1
|
Shen Z, vom Steeg LG, Patel MV, Rodriguez-Garcia M, Wira CR. Impact of aging on the frequency, phenotype, and function of CD4+ T cells in the human female reproductive tract. Front Immunol 2024; 15:1465124. [PMID: 39328419 PMCID: PMC11424415 DOI: 10.3389/fimmu.2024.1465124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Since CD4+ T cells are essential for regulating adaptive immune responses and for long lasting mucosal protection, changes in CD4+ T cell numbers and function are likely to affect protective immunity. What remains unclear is whether CD4+ T cell composition and function in the female reproductive tract (FRT) changes as women age. Here we investigated the changes in the composition and function of CD4+ T cells in the endometrium (EM), endocervix (CX), and ectocervix (ECX) with aging. We observed a significant decrease in both the total number and percentage of CD4+ T cells in the EM with increasing age, particularly in the years following menopause. CD4+ T cells within the FRT predominantly expressed CD69. The proportion of CD69+CD4+ T cells increased significantly with increasing age in the EM, CX and ECX. The composition of T helper cell subsets within the EM CD4+ T cell population also showed age-related changes. Specifically, there was a significant increase in the proportion of Th1 cells and a significant decrease in Th17 and Treg cells with increasing age. Furthermore, the production of IFNγ by CD4+ T cells in the EM, CX, and ECX significantly decreased with increasing age upon activation. Our findings highlight the complex changes occurring in CD4+ T cell frequency, phenotype, and function within the FRT as women age. Understanding these age-related immune changes in the FRT is crucial for enhancing our knowledge of reproductive health and immune responses in women.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Landon G. vom Steeg
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
2
|
Alanazi H, Zhang Y, Fatunbi J, Luu T, Kwak-Kim J. The impact of reproductive hormones on T cell immunity; normal and assisted reproductive cycles. J Reprod Immunol 2024; 165:104295. [PMID: 39053203 DOI: 10.1016/j.jri.2024.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
During pregnancy, a unique immune milieu is established systemically and locally at the maternal-fetal interface. While preparing for embryonic implantation, endometrial effectors significantly change their proportions and function, which are synchronized with hormonal changes. During assisted reproductive technology cycles, various cytokines, chemokines, and immune factors dynamically change with the altered receptor expressions on the immune effectors. Thus, the hormonal regulation of immune effectors is critical to maintaining the immune milieu. In this review, hormonal effects on T cell subsets are reviewed. Sex hormones affect T cell ontogeny and development, consequently affecting their functions. Like other T cell subsets, CD4+ T helper (Th) cells are modulated by estrogen, where low estrogen concentration promotes Th1-driven cell-mediated immunity in the uterus and in vitro by enhancing IFN-γ production, while a high estrogen level decreases it. The abundance and differentiation of T regulatory (Treg) cells are controlled by estrogen, inducing Treg expansion. Conversely, progesterone maintains immune homeostasis by balancing Th1/Th2 and Th17/Treg immunity, leading to maternal-fetal tolerance. Therefore, the understanding of the hormonal impact on various T cell subsets during the reproductive cycles is critical to improving reproductive outcomes in women with recurrent pregnancy losses, repeated implantation failures, and undergoing assisted reproductive cycles.
Collapse
Affiliation(s)
- Hallah Alanazi
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; IVF and Reproductive Endocrinology Department, Women's Health Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Yuan Zhang
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Department of Reproductive Medicine, Jiangsu Province Hospital, Guangzhou Road 300, Nanjing, Jiangsu 210029, China
| | - Joy Fatunbi
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Than Luu
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA.
| |
Collapse
|
3
|
Peroumal D, Biswas PS. Kidney-Specific Interleukin-17 Responses During Infection and Injury. Annu Rev Immunol 2024; 42:35-55. [PMID: 37906942 DOI: 10.1146/annurev-immunol-052523-015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The kidneys are life-sustaining organs that are vital to removing waste from our bodies. Because of their anatomic position and high blood flow, the kidneys are vulnerable to damage due to infections and autoinflammatory conditions. Even now, our knowledge of immune responses in the kidney is surprisingly rudimentary. Studying kidney-specific immune events is challenging because of the poor regenerative capacity of the nephrons, accumulation of uremic toxins, and hypoxia- and arterial blood pressure-mediated changes, all of which have unexpected positive or negative impacts on the immune response in the kidney. Kidney-specific defense confers protection against pathogens. On the other hand, unresolved inflammation leads to kidney damage and fibrosis. Interleukin-17 is a proinflammatory cytokine that has been linked to immunity against pathogens and pathogenesis of autoinflammatory diseases. In this review, we discuss current knowledge of IL-17 activities in the kidney in the context of infections, autoinflammatory diseases, and renal fibrosis.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Choi MW, Isidoro CA, Gillgrass A. Mechanisms of mucosal immunity at the female reproductive tract involved in defense against HIV infection. Curr Opin Virol 2024; 66:101398. [PMID: 38484474 DOI: 10.1016/j.coviro.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 06/07/2024]
Abstract
Human immunodeficiency virus-1 remains a major global health threat. Since the virus is often transmitted through sexual intercourse and women account for the majority of new infections within the most endemic regions, research on mucosal immunity at the female reproductive tract (FRT) is of paramount importance. At the FRT, there are intrinsic barriers to HIV-1 infection, such as epithelial cells and the microbiome, and immune cells of both the innate and adaptive arms are prepared to respond in case the virus overcomes the first line of defense. In this review, we discuss recent findings on FRT mucosal mechanisms of HIV-1 defense and highlight research gaps. While defense from HIV-1 infection at the FRT has been understudied, current and future research is essential to develop new therapeutics and vaccines that can protect this unique mucosal site from HIV-1.
Collapse
Affiliation(s)
- Margaret Wy Choi
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmina A Isidoro
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
5
|
Elliott Williams M, Hardnett FP, Sheth AN, Wein AN, Li ZRT, Radzio-Basu J, Dinh C, Haddad LB, Collins EMB, Ofotokun I, Antia R, Scharer CD, Garcia-Lerma JG, Kohlmeier JE, Swaims-Kohlmeier A. The menstrual cycle regulates migratory CD4 T-cell surveillance in the female reproductive tract via CCR5 signaling. Mucosal Immunol 2024; 17:41-53. [PMID: 37866719 PMCID: PMC10990418 DOI: 10.1016/j.mucimm.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Despite their importance for immunity against sexually transmitted infections, the composition of female reproductive tract (FRT) memory T-cell populations in response to changes within the local tissue environment under the regulation of the menstrual cycle remains poorly defined. Here, we show that in humans and pig-tailed macaques, the cycle determines distinct clusters of differentiation 4 T-cell surveillance behaviors by subsets corresponding to migratory memory (TMM) and resident memory T cells. TMM displays tissue-itinerant trafficking characteristics, restricted distribution within the FRT microenvironment, and distinct effector responses to infection. Gene pathway analysis by RNA sequencing identified TMM-specific enrichment of genes involved in hormonal regulation and inflammatory responses. FRT T-cell subset fluctuations were discovered that synchronized to cycle-driven CCR5 signaling. Notably, oral administration of a CCR5 antagonist drug blocked TMM trafficking. Taken together, this study provides novel insights into the dynamic nature of FRT memory CD4 T cells and identifies the menstrual cycle as a key regulator of immune surveillance at the site of STI pathogen exposure.
Collapse
Affiliation(s)
- M Elliott Williams
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Felica P Hardnett
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anandi N Sheth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Alexander N Wein
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zheng-Rong Tiger Li
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica Radzio-Basu
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chuong Dinh
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa B Haddad
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth M B Collins
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Igho Ofotokun
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Gerardo Garcia-Lerma
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alison Swaims-Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA; Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Moreno de Lara L, Werner A, Borchers A, Carrillo-Salinas FJ, Marmol W, Parthasarathy S, Iyer V, Vogell A, Illanes D, Abadía-Molina AC, Ochsenbauer C, Wira CR, Rodriguez-Garcia M. Aging dysregulates neutrophil extracellular trap formation in response to HIV in blood and genital tissues. Front Immunol 2023; 14:1256182. [PMID: 38035114 PMCID: PMC10684664 DOI: 10.3389/fimmu.2023.1256182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Women acquire HIV through sexual transmission, with increasing incidence in women >50 years old. Identifying protective mechanisms in the female genital tract (FGT) is important to prevent HIV-acquisition in women as they age. Human genital and blood neutrophils inactivate HIV by releasing neutrophil extracellular traps (NETs), an innate protective mechanism against HIV-infection. However, how NET formation is triggered by HIV in different tissues and whether this mechanism is affected by aging remain unknown. We demonstrate that the mechanisms that trigger NET release in response to HIV are different in blood and genital tissues, and that NET release decreases with aging. In blood neutrophils, HIV stimulation independently activated calcium pathways and endosomal TLR8, but aging reduced calcium responses, resulting in delayed NET release. In contrast, calcium responses were absent in genital neutrophils and NET release was triggered preferentially through TLR8 activation, but aging impaired this pathway. HIV induced NET formation through non-lytic pathways in blood and FGT neutrophils, except for a small subset of NETs that incorporated annexin V and lactoferrin predominantly in blood, suggesting proinflammatory and lytic NET release. Our findings demonstrate that blood neutrophils cannot model genital neutrophil responses which has important implications to understanding protection against HIV acquisition.
Collapse
Affiliation(s)
- Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Alexandra Werner
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Anna Borchers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | | | - Wendelin Marmol
- Program in Genetics, Molecular, and Cellular Biology, Tufts University School of Medicine, Boston, MA, United States
| | | | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
| | - Diego Illanes
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
| | - Ana C. Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular 3 e Inmunología, Universidad de Granada, Granada, Spain
| | - Christina Ochsenbauer
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Pathare ADS, Loid M, Saare M, Gidlöf SB, Zamani Esteki M, Acharya G, Peters M, Salumets A. Endometrial receptivity in women of advanced age: an underrated factor in infertility. Hum Reprod Update 2023; 29:773-793. [PMID: 37468438 PMCID: PMC10628506 DOI: 10.1093/humupd/dmad019] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Modern lifestyle has led to an increase in the age at conception. Advanced age is one of the critical risk factors for female-related infertility. It is well known that maternal age positively correlates with the deterioration of oocyte quality and chromosomal abnormalities in oocytes and embryos. The effect of age on endometrial function may be an equally important factor influencing implantation rate, pregnancy rate, and overall female fertility. However, there are only a few published studies on this topic, suggesting that this area has been under-explored. Improving our knowledge of endometrial aging from the biological (cellular, molecular, histological) and clinical perspectives would broaden our understanding of the risks of age-related female infertility. OBJECTIVE AND RATIONALE The objective of this narrative review is to critically evaluate the existing literature on endometrial aging with a focus on synthesizing the evidence for the impact of endometrial aging on conception and pregnancy success. This would provide insights into existing gaps in the clinical application of research findings and promote the development of treatment options in this field. SEARCH METHODS The review was prepared using PubMed (Medline) until February 2023 with the keywords such as 'endometrial aging', 'receptivity', 'decidualization', 'hormone', 'senescence', 'cellular', 'molecular', 'methylation', 'biological age', 'epigenetic', 'oocyte recipient', 'oocyte donation', 'embryo transfer', and 'pregnancy rate'. Articles in a language other than English were excluded. OUTCOMES In the aging endometrium, alterations occur at the molecular, cellular, and histological levels suggesting that aging has a negative effect on endometrial biology and may impair endometrial receptivity. Additionally, advanced age influences cellular senescence, which plays an important role during the initial phase of implantation and is a major obstacle in the development of suitable senolytic agents for endometrial aging. Aging is also accountable for chronic conditions associated with inflammaging, which eventually can lead to increased pro-inflammation and tissue fibrosis. Furthermore, advanced age influences epigenetic regulation in the endometrium, thus altering the relation between its epigenetic and chronological age. The studies in oocyte donation cycles to determine the effect of age on endometrial receptivity with respect to the rates of implantation, clinical pregnancy, miscarriage, and live birth have revealed contradictory inferences indicating the need for future research on the mechanisms and corresponding causal effects of women's age on endometrial receptivity. WIDER IMPLICATIONS Increasing age can be accountable for female infertility and IVF failures. Based on the complied observations and synthesized conclusions in this review, advanced age has been shown to have a negative impact on endometrial functioning. This information can provide recommendations for future research focusing on molecular mechanisms of age-related cellular senescence, cellular composition, and transcriptomic changes in relation to endometrial aging. Additionally, further prospective research is needed to explore newly emerging therapeutic options, such as the senolytic agents that can target endometrial aging without affecting decidualization. Moreover, clinical trial protocols, focusing on oocyte donation cycles, would be beneficial in understanding the direct clinical implications of endometrial aging on pregnancy outcomes.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Marina Loid
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Sebastian Brusell Gidlöf
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Masoud Zamani Esteki
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ganesh Acharya
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Medicine, Women’s Health and Perinatology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maire Peters
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Parthasarathy S, Shen Z, Carrillo-Salinas FJ, Iyer V, Vogell A, Illanes D, Wira CR, Rodriguez-Garcia M. Aging modifies endometrial dendritic cell function and unconventional double negative T cells in the human genital mucosa. Immun Ageing 2023; 20:34. [PMID: 37452337 PMCID: PMC10347869 DOI: 10.1186/s12979-023-00360-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Immune function in the genital mucosa balances reproduction with protection against pathogens. As women age, genital infections, and gynecological cancer risk increase, however, the mechanisms that regulate cell-mediated immune protection in the female genital tract and how they change with aging remain poorly understood. Unconventional double negative (DN) T cells (TCRαβ + CD4-CD8-) are thought to play important roles in reproduction in mice but have yet to be characterized in the human female genital tract. Using genital tissues from women (27-77 years old), here we investigated the impact of aging on the induction, distribution, and function of DN T cells throughout the female genital tract. RESULTS We discovered a novel site-specific regulation of dendritic cells (DCs) and unconventional DN T cells in the genital tract that changes with age. Human genital DCs, particularly CD1a + DCs, induced proliferation of DN T cells in a TFGβ dependent manner. Importantly, induction of DN T cell proliferation, as well as specific changes in cytokine production, was enhanced in DCs from older women, indicating subset-specific regulation of DC function with increasing age. In human genital tissues, DN T cells represented a discrete T cell subset with distinct phenotypical and transcriptional profiles compared to CD4 + and CD8 + T cells. Single-cell RNA and oligo-tag antibody sequencing studies revealed that DN T cells represented a heterogeneous population with unique homeostatic, regulatory, cytotoxic, and antiviral functions. DN T cells showed relative to CD4 + and CD8 + T cells, enhanced expression of inhibitory checkpoint molecules and genes related to immune regulatory as well as innate-like anti-viral pathways. Flow cytometry analysis demonstrated that DN T cells express tissue residency markers and intracellular content of cytotoxic molecules. Interestingly, we demonstrate age-dependent and site-dependent redistribution and functional changes of genital DN T cells, with increased cytotoxic potential of endometrial DN T cells, but decreased cytotoxicity in the ectocervix as women age, with implications for reproductive failure and enhanced susceptibility to infections respectively. CONCLUSIONS Our deep characterization of DN T cell induction and function in the female genital tract provides novel mechanistic avenues to improve reproductive outcomes, protection against infections and gynecological cancers as women age.
Collapse
Affiliation(s)
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Diego Illanes
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
9
|
Wu Y, Li M, Zhang J, Wang S. Unveiling uterine aging: Much more to learn. Ageing Res Rev 2023; 86:101879. [PMID: 36764360 DOI: 10.1016/j.arr.2023.101879] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Uterine aging is an important factor that impacts fertility, reproductive health, and uterus-related diseases; however, it remains poorly explored. Functionally, these disturbances have been associated with an abnormal hormonal response in the endometrium and decreased endometrial receptivity. Based on emerging evidence, these alterations are mediated via the senescence of endometrial stem cells and impaired decidualization of endometrial stromal cells. Multiple molecular activities may participate in uterine aging, including oxidative stress, inflammation, fibrosis, DNA damage response, and cellular senescence. Over the past decade, several protective strategies targeting these biological processes have afforded promising results, including stem cell therapy, anti-aging drugs, and herbal medicines. However, the currently available evidence is fragmented and scattered. Here, we summarize the most recent findings regarding uterine aging, including functional and structural alterations and potential cellular and molecular mechanisms, and discuss potential protective interventions against uterine aging. Thereby, we hope to provide a comprehensive understanding of the pathophysiological processes and underlying mechanisms associated with uterine aging, as well as improve fecundity and reproductive outcomes in females of advanced reproductive age.
Collapse
Affiliation(s)
- Yaling Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Milu Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Maric D, Corbin L, Greco N, Lorenzo-Redondo R, McRaven MD, Veazey RS, Hope TJ. Temporal and spatial characterization of HIV/SIV infection at anorectal mucosa using rhesus macaque rectal challenge model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529624. [PMID: 36865309 PMCID: PMC9980105 DOI: 10.1101/2023.02.22.529624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The study described herein is a continuation of our work in which we developed a methodology to identify small foci of transduced cells following rectal challenge of rhesus macaques with a non-replicative luciferase reporter virus. In the current study, the wild-type virus was added to the inoculation mix and twelve rhesus macaques were necropsied 2-4 days after the rectal challenge to study the changes in infected cell phenotype as the infection progressed. Relying on luciferase reporter we noted that both anus and rectum tissues are susceptible to the virus as early as 48h after the challenge. Small regions of the tissue containing luciferase-positive foci were further analyzed microscopically and were found to also contain cells infected by wild-type virus. Phenotypic analysis of the Env and Gag positive cells in these tissues revealed the virus can infect diverse cell populations, including but not limited to Th17 T cells, non Th17 T cells, immature dendritic cells, and myeloid-like cells. The proportions of the infected cell types, however, did not vary much during the first four days of infection when anus and rectum tissues were examined together. Nonetheless, when the same data was analyzed on a tissue-specific basis, we found significant changes in infected cell phenotypes over the course of infection. For anal tissue, a statistically significant increase in infection was observed for Th17 T cells and myeloid-like cells, while in the rectum, the non-Th17 T cells showed the biggest temporal increase, also of statistical significance.
Collapse
Affiliation(s)
- Danijela Maric
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
| | - Lisette Corbin
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
- Current affiliation: Emory University School of Medicine, Atlanta, Georgia, USA
| | - Natalie Greco
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
- Current affiliation: Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Ramon Lorenzo-Redondo
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Infectious Diseases, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Michael D. McRaven
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington, Louisiana, USA
| | - Thomas J. Hope
- Northwestern University Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, Illinois, USA
| |
Collapse
|
11
|
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, Wang C, Li H, Qi W, Wang Y, Fan A, Han C, Xue F. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol 2023; 13:1124591. [PMID: 36909729 PMCID: PMC9998931 DOI: 10.3389/fcimb.2023.1124591] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
The female reproductive tract harbours hundreds of bacterial species and produces numerous metabolites. The uterine cervix is located between the upper and lower parts of the female genital tract. It allows sperm and birth passage and hinders the upward movement of microorganisms into a relatively sterile uterus. It is also the predicted site for sexually transmitted infection (STI), such as Chlamydia, human papilloma virus (HPV), and human immunodeficiency virus (HIV). The healthy cervicovaginal microbiota maintains cervical epithelial barrier integrity and modulates the mucosal immune system. Perturbations of the microbiota composition accompany changes in microbial metabolites that induce local inflammation, damage the cervical epithelial and immune barrier, and increase susceptibility to STI infection and relative disease progression. This review examined the intimate interactions between the cervicovaginal microbiota, relative metabolites, and the cervical epithelial-, immune-, and mucus barrier, and the potent effect of the host-microbiota interaction on specific STI infection. An improved understanding of cervicovaginal microbiota regulation on cervical microenvironment homeostasis might promote advances in diagnostic and therapeutic approaches for various STI diseases.
Collapse
Affiliation(s)
- Mengting Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalan Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junyi Bai
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Ma
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bijun Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhui Qi
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| | - Fengxia Xue
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| |
Collapse
|
12
|
Karim QA, Archary D, Barré-Sinoussi F, Broliden K, Cabrera C, Chiodi F, Fidler SJ, Gengiah TN, Herrera C, Kharsany ABM, Liebenberg LJP, Mahomed S, Menu E, Moog C, Scarlatti G, Seddiki N, Sivro A, Cavarelli M. Women for science and science for women: Gaps, challenges and opportunities towards optimizing pre-exposure prophylaxis for HIV-1 prevention. Front Immunol 2022; 13:1055042. [PMID: 36561760 PMCID: PMC9763292 DOI: 10.3389/fimmu.2022.1055042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Preventing new HIV infections remains a global challenge. Young women continue to bear a disproportionate burden of infection. Oral pre-exposure prophylaxis (PrEP), offers a novel women-initiated prevention technology and PrEP trials completed to date underscore the importance of their inclusion early in trials evaluating new HIV PrEP technologies. Data from completed topical and systemic PrEP trials highlight the role of gender specific physiological and social factors that impact PrEP uptake, adherence and efficacy. Here we review the past and current developments of HIV-1 prevention options for women with special focus on PrEP considering the diverse factors that can impact PrEP efficacy. Furthermore, we highlight the importance of inclusion of female scientists, clinicians, and community advocates in scientific efforts to further improve HIV prevention strategies.
Collapse
Affiliation(s)
- Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London UK and Imperial College NIHR BRC, London, United Kingdom
| | - Tanuja N. Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nabila Seddiki
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Shen Z, Patel MV, Rodriguez-Garcia M, Wira CR. Aging beyond menopause selectively decreases CD8+ T cell numbers but enhances cytotoxic activity in the human endometrium. Immun Ageing 2022; 19:55. [PMID: 36371240 PMCID: PMC9652910 DOI: 10.1186/s12979-022-00312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Regulation of endometrial (EM) CD8+ T cells, which provide protection through cell-mediated cytotoxicity, is essential for successful reproduction, and protection against sexually transmitted infections and potential tumors. We have previously demonstrated that EM CD8+ T cell cytotoxicity is suppressed directly and indirectly by sex hormones and enhanced after menopause. What remains unclear is whether CD8+ T cell protection and the contribution of tissue-resident (CD103+) and non-resident (CD103-) T cell populations in the EM change as women age following menopause. RESULTS Using hysterectomy EM tissues, we found that EM CD8+ T cell numbers declined significantly in the years following menopause. Despite an overall decline in CD8+ T cells, cytotoxic activity per cell for both CD103- and CD103 + CD8+ T cells increased with age. Investigation of the underlying mechanisms responsible for cytotoxicity indicated that the percentage of total granzyme A and granzyme B positive CD8+ T cells, but not perforin, increased significantly after menopause and remained high and constant as women aged. Additionally, baseline TNFα production by EM CD8+ T cells increased significantly in the years following menopause, and estradiol suppressed TNFα secretion. Moreover, in response to PMA activation, TNFα and IFNγ were significantly up-regulated, and CD103-CD8+ T cells up-regulation of TNFα, IFNγ and IL-6 increased as women aged. CONCLUSIONS Understanding the underlying factors involved in regulating cell-mediated protection of the EM by CD8+ T cells will contribute to the foundation of information essential for developing therapeutic tools to protect women against gynecological cancers and infections as they age.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | | | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
14
|
Hughes SM, Levy CN, Katz R, Lokken EM, Anahtar MN, Hall MB, Bradley F, Castle PE, Cortez V, Doncel GF, Fichorova R, Fidel PL, Fowke KR, Francis SC, Ghosh M, Hwang LY, Jais M, Jespers V, Joag V, Kaul R, Kyongo J, Lahey T, Li H, Makinde J, McKinnon LR, Moscicki AB, Novak RM, Patel MV, Sriprasert I, Thurman AR, Yegorov S, Mugo NR, Roxby AC, Micks E, Hladik F. Changes in concentrations of cervicovaginal immune mediators across the menstrual cycle: a systematic review and meta-analysis of individual patient data. BMC Med 2022; 20:353. [PMID: 36195867 PMCID: PMC9533580 DOI: 10.1186/s12916-022-02532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/16/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hormonal changes during the menstrual cycle play a key role in shaping immunity in the cervicovaginal tract. Cervicovaginal fluid contains cytokines, chemokines, immunoglobulins, and other immune mediators. Many studies have shown that the concentrations of these immune mediators change throughout the menstrual cycle, but the studies have often shown inconsistent results. Our understanding of immunological correlates of the menstrual cycle remains limited and could be improved by meta-analysis of the available evidence. METHODS We performed a systematic review and meta-analysis of cervicovaginal immune mediator concentrations throughout the menstrual cycle using individual participant data. Study eligibility included strict definitions of the cycle phase (by progesterone or days since the last menstrual period) and no use of hormonal contraception or intrauterine devices. We performed random-effects meta-analyses using inverse-variance pooling to estimate concentration differences between the follicular and luteal phases. In addition, we performed a new laboratory study, measuring select immune mediators in cervicovaginal lavage samples. RESULTS We screened 1570 abstracts and identified 71 eligible studies. We analyzed data from 31 studies, encompassing 39,589 concentration measurements of 77 immune mediators made on 2112 samples from 871 participants. Meta-analyses were performed on 53 immune mediators. Antibodies, CC-type chemokines, MMPs, IL-6, IL-16, IL-1RA, G-CSF, GNLY, and ICAM1 were lower in the luteal phase than the follicular phase. Only IL-1α, HBD-2, and HBD-3 were elevated in the luteal phase. There was minimal change between the phases for CXCL8, 9, and 10, interferons, TNF, SLPI, elafin, lysozyme, lactoferrin, and interleukins 1β, 2, 10, 12, 13, and 17A. The GRADE strength of evidence was moderate to high for all immune mediators listed here. CONCLUSIONS Despite the variability of cervicovaginal immune mediator measurements, our meta-analyses show clear and consistent changes during the menstrual cycle. Many immune mediators were lower in the luteal phase, including chemokines, antibodies, matrix metalloproteinases, and several interleukins. Only interleukin-1α and beta-defensins were higher in the luteal phase. These cyclical differences may have consequences for immunity, susceptibility to infection, and fertility. Our study emphasizes the need to control for the effect of the menstrual cycle on immune mediators in future studies.
Collapse
Affiliation(s)
- Sean M Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Claire N Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Erica M Lokken
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Melis N Anahtar
- Ragon Institute of MIT and Harvard, Massachusetts General Hospital, Boston, MA, USA
| | | | - Frideborg Bradley
- Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Philip E Castle
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Valerie Cortez
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Raina Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Paul L Fidel
- Louisiana State University Health, New Orleans, LA, USA
| | - Keith R Fowke
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Suzanna C Francis
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Mimi Ghosh
- Department of Epidemiology, The George Washington University, Washington, DC, USA
| | - Loris Y Hwang
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mariel Jais
- Office of Laboratory Safety, The George Washington University, Washington, DC, USA
| | | | - Vineet Joag
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Kyongo
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Timothy Lahey
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, England, UK
- IAVI, New York, NY, USA
| | - Lyle R McKinnon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Anna-Barbara Moscicki
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Mickey V Patel
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Intira Sriprasert
- Department of OB/GYN, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nelly Rwamba Mugo
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Alison C Roxby
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, WA, USA
| | - Elizabeth Micks
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, WA, USA.
| |
Collapse
|
15
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
16
|
Carrillo-Salinas FJ, Parthasarathy S, Moreno de Lara L, Borchers A, Ochsenbauer C, Panda A, Rodriguez-Garcia M. Short-Chain Fatty Acids Impair Neutrophil Antiviral Function in an Age-Dependent Manner. Cells 2022; 11:2515. [PMID: 36010593 PMCID: PMC9406757 DOI: 10.3390/cells11162515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Half of the people living with HIV are women. Younger women remain disproportionally affected in endemic areas, but infection rates in older women are rising worldwide. The vaginal microbiome influences genital inflammation and HIV infection risk. Multiple factors, including age, induce vaginal microbial alterations, characterized by high microbial diversity that generate high concentrations of short-chain fatty acids (SCFAs), known to modulate neutrophil function. However, how SCFAs may modulate innate anti-HIV protection by neutrophils is unknown. To investigate SCFA-mediated alterations of neutrophil function, blood neutrophils from younger and older women were treated with SCFAs (acetate, butyrate and propionate) at concentrations within the range reported during bacterial vaginosis, and phenotype, migration and anti-HIV responses were evaluated. SCFA induced phenotypical changes preferentially in neutrophils from older women. Butyrate decreased CD66b and increased CD16 and CD62L expression, indicating low activation and prolonged survival, while propionate increased CD54 and CXCR4 expression, indicating a mature aged phenotype. Furthermore, acetate and butyrate significantly inhibited neutrophil migration in vitro and specifically reduced α-defensin release in older women, molecules with anti-HIV activity. Following HIV stimulation, SCFA treatment delayed NET release and dampened chemokine secretion compared to untreated neutrophils in younger and older women. Our results demonstrate that SCFAs can impair neutrophil-mediated anti-HIV responses.
Collapse
Affiliation(s)
| | - Siddharth Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Immunology Unit, Biomedical Research Centre (CIBM), University of Granada, 18071 Granada, Spain
| | - Anna Borchers
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Christina Ochsenbauer
- Department of Medicine, Hem/Onc & CFAR, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexander Panda
- Tufts Medical Center/Division of Pulmonary and Critical Care (PCCM), Boston, MA 02111, USA
- Tufts Clinical and Translational Science Institute (CTSI), Boston, MA 02111, USA
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
17
|
Fert A, Raymond Marchand L, Wiche Salinas TR, Ancuta P. Targeting Th17 cells in HIV-1 remission/cure interventions. Trends Immunol 2022; 43:580-594. [PMID: 35659433 DOI: 10.1016/j.it.2022.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Since the discovery of HIV-1, progress has been made in deciphering the viral replication cycle and mechanisms of host-pathogen interactions that has facilitated the implementation of effective antiretroviral therapies (ARTs). Major barriers to HIV-1 remission/cure include the persistence of viral reservoirs (VRs) in long-lived CD4+ T cells, residual viral transcription, and lack of mucosal immunity restoration during ART, which together fuel systemic inflammation. Recently, T helper (Th)17-polarized cells were identified as major contributors to the pool of transcriptionally/translationally competent VRs. In this review, we discuss the functional features of Th17 cells that were elucidated by fundamental immunology studies in the context of autoimmunity. We also highlight recent discoveries supporting the possibility of extrapolating this knowledge toward the identification of new putative Th17-targeted HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania; The Research Institute of the University of Bucharest, Bucharest, Romania.
| |
Collapse
|
18
|
Mohammadi A, Bagherichimeh S, Choi Y, Fazel A, Tevlin E, Huibner S, Good SV, Tharao W, Kaul R. Immune parameters of HIV susceptibility in the female genital tract before and after penile-vaginal sex. COMMUNICATIONS MEDICINE 2022; 2:60. [PMID: 35637661 PMCID: PMC9142516 DOI: 10.1038/s43856-022-00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Background In women, most HIV infections are acquired through penile-vaginal sex. Inflammation in the female genital tract (FGT) increases the risk of HIV acquisition and transmission, likely through recruitment of HIV target cells and disruption of epithelial barrier integrity. Although sex may have important immune and epithelial effects, the impact of receptive penile-vaginal sex on the immune correlates of HIV susceptibility in the female genital tract is not well described. Methods STI-free heterosexual couples were recruited to the Sex, Couples and Science (SECS) Study, with the serial collection of cervical secretions (CVS), endocervical cytobrushes, blood and semen before and up to 72 h after either condomless (n = 29) or condom-protected (n = 8) penile-vaginal sex. Immune cells were characterized by flow cytometry, and immune factors including cytokines and soluble E-cadherin (sE-cad; a marker of epithelial disruption) were quantified by multiplex immunoassay. Co-primary endpoints were defined as levels of IP-10 and IL-1α, cytokines previously associated with increased HIV susceptibility. Results Here we show that cervicovaginal levels of vaginal IP-10, sE-cad and several other cytokines increase rapidly after sex, regardless of condom use. The proportion of endocervical HIV target cells, including Th17 cells, activated T cells, and activated or mature dendritic cells (DCs) also increase, particularly after condomless sex. Although most of these immune changes resolve within 72 h, increases in activated cervical CD4 + T cells and Tcm persist beyond this time. Conclusions Penile-vaginal sex induces multiple genital immune changes that may enhance HIV susceptibility during the 72 h post-sex window that is critical for virus acquisition. This has important implications for the mucosal immunopathogenesis of HIV transmission. Women who acquire HIV most commonly do so during penile-vaginal sex. Although the risk of HIV acquisition is higher when there is pre-existing inflammation in the female genital tract, the impact of receptive penile-vaginal sex itself on immune markers of HIV susceptibility in the genital tract has not been widely studied. We recruited heterosexual couples, without HIV or sexually-transmitted infections, and studied the impact of a single episode of penile-vaginal sex on immune cells and proteins in the female genital tract. We found that some markers within the cervix and vagina increased immediately after sex, then returned to normal. We noticed differences in these changes depending on whether the sex was condom-protected and whether the male partner was circumcised. Our findings might help us to understand how sex impacts the immune system and how this might contribute to HIV acquisition. Mohammadi et al. evaluate immune markers and cell types associated with HIV susceptibility in the female genital tract before and after penile-vaginal sex. The authors report that these immune parameters increase rapidly and transiently after sex, with condom use affecting some of the changes observed.
Collapse
|
19
|
Bagri P, Anipindi VC, Kaushic C. The Role of IL-17 During Infections in the Female Reproductive Tract. Front Immunol 2022; 13:861444. [PMID: 35493460 PMCID: PMC9046847 DOI: 10.3389/fimmu.2022.861444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Interleukin-17 (IL-17A) is a cytokine involved in a complex array of both protective and detrimental processes. Although early biological studies focused on the pro-inflammatory function of IL-17 in the context of autoimmune and inflammatory disorders, it has become increasingly evident that the roles of IL-17 are far more nuanced. Recent work has demonstrated that the functions of IL-17 are highly context- and tissue-dependent, and there is a fine balance between the pathogenic and protective functions of IL-17. This is especially evident in mucosal tissues such as the female reproductive tract, where IL-17 has been shown to play an important role in the immune response generated during fungal, bacterial and viral infections associated with protection, but also with inflammation. In this review, we discuss the evolving landscape of IL-17 biology within the context of the vaginal mucosa, focusing on key findings that highlight the importance of this cytokine in genital mucosal immunity.
Collapse
Affiliation(s)
- Puja Bagri
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Varun C. Anipindi
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- *Correspondence: Charu Kaushic,
| |
Collapse
|
20
|
Day CJ, Hardison RL, Spillings BL, Poole J, Jurcisek JA, Mak J, Jennings MP, Edwards JL. Complement Receptor 3 Mediates HIV-1 Transcytosis across an Intact Cervical Epithelial Cell Barrier: New Insight into HIV Transmission in Women. mBio 2022; 13:e0217721. [PMID: 35012346 PMCID: PMC8749410 DOI: 10.1128/mbio.02177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transmission of HIV across the mucosal surface of the female reproductive tract to engage subepithelial CD4-positive T cells is not fully understood. Cervical epithelial cells express complement receptor 3 (CR3) (integrin αMβ2 or CD11b/CD18). In women, the bacterium Neisseria gonorrhoeae uses CR3 to invade the cervical epithelia to cause cervicitis. We hypothesized that HIV may also use CR3 to transcytose across the cervical epithelia. Here, we show that HIV-1 strains bound with high affinity to recombinant CR3 in biophysical assays. HIV-1 bound CR3 via the I-domain region of the CR3 alpha subunit, CD11b, and binding was dependent on HIV-1 N-linked glycans. Mannosylated glycans on the HIV surface were a high-affinity ligand for the I-domain. Man5 pentasaccharide, representative of HIV N-glycans, could compete with HIV-1 for CR3 binding. Using cellular assays, we show that HIV bound to CHO cells by a CR3-dependent mechanism. Antibodies to the CR3 I-domain or to the HIV-1 envelope glycoprotein blocked the binding of HIV-1 to primary human cervical epithelial (Pex) cells, indicating that CR3 was necessary and sufficient for HIV-1 adherence to Pex cells. Using Pex cells in a Transwell model system, we show that, following transcytosis across an intact Pex cell monolayer, HIV-1 is able to infect TZM-bl reporter cells. Targeting the HIV-CR3 interaction using antibodies, mannose-binding lectins, or CR3-binding small-molecule drugs blocked HIV transcytosis. These studies indicate that CR3/Pex may constitute an efficient pathway for HIV-1 transmission in women and also demonstrate strategies that may prevent transmission via this pathway. IMPORTANCE In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined. Cervical epithelial cells have a protein called CR3 on their surface. We show that HIV-1 binds to CR3 with high affinity and that this interaction is necessary and sufficient for HIV adherence to, and transcytosis across, polarized, human primary cervical epithelial cells. This suggests a unique role for CR3 on epithelial cells in dually facilitating HIV-1 attachment and entry. The HIV-CR3 interaction may constitute an efficient pathway for HIV delivery to subepithelial lymphocytes following virus transmission across an intact cervical epithelial barrier. Strategies with potential to prevent transmission via this pathway are presented.
Collapse
Affiliation(s)
- Christopher J. Day
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Rachael L. Hardison
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | - Jessica Poole
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Joseph A. Jurcisek
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jennifer L. Edwards
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Renault C, Veyrenche N, Mennechet F, Bedin AS, Routy JP, Van de Perre P, Reynes J, Tuaillon E. Th17 CD4+ T-Cell as a Preferential Target for HIV Reservoirs. Front Immunol 2022; 13:822576. [PMID: 35197986 PMCID: PMC8858966 DOI: 10.3389/fimmu.2022.822576] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Among CD4+ T-cells, T helper 17 (Th17) cells play a sentinel role in the defense against bacterial/fungal pathogens at mucosal barriers. However, Th17 cells are also highly susceptible to HIV-1 infection and are rapidly depleted from gut mucosal sites, causing an imbalance of the Th17/Treg ratio and impairing cytokines production. Consequently, damage to the gut mucosal barrier leads to an enhanced microbial translocation and systemic inflammation, a hallmark of HIV-1 disease progression. Th17 cells’ expression of mucosal homing receptors (CCR6 and α4β7), as well as HIV receptors and co-receptors (CD4, α4β7, CCR5, and CXCR4), contributes to susceptibility to HIV infection. The up-regulation of numerous intracellular factors facilitating HIV production, alongside the downregulation of factors inhibiting HIV, helps to explain the frequency of HIV DNA within Th17 cells. Th17 cells harbor long-lived viral reservoirs in people living with HIV (PLWH) receiving antiretroviral therapy (ART). Moreover, cell longevity and the proliferation of a fraction of Th17 CD4 T cells allow HIV reservoirs to be maintained in ART patients.
Collapse
Affiliation(s)
- Constance Renault
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Nicolas Veyrenche
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Franck Mennechet
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Anne-Sophie Bedin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Jacques Reynes
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- IRD UMI 233, INSERM U1175, University of Montpellier, Montpellier, France
- Infectious Diseases Department, CHU de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- *Correspondence: Edouard Tuaillon,
| |
Collapse
|
22
|
Sahu U, Biswas D, Prajapati VK, Singh AK, Samant M, Khare P. Interleukin-17-A multifaceted cytokine in viral infections. J Cell Physiol 2021; 236:8000-8019. [PMID: 34133758 PMCID: PMC8426678 DOI: 10.1002/jcp.30471] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Viral infections are a major threat to the human population due to the lack of selective therapeutic measures. The morbidity and mortality reported worldwide are very alarming against viral pathogens. The proinflammatory environment is required for viral inhibition by initiating the host immune response. The host immune response fights these pathogens by secreting different cytokines. Interleukin-17 (IL-17) a proinflammatory cytokine mainly produced by T helper type 17 cells, plays a vital role in the regulation of host immune response against various pathogens, including viruses. However, dysregulated production of IL-17 induces chronic inflammation, autoimmune disorders, and may lead to cancer. Recent studies suggest that IL-17 is not only involved in the antiviral immune response but also promotes virus-mediated illnesses. In this review, we discuss the protective and pathogenic role of IL-17 against various viral infections. A detailed understanding of IL-17 during viral infections could contribute to improve therapeutic measures and enable the development of an efficient and safe IL-17 based immunotherapy.
Collapse
Affiliation(s)
- Utkarsha Sahu
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | - Debasis Biswas
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | | | - Anirudh K. Singh
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of ZoologyKumaun UniversityAlmoraUttarakhandIndia
| | - Prashant Khare
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| |
Collapse
|
23
|
Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol 2021; 86:e13478. [PMID: 34077596 PMCID: PMC9286343 DOI: 10.1111/aji.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
24
|
Ssemaganda A, Cholette F, Perner M, Kambaran C, Adhiambo W, Wambugu PM, Gebrebrhan H, Lee A, Nuhu F, Mwatelah RS, Jahan N, Omole TE, Wanjiru T, Gitau A, Kimani J, McKinnon LR. Endocervical Regulatory T Cells Are Associated With Decreased Genital Inflammation and Lower HIV Target Cell Abundance. Front Immunol 2021; 12:726472. [PMID: 34630402 PMCID: PMC8495419 DOI: 10.3389/fimmu.2021.726472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) play important roles in tissue homeostasis, but few studies have investigated tissue Tregs in the context of genital inflammation, HIV target cell density, and vaginal microbiota in humans. In women from Nairobi (n=64), the proportion of CD4+ CD25+ CD127low Tregs in the endocervix correlated with those in blood (r=0.31, p=0.01), with a higher Treg frequency observed in the endocervix (median 3.8 vs 2.0%, p<0.0001). Most Tregs expressed FOXP3 in both compartments, and CTLA-4 expression was higher on endocervical Tregs compared to blood (median 50.8 vs 6.0%, p<0.0001). More than half (34/62, 55%) of participants displayed a non-Lactobacillus dominant vaginal microbiota, which was not associated with endocervical Tregs or CD4+ T cell abundance. In a multivariable linear regression, endocervical Treg proportions were inversely associated with the number of elevated pro-inflammatory cytokines (p=0.03). Inverse Treg associations were also observed for specific cytokines including IL-1β, G-CSF, Eotaxin, IL-1RA, IL-8, and MIP-1 β. Higher endocervical Treg proportions were associated with lower abundance of endocervical CD4+ T cells (0.30 log10 CD4+ T cells per log10 Treg, p=0.00028), with a similar trend for Th17 cells (p=0.09). Selectively increasing endocervical Tregs may represent a pathway to reduce genital tract inflammation in women.
Collapse
Affiliation(s)
- Aloysious Ssemaganda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Francois Cholette
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada.,JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MN, Canada
| | - Michelle Perner
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Cheli Kambaran
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Wendy Adhiambo
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Peter M Wambugu
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Henok Gebrebrhan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Amy Lee
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Faisal Nuhu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Ruth S Mwatelah
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Naima Jahan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Tosin E Omole
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada
| | - Tabitha Wanjiru
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Apollo Gitau
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada.,JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MN, Canada.,Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
25
|
Gabriel EM, Wiche Salinas TR, Gosselin A, Larouche-Anctil E, Durand M, Landay AL, El-Far M, Tremblay CL, Routy JP, Ancuta P. Overt IL-32 isoform expression at intestinal level during HIV-1 infection is negatively regulated by IL-17A. AIDS 2021; 35:1881-1894. [PMID: 34101628 PMCID: PMC8416712 DOI: 10.1097/qad.0000000000002972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Untreated HIV infection was previously associated with IL-32 overexpression in gut/intestinal epithelial cells (IEC). Here, we explored IL-32 isoform expression in the colon of people with HIV (PWH) receiving antiretroviral therapy (ART) and IL-32 triggers/modulators in IEC. DESIGN Sigmoid colon biopsies (SCB) and blood were collected from ART-treated PWH (HIV + ART; n = 17; mean age: 56 years; CD4+ cell counts: 679 cells/μl; time on ART: 72 months) and age-matched HIV-uninfected controls (HIVneg; n = 5). The IEC line HT-29 was used for mechanistic studies. METHODS Cells from SCB and blood were isolated by enzymatic digestion and/or gradient centrifugation. HT-29 cells were exposed to TLR1-9 agonists, TNF-α, IL-17A and HIV. IL-32α/β/γ/D/ε/θ and IL-17A mRNA levels were quantified by real-time RT-PCR. IL-32 protein levels were quantified by ELISA. RESULTS IL-32β/γ/ε isoform transcripts were detectable in the blood and SCB, with IL-32β mRNA levels being predominantly expressed in both compartments and at significantly higher levels in HIV + ART compared to HIVneg. IL-17A transcripts were only detectable in SCB, with increased IL-17A levels in HIVneg compared with HIV + ART and negatively correlated with IL-32β mRNA levels. IL-32β/γ/ε isoform mRNA were detected in HT-29 cells upon exposure to TNF-α, Poly I:C (TLR3 agonist), Flagellin (TLR-5 agonist) and HIV. IL-17A significantly decreased both IL-32 β/γ/ε mRNA and cell-associated IL-32 protein levels induced upon TNF-α and Poly I:C triggering. CONCLUSION We document IL-32 isoforms abundant in the colon of ART-treated PWH and reveal the capacity of the Th17 hallmark cytokine IL-17A to attenuate IL-32 overexpression in a model of inflamed IEC.
Collapse
Affiliation(s)
- Etiene Moreira Gabriel
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Tomas Raul Wiche Salinas
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Madeleine Durand
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Cécile L. Tremblay
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Pierre Routy
- McGill University Health Centre, Montreal, Québec, Canada
- Chronic Viral Illness Service and Hematology Department, McGill University Health Centre, Montréal, Québec, Canada
| | - Petronela Ancuta
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
27
|
Peng T, Phasouk K, Bossard E, Klock A, Jin L, Laing KJ, Johnston C, Williams NA, Czartoski JL, Varon D, Long AN, Bielas JH, Snyder TM, Robins H, Koelle DM, McElrath MJ, Wald A, Corey L, Zhu J. Distinct populations of antigen-specific tissue-resident CD8+ T cells in human cervix mucosa. JCI Insight 2021; 6:149950. [PMID: 34156975 PMCID: PMC8410090 DOI: 10.1172/jci.insight.149950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The ectocervix is part of the lower female reproductive tract (FRT), which is susceptible to sexually transmitted infections (STIs). Comprehensive knowledge of the phenotypes and T cell receptor (TCR) repertoire of tissue-resident memory T cells (TRMs) in the human FRT is lacking. We took single-cell RNA-Seq approaches to simultaneously define gene expression and TCR clonotypes of the human ectocervix. There were significantly more CD8+ than CD4+ T cells. Unsupervised clustering and trajectory analysis identified distinct populations of CD8+ T cells with IFNGhiGZMBloCD69hiCD103lo or IFNGloGZMBhiCD69medCD103hi phenotypes. Little overlap was seen between their TCR repertoires. Immunofluorescence staining showed that CD103+CD8+ TRMs were preferentially localized in the epithelium, whereas CD69+CD8+ TRMs were distributed evenly in the epithelium and stroma. Ex vivo assays indicated that up to 14% of cervical CD8+ TRM clonotypes were HSV-2 reactive in HSV-2-seropositive persons, reflecting physiologically relevant localization. Our studies identified subgroups of CD8+ TRMs in the human ectocervix that exhibited distinct expression of antiviral defense and tissue residency markers, anatomic locations, and TCR repertoires that target anatomically relevant viral antigens. Optimization of the location, number, and function of FRT TRMs is an important approach for improving host defenses to STIs.
Collapse
Affiliation(s)
- Tao Peng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology and
| | - Khamsone Phasouk
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily Bossard
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexis Klock
- Department of Laboratory Medicine and Pathology and
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Noel A. Williams
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Julie L. Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dana Varon
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Annalyssa N. Long
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jason H. Bielas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - David M. Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology and
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology and
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Anna Wald
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology and
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology and
| |
Collapse
|
28
|
Th17 T cells and immature dendritic cells are the preferential initial targets after rectal challenge with an SIV-based replication-defective dual-reporter vector. J Virol 2021; 95:e0070721. [PMID: 34287053 DOI: 10.1128/jvi.00707-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the earliest events of HIV sexual transmission is critical to develop and optimize HIV prevention strategies. To gain insights into the earliest steps of HIV rectal transmission, including cellular targets, rhesus macaques were intra-rectally challenged with a single-round SIV-based dual reporter that expresses luciferase and iRFP670 upon productive transduction. The vector was pseudotyped with the HIV-1 envelope JRFL. Regions of tissue containing foci of luminescent, transduced cells were identified macroscopically using an in vivo imaging system, and individual transduced cells expressing fluorescent protein were identified and phenotyped microscopically. This system revealed that anal and rectal tissues are both susceptible to transduction 48 hours after the rectal challenge. Detailed phenotypic analysis revealed that on average, 62% of transduced cells are CCR6+ T cells-the vast majority of which express RORγT, a Th17 lineage-specific transcription factor. The second most common target cells were immature dendritic cells at 20%. These two cell types were transduced at the rates that are four to five times higher than their relative abundances indicate. Our work demonstrates that Th17 T and immature dendritic cells are preferential initial targets of HIV/SIV rectal transmission. IMPORTANCE Men and women who participate in unprotected receptive anal intercourse are at high risk for acquiring HIV. While in vitro data have developed a framework for understanding HIV cell tropism, the initial target cells in the rectal mucosa have not been identified. In this study, we identify these early host cells by using an innovative rhesus macaque rectal challenge model and methodology, which we previously developed. Thus, by shedding light on these early HIV/SIV transmission events, this study provides a specific cellular target for future prevention strategies.
Collapse
|
29
|
The human memory T cell compartment changes across tissues of the female reproductive tract. Mucosal Immunol 2021; 14:862-872. [PMID: 33953338 PMCID: PMC8225572 DOI: 10.1038/s41385-021-00406-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023]
Abstract
Memory CD4 T cells in tissues fulfill numerous functions that are critical for local immune homeostasis and protection against pathogens. Previous studies have highlighted the phenotypic and functional heterogeneity of circulating and tissue-resident memory CD4 T cells across different human tissues such as skin, lung, liver, and colon. Comparatively little is known in regard to memory CD4 T cells across tissues of the female reproductive tract (FRT). We examined CD4 T cells in donor-matched vaginal, ecto- and endocervical tissues, which differ in mucosal structure and exposure to external environmental stimuli. We hypothesized that this could be reflected by tissue-specific differences in the memory CD4 T cell compartment. We found differences in CD4 subset distribution across these tissues. Specifically, CD69+CD103+ CD4 T cells were significantly more abundant in vaginal than cervical tissues. In contrast, the transcriptional profiles of CD4 subsets were fairly conserved across FRT tissues. CD69+CD103+ CD4 T cells showed a TH17 bias independent of tissue niche. Our data suggest that FRT tissues affect T cell subset distribution but have limited effects on the transcriptome of each subset. We discuss the implications for barrier immunity in the FRT.
Collapse
|
30
|
Ayele H, Perner M, McKinnon LR, Birse K, Farr Zuend C, Burgener A. An updated review on the effects of depot medroxyprogesterone acetate on the mucosal biology of the female genital tract. Am J Reprod Immunol 2021; 86:e13455. [PMID: 33991137 PMCID: PMC8459266 DOI: 10.1111/aji.13455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Access to safe, effective, and affordable contraception is important for women’s health and essential to mitigate maternal and fetal mortality rates. The progestin‐based contraceptive depot medroxyprogesterone acetate (DMPA) is a popular contraceptive choice with a low failure rate and convenient administration schedule. Aim In this review, we compiled observational data from human cohorts that examine how DMPA influences the mucosal biology of the female genital tract (FGT) that are essential in maintaining vaginal health, including resident immune cells, pro‐inflammatory cytokines, epithelial barrier function, and the vaginal microbiome Materials and Methods This review focused on the recent published literature published in 2019 and 2020. Results Recent longitudinal studies show that DMPA use associates with an immunosuppressive phenotype, increase in CD4+CCR5+ T cells, and alterations to growth factors. In agreement with previous meta‐analyses, DMPA use is associated with minimal effects of the composition of the vaginal microbiome. Cross‐sectional studies associate a more pro‐inflammatory relationship with DMPA, but these studies are confounded by inherent weaknesses of cross‐sectional studies, including differences in study group sizes, behaviors, and other variables that may affect genital inflammation. Discussion & Conclusion These recent results indicate that the interactions between DMPA and the vaginal mucosa are complex emphasizing the need for comprehensive longitudinal studies that take into consideration the measurement of multiple biological parameters.
Collapse
Affiliation(s)
- Hossaena Ayele
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michelle Perner
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kenzie Birse
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christina Farr Zuend
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adam Burgener
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada.,Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Solna, Sweden
| |
Collapse
|
31
|
Svanberg C, Ellegård R, Crisci E, Khalid M, Borendal Wodlin N, Svenvik M, Nyström S, Birse K, Burgener A, Shankar EM, Larsson M. Complement-Opsonized HIV Modulates Pathways Involved in Infection of Cervical Mucosal Tissues: A Transcriptomic and Proteomic Study. Front Immunol 2021; 12:625649. [PMID: 34093520 PMCID: PMC8173031 DOI: 10.3389/fimmu.2021.625649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Genital mucosal transmission is the most common route of HIV spread. The initial responses triggered at the site of viral entry are reportedly affected by host factors, especially complement components present at the site, and this will have profound consequences on the outcome and pathogenesis of HIV infection. We studied the initial events associated with host-pathogen interactions by exposing cervical biopsies to free or complement-opsonized HIV. Opsonization resulted in higher rates of HIV acquisition/infection in mucosal tissues and emigrating dendritic cells. Transcriptomic and proteomic data showed a significantly more pathways and higher expression of genes and proteins associated with viral replication and pathways involved in different aspects of viral infection including interferon signaling, cytokine profile and dendritic cell maturation for the opsonized HIV. Moreover, the proteomics data indicate a general suppression by the HIV exposure. This clearly suggests that HIV opsonization alters the initial signaling pathways in the cervical mucosa in a manner that promotes viral establishment and infection. Our findings provide a foundation for further studies of the role these early HIV induced events play in HIV pathogenesis.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Elisa Crisci
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | | | | | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kenzie Birse
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Adam Burgener
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| |
Collapse
|
32
|
Rodriguez‐Garcia M, Patel MV, Shen Z, Wira CR. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 2021; 20:e13361. [PMID: 33951269 PMCID: PMC8135005 DOI: 10.1111/acel.13361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Mucosal tissues in the human female reproductive tract (FRT) are primary sites for both gynecological cancers and infections by a spectrum of sexually transmitted pathogens, including human immunodeficiency virus (HIV), that compromise women's health. While the regulation of innate and adaptive immune protection in the FRT by hormonal cyclic changes across the menstrual cycle and pregnancy are being intensely studied, little to nothing is known about the alterations in mucosal immune protection that occur throughout the FRT as women age following menopause. The immune system in the FRT has two key functions: defense against pathogens and reproduction. After menopause, natural reproductive function ends, and therefore, two overlapping processes contribute to alterations in immune protection in aging women: menopause and immunosenescence. The goal of this review is to summarize the multiple immune changes that occur in the FRT with aging, including the impact on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies indicate that major aspects of innate and adaptive immunity in the FRT are compromised in a site‐specific manner in the FRT as women age. Further, at some FRT sites, immunological compensation occurs. Overall, alterations in mucosal immune protection contribute to the increased risk of sexually transmitted infections (STI), urogenital infections, and gynecological cancers. Further studies are essential to provide a foundation for the development of novel therapeutic interventions to restore immune protection and reverse conditions that threaten women's lives as they age.
Collapse
Affiliation(s)
| | - Mickey V. Patel
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Zheng Shen
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| |
Collapse
|
33
|
Tokarev A, McKinnon LR, Pagliuzza A, Sivro A, Omole TE, Kroon E, Chomchey N, Phanuphak N, Schuetz A, Robb ML, Eller MA, Ananworanich J, Chomont N, Bolton DL. Preferential Infection of α4β7+ Memory CD4+ T Cells During Early Acute Human Immunodeficiency Virus Type 1 Infection. Clin Infect Dis 2021; 71:e735-e743. [PMID: 32348459 PMCID: PMC7778353 DOI: 10.1093/cid/ciaa497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Establishment of persistent human immunodeficiency virus type 1 (HIV-1) reservoirs occurs early in infection, and biomarkers of infected CD4+ T cells during acute infection are poorly defined. CD4+ T cells expressing the gut homing integrin complex α4β7 are associated with HIV-1 acquisition, and are rapidly depleted from the periphery and gastrointestinal mucosa during acute HIV-1 infection. METHODS Integrated HIV-1 DNA was quantified in peripheral blood mononuclear cells obtained from acutely (Fiebig I-III) and chronically infected individuals by sorting memory CD4+ T-cell subsets lacking or expressing high levels of integrin β7 (β7negative and β7high, respectively). HIV-1 DNA was also assessed after 8 months of combination antiretroviral therapy (cART) initiated in Fiebig II/III individuals. Activation marker and chemokine receptor expression was determined for β7-defined subsets at acute infection and in uninfected controls. RESULTS In Fiebig I, memory CD4+ T cells harboring integrated HIV-1 DNA were rare in both β7high and β7negative subsets, with no significant difference in HIV-1 DNA copies. In Fiebig stages II/III and in chronically infected individuals, β7high cells were enriched in integrated and total HIV-1 DNA compared to β7negative cells. During suppressive cART, integrated HIV-1 DNA copies decreased in both β7negative and β7high subsets, which did not differ in DNA copies. In Fiebig II/III, integrated HIV-1 DNA in β7high cells was correlated with their activation. CONCLUSIONS β7high memory CD4+ T cells are preferential targets during early HIV-1 infection, which may be due to the increased activation of these cells.
Collapse
Affiliation(s)
- Andrey Tokarev
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Tosin E Omole
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Eugene Kroon
- South East Asia Research Collaboration in HIV, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Nitiya Chomchey
- South East Asia Research Collaboration in HIV, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Nittaya Phanuphak
- South East Asia Research Collaboration in HIV, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Alexandra Schuetz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.,Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | - Diane L Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Patel MV, Shen Z, Rodriguez-Garcia M, Usherwood EJ, Tafe LJ, Wira CR. Endometrial Cancer Suppresses CD8+ T Cell-Mediated Cytotoxicity in Postmenopausal Women. Front Immunol 2021; 12:657326. [PMID: 33968059 PMCID: PMC8103817 DOI: 10.3389/fimmu.2021.657326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the most common gynecological cancer. To investigate how it suppresses host immune function, we isolated CD8+ T cells from endometrial endometroid carcinomas and adjacent non-cancerous endometrium and determined if the tumor environment regulates cytotoxic capacity. Endometrial carcinomas had increased numbers of CD8+ T cells compared to adjacent non-cancerous endometrium. Tumor CD8+ T cells expressed significantly less granzyme A (GZA), B (GZB), and PD-1 than those in adjacent non-cancerous tissues and also had significantly lower cytotoxic killing of allogeneic target cells. CD103-CD8+ T cells, but not CD103+CD8+ T cells, from both adjacent and tumor tissue were primarily responsible for killing of allogeneic target cells. Secretions recovered from endometrial carcinoma tissues suppressed CD8+ cytotoxic killing and lowered perforin, GZB and PD-1 expression relative to non-tumor CD8+ T cells. Furthermore, tumor secretions contained significantly higher levels of immunosuppressive cytokines including TGFβ than non-tumor tissues. Thus, the tumor microenvironment suppresses cytotoxic killing by CD8+ T cells via the secretion of immunosuppressive cytokines leading to decreased expression of intracellular cytolytic molecules. These studies demonstrate the complexity of CD8+ T cell regulation within the endometrial tumor microenvironment and provide a foundation of information essential for the development of therapeutic strategies for gynecological cancers.
Collapse
Affiliation(s)
- Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Laura J. Tafe
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
35
|
Rodriguez-Garcia M, Connors K, Ghosh M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 2021; 18:139-156. [PMID: 33721260 PMCID: PMC9273024 DOI: 10.1007/s11904-021-00546-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT). RECENT FINDINGS We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women's life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women. A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Kaleigh Connors
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health and Health Services, The George Washington University, 800 22nd St NW, Washington, DC, 20052, USA.
| |
Collapse
|
36
|
Blondin-Ladrie L, Aranguren M, Doyon-Laliberté K, Poudrier J, Roger M. The Importance of Regulation in Natural Immunity to HIV. Vaccines (Basel) 2021; 9:vaccines9030271. [PMID: 33803543 PMCID: PMC8003059 DOI: 10.3390/vaccines9030271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, most Human Immunodeficiency Virus (HIV) infections are acquired through heterosexual intercourse, and in sub-Saharan Africa, 59% of new HIV infections affect women. Vaccines and microbicides hold promise for preventing the acquisition of HIV. To this end, the study of HIV highly exposed seronegative (HESN) female commercial sex workers (CSWs), who constitute a model of natural immunity to HIV, provides an exceptional opportunity to determine important clues for the development of preventive strategies. Studies using both female genital tract (FGT) and peripheral blood samples of HESN CSWs, have allowed identifying distinct features, notably low-inflammatory patterns associated with resistance to infection. How this seemingly regulated response is achieved at the initial site of HIV infection remains unknown. One hypothesis is that populations presenting regulatory profiles contribute to the orchestration of potent anti-viral and low-inflammatory responses at the initial site of HIV transmission. Here, we view to update our knowledge regarding this issue.
Collapse
Affiliation(s)
- Laurence Blondin-Ladrie
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Matheus Aranguren
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Kim Doyon-Laliberté
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Johanne Poudrier
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Correspondence: (J.P.); (M.R.)
| | - Michel Roger
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Institut National de Santé Publique du Québec, Montréal, QC H2P1E2, Canada
- Correspondence: (J.P.); (M.R.)
| |
Collapse
|
37
|
Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, Lim SY, Li L, Kashem MA, Wan Y, Correia-Pinto JF, Seaman MS, Liu XQ, Balshaw RF, Li Q, Schultz-Darken N, Alonso MJ, Plummer FA, Whitney JB, Luo M. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest 2021; 130:6429-6442. [PMID: 32853182 DOI: 10.1172/jci138728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
After over 3 decades of research, an effective anti-HIV vaccine remains elusive. The recently halted HVTN702 clinical trial not only further stresses the challenge to develop an effective HIV vaccine but also emphasizes that unconventional and novel vaccine strategies are urgently needed. Here, we report that a vaccine focusing the immune response on the sequences surrounding the 12 viral protease cleavage sites (PCSs) provided greater than 80% protection to Mauritian cynomolgus macaques against repeated intravaginal SIVmac251 challenges. The PCS-specific T cell responses correlated with vaccine efficacy. The PCS vaccine did not induce immune activation or inflammation known to be associated with increased susceptibility to HIV infection. Machine learning analyses revealed that the immune microenvironment generated by the PCS vaccine was predictive of vaccine efficacy. Our study demonstrates, for the first time to our knowledge, that a vaccine which targets only viral maturation, but lacks full-length Env and Gag immunogens, can prevent intravaginal infection in a stringent macaque/SIV challenge model. Targeting HIV maturation thus offers a potentially novel approach to developing an effective HIV vaccine.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lewis R Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dane Schalk
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanmin Wan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jorge F Correia-Pinto
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiao Qing Liu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert F Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nancy Schultz-Darken
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Maria J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
38
|
Shen Z, Rodriguez-Garcia M, Patel MV, Wira CR. Direct and Indirect endocrine-mediated suppression of human endometrial CD8+T cell cytotoxicity. Sci Rep 2021; 11:1773. [PMID: 33469053 PMCID: PMC7815780 DOI: 10.1038/s41598-021-81380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Regulation of endometrial (EM) CD8+T cells is essential for successful reproduction and protection against pathogens. Suppression of CD8+T cells is necessary for a tolerogenic environment that promotes implantation and pregnancy. However, the mechanisms regulating this process remain unclear. Sex hormones are known to control immune responses directly on immune cells and indirectly through the tissue environment. When the actions of estradiol (E2), progesterone (P) and TGFβ on EM CD8+T cells were evaluated, cytotoxic activity, perforin and granzymes were directly suppressed by E2 and TGFβ but not P. Moreover, incubation of polarized EM epithelial cells with P, but not E2, increased TGFβ secretion. These findings suggest that E2 acts directly on CD8+T cell to suppress cytotoxic activity while P acts indirectly through induction of TGFβ production. Understanding the mechanisms involved in regulating endometrial CD8+T cells is essential for optimizing reproductive success and developing protective strategies against genital infections and gynecological cancers.
Collapse
Affiliation(s)
- Z Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - M Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - M V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - C R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
39
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
40
|
Konstantinus IN, Balle C, Jaumdally SZ, Galmieldien H, Pidwell T, Masson L, Tanko RF, Happel AU, Sinkala M, Myer L, Bosinger SE, Gill K, Bekker LG, Jaspan HB, Passmore JAS. Impact of Hormonal Contraceptives on Cervical T-helper 17 Phenotype and Function in Adolescents: Results from a Randomized, Crossover Study Comparing Long-acting Injectable Norethisterone Oenanthate (NET-EN), Combined Oral Contraceptive Pills, and Combined Contraceptive Vaginal Rings. Clin Infect Dis 2020; 71:e76-e87. [PMID: 31675420 PMCID: PMC7755094 DOI: 10.1093/cid/ciz1063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adolescents in sub-Saharan Africa are at risk for human immunodeficiency virus (HIV) infection and unintended pregnancies. Observational studies suggest that injectable hormonal contraceptives (HCs) increase the HIV risk, although their effects on genital inflammation, particularly HIV-susceptible T-helper 17 (Th17) cells, are unknown. In a randomized crossover study, the effect of injectable norethisterone oenanthate (NET-EN), combined contraceptive vaginal rings (CCVR; NuvaRing), and combined oral contraceptive pills (COCPs) on cervical Th17 cells and cytokines were compared. METHODS Adolescents (n = 130; 15-19 years) were randomly assigned 1:1:1 to NET-EN, CCVR, or COCPs for 16 weeks, then subsequently crossed over to another HC for 16 weeks. Estrogen, follicular stimulating hormone (FSH), and luteinizing hormone (LH) levels were measured. Chemokine receptor 5 (CCR5), human leukocyte antigen (HLA) DR isotope, and cluster of differentiation 38 (CD38) expression by cervical cytobrush-derived CD4+ T cells was assessed by fluorescence-activated cell sorting. Th17 cells were defined as CCR6+ and CCR10-. Cervicovaginal Th17-related cytokines were measured by Luminex. RESULTS CCVR use for the first 16 weeks was associated with reduced Th17 frequencies and lower FSH and LH concentrations, as compared to NET-EN and COCPs, with FSH concentrations and Th17 frequencies correlating significantly. However, Th17-related cytokine concentrations (interleukin [IL]-21, IL-1β, tumor necrosis factor-α, interferon-γ) and CCR5, HLA-DR, CD38, and Th17 frequencies were significantly higher in CCVR than NET-EN and COCP. At crossover, CCVR users changing to COCPs or NET-EN did not resolve activation or cytokines, although switching from COCP to CCVRs increased cytokine concentrations. CONCLUSIONS CCVR use altered endogenous hormone levels and associated cervical Th17 cell frequencies to a greater extent than use of NET-EN or COCPs, although Th17 cells were more activated and Th17-related cytokine concentrations were elevated. While CCVRs may impact the HIV risk by regulating Th17 numbers, increased activation and inflammation may balance any risk gains.
Collapse
Affiliation(s)
- Iyaloo N Konstantinus
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Christina Balle
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shameem Z Jaumdally
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Hoyam Galmieldien
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Tanya Pidwell
- Desmond Tutu Human Immunodeficiency Virus Centre, University of Cape Town, Cape Town, South Africa
| | - Lindi Masson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ramla F Tanko
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna-Ursula Happel
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Musalula Sinkala
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Landon Myer
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Steven E Bosinger
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, USA
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, USA
| | - Katherine Gill
- Desmond Tutu Human Immunodeficiency Virus Centre, University of Cape Town, Cape Town, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Desmond Tutu Human Immunodeficiency Virus Centre, University of Cape Town, Cape Town, South Africa
| | - Heather B Jaspan
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Seattle, Washington, USA
- University of Washington Department of Pediatrics and Global Health, Seattle, Washington, USA
| | - Jo-Ann S Passmore
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
41
|
de Lara LM, Parthasarathy RS, Rodriguez-Garcia M. Mucosal Immunity and HIV Acquisition in Women. CURRENT OPINION IN PHYSIOLOGY 2020; 19:32-38. [PMID: 33103019 DOI: 10.1016/j.cophys.2020.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Women acquire HIV through sexual transmission. Women worldwide represent half of the people living with HIV, but young women in endemic areas are disproportionally affected. Low transmission rates per sexual act in women suggest that local immune protective mechanisms in the genital tract have the potential to prevent infection. However, conditions that induce genital inflammation are known to increase the risk of HIV acquisition. The female genital tract (FGT) is divided into different anatomical compartments with distinct reproductive functions. The immune cells present in each of these compartments are specialized in balancing reproduction and protection against infections, and are the same cells that can encounter and respond to HIV. Understanding the physiological and pathological factors that influence mucosal immune cell presence, susceptibility to HIV-infection and anti-HIV immune responses in the FGT is necessary to develop preventive strategies. Here we review recent advances in our understanding of HIV infection in the human female genital tract, with an emphasis on the characterization of the mucosal cells susceptible to HIV-infection, innate immune responses and mucosal factors that increase genital inflammation and influence susceptibility to HIV acquisition in women.
Collapse
Affiliation(s)
- Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Unit, Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
| | - Ragav S Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
42
|
Lai ZZ, Ruan LY, Wang Y, Yang HL, Shi JW, Wu JN, Qiu XM, Ha SY, Shen HH, Yang SL, Zheng ZM, Shao J, Ye JF, Li MQ. Changes in subsets of immunocytes in endometrial hyperplasia. Am J Reprod Immunol 2020; 84:e13295. [PMID: 32583503 DOI: 10.1111/aji.13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Endometrial hyperplasia (EH) is characterized by an endometrial gland-to-stroma ratio >1 and is one of the most common gynecological diseases in the world. The role of immunocyte subsets in the development of EH remains unknown. METHODS Patients who underwent dilatation and curettage due to abnormal uterine bleeding were recruited in the present study. Alterations in the numbers of different types of immune cell subsets in the endometrium of patients were analyzed by flow cytometry. RESULTS The present study included 48 patients who were divided into three groups, based on the pathological results: (a) proliferative period (PP, n = 12); (b) simple EH (SEH, n = 30); and (c) complex EH (CEH, n = 6). The results showed that immune cell subpopulations were significantly different between these three groups. Compared with the PP group, the proportion of CD45+ cells and neutrophils and the subtypes of T cells and macrophages were significantly increased in the SEH patients. Compared with the PP and SEH groups, subsets of immunocytes in the CEH group were significantly decreased, including the population of CD45+ cells and the subtypes of T cells and natural killer cells; in contrast, the proportion of macrophages was significantly increased. There were no significant differences between the other cell subsets in each group. CONCLUSION The changes in immune cell subsets may be closely associated with the progression of EH. Although the specific role of different immune cell subsets in the development of the diseases requires further study, the changes in the proportions of immune cell subsets should not be ignored.
Collapse
Affiliation(s)
- Zhen-Zhen Lai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lu-Yu Ruan
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jia-Wei Shi
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xue-Min Qiu
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Si-Yao Ha
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Shao-Liang Yang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zi-Meng Zheng
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jun Shao
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, Singapore City, Singapore
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Ban Z, Knöspel F, Schneider MR. Shedding light into the black box: Advances in in vitro systems for studying implantation. Dev Biol 2020; 463:1-10. [DOI: 10.1016/j.ydbio.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
|
44
|
Rodriguez-Garcia M, Shen Z, Fortier JM, Wira CR. Differential Cytotoxic Function of Resident and Non-resident CD8+ T Cells in the Human Female Reproductive Tract Before and After Menopause. Front Immunol 2020; 11:1096. [PMID: 32582183 PMCID: PMC7287154 DOI: 10.3389/fimmu.2020.01096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 01/22/2023] Open
Abstract
The functional characterization and regulation of tissue resident and non-resident CD8+ T cells in the human female reproductive tract (FRT) as women age remains a gap in our knowledge. Here we characterized the cytotoxic activity and granular contents of CD8+ T cells from the FRT in pre- and postmenopausal women. We found that under steady-state conditions, CD8+ T cells from endometrium (EM), endocervix and ectocervix displayed direct cytotoxic activity, and that cytotoxicity increased in the EM after menopause. Cytotoxic activity was sensitive to suppression by TGFβ exclusively in the EM, and sensitivity to TGFβ was reduced after menopause. Under steady-state conditions, cytotoxic activity (measured as direct killing activity), cytotoxic potential (measured as content of cytotoxic molecules) and proliferation are enhanced in non-resident CD8+ (CD103−) T cells compared to tissue resident (CD103+) T cells. Upon activation, CD103+ T cells displayed greater degranulation compared to CD103− T cells, however the granular content of perforin, granzyme A (GZA) or granzyme B (GZB) was significantly lower. After menopause, degranulation significantly increased, and granular release switched from predominantly GZB in premenopausal to GZA in postmenopausal women. Postmenopausal changes affected both CD103+ and CD103− subpopulations. Finally, CD103+ T cells displayed reduced proliferation compared to CD103− T cells, but after proliferation, cytotoxic molecules were similar in each population. Our results highlight the complexity of regulation of cytotoxic function in the FRT before and after menopause, and are relevant to the development of protective strategies against genital infections and gynecological cancers as women age.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jared M Fortier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
45
|
Abstract
Immune cells in the endometrium are targeted by HIV and re-programmed to allow them to survive and spread the virus throughout the body.
Collapse
|
46
|
Ma T, Luo X, George AF, Mukherjee G, Sen N, Spitzer TL, Giudice LC, Greene WC, Roan NR. HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. eLife 2020; 9:55487. [PMID: 32452381 PMCID: PMC7250576 DOI: 10.7554/elife.55487] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The female reproductive tract (FRT) is the most common site of infection during HIV transmission to women, but viral remodeling complicates characterization of cells targeted for infection. Here, we report extensive phenotypic analyses of HIV-infected endometrial cells by CyTOF, and use a 'nearest neighbor' bioinformatics approach to trace cells to their original pre-infection phenotypes. Like in blood, HIV preferentially targets memory CD4+ T cells in the endometrium, but these cells exhibit unique phenotypes and sustain much higher levels of infection. Genital cell remodeling by HIV includes downregulating TCR complex components and modulating chemokine receptor expression to promote dissemination of infected cells to lymphoid follicles. HIV also upregulates the anti-apoptotic protein BIRC5, which when blocked promotes death of infected endometrial cells. These results suggest that HIV remodels genital T cells to prolong viability and promote viral dissemination and that interfering with these processes might reduce the likelihood of systemic viral spread.
Collapse
Affiliation(s)
- Tongcui Ma
- Gladstone Institute of Virology and Immunology, San Francisco, United States.,Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Xiaoyu Luo
- Gladstone Institute of Virology and Immunology, San Francisco, United States
| | - Ashley F George
- Gladstone Institute of Virology and Immunology, San Francisco, United States.,Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Gourab Mukherjee
- Department of Data Sciences and Operations, University of Southern California, Los Angeles, United States
| | - Nandini Sen
- Departments of Pediatrics and Microbiology and Immunology, Stanford School of Medicine, Stanford, United States
| | - Trimble L Spitzer
- Lt Col, United States AF; Women's Health Clinic, Naval Medical Center, Portsmouth, United States
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, United States.,Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, United States.,Department of Urology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of HIV-1-specific T-cell responses in mucosal tissues, emphasizing recent work and specifically highlighting papers published over the past 18 months. RECENT FINDINGS Recent work has improved the standardization of tissue sampling approaches and provided new insights on the abundance, phenotype and distribution of HIV-1-specific T-cell populations in mucosal tissues. In addition, it has recently been established that some lymphocytes exist in tissues as "permanent resident" memory cells that differ from their counterparts in blood. SUMMARY HIV-1-specific T-cell responses have been extensively characterized; however, the vast majority of reports have focused on T-cells isolated from peripheral blood. Mucosal tissues of the genitourinary and gastrointestinal tracts serve as the primary sites of HIV-1 transmission, and provide "front line" barrier defenses against HIV-1 and other pathogens. In addition, the gastrointestinal tract remains a significant viral reservoir throughout the chronic phase of infection. Tissue-based immune responses may be critical in fighting infection, and understanding these defenses may lead to improved vaccines and immunotherapeutic strategies.
Collapse
|
48
|
Yegorov S, Joag V, Galiwango RM, Good SV, Okech B, Kaul R. Impact of Endemic Infections on HIV Susceptibility in Sub-Saharan Africa. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2019; 5:22. [PMID: 31798936 PMCID: PMC6884859 DOI: 10.1186/s40794-019-0097-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV) remains a leading cause of global morbidity with the highest burden in Sub-Saharan Africa (SSA). For reasons that are incompletely understood, the likelihood of HIV transmission is several fold higher in SSA than in higher income countries, and most of these infections are acquired by young women. Residents of SSA are also exposed to a variety of endemic infections, such as malaria and various helminthiases that could influence mucosal and systemic immunology. Since these immune parameters are important determinants of HIV acquisition and progression, this review explores the possible effects of endemic infections on HIV susceptibility and summarizes current knowledge of the epidemiology and underlying immunological mechanisms by which endemic infections could impact HIV acquisition. A better understanding of the interaction between endemic infections and HIV may enhance HIV prevention programs in SSA.
Collapse
Affiliation(s)
- Sergey Yegorov
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada.,2Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Vineet Joag
- 3Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN USA
| | - Ronald M Galiwango
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada
| | - Sara V Good
- 4Genetics & Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON Canada.,5Community Health Sciences, University of Manitoba, Winnipeg, MB Canada
| | | | - Rupert Kaul
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada.,7Department of Medicine, University Health Network, Toronto, Canada
| |
Collapse
|
49
|
Vallvé-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update 2019; 25:564-591. [PMID: 31424502 PMCID: PMC6737540 DOI: 10.1093/humupd/dmz018] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endometriosis, a common oestrogen-dependent inflammatory disorder in women of reproductive age, is characterized by endometrial-like tissue outside its normal location in the uterus, which causes pelvic scarring, pain and infertility. While its pathogenesis is poorly understood, the immune system (systemically and locally in endometrium, pelvic endometriotic lesions and peritoneal fluid) is believed to play a central role in its aetiology, pathophysiology and associated morbidities of pain, infertility and poor pregnancy outcomes. However, immune cell populations within the endometrium of women with the disease have had incomplete phenotyping, thereby limiting insight into their roles in this disorder. OBJECTIVE AND RATIONALE The objective herein was to determine reproducible and consistent findings regarding specific immune cell populations and their abundance, steroid hormone responsiveness, functionality, activation states, and markers, locally and systemically in women with and without endometriosis. SEARCH METHODS A comprehensive English language PubMed, Medline and Google Scholar search was conducted with key search terms that included endometriosis, inflammation, human eutopic/ectopic endometrium, immune cells, immune population, immune system, macrophages, dendritic cells (DC), natural killer cells, mast cells, eosinophils, neutrophils, B cells and T cells. OUTCOMES In women with endometriosis compared to those without endometriosis, some endometrial immune cells display similar cycle-phase variation, whereas macrophages (Mø), immature DC and regulatory T cells behave differently. A pro-inflammatory Mø1 phenotype versus anti-inflammatory Mø2 phenotype predominates and natural killer cells display abnormal activity in endometrium of women with the disease. Conflicting data largely derive from small studies, variably defined hormonal milieu and different experimental approaches and technologies. WIDER IMPLICATIONS Phenotyping immune cell subtypes is essential to determine the role of the endometrial immune niche in pregnancy and endometrial homeostasis normally and in women with poor reproductive history and can facilitate development of innovative diagnostics and therapeutics for associated symptoms and compromised reproductive outcomes.
Collapse
Affiliation(s)
- Júlia Vallvé-Juanico
- Department of Gynecology, IVI Barcelona S.L., 08017, Barcelona, Spain
- Group of Biomedical Research in Gynecology, Vall Hebron Research Institute (VHIR) and University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| |
Collapse
|
50
|
Miller CJ, Veazey RS. T Cells in the Female Reproductive Tract Can Both Block and Facilitate HIV Transmission. ACTA ACUST UNITED AC 2019; 15:36-40. [PMID: 31431806 DOI: 10.2174/1573395514666180807113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because HIV is sexually transmitted, there is considerable interest in defining the nature of anti-HIV immunity in the female reproductive tract (FRT) and in developing ways to elicit antiviral immunity in the FRT through vaccination. Although it is assumed that the mucosal immune system of the FRT is of central importance for protection against sexually transmitted diseases, including HIV, this arm of the immune system has only recently been studied. Here we provide a brief review of the role of T cells in the FRT in blocking and facilitating HIV transmission.
Collapse
Affiliation(s)
- Christopher J Miller
- Professor of Pathology, Microbiology, and Immunology, Center for Comparative Medicine.,California National Primate Research Center, University of California, Davis, Davis, Ca, 95616
| | - Ronald S Veazey
- Professor of Pathology and Laboratory Medicine, Tulane University School of Medicine.,Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|