Resident Memory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1585-1594. [PMID: 39413000 DOI: 10.4049/jimmunol.2400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Resident memory T cells (TRM cells) have been described in barrier tissues as having a "sensing and alarm" function where, upon sensing cognate Ag, they alarm the surrounding tissue and orchestrate local recruitment and activation of immune cells. In the immunologically unique and tightly restricted CNS, it remains unclear whether and how brain TRM cells, which express the inhibitory receptor programmed cell death protein 1 (PD-1), alarm the surrounding tissue during Ag re-encounter. Using mouse models, we reveal that TRM cells are sufficient to drive the rapid remodeling of the brain immune landscape through activation of microglia, dendritic cells, NK cells, and B cells, expansion of regulatory T cells, and recruitment of macrophages and monocytic dendritic cells. Moreover, we report that although PD-1 restrained granzyme B upregulation in brain TRM cells reactivated via viral peptide, we observed no apparent effect on cytotoxicity in vivo, or downstream alarm responses within 48 h of TRM reactivation. We conclude that TRM cells are sufficient to trigger rapid immune activation and recruitment in the CNS and may have an unappreciated role in driving neuroinflammation.
Collapse
Affiliation(s)
- Shawn C Musial
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Sierra A Kleist
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Hanna N Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Myles A Ford
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Tiffany Chen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Jordan F Isaacs
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Vassiliki A Boussiotis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Pamela C Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| |
Collapse
|
3
|
Oguro-Igashira E, Murakami M, Mori R, Kuwahara R, Kihara T, Kohara M, Fujiwara M, Motooka D, Okuzaki D, Arase M, Toyota H, Peng S, Ogino T, Kitabatake Y, Morii E, Hirota S, Ikeuchi H, Umemoto E, Kumanogoh A, Takeda K. The pyruvate-GPR31 axis promotes transepithelial dendrite formation in human intestinal dendritic cells. Proc Natl Acad Sci U S A 2024; 121:e2318767121. [PMID: 39432783 PMCID: PMC11536072 DOI: 10.1073/pnas.2318767121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
The intestinal lumen is rich in gut microbial metabolites that serve as signaling molecules for gut immune cells. G-protein-coupled receptors (GPCRs) sense metabolites and can act as key mediators that translate gut luminal signals into host immune responses. However, the impacts of gut microbe-GPCR interactions on human physiology have not been fully elucidated. Here, we show that GPR31, which is activated by the gut bacterial metabolite pyruvate, is specifically expressed on type 1 conventional dendritic cells (cDC1s) in the lamina propria of the human intestine. Using human induced pluripotent stem cell-derived cDC1s and a monolayer human gut organoid coculture system, we show that cDC1s extend their dendrites toward pyruvate on the luminal side, forming transepithelial dendrites (TED). Accordingly, GPR31 activation via pyruvate enhances the fundamental function of cDC1 by allowing efficient uptake of gut luminal antigens, such as dietary compounds and bacterial particles through TED formation. Our results highlight the role of GPCRs in tuning the human gut immune system according to local metabolic cues.
Collapse
Affiliation(s)
- Eri Oguro-Igashira
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Ryota Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Ryuichi Kuwahara
- Department of Gastroenterological Surgery, Division of Inflammatory Bowel Disease Surgery, Hyogo Medical University, Hyogo663-8501, Japan
| | - Takako Kihara
- Department of Surgical Pathology, Hyogo Medical University, Hyogo663-8501, Japan
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Daisuke Motooka
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
| | - Daisuke Okuzaki
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Osaka565-0871, Japan
| | - Mitsuru Arase
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Hironobu Toyota
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Siyun Peng
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo Medical University, Hyogo663-8501, Japan
| | - Hiroki Ikeuchi
- Department of Gastroenterological Surgery, Division of Inflammatory Bowel Disease Surgery, Hyogo Medical University, Hyogo663-8501, Japan
| | - Eiji Umemoto
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Osaka565-0871, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| |
Collapse
|
4
|
Böswald LF, Popper B, Matzek D, Neuhaus K, Wenderlein J. Characterization of the gastrointestinal microbiome of the Syrian hamster (Mesocricetus auratus) and comparison to data from mice. FEBS Open Bio 2024; 14:1701-1717. [PMID: 39097990 PMCID: PMC11452302 DOI: 10.1002/2211-5463.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Syrian hamsters (Mesocricetus auratus) have been increasingly used as rodent models in recent years, especially for SARS-CoV-2 since the pandemic. However, the physiology of this animal model is not yet well-understood, even less when considering the digestive tract. Generally, the gastrointestinal microbiome influences the immune system, drug metabolism, and vaccination efficacy. However, a detailed understanding of the gastrointestinal microbiome of hamsters is missing. Therefore, we analyzed 10 healthy 11-week-old RjHan:AURA hamsters fed a pelleted standard diet. Their gastrointestinal content was sampled (i.e., forestomach, glandular stomach, ileum, cecum, and colon) and analyzed using 16S rRNA gene amplicon sequencing. Results displayed a distinct difference in the bacterial community before and after the cecum, possibly due to the available nutrients and digestive functions. Next, we compared hamsters with the literature data of young-adult C57BL/6J mice, another important animal model. We sampled the same gastrointestinal regions and analyzed the differences in the microbiome between both rodents. Surprisingly, we found strong differences in their specific gastrointestinal bacterial communities. For instance, Lactobacillaceae were more abundant in hamsters' forestomach and ileum, while Muribaculaceae dominated in the mouse forestomach and ileum. Similarly, in mouse cecum and colon, Muribaculaceae were dominant, while in hamsters, Lachnospiraceae and Erysipelotrichaceae dominated the bacterial community. Molecular strains of Muribaculaceae in both rodent species displayed some species specificity. This comparison allows a better understanding of the suitability of the Syrian hamster as an animal model, especially regarding its comparability to other rodent models. Thereby, this work contributes to the characterization of the hamster model and allows better experimental planning.
Collapse
Affiliation(s)
- Linda F. Böswald
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Bastian Popper
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Jasmin Wenderlein
- Chair for Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and ZoonosesLMU MunichOberschleißheimGermany
- Department for Biological SafetyFederal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
5
|
Spencer J, Dionisi C. Immature B cell homing shapes human lymphoid tissue structure and function. J Exp Med 2024; 221:e20240085. [PMID: 39093311 PMCID: PMC11296955 DOI: 10.1084/jem.20240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Shortly after the emergence of newly formed human B cells from bone marrow as transitional cells, they diverge along two developmental pathways that can be distinguished by the level of IgM they express and migratory biases. Here, we propose that differential tissue homing of immature B cell subsets contributes to human lymphoid tissue structure and function.
Collapse
Affiliation(s)
- Jo Spencer
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Fan Y, Wang Y, Xiao H, Sun H. Advancements in understanding the role of intestinal dysbacteriosis mediated mucosal immunity in IgA nephropathy. BMC Nephrol 2024; 25:203. [PMID: 38907188 PMCID: PMC11191200 DOI: 10.1186/s12882-024-03646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
IgA nephropathy, presently recognized as the foremost primary glomerular disorder, emerges as a principal contributor to renal failure globally, with its pathogenesis yet to be fully elucidated. Extensive research has highlighted the critical role of gut microbiome in the onset and progression of IgA nephropathy, underscoring its importance in accurately delineating the disease's etiology. For example, gut microbiome dysbacteriosis can lead to the production of nephritogenic IgA1 antibodies, which form immune complexes that deposit in the kidneys, causing inflammation and damage. The gut microbiome, a source of numerous bioactive compounds, interacts with the host and plays a regulatory role in gut-immune axis modulation, earning it the moniker of the "second brain." Recent investigations have particularly emphasized a significant correlation between IgA nephropathy and gut microbiome dysbacteriosis. This article offers a detailed overview of the pathogenic mechanisms of IgA nephropathy, specifically focusing on elucidating how alterations in the gut microbiome are associated with anomalies in the intestinal mucosal system in IgA nephropathy. Additionally, it describes the possible influence of gut microbiome on recurrent IgA nephropathy following kidney transplantation. Furthermore, it compiles potential therapeutic interventions, offering both theoretical and practical foundations for the management of IgA nephropathy. Lastly, the challenges currently faced in the therapeutic approaches to IgA nephropathy are discussed.
Collapse
Affiliation(s)
- Yitao Fan
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hui Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China.
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
7
|
G. de Castro C, G. del Hierro A, H-Vázquez J, Cuesta-Sancho S, Bernardo D. State-of-the-art cytometry in the search of novel biomarkers in digestive cancers. Front Oncol 2024; 14:1407580. [PMID: 38868532 PMCID: PMC11167087 DOI: 10.3389/fonc.2024.1407580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Despite that colorectal and liver cancer are among the most prevalent tumours in the world, the identification of non-invasive biomarkers to aid on their diagnose and subsequent prognosis is a current unmet need that would diminish both their incidence and mortality rates. In this context, conventional flow cytometry has been widely used in the screening of biomarkers with clinical utility in other malignant processes like leukaemia or lymphoma. Therefore, in this review, we will focus on how advanced cytometry panels covering over 40 parameters can be applied on the study of the immune system from patients with colorectal and hepatocellular carcinoma and how that can be used on the search of novel biomarkers to aid or diagnose, prognosis, and even predict clinical response to different treatments. In addition, these multiparametric and unbiased approaches can also provide novel insights into the specific immunopathogenic mechanisms governing these malignant diseases, hence potentially unravelling novel targets to perform immunotherapy or identify novel mechanisms, rendering the development of novel treatments. As a consequence, computational cytometry approaches are an emerging methodology for the early detection and predicting therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Carolina G. de Castro
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Alejandro G. del Hierro
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Juan H-Vázquez
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Sara Cuesta-Sancho
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - David Bernardo
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Centro de Investigaciones Biomedicas en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
8
|
Prakash A, Rubin N, Staley C, Onyeaghala G, Wen YF, Shaukat A, Milne G, Straka RJ, Church TR, Prizment A. Effect of ginger supplementation on the fecal microbiome in subjects with prior colorectal adenoma. Sci Rep 2024; 14:2988. [PMID: 38316805 PMCID: PMC10844320 DOI: 10.1038/s41598-024-52658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Ginger has been associated with a decreased incidence of colorectal cancer (CRC) through reduction in inflammatory pathways and inhibition of tumor growth. Recent pre-clinical models have implicated changes in the gut microbiome as a possible mediator of the ginger effect on CRC. We hypothesized that, in adults previously diagnosed with a colorectal adenoma, ginger supplementation would alter the fecal microbiome in the direction consistent with its CRC-inhibitory effect. Sixty-eight adults were randomized to take either ginger or placebo daily for 6 weeks, with a 6-week washout and longitudinal stool collection throughout. We performed 16S rRNA sequencing and evaluated changes in overall microbial diversity and the relative abundances of pre-specified CRC-associated taxa using mixed-effects logistic regression. Ginger supplementation showed no significant effect on microbial community structure through alpha or beta diversity. Of 10 pre-specified CRC-associated taxa, there were significant decreases in the relative abundances of the genera Akkermansia (p < 0.001), Bacteroides (p = 0.018), and Ruminococcus (p = 0.013) after 6-week treatment with ginger compared to placebo. Ginger supplementation led to decreased abundances of Akkermansia and Bacteroides, which suggests that ginger may have an inhibitory effect on CRC-associated taxa. Overall, ginger supplementation appears to have a limited effect on gut microbiome in patients with colorectal adenomas.
Collapse
Affiliation(s)
- Ajay Prakash
- Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Nathan Rubin
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Guillaume Onyeaghala
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ya-Feng Wen
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | | - Ginger Milne
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Timothy R Church
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Anna Prizment
- Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, MN, USA
| |
Collapse
|
9
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Jia Q, Bai D, Zheng X, Zhu L, Ou K, Wang X, Tong H, Zhang Y, Wang J, Zeng J, Yan S, Li S, Li XJ, Yin P. Comparing HD knockin pigs and mice reveals the pathological role of IL-17. Cell Rep 2023; 42:113443. [PMID: 37979175 DOI: 10.1016/j.celrep.2023.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
Our previous work has established a knockin (KI) pig model of Huntington's disease (HD) that can replicate the typical pathological features of HD, including selective striatal neuronal loss, reactive gliosis, and axonal degeneration. However, HD KI mice exhibit milder neuropathological phenotypes and lack overt neurodegeneration. By performing RNA sequencing to compare the gene expression profiles between HD KI pigs and mice, we find that genes related to interleukin-17 (IL-17) signaling are upregulated in the HD pig brains compared to the mouse brains. Delivery of IL-17 into the brain striatum of HD KI mice causes greater reactive gliosis and synaptic deficiency compared to HD KI mice that received PBS. These findings suggest that the upregulation of genes related to IL-17 signaling in HD pig brains contributes to severe glial pathology in HD and identify this as a potential therapeutic target for treating HD.
Collapse
Affiliation(s)
- Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Kaili Ou
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Huichun Tong
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yiran Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jing Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Jun Zeng
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510260, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Gruper Y, Wolff ASB, Glanz L, Spoutil F, Marthinussen MC, Osickova A, Herzig Y, Goldfarb Y, Aranaz-Novaliches G, Dobeš J, Kadouri N, Ben-Nun O, Binyamin A, Lavi B, Givony T, Khalaila R, Gome T, Wald T, Mrazkova B, Sochen C, Besnard M, Ben-Dor S, Feldmesser E, Orlova EM, Hegedűs C, Lampé I, Papp T, Felszeghy S, Sedlacek R, Davidovich E, Tal N, Shouval DS, Shamir R, Guillonneau C, Szondy Z, Lundin KEA, Osicka R, Prochazka J, Husebye ES, Abramson J. Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease. Nature 2023; 624:653-662. [PMID: 37993717 DOI: 10.1038/s41586-023-06776-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.
Collapse
Affiliation(s)
- Yael Gruper
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anette S B Wolff
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Liad Glanz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Mihaela Cuida Marthinussen
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway/Vestland, Bergen, Norway
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yonatan Herzig
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Goretti Aranaz-Novaliches
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Jan Dobeš
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Binyamin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Lavi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomáš Wald
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Mrazkova
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Carmel Sochen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marine Besnard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Elisaveta M Orlova
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow, Russian Federation
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - István Lampé
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Papp
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Felszeghy
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Esti Davidovich
- Department of Pediatric Dentistry, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Noa Tal
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S Shouval
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raanan Shamir
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Zsuzsa Szondy
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Knut E A Lundin
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Eystein S Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Raso F, Liu S, Simpson MJ, Barton GM, Mayer CT, Acharya M, Muppidi JR, Marshak-Rothstein A, Reboldi A. Antigen receptor signaling and cell death resistance controls intestinal humoral response zonation. Immunity 2023; 56:2373-2387.e8. [PMID: 37714151 PMCID: PMC10591993 DOI: 10.1016/j.immuni.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.
Collapse
Affiliation(s)
- Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shuozhi Liu
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Mikala J Simpson
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mridu Acharya
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Bouffi C, Wikenheiser-Brokamp KA, Chaturvedi P, Sundaram N, Goddard GR, Wunderlich M, Brown NE, Staab JF, Latanich R, Zachos NC, Holloway EM, Mahe MM, Poling HM, Vales S, Fisher GW, Spence JR, Mulloy JC, Zorn AM, Wells JM, Helmrath MA. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat Biotechnol 2023; 41:824-831. [PMID: 36702898 PMCID: PMC10264243 DOI: 10.1038/s41587-022-01558-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/07/2022] [Indexed: 01/27/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells provide a valuable model for investigating human intestinal organogenesis and physiology, but they lack the immune components required to fully recapitulate the complexity of human intestinal biology and diseases. To address this issue and to begin to decipher human intestinal-immune crosstalk during development, we generated HIOs containing immune cells by transplanting HIOs under the kidney capsule of mice with a humanized immune system. We found that human immune cells temporally migrate to the mucosa and form cellular aggregates that resemble human intestinal lymphoid follicles. Moreover, after microbial exposure, epithelial microfold cells are increased in number, leading to immune cell activation determined by the secretion of IgA antibodies in the HIO lumen. This in vivo HIO system with human immune cells provides a framework for future studies on infection- or allergen-driven intestinal diseases.
Collapse
Affiliation(s)
- Carine Bouffi
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gillian R Goddard
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicole E Brown
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Janet F Staab
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Latanich
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily M Holloway
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Maxime M Mahe
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Holly M Poling
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Simon Vales
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Garrett W Fisher
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - James C Mulloy
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
15
|
Son YL, Pak K, Muradagha N, Heo KW, Leichtle A, Kurabi A. Resolution of otitis media in a humanized mouse model. Front Genet 2022; 13:958540. [PMID: 36437913 PMCID: PMC9682244 DOI: 10.3389/fgene.2022.958540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/20/2022] [Indexed: 12/19/2023] Open
Abstract
Otitis media (OM) is one of the largest public health problems of children and has devastating impacts in developing countries. The substantial medical and human costs involved have led to research to understand the disease and improve treatment. Animal models of OM have yielded critical information about the immune, inflammatory and genetic mechanisms of OM. However, it is important to link animal studies to human immune and inflammatory responses. In recent years, "humanized" mice have become a valuable tool to study the human immune system in an animal model. Here we describe the first use of humanized mice to study OM. We demonstrate that humanized mice with a sufficient degree of engraftment recapitulate a normal middle ear (ME) inflammatory response to bacterial infection, including the recruitment of human immune cells, and exhibit normal recovery. Moreover, these animals exhibit regulated expression of human-specific immune and inflammatory genes in the ME. In contrast, mice with insufficient engraftment fail to resolve OM. This model has many potential uses in OM research, including using hematopoietic stem cells from patients with differing degrees of OM susceptibility, to understand the role of human immune responses in proneness to this common childhood disease.
Collapse
Affiliation(s)
- Ye Lin Son
- Department of Surgery/Otolaryngology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kwang Pak
- Department of Surgery/Otolaryngology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Nada Muradagha
- Department of Surgery/Otolaryngology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kyung Wook Heo
- Department of Otorhinolaryngology, Head and Neck Surgery, Inje University Busan Paik Hospital, Busan, Korea
| | - Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
16
|
Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022; 39:2635-2671. [PMID: 35028802 PMCID: PMC8757927 DOI: 10.1007/s11095-021-03143-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are cell-derived components composed of proteins, lipid, genetic information, cytokines, and growth factors. They play a vital role in immune modulation, cell-cell communication, and response to inflammation. Immune modulation has downstream effects on the regeneration of damaged tissue, promoting survival and repair of damaged resident cells, and promoting the tumor microenvironment via growth factors, antigens, and signaling molecules. On top of carrying biological messengers like mRNAs, miRNAs, fragmented DNA, disease antigens, and proteins, exosomes modulate internal cell environments that promote downstream cell signaling pathways to facilitate different disease progression and induce anti-tumoral effects. In this review, we have summarized how vaccines modulate our immune response in the context of cancer and infectious diseases and the potential of exosomes as vaccine delivery vehicles. Both pre-clinical and clinical studies show that exosomes play a decisive role in processes like angiogenesis, prognosis, tumor growth metastasis, stromal cell activation, intercellular communication, maintaining cellular and systematic homeostasis, and antigen-specific T- and B cell responses. This critical review summarizes the advancement of exosome based vaccine development and delivery, and this comprehensive review can be used as a valuable reference for the broader delivery science community.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
17
|
Zheng Y, Sefik E, Astle J, Karatepe K, Öz HH, Solis AG, Jackson R, Luo HR, Bruscia EM, Halene S, Shan L, Flavell RA. Human neutrophil development and functionality are enabled in a humanized mouse model. Proc Natl Acad Sci U S A 2022; 119:e2121077119. [PMID: 36269862 PMCID: PMC9618085 DOI: 10.1073/pnas.2121077119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/09/2022] [Indexed: 02/03/2023] Open
Abstract
Mice with a functional human immune system serve as an invaluable tool to study the development and function of the human immune system in vivo. A major technological limitation of all current humanized mouse models is the lack of mature and functional human neutrophils in circulation and tissues. To overcome this, we generated a humanized mouse model named MISTRGGR, in which the mouse granulocyte colony-stimulating factor (G-CSF) was replaced with human G-CSF and the mouse G-CSF receptor gene was deleted in existing MISTRG mice. By targeting the G-CSF cytokine-receptor axis, we dramatically improved the reconstitution of mature circulating and tissue-infiltrating human neutrophils in MISTRGGR mice. Moreover, these functional human neutrophils in MISTRGGR are recruited upon inflammatory and infectious challenges and help reduce bacterial burden. MISTRGGR mice represent a unique mouse model that finally permits the study of human neutrophils in health and disease.
Collapse
Affiliation(s)
- Yunjiang Zheng
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - Esen Sefik
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - John Astle
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kutay Karatepe
- Department of Cell Biology, Yale University, New Haven, CT 06520
- Yale Stem Cell Center, Yale University, New Haven, CT 06520
| | - Hasan H. Öz
- Section of Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Angel G. Solis
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruaidhrí Jackson
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Hongbo R. Luo
- Department of Laboratory Medicine, The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Emanuela M. Bruscia
- Section of Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Liang Shan
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Richard A. Flavell
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Howard Hughes Medical Institute (HHMI), New Haven, CT 06520
| |
Collapse
|
18
|
Li C, Zhang X. Current in Vitro and Animal Models for Understanding Foods: Human Gut-Microbiota Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12733-12745. [PMID: 36166347 DOI: 10.1021/acs.jafc.2c04238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The food-gut microbiota interaction is an important regulator of human health. Numerous in vitro and animal models have thus been developed in order to simulate the specific food-gut microbiota and/or host-gut microbiota interactions in the human colon. This review summarizes the design principles of each model and discusses their advantages and weaknesses in terms of studying food-gut microbiota interactions. In vitro fermentation models appear to be reliable methods to investigate various aspects involved in the food-gut microbiota interactions in humans. However, many physiological perspectives lack appreciation of these models, such as peristaltic movement, biochemical conditions, and gastrointestinal anatomy. Animal models provide more physiological relevance to human trials compared to in vitro models. However, they may have gastrointestinal tract aspects that are distinct from human subjects. This review contains important information that can help the development of more advanced models to study food-gut microbiota interactions in humans.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
19
|
Kumar T, Dutta RR, Velagala VR, Ghosh B, Mudey A. Analyzing the Complicated Connection Between Intestinal Microbiota and Cardiovascular Diseases. Cureus 2022; 14:e28165. [PMID: 36148181 PMCID: PMC9482761 DOI: 10.7759/cureus.28165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Relentless human curiosity to understand the basis of every aspect of medical science has led humanity to unlock the deepest secrets about the physiology of human existence and, in the process, has reached milestones that a century ago could only be imagined. Recent ground-breaking breakthroughs have helped scientists and physicians all over the world to update the scientific basis of diseases and hence further improve treatment outcomes. According to recent studies, scientists have found a link between intestinal flora and the pathogenesis of diseases, including cardiovascular diseases. Any change in the typical habitat of gut microbiota has been shown to result in the culmination of various metabolic and cardiac diseases. Therefore, gut microbiota can be credited for influencing the course of the development of a disease. Any change in the composition and function of bacterial species living in the gut can result in both beneficial and harmful effects on the body. Gut microbiota achieves this role by numerous mechanisms. Generations of various metabolites like TMAO (trimethylamine N-oxide), increased receptibility of various bacterial antigens, and disruption of the enzyme action in various metabolic pathways like the bile acids pathway may result in the development of metabolic as well as cardiovascular diseases. Even if they may not be the only etiological factor in the pathogenesis of a disease, they may very well serve as a contributing factor in worsening the outcome of the condition. Studies have shown that they actively play a role in the progression of cardiovascular diseases like atherosclerotic plaque formation and rising blood pressure. The focus of this review article is to establish a relation between various cardiovascular diseases and gut microbiota. This could prove beneficial for clinicians, health care providers, and scientists to develop novel therapeutic algorithms while treating cardiac patients.
Collapse
|
20
|
Epithelial and Neutrophil Interactions and Coordinated Response to Shigella in a Human Intestinal Enteroid-Neutrophil Coculture Model. mBio 2022; 13:e0094422. [PMID: 35652591 PMCID: PMC9239269 DOI: 10.1128/mbio.00944-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are recruited to the gastrointestinal mucosa in response to inflammation, injury, and infection. Here, we report the development and the characterization of an ex vivo tissue coculture model consisting of human primary intestinal enteroid monolayers and PMN, and a mechanistic interrogation of PMN-epithelial cell interaction and response to Shigella, a primary cause of childhood dysentery. Cellular adaptation and tissue integration, barrier function, PMN phenotypic and functional attributes, and innate immune responses were examined. PMN within the enteroid monolayers acquired a distinct activated/migratory phenotype that was influenced by direct epithelial cell contact as well as by molecular signals. Seeded on the basal side of the intestinal monolayer, PMN were intercalated within the epithelial cells and moved paracellularly toward the apical side. Cocultured PMN also increased basal secretion of interleukin 8 (IL-8). Shigella added to the apical surface of the monolayers evoked additional PMN phenotypic adaptations, including increased expression of cell surface markers associated with chemotaxis and cell degranulation (CD47, CD66b, and CD88). Apical Shigella infection triggered rapid transmigration of PMN to the luminal side, neutrophil extracellular trap (NET) formation, and bacterial phagocytosis and killing. Shigella infection modulated cytokine production in the coculture; apical monocyte chemoattractant protein (MCP-1), tumor necrosis factor alpha (TNF-α), and basolateral IL-8 production were downregulated, while basolateral IL-6 secretion was increased. We demonstrated, for the first time, PMN phenotypic adaptation and mobilization and coordinated epithelial cell-PMN innate response upon Shigella infection in the human intestinal environment. The enteroid monolayer-PMN coculture represents a technical innovation for mechanistic interrogation of gastrointestinal physiology, host-microbe interaction, innate immunity, and evaluation of preventive/therapeutic tools.
Collapse
|
21
|
León ED, Francino MP. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front Microbiol 2022; 13:880484. [PMID: 35722300 PMCID: PMC9203039 DOI: 10.3389/fmicb.2022.880484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Collapse
Affiliation(s)
- E Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - M Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
22
|
Advantages and Challenges of Differential Immune Cell Count Determination in Blood and Milk for Monitoring the Health and Well-Being of Dairy Cows. Vet Sci 2022; 9:vetsci9060255. [PMID: 35737307 PMCID: PMC9229168 DOI: 10.3390/vetsci9060255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
A key challenge of the 21st century will be to provide the growing world population with a sustainable and secure supply of food. Consequently, the dairy farming’s primary task is to lower milk losses and other inefficiencies associated with diseased cows. Moreover, a shift from curative to preventive health management would be desirable for mastitis and a wide variety of other infectious and non-infectious cattle diseases, some of which are known to have profound negative effects on the performance and well-being of cows. Differential cell counting (DCC), a procedure that aims to determine the proportions of different somatic cell types in raw milk samples, has not only the potential to optimize mastitis diagnostics, but it could furthermore serve as a diagnostic tool for monitoring the general and overall health status of dairy cows. Based on a broad search of the literature, the practical utility of various types of DCC is summarized and discussed in this review. Since it might be of advantage to interpret DCC with the aid of data from studies in humans, differences between the immune systems of humans and dairy cattle, with a special focus on surface marker expression profiles and γδ (gamma delta) T-cell characteristics, are also described.
Collapse
|
23
|
Storey J, Gobbetti T, Olzinski A, Berridge BR. A Structured Approach to Optimizing Animal Model Selection for Human Translation: The Animal Model Quality Assessment. ILAR J 2022; 62:66-76. [PMID: 35421235 DOI: 10.1093/ilar/ilac004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 12/09/2022] Open
Abstract
Animal studies in pharmaceutical drug discovery are common in preclinical research for compound evaluation before progression into human clinical trials. However, high rates of drug development attrition have prompted concerns regarding animal models and their predictive translatability to the clinic. To improve the characterization and evaluation of animal models for their translational relevance, the authors developed a tool to transparently reflect key features of a model that may be considered in both the application of the model but also the likelihood of successful translation of the outcomes to human patients. In this publication, we describe the rationale for the development of the Animal Model Quality Assessment tool, the questions used for the animal model assessment, and a high-level scoring system for the purpose of defining predictive translatability. Finally, we provide an example of a completed Animal Model Quality Assessment for the adoptive T-cell transfer model of colitis as a mouse model to mimic inflammatory bowel disease in humans.
Collapse
Affiliation(s)
- Joanne Storey
- Animal Research Strategy Group, Office of Animal Welfare, Ethics, Strategy and Risk, GlaxoSmithKline, Stevenage, UK
| | - Thomas Gobbetti
- Experimental Quantitative Pharmacology Group (Immunology Research Unit), GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Alan Olzinski
- Animal Research Strategy Group, Office of Animal Welfare, Ethics, Strategy and Risk, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Brian R Berridge
- National Toxicology Program Division, NIH NIEHS Research Triangle Park, NC, USA
| |
Collapse
|
24
|
Hartwig O, Loretz B, Nougarede A, Jary D, Sulpice E, Gidrol X, Navarro F, Lehr CM. Leaky gut model of the human intestinal mucosa for testing siRNA-based nanomedicine targeting JAK1. J Control Release 2022; 345:646-660. [PMID: 35339579 PMCID: PMC9168449 DOI: 10.1016/j.jconrel.2022.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Complex in vitro models of human immune cells and intestinal mucosa may have a translation-assisting role in the assessment of anti-inflammatory compounds. Chronic inflammation of the gastrointestinal tract is a hallmark of inflammatory bowel diseases (IBD). In both IBD entities, Crohn's disease and ulcerative colitis, impaired immune cell activation and dysfunctional epithelial barrier are the common pathophysiology. Current therapeutic approaches are targeting single immune modulator molecules to stop disease progression and reduce adverse effects. Such molecular targets can be difficult to assess in experimental animal models of colitis, due to the disease complexity and species differences. Previously, a co-culture model based on human epithelial cells and monocytes arranged in a physiological microenvironment was used to mimic inflamed mucosa for toxicological and permeability studies. The leaky gut model described here, a co-culture of Caco-2, THP-1 and MUTZ-3 cells, was used to mimic IBD-related pathophysiology and for combined investigations of permeability and target engagement of two Janus kinase (JAK) inhibitors, tofacitinib (TOFA) and a JAK1-targeting siRNA nanomedicine. The co-culture just before reaching confluency of the epithelium was used to mimic the compromised intestinal barrier. Delivery efficacy and target engagement against JAK1 was quantified via downstream analysis of STAT1 protein phosphorylation after IFN-γ stimulation. Compared to a tight barrier, the leaky gut model showed 92 ± 5% confluence, a barrier function below 200 Ω*cm2, and enhanced immune response to bacteria-derived lipopolysaccharides. By confocal microscopy we observed an increased accumulation of siJAK1-nanoparticles within the sub-confluent regions leading to uptake into immune cells near the epithelium. A concentration-dependent downregulation of JAK/STAT pathway was observed for siJAK1-nanoparticles (10 ± 12% to 16 ± 12%), whereas TOFA inhibition was 86 ± 2%, compared to untreated cells. By mimicking the status of severely damaged epithelium, like in IBD, the leaky gut model holds promise as a human in vitro system to evaluate the efficacy of anti-inflammatory drugs and nanomedicines.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.
| | - Adrien Nougarede
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Dorothée Jary
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Eric Sulpice
- University Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000 Grenoble, France
| | - Xavier Gidrol
- University Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000 Grenoble, France
| | - Fabrice Navarro
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Abstract
Nonhuman primates are critically important animal models in which to study complex human diseases, understand biological functions, and address the safety of new diagnostics and therapies proposed for human use. They have genetic, physiologic, immunologic, and developmental similarities when compared to humans and therefore provide important preclinical models of human health and disease. This review highlights select research areas that demonstrate the importance of nonhuman primates in translational research. These include pregnancy and developmental disorders, infectious diseases, gene therapy, somatic cell genome editing, and applications of in vivo imaging. The power of the immune system and our increasing understanding of the role it plays in acute and chronic illnesses are being leveraged to produce new treatments for a range of medical conditions. Given the importance of the human immune system in health and disease, detailed study of the immune system of nonhuman primates is essential to advance preclinical translational research. The need for nonhuman primates continues to remain a high priority, which has been acutely evident during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Nonhuman primates will continue to address key questions and provide predictive models to identify the safety and efficiency of new diagnostics and therapies for human use across the lifespan.
Collapse
Affiliation(s)
- Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, California, USA;
- California National Primate Research Center, University of California, Davis, California, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California, USA;
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, California, USA
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
26
|
Arciniega-Martínez IM, Romero-Aguilar KS, Farfán-García ED, García-Machorro J, Reséndiz-Albor AA, Soriano-Ursúa MA. Diversity of effects induced by boron-containing compounds on immune response cells and on antibodies in basal state. J Trace Elem Med Biol 2022; 69:126901. [PMID: 34801850 DOI: 10.1016/j.jtemb.2021.126901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been reported that boron induces changes in the immune response, including in inflammatory processes. Recently, the effect of boric acid has been documented on the differentiation of lymphocyte clusters in mice and rats. However, the differences among boron-containing compounds (BCC) have been poorly explored. METHODS In this study, we analyzed the effects after oral administration of boric acid (BOR), methylboronic (MET), 3-thyenylboronic (3TB), 4-hydroxymethyl-phenylboronic (4MP) and 4-methanesulfonyl-phenylboronic (4SP) acids on the populations of lymphocytes from spleen and Peyer's patch (PP) as well as on antibodies. Groups of six male BALB/c were orally treated with 4.6 mg/kg of body weight with BOR, MET, 3TB, 4MP, and 4SP/daily for 10 days or vehicle (VEH) as a control group. After euthanasia, the spleen and small intestine were dissected. We conducted flow cytometry assays to assess B, CD3+ T, CD4+ T, and CD8+ T cells. Levels of IgG and IgM in serum, and IgA in intestinal fluid samples were analyzed by enzyme immunoassay. RESULTS In particular, we observed the effects of the administration of boronic acids on the number of lymphocytes; these changes were more notable in spleen than in PP. We found different profiles for each boron-containing compound, that is BOR induced an increase in the percentage of CD8+ T and CD19+/IgA+ cells in spleen, but a decrease in CD8+ T and B220+/CD19+ cells in PP. Meanwhile MET induced a decrease of CD4+ T in spleen, but induced an increase of CD4+ T cells and a decrease in the number of CD8+ T cells in PP. Boronic acids with an aromatic ring moiety induced changes in serum immunoglobulins levels, while 3TB acid induced a notable increase in S-IgA. CONCLUSIONS Effects in lymphocyte populations and antibodies are different for each tested compound. These results highlight the establishment of the necessary structure-activity relationship for BCC as immunomodulatory drugs. This is relevant in the biomedical field due to their attractiveness for selecting compounds to develop therapeutic tools.
Collapse
Affiliation(s)
- Ivonne M Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM) del Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Karla S Romero-Aguilar
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, ESM del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Aldo A Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM) del Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico.
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico.
| |
Collapse
|
27
|
Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, Bandyopadhyay AS, Wright PF. Mucosal immunity to poliovirus. Mucosal Immunol 2022; 15:1-9. [PMID: 34239028 PMCID: PMC8732262 DOI: 10.1038/s41385-021-00428-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
A cornerstone of the global initiative to eradicate polio is the widespread use of live and inactivated poliovirus vaccines in extensive public health campaigns designed to prevent the development of paralytic disease and interrupt transmission of the virus. Central to these efforts is the goal of inducing mucosal immunity able to limit virus replication in the intestine. Recent clinical trials have evaluated new combined regimens of poliovirus vaccines, and demonstrated clear differences in their ability to restrict virus shedding in stool after oral challenge with live virus. Analyses of mucosal immunity accompanying these trials support a critical role for enteric neutralizing IgA in limiting the magnitude and duration of virus shedding. This review summarizes key findings in vaccine-induced intestinal immunity to poliovirus in infants, older children, and adults. The impact of immunization on development and maintenance of protective immunity to poliovirus and the implications for global eradication are discussed.
Collapse
Affiliation(s)
- Ruth I Connor
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Peter F Wright
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
28
|
Stepanovich G, Donn SM. Recurrent late-onset neonatal sepsis traced to breast milk: A case report. J Neonatal Perinatal Med 2021; 15:659-662. [PMID: 34806623 DOI: 10.3233/npm-210851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Breast milk feeding is an important late-onset sepsis reduction strategy in the Neonatal Intensive Care Unit (NICU). However, multiple studies have reported transfer of bacteria-contaminated breast milk to infants. We describe a case of culture-positive breast milk resulting in persistent Enterococcus bacteremia in an infant. Beyond the development of an infant's innate and specific immunity as well as colonization of the gastrointestinal (GI) tract with commensal organisms, the risk of bacterial translocation from the GI tract into the bloodstream is shaped and modified by maternal health, birth history, and an infant's NICU course. While freezing and/or pasteurizing breast milk reduces or eliminates its bacterial load, it also diminishes its immunologic and nutritional benefits.
Collapse
Affiliation(s)
- G Stepanovich
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, C.S. Mott Children's Hospital, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - S M Donn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, C.S. Mott Children's Hospital, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
30
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
31
|
Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol 2021; 14:793-802. [PMID: 33753873 DOI: 10.1038/s41385-021-00389-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Gut-associated lymphoid tissues (GALT) are the key antigen sampling and adaptive immune inductive sites within the intestinal wall. Human GALT includes the multi-follicular Peyer's patches of the ileum, the vermiform appendix, and the numerous isolated lymphoid follicles (ILF) which are distributed along the length of the intestine. Our current understanding of GALT diversity and function derives primarily from studies in mice, and the relevance of many of these findings to human GALT remains unclear. Here we review our current understanding of human GALT diversity, structure, and composition as well as their potential for regulating intestinal immune responses during homeostasis and inflammatory bowel disease (IBD). Finally, we outline some key remaining questions regarding human GALT, the answers to which will advance our understanding of intestinal immune responses and provide potential opportunities to improve the treatment of intestinal diseases.
Collapse
|
32
|
Bayer G, Ganobis CM, Allen-Vercoe E, Philpott DJ. Defined gut microbial communities: promising tools to understand and combat disease. Microbes Infect 2021; 23:104816. [PMID: 33785422 DOI: 10.1016/j.micinf.2021.104816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Defined gut microbial communities are emerging tools that allow detailed studies of microbial ecosystems and their interactions with the host. In this article, we review strategies underlying the design of defined consortia and summarize the efforts to introduce simplified communities into in vitro and in vivo models. We conclude by highlighting the potential of defined microbial ecosystems as effective modulation strategies for health benefits.
Collapse
Affiliation(s)
- Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
33
|
Biram A, Winter E, Denton AE, Zaretsky I, Dassa B, Bemark M, Linterman MA, Yaari G, Shulman Z. B Cell Diversification Is Uncoupled from SAP-Mediated Selection Forces in Chronic Germinal Centers within Peyer's Patches. Cell Rep 2021; 30:1910-1922.e5. [PMID: 32049020 PMCID: PMC7016508 DOI: 10.1016/j.celrep.2020.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/24/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Antibodies secreted within the intestinal tract provide protection from the invasion of microbes into the host tissues. Germinal center (GC) formation in lymph nodes and spleen strictly requires SLAM-associated protein (SAP)-mediated T cell functions; however, it is not known whether this mechanism plays a similar role in mucosal-associated lymphoid tissues. Here, we find that in Peyer’s patches (PPs), SAP-mediated T cell help is required for promoting B cell selection in GCs, but not for clonal diversification. PPs of SAP-deficient mice host chronic GCs that are absent in T cell-deficient mice. GC B cells in SAP-deficient mice express AID and Bcl6 and generate plasma cells in proportion to the GC size. Single-cell IgA sequencing analysis reveals that these mice host few diversified clones that were subjected to mild selection forces. These findings demonstrate that T cell-derived help to B cells in PPs includes SAP-dependent and SAP-independent functions. Chronic germinal centers in Peyer’s patches are formed in SAP-deficient mice SAP-independent germinal centers arise in response to influenza infection Few highly diversified clones dominate the SAP-independent germinal centers Germinal center B cells in SAP-deficient mice are subjected to mild selection forces
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eitan Winter
- Faculty of Engineering, Bar Ilan University, Ramat Gan 52900, Israel
| | - Alice E Denton
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge CB22 3AT, UK
| | - Irina Zaretsky
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bareket Dassa
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge CB22 3AT, UK
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
34
|
Cellular and molecular bases of refractory celiac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 358:207-240. [PMID: 33707055 DOI: 10.1016/bs.ircmb.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Refractory celiac disease (RCD) encompasses biologically heterogeneous disorders that develop in a small proportion (0.3%) of individuals with celiac disease that are associated with high morbidity. Two broad categories are currently recognized, type I (RCD I) and type II (RCD II), based on immunophenotypic and molecular features of the intraepithelial lymphocytes (IELs). RCD I is characterized by a polyclonal expansion of IELs displaying a normal immunophenotype, while RCD II represents a clonal proliferation of immunophenotypically "aberrant" IELs, and is considered a low-grade lymphoproliferative disorder. The pathogenesis of RCD I has not been clarified, but limited studies suggest multifactorial etiology. On the other hand, recent immunologic, molecular and immunophenotypic analyses have proposed lineage-negative innate IELs to be the cell of origin of a proportion of RCD II cases. Furthermore, sequencing studies have identified frequent, recurrent, activating mutations in members of the JAK-STAT pathway in RCD II. This finding, in conjunction with prior in vitro experimental observations, suggests roles of deregulated cytokine signaling in disease pathogenesis. In this review, we describe current understanding of environmental, immune and genetic factors associated with the development of RCD and briefly discuss diagnostic and therapeutic considerations.
Collapse
|
35
|
da Rocha GHO, de Paula-Silva M, Broering MF, Scharf PRDS, Matsuyama LSAS, Maria-Engler SS, Farsky SHP. Pioglitazone-Mediated Attenuation of Experimental Colitis Relies on Cleaving of Annexin A1 Released by Macrophages. Front Pharmacol 2021; 11:591561. [PMID: 33519451 PMCID: PMC7845455 DOI: 10.3389/fphar.2020.591561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory bowel diseases (IBDs) which burden health systems worldwide; available pharmacological therapies are limited and cost-intensive. Use of peroxisome proliferator activated-receptor γ (PPARγ) ligands for IBD treatment, while promising, lacks solid evidences to ensure its efficacy. Annexin A1 (AnxA1), a glucocorticoid-modulated anti-inflammatory protein, plays a key role on IBD control and is a potential biomarker of IBD progression. We here investigated whether effects of pioglitazone, a PPARγ ligand, rely on AnxA1 actions to modulate IBD inflammation. Experimental colitis was evoked by 2% dextran sodium sulfate (DSS) in AnxA1 knockout (AnxA1-/-) or wild type (WT) C57BL/6 mice. Clinical and histological parameters were more severe for AnxA-/- than WT mice, and 10 mg/kg pioglitazone treatment attenuated disease parameters in WT mice only. AnxA1 expression was increased in tissue sections of diseased WT mice, correlating positively with presence of CD68+ macrophages. Metalloproteinase-9 (MMP-9) and inactive 33 kDa AnxA1 levels were increased in the colon of diseased WT mice, which were reduced by pioglitazone treatment. Cytokine secretion, reactive oxygen species generation and MMP-9 expression caused by lipopolysaccharide (LPS) treatment in AnxA1-expressing RAW 264.7 macrophages were reduced by pioglitazone treatment, effects not detected in AnxA1 knockdown macrophages. LPS-mediated increase of AnxA1 cleaving in RAW 264.7 macrophages was also attenuated by pioglitazone treatment. Finally, pioglitazone treatment increased extracellular signal-regulated kinase (ERK) phosphorylation in AnxA1-expressing RAW 264.7 macrophages, but not in AnxA1-knockdown macrophages. Thus, our data highlight AnxA1 as a crucial factor for the therapeutic actions of pioglitazone on IBDs.
Collapse
Affiliation(s)
| | - Marina de Paula-Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pablo Rhasan Dos Santos Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Golizeh M, Winter K, Roussel L, Landekic M, Langelier M, Loo VG, Ndao M, Vinh DC. Fecal host biomarkers predicting severity of Clostridioides difficile infection. JCI Insight 2021; 6:142976. [PMID: 33232301 PMCID: PMC7821589 DOI: 10.1172/jci.insight.142976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile is a major cause of health care-associated diarrhea. Severity ranges from mild to life-threatening, but this variability remains poorly understood. Microbiologic diagnosis of C. difficile infection (CDI) is straightforward but offers little insight into the patient's prognosis or into pathophysiologic determinants of clinical trajectory. The aim of this study was to discover host-derived, CDI-specific fecal biomarkers involved in disease severity. Subjects without and with CDI diarrhea were recruited. CDI severity was based on Infectious Diseases Society of America/Society for Healthcare Epidemiology of America criteria. We developed a liquid chromatography tandem mass spectrometry approach to identify host-derived protein biomarkers from stool and applied it to diagnostic samples for cohort-wise comparison (CDI-negative vs. nonsevere CDI vs. severe CDI). Selected biomarkers were orthogonally confirmed and subsequently verified in a CDI mouse model. We identified a protein signature from stool, consisting of alpha-2-macroglobulin (A2MG), matrix metalloproteinase-7 (MMP-7), and alpha-1-antitrypsin (A1AT), that not only discriminates CDI-positive samples from non-CDI ones but also is potentially associated with disease severity. In the mouse model, this signature with the murine homologs of the corresponding proteins was also identified. A2MG, MMP-7, and A1AT serve as biomarkers in patients with CDI and define novel components of the host response that may determine disease severity.
Collapse
Affiliation(s)
- Makan Golizeh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| | - Kaitlin Winter
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and
| | - Lucie Roussel
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada
| | - Marija Landekic
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada
| | - Mélanie Langelier
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada
| | - Vivian G Loo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and.,Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebéc, Canada.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada.,Division of Medical Microbiology, Department of Laboratory Medicine, MUHC, Montréal, Québec, Canada
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and.,Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebéc, Canada
| | - Donald C Vinh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada.,Department of Microbiology & Immunology and.,Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebéc, Canada.,Host-directed Immunotherapy to Fight Infectious disease (HI-FI) Program, Montréal, Québec, Canada.,Division of Medical Microbiology, Department of Laboratory Medicine, MUHC, Montréal, Québec, Canada
| |
Collapse
|
37
|
Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int J Mol Sci 2020; 21:ijms21239254. [PMID: 33291586 PMCID: PMC7731431 DOI: 10.3390/ijms21239254] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Secretory IgA (SIgA) is the dominant antibody class in mucosal secretions. The majority of plasma cells producing IgA are located within mucosal membranes lining the intestines. SIgA protects against the adhesion of pathogens and their penetration into the intestinal barrier. Moreover, SIgA regulates gut microbiota composition and provides intestinal homeostasis. In this review, we present mechanisms of SIgA generation: T cell-dependent and -independent; in different non-organized and organized lymphoid structures in intestinal lamina propria (i.e., Peyer’s patches and isolated lymphoid follicles). We also summarize recent advances in understanding of SIgA functions in intestinal mucosal secretions with focus on its role in regulating gut microbiota composition and generation of tolerogenic responses toward its members.
Collapse
Affiliation(s)
- Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
- Correspondence: (B.P.); (M.S.)
| | - Katarzyna Tomela
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland; (K.T.); (A.M.)
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland; (K.T.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznań, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
- Correspondence: (B.P.); (M.S.)
| |
Collapse
|
38
|
Roh TT, Chen Y, Rudolph S, Gee M, Kaplan DL. InVitro Models of Intestine Innate Immunity. Trends Biotechnol 2020; 39:274-285. [PMID: 32854949 DOI: 10.1016/j.tibtech.2020.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Animal models have delivered critical insights into mechanisms underlying the intestinal innate immune system; however, inherent differences exist between human and animal systems. To further understand the intestine innate immune system, there is a growing need for in vitro tissue model systems using human cells. A critical feature of in vitro cell and tissue models is the subepithelial environment, which contains additional cell types and includes 2D, microfluidic, organoid, and 3D tissue models. Where mouse models for the study of intestinal innate immune systems fall short, developments from in vitro models continue to grow in importance to aid efforts to understand this system in the context of disease and potential treatments.
Collapse
Affiliation(s)
- Terrence T Roh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Michelle Gee
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
39
|
Hosic S, Lake W, Stas E, Koppes R, Breault DT, Murthy SK, Koppes AN. Cholinergic Activation of Primary Human Derived Intestinal Epithelium Does Not Ameliorate TNF-α Induced Injury. Cell Mol Bioeng 2020; 13:487-505. [PMID: 33184579 DOI: 10.1007/s12195-020-00633-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction The intestinal epithelium contains specialized cells including enterocytes, goblet, Paneth, enteroendocrine, and stem cells. Impaired barrier integrity in Inflammatory Bowel Disease is characterized by elevated levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α). Prior studies in immortalized lines such as Caco-2, without native epithelial heterogeneity, demonstrate the amelioration of TNF-α compromised barrier integrity via nicotinic (nAChR) or muscarinic (mAChR) acetylcholine receptor activation. Methods A tissue-engineered model of primary human small intestinal epithelium was derived from dissociated organoids cultured on collagen-coated Transwells. Differentiation was accomplished with serum-containing media and compared to Caco-2 and HT-29 regarding alkaline phosphatase expression, transepithelial electrical resistance (TEER), and IL-8 secretion. Inflammation was modeled via basal stimulation with TNF-α (25 ng/mL) with or without nicotine (nAChR agonist) or bethanechol (mAChR agonist). Apoptosis, density (cells/cm2), TEER, lucifer yellow permeability, 70 kDa dextran transport, cell morphology, and IL-8 secretion were characterized. Results Primary intestinal epithelium demonstrates significant functional differences compared to immortalized cells, including increased barrier integrity, IL-8 expression, mucus production, and the presence of absorptive and secretory cells. Exposure to TNF-α impaired barrier integrity, increased apoptosis, altered morphology, and increased secretion of IL-8. Stimulation of nAChR with nicotine did not ameliorate TNF-α induced permeability nor alter 70 kDa dextran transport. However, stimulation of mAChR with bethanechol decreased transport of 70 kDa dextran but did not ameliorate TNF-α induced paracellular permeability. Conclusions A primary model of intestinal inflammation was evaluated, demonstrating nAChR or mAChR activation does not have the same protective effects compared to immortalized epithelium. Inclusion of other native stromal support cells are underway.
Collapse
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Will Lake
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Eric Stas
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Ryan Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA.,Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA.,Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Shashi K Murthy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA.,Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| |
Collapse
|
40
|
Li J, Liu X, Ding J, Tang B, Bai X, Wang Y, Li S, Liu M, Wang X. Effect of Trichinella spp. or derived antigens on chemically induced inflammatory bowel disease (IBD) in mouse models: A systematic review and meta-analysis. Int Immunopharmacol 2020; 85:106646. [PMID: 32485355 DOI: 10.1016/j.intimp.2020.106646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Trichinella or derived antigens have been suggested to be potential therapeutic agents for inflammatory bowel disease (IBD). We aimed to conduct a systematic review and meta-analysis of the available literature to estimate the effect of Trichinella or derived antigens on chemically induced IBD. METHODS Studies were identified by searching the Cochrane Central Register of Controlled Trials, PubMed, Scopus, Web of Science, and Science Direct from inception to February 2020. We included articles written in English that investigated the effect of Trichinella infection and/or derived products in mouse models of IBD. Studies were pooled, and the combined standard mean difference (SMD) and 95% confidence interval (CI) were calculated using a random-effect or fixed-effect model. RESULTS Thirteen studies were eventually included in the meta-analysis. The results indicated significant differences in the disease activity index (DAI), myeloperoxidase (MPO) activity, macroscopic inflammation score, and microscopic inflammation score between the experimental group and the control group. The anti-inflammatory cytokines interleukin (IL)-4, transforming growth factor-beta (TGF-β), IL-10 and IL-13 were significantly increased in the experimental group compared with the control group, whereas the levels of the proinflammatory cytokines interferon (IFN)-γ, IL-6, TNF-α, and IL-17 were significantly decreased. The percentage of regulatory T (Treg) cells was also significantly increased, while the level of the M1 phenotypic macrophage marker iNOS was significantly decreased and the expression of the M2 phenotypic macrophage marker Arg-1 was significantly increased. CONCLUSION Trichinella infection or derived antigens is effective for the alleviation of IBD in mouse models.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China
| | - Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China
| | - Shicun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center on Foodborne Parasites in the Asian-Pacific Region, Changchun 130062, China.
| |
Collapse
|
41
|
Snyder J, Wang CM, Zhang AQ, Li Y, Luchan J, Hosic S, Koppes R, Carrier RL, Koppes A. Materials and Microenvironments for Engineering the Intestinal Epithelium. Ann Biomed Eng 2020; 48:1916-1940. [DOI: 10.1007/s10439-020-02470-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
42
|
Pabst O, Slack E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 2020; 13:12-21. [PMID: 31740744 PMCID: PMC6914667 DOI: 10.1038/s41385-019-0227-4] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 02/04/2023]
Abstract
Secretory IgA has long been a divisive molecule. Some immunologists point to the mild phenotype of IgA deficiency to justify ignoring it, while some consider its abundance and evolutionary history as grounds for its importance. Further, there is extensive and growing disagreement over the relative importance of affinity-matured, T cell-dependent IgA vs. "natural" and T cell-independent IgA in both microbiota and infection control. As with all good arguments, there is good data supporting different opinions. Here we revisit longstanding questions in IgA biology. We start the discussion from the question of intestinal IgA antigen specificity and critical definitions regarding IgA induction, specificity, and function. These definitions must then be tessellated with the cellular and molecular pathways shaping IgA responses, and the mechanisms by which IgA functions. On this basis we propose how IgA may contribute to the establishment and maintenance of beneficial interactions with the microbiota.
Collapse
Affiliation(s)
- Oliver Pabst
- 0000 0001 0728 696Xgrid.1957.aInstitute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Emma Slack
- 0000 0001 2156 2780grid.5801.cInstitute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Mikulak J, Oriolo F, Bruni E, Roberto A, Colombo FS, Villa A, Bosticardo M, Bortolomai I, Lo Presti E, Meraviglia S, Dieli F, Vetrano S, Danese S, Della Bella S, Carvello MM, Sacchi M, Cugini G, Colombo G, Klinger M, Spaggiari P, Roncalli M, Prinz I, Ravens S, di Lorenzo B, Marcenaro E, Silva-Santos B, Spinelli A, Mavilio D. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight 2019; 4:125884. [PMID: 31689241 DOI: 10.1172/jci.insight.125884] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
γδ T cells account for a large fraction of human intestinal intraepithelial lymphocytes (IELs) endowed with potent antitumor activities. However, little is known about their origin, phenotype, and clinical relevance in colorectal cancer (CRC). To determine γδ IEL gut specificity, homing, and functions, γδ T cells were purified from human healthy blood, lymph nodes, liver, skin, and intestine, either disease-free, affected by CRC, or generated from thymic precursors. The constitutive expression of NKp46 specifically identifies a subset of cytotoxic Vδ1 T cells representing the largest fraction of gut-resident IELs. The ontogeny and gut-tropism of NKp46+/Vδ1 IELs depends both on distinctive features of Vδ1 thymic precursors and gut-environmental factors. Either the constitutive presence of NKp46 on tissue-resident Vδ1 intestinal IELs or its induced expression on IL-2/IL-15-activated Vδ1 thymocytes are associated with antitumor functions. Higher frequencies of NKp46+/Vδ1 IELs in tumor-free specimens from CRC patients correlate with a lower risk of developing metastatic III/IV disease stages. Additionally, our in vitro settings reproducing CRC tumor microenvironment inhibited the expansion of NKp46+/Vδ1 cells from activated thymic precursors. These results parallel the very low frequencies of NKp46+/Vδ1 IELs able to infiltrate CRC, thus providing insights to either follow-up cancer progression or to develop adoptive cellular therapies.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Elena Bruni
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | | | - Federico S Colombo
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Ileana Bortolomai
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Lo Presti
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR) and.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR) and.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR) and.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Stefania Vetrano
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | | | | | | | | | - Marco Klinger
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Plastic Surgery Unit, and
| | - Paola Spaggiari
- Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Massimo Roncalli
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Colon and Rectal Surgery Unit.,Otorhinolaryngology Department.,Plastic Surgery Unit, and.,Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Biagio di Lorenzo
- Instituto de Medicina Molecular, Faculdade de Medicina, and.,Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Emanuela Marcenaro
- Department of Experimental Medicine and.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Colon and Rectal Surgery Unit
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
44
|
Janket SJ, Ackerson LK, Diamandis EP. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship? Clin Chem Lab Med 2019; 58:18-24. [PMID: 31527292 DOI: 10.1515/cclm-2019-0605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/06/2019] [Indexed: 01/05/2025]
Abstract
As the largest immune organ, human gut microbiome could influence the efficacy of immune checkpoint inhibitor therapy (ICI). However, identifying contributory microbes from over 35,000 species is virtually impossible and the identified microbes are not consistent among studies. The reason for the disparity may be that the microbes found in feces are markers of other factors that link immune response and microbiotas. Notably, gut microbiome is influenced by stool consistency, diet and other lifestyle factors. Therefore, the ICI and microbiotas relationship must be adjusted for potential confounders and analyzed longitudinally. Moreover, a recent study where 11 low-abundance commensal bacteria induced interferon-γ-producing CD8 T cells, challenges the validity of the abundance-oriented microbiotas investigations. This study also confirmed the hierarchy in immunogenic roles among microbiotas. Fecal transplantation trials in germ-free mice provided "the proof of principle" that germ-free mice reproduce the donor's microbiome and corresponding ICI efficacy. However, species-specific biological differences prevent direct extrapolation between the results in murine and human models. Fecal transplantation or supplementation with microbes found in ICI responders requires caution due to potential adverse events.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Translational Oral Medicine Section, Forsyth Institute, Cambridge, MA, USA
| | - Leland K Ackerson
- Department of Public Health, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
- Head of Clinical Biochemistry, Mount Sinai Hospital and University Health Network, Toronto, Canada
| |
Collapse
|
45
|
Kam JH, Weinrich TW, Shinhmar H, Powner MB, Roberts NW, Aboelnour A, Jeffery G. Fundamental differences in patterns of retinal ageing between primates and mice. Sci Rep 2019; 9:12574. [PMID: 31467395 PMCID: PMC6715671 DOI: 10.1038/s41598-019-49121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Photoreceptors have high metabolic demands and age rapidly, undermining visual function. We base our understanding mainly on ageing mice where elevated inflammation, extracellular deposition, including that of amyloid beta, and rod and cone photoreceptor loss occur, but cones are not lost in ageing primate although their function declines, revealing that primate and mouse age differently. We examine ageing primate retinae and show elevated stress but low inflammation. However, aged primates have a >70% reduction in adenosine triphosphate (ATP) and a decrease in cytochrome c oxidase. There is a shift in cone mitochondrial positioning and glycolytic activity increases. Bruch’s membrane thickens but unlike in mice, amyloid beta is absent. Hence, reduced ATP may explain cone functional decline in ageing but their retained presence offers the possibility of functional restoration if they can be fuelled appropriately to restore cellular function. This is important because as humans we largely depend on cone function to see and are rarely fully dark adapted. Presence of limited aged inflammation and amyloid beta deposition question some of the therapeutic approaches taken to resolve problems of retinal ageing in humans and the possible lack of success in clinical trials in macular degeneration that have targeted inflammatory agents.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- University College London, Institute of Ophthalmology, EC1V9EL, London, UK
| | - Tobias W Weinrich
- University College London, Institute of Ophthalmology, EC1V9EL, London, UK
| | - Harpreet Shinhmar
- University College London, Institute of Ophthalmology, EC1V9EL, London, UK
| | - Michael B Powner
- City, University of London, Centre of Applied Vision Research, EC1V0HB, London, UK
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Asmaa Aboelnour
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Glen Jeffery
- University College London, Institute of Ophthalmology, EC1V9EL, London, UK.
| |
Collapse
|
46
|
Fernández-Tomé S, Hernández-Ledesma B, Chaparro M, Indiano-Romacho P, Bernardo D, Gisbert JP. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Strandin T, Babayan SA, Forbes KM. Reviewing the effects of food provisioning on wildlife immunity. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531143 DOI: 10.1098/rstb.2017.0088] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While urban expansion increasingly encroaches on natural habitats, many wildlife species capitalize on anthropogenic food resources, which have the potential to both positively and negatively influence their responses to infection. Here we examine how food availability and key nutrients have been reported to shape innate and adaptive immunity in wildlife by drawing from field-based studies, as well as captive and food restriction studies with wildlife species. Examples of food provisioning and key nutrients enhancing immune function were seen across the three study type distinctions, as were cases of trace metals and pharmaceuticals impairing the immunity of wildlife species. More generally, food provisioning in field studies tended to increase innate and adaptive responses to certain immune challenges, whereas patterns were less clear in captive studies. Mild food restriction often enhanced, whereas severe food restriction frequently impaired immunity. However, to enable stronger conclusions we stress a need for further research, especially field studies, and highlight the importance of integrating nutritional manipulation, immune challenge, and functional outcomes. Despite current gaps in research on this topic, modern high throughput molecular approaches are increasingly feasible for wildlife studies and offer great opportunities to better understand human influences on wildlife health.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Tomas Strandin
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,The Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK
| | - Kristian M Forbes
- Department of Virology, University of Helsinki, Helsinki 00290, Finland .,Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16082, USA
| |
Collapse
|
48
|
Liu Y, Ji P. Dietary Factors in Prevention of Pediatric Escherichia coli Infection: A Model Using Domestic Piglets. ILAR J 2018; 59:338-351. [PMID: 31095688 DOI: 10.1093/ilar/ilz005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/04/2019] [Indexed: 01/16/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the major etiological agent causing acute watery diarrhea that is most frequently seen in young children in lower-income countries. The duration of diarrheal symptom may be shortened by antibiotic treatment, but ETEC is relative refractory to common antibiotics. Burgeoning evidence suggests bioactive components that naturally occur in human milk (e.g., lysozyme and oligosaccharides) and plants (e.g., nondigestible carbohydrates and phytochemicals) contain antimicrobial functions are promising preventive measures to control ETEC infection. Although the exact protective mechanisms may vary for each compound and are still not completely understood, they generally act to (1) competitively inhibit the binding of pathogenic bacteria and toxins to gut epithelium; (2) directly kill pathogens; and (3) stimulate and/or enhance host mucosal and systemic immune defense against pathogenic microorganisms. An appropriate ETEC-challenge animal model is critical to evaluate the effect and unveil the mechanism of bioactive compounds in prevention of enteric infection. Despite wide application in biomedical research, rodents do not usually manifest typical clinical signs of enteric infections. The remarkable differences in digestive physiology, immune response, and gut microbiota between rodents and human beings necessitate the use of alternative animal models. Pigs are closely related to humans in terms of genomes, physiology, anatomy of gastrointestinal tracts, digestive enzymes, components of immune system, and gut microbiota. Like human infants and young children, nursing and nursery piglets are more susceptible to ETEC infection and reproduce the clinical signs as observed in humans. Hence, the ETEC-challenge piglet represents a valuable translational model to study pathogenesis and evaluate dietary factors (e.g., milk bioactive compounds, nondigestible carbohydrates, and phytochemicals) as preventive measures for ETEC infection in pediatrics.
Collapse
Affiliation(s)
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California
| |
Collapse
|
49
|
Nunes R, Araújo F, Barreiros L, Bártolo I, Segundo MA, Taveira N, Sarmento B, das Neves J. Noncovalent PEG Coating of Nanoparticle Drug Carriers Improves the Local Pharmacokinetics of Rectal Anti-HIV Microbicides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34942-34953. [PMID: 30234288 DOI: 10.1021/acsami.8b12214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antiretroviral drug nanocarriers hold great promise for developing anti-human immunodeficiency virus (HIV) rectal microbicides. However, challenges remain, namely, concerning which properties are more suited for enhancing colorectal distribution and retention of microbicide compounds. In this work, we developed and assessed the in vitro and in vivo performance of poly(lactic- co-glycolic acid) (PLGA)-based nanoparticles (NPs) as carriers for the model drug efavirenz (EFV). We particularly focused on the effect of noncovalent poly(ethylene glycol) coating of PLGA NPs (PEG-PLGA NPs) conferring a mucus-diffusive behavior on the pharmacokinetics (PK) of EFV following rectal administration to mice. Drug-loaded PLGA NPs and PEG-PLGA NPs (200-225 nm) were obtained by nanoprecipitation. Both types of systems were able to retain native antiretroviral activity of EFV in vitro, while featuring lower cytotoxicity against different epithelial cell lines and HIV target cells. Also, PLGA NPs and PEG-PLGA NPs were readily taken up by colorectal cell lines and mildly reduced EFV permeation while increasing membrane retention in Caco-2 and Caco-2/HT29-MTX cell monolayer models. When administered intrarectally to CD-1 mice in phosphate-buffered saline (pH 7.4), EFV-loaded PEG-PLGA NPs consistently provided higher drug levels in colorectal tissues and lavages, as compared to free EFV or drug-loaded PLGA NPs. Mean values for the area-under-the-curve between 15 min and 12 h following administration were particularly higher for PEG-PLGA NPs in distal and middle colorectal tissues, with relative bioavailability values of 3.7 and 29, respectively, as compared to free EFV (2.2 and 6.0 over PLGA NPs, respectively). Systemic exposure to EFV was reduced for all treatments. NPs were further shown safe after once-daily administration for 14 days, as assessed by histological analysis of colorectal tissues and chemokine/cytokine assay of rectal lavages. Overall, PEG-PLGA NPs demonstrated to be safe carriers for rectal microbicide drug delivery and able to provide enhanced local PK that could be valuable in preventing rectal HIV transmission.
Collapse
Affiliation(s)
- Rute Nunes
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra 4585-116 , Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto, Porto 4050-313 , Portugal
| | | | - Luisa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Quı́micas, Faculdade de Farmácia , Universidade do Porto , Porto 4050-313 , Portugal
| | - Inês Bártolo
- HIV Evolution, Epidemiology and Prevention, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa 1649-003 , Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Quı́micas, Faculdade de Farmácia , Universidade do Porto , Porto 4050-313 , Portugal
| | - Nuno Taveira
- HIV Evolution, Epidemiology and Prevention, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa 1649-003 , Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM) , Instituto Universitário Egas Moniz , Monte de Caparica 2829-511 , Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra 4585-116 , Portugal
| | - José das Neves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra 4585-116 , Portugal
| |
Collapse
|
50
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|