1
|
Ottenhoff MJ, Mous SE, Castricum J, Rietman AB, Oostenbrink R, van der Vaart T, Tulen JHM, Parra A, Ramos FJ, Legius E, Moll HA, Elgersma Y, de Wit MCY. Lamotrigine for cognitive deficits associated with neurofibromatosis type 1: A phase II randomized placebo-controlled trial. Dev Med Child Neurol 2024. [PMID: 39340758 DOI: 10.1111/dmcn.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024]
Abstract
AIM To find proof-of-principle evidence for short-term treatment with lamotrigine to improve cognitive functioning of adolescents with neurofibromatosis type 1 (NF1). METHOD This was a double-blind, parallel-group, randomized, placebo-controlled clinical trial (the NF1-EXCEL trial: Examining the Cognitive and Electrophysiological benefit of Lamotrigine in Neurofibromatosis type 1; Clinicaltrials.gov identifier NCT02256124), with the aim of enrolling 60 adolescents with NF1 aged 12 to 17 years 6 months. The short-term study intervention was 200 mg of lamotrigine taken orally for 26 weeks. The primary outcome was performance IQ tested with the Wechsler Intelligence Scale for Children, Third Edition, complemented with secondary outcomes for visuospatial learning efficacy, visual perception, visual sustained attention, fine motor coordination, attention-deficit/hyperactivity problems, and executive functioning. RESULTS We screened 402 adolescents with NF1, of whom 31 (eight females) entered the study. Complete-case analysis showed no effect of lamotrigine on either performance IQ (-0.23, 95% CI -6.90 to 6.44) or most secondary outcomes. Visual sustained attention showed a trend towards better performance in the lamotrigine group (-0.81, 95% CI -1.67 to 0.04). INTERPRETATION Lamotrigine did not improve cognitive functioning in adolescents with NF1. The small treatment effects make it unlikely that a larger sample size could have changed this conclusion.
Collapse
Affiliation(s)
- Myrthe J Ottenhoff
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sabine E Mous
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Child Brain Center, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jesminne Castricum
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - André B Rietman
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Child Brain Center, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Rianne Oostenbrink
- Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Thijs van der Vaart
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Joke H M Tulen
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Alba Parra
- Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Federico J Ramos
- Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Eric Legius
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Henriette A Moll
- Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ype Elgersma
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marie-Claire Y de Wit
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Child Brain Center, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Atsoniou K, Giannopoulou E, Georganta EM, Skoulakis EMC. Drosophila Contributions towards Understanding Neurofibromatosis 1. Cells 2024; 13:721. [PMID: 38667335 PMCID: PMC11048932 DOI: 10.3390/cells13080721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Neurofibromatosis 1 (NF1) is a multisymptomatic disorder with highly variable presentations, which include short stature, susceptibility to formation of the characteristic benign tumors known as neurofibromas, intense freckling and skin discoloration, and cognitive deficits, which characterize most children with the condition. Attention deficits and Autism Spectrum manifestations augment the compromised learning presented by most patients, leading to behavioral problems and school failure, while fragmented sleep contributes to chronic fatigue and poor quality of life. Neurofibromin (Nf1) is present ubiquitously during human development and postnatally in most neuronal, oligodendrocyte, and Schwann cells. Evidence largely from animal models including Drosophila suggests that the symptomatic variability may reflect distinct cell-type-specific functions of the protein, which emerge upon its loss, or mutations affecting the different functional domains of the protein. This review summarizes the contributions of Drosophila in modeling multiple NF1 manifestations, addressing hypotheses regarding the cell-type-specific functions of the protein and exploring the molecular pathways affected upon loss of the highly conserved fly homolog dNf1. Collectively, work in this model not only has efficiently and expediently modelled multiple aspects of the condition and increased understanding of its behavioral manifestations, but also has led to pharmaceutical strategies towards their amelioration.
Collapse
Affiliation(s)
- Kalliopi Atsoniou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Giannopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| |
Collapse
|
3
|
Qu S, Zhou X, Wang Z, Wei Y, Zhou H, Zhang X, Zhu Q, Wang Y, Yang Q, Jiang L, Ma Y, Gao Y, Kong L, Zhang L. The effects of methylphenidate and atomoxetine on Drosophila brain at single-cell resolution and potential drug repurposing for ADHD treatment. Mol Psychiatry 2024; 29:165-185. [PMID: 37957291 PMCID: PMC11078728 DOI: 10.1038/s41380-023-02314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The stimulant methylphenidate (MPH) and the non-stimulant atomoxetine (ATX) are frequently used for the treatment of attention-deficit/hyperactivity disorder (ADHD); however, the function of these drugs in different types of brain cells and their effects on related genes remain largely unknown. To address these questions, we built a pipeline for the simultaneous examination of the activity behavior and transcriptional responses of Drosophila melanogaster at single-cell resolution following drug treatment. We selected the Drosophila with significantly increased locomotor activities (hyperactivity-like behavior) following the administration of each drug in comparison with the control (same food as the drug-treated groups with 5% sucrose, yeast, and blue food dye solution) using EasyFlyTracker. Subsequently, single cell RNA sequencing (scRNASEQ) was used to capture the transcriptome of 82,917 cells, unsupervised clustering analysis of which yielded 28 primary cell clusters representing the major cell types in adult Drosophila brain. Indeed, both neuronal and glial cells responded to MPH and ATX. Further analysis of differentially expressed genes (DEGs) revealed distinct transcriptional changes associated with these two drugs, such as two well-studied dopamine receptor genes (Dop2R and DopEcR) were responsive to MPH but not to ATX at their optimal doses, in addition to genes involved in dopamine metabolism pathways such as Syt1, Sytalpha, Syt7, and Ih in different cell types. More importantly, MPH also suppressed the expression of genes encoding other neurotransmitter receptors and synaptic signaling molecules in many cell types, especially those for Glu and GABA, while the responsive effects of ATX were much weaker. In addition to monoaminergic neuronal transmitters, other neurotransmitters have also shown a similar pattern with respect to a stronger effect associated with MPH than with ATX. Moreover, we identified four distinct glial cell subtypes responsive to the two drugs and detected a greater number of differentially expressed genes associated with ensheathing and astrocyte-like glia. Furthermore, our study provides a rich resource of candidate target genes, supported by drug set enrichment analysis (P = 2.10E-4; hypergeometric test), for the further exploration of drug repurposing. The whole list of candidates can be found at ADHDrug ( http://adhdrug.cibr.ac.cn/ ). In conclusion, we propose a fast and cost-efficient pipeline to explore the underlying molecular mechanisms of ADHD drug treatment in Drosophila brain at single-cell resolution, which may further facilitate drug repurposing applications.
Collapse
Affiliation(s)
- Susu Qu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Xiangyu Zhou
- Chinese Institute for Brain Research, Beijing, China
| | - Zhicheng Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Yi Wei
- Chinese Institute for Brain Research, Beijing, China
| | - Han Zhou
- Chinese Institute for Brain Research, Beijing, China
| | | | - Qingjie Zhu
- Chinese Institute for Brain Research, Beijing, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Likun Jiang
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Yuan Ma
- Chinese Institute for Brain Research, Beijing, China
| | - Yuan Gao
- Chinese Institute for Brain Research, Beijing, China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
4
|
Wang S, Bi J, Li C, Li B. Latrophilin, an adhesion GPCR with galactose-binding lectin domain involved in the innate immune response of Tribolium castaneum. Int J Biol Macromol 2023; 253:126707. [PMID: 37673160 DOI: 10.1016/j.ijbiomac.2023.126707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Latrophilin is a member of adhesion GPCRs involved in various physiological pro1cesses. The extracellular fragment of Tribolium castaneum Latrophilin (TcLph) contains a galactose-binding lectin (GBL) domain. However, the biological function of GBL domain remains mysterious. Here, we initially studied the role of TcLph in recognizing pathogens through its GBL domain and then triggering immune defense in invertebrates. Results showed that GBL domain was highly conserved, and its predicted 3D structure was similar to rhamnose-binding lectin domain of mouse Latrophilin-1 with a unique α/β fold and two long loops. Molecular docking and ELISA results revealed the GBL domain can bind to D-galactose, L-rhamnose, lipopolysaccharide and peptidoglycan. The recombinant extracellular segment of TcLph and the recombinant GBL exhibited strong agglutinating and binding activities to all tested bacteria in a Ca2+-dependent manner. Moreover, TcLph was markedly induced after infection by Escherichia coli or Staphylococcus aureus, while its silencing exacerbated bacterial loads and larvae mortality. TcLph-deficient larvae significantly decreased the transcription levels of antimicrobial peptides and prophenoloxidase activating system-related genes, leading to a significant reduction in phenoloxidase activity. It indicated that TcLph functioned as a pattern recognition receptor in pathogen recognition and activated immune responses to eliminate invasive microbes, suggesting a potential target for insecticides.
Collapse
Affiliation(s)
- Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Fontana BD, Reichmann F, Tilley CA, Lavlou P, Shkumatava A, Alnassar N, Hillman C, Karlsson KÆ, Norton WHJ, Parker MO. adgrl3.1-deficient zebrafish show noradrenaline-mediated externalizing behaviors, and altered expression of externalizing disorder-candidate genes, suggesting functional targets for treatment. Transl Psychiatry 2023; 13:304. [PMID: 37783687 PMCID: PMC10545713 DOI: 10.1038/s41398-023-02601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Externalizing disorders (ED) are a cause of concern for public health, and their high heritability makes genetic risk factors a priority for research. Adhesion G-Protein-Coupled Receptor L3 (ADGRL3) is strongly linked to several EDs, and loss-of-function models have shown the impacts of this gene on several core ED-related behaviors. For example, adgrl3.1-/- zebrafish show high levels of hyperactivity. However, our understanding of the mechanisms by which this gene influences behavior is incomplete. Here we characterized, for the first time, externalizing behavioral phenotypes of adgrl3.1-/- zebrafish and found them to be highly impulsive, show risk-taking in a novel environment, have attentional deficits, and show high levels of hyperactivity. All of these phenotypes were rescued by atomoxetine, demonstrating noradrenergic mediation of the externalizing effects of adgrl3.1. Transcriptomic analyses of the brains of adgrl3.1-/- vs. wild-type fish revealed several differentially expressed genes and enriched gene clusters that were independent of noradrenergic manipulation. This suggests new putative functional pathways underlying ED-related behaviors, and potential targets for the treatment of ED.
Collapse
Affiliation(s)
- Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ceinwen A Tilley
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| | - Perrine Lavlou
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nancy Alnassar
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - Karl Ægir Karlsson
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
- 3Z, Reykjavik, Iceland
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Biology, Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
6
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
7
|
Dyson A, Ryan M, Garg S, Evans DG, Baines RA. Loss of NF1 in Drosophila Larvae Causes Tactile Hypersensitivity and Impaired Synaptic Transmission at the Neuromuscular Junction. J Neurosci 2022; 42:9450-9472. [PMID: 36344265 PMCID: PMC9794380 DOI: 10.1523/jneurosci.0562-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition in which the mechanisms underlying its core symptomatology are largely unknown. Studying animal models of monogenic syndromes associated with ASD, such as neurofibromatosis type 1 (NF1), can offer insights into its etiology. Here, we show that loss of function of the Drosophila NF1 ortholog results in tactile hypersensitivity following brief mechanical stimulation in the larva (mixed sexes), paralleling the sensory abnormalities observed in individuals with ASD. Mutant larvae also exhibit synaptic transmission deficits at the glutamatergic neuromuscular junction (NMJ), with increased spontaneous but reduced evoked release. While the latter is homeostatically compensated for by a postsynaptic increase in input resistance, the former is consistent with neuronal hyperexcitability. Indeed, diminished expression of NF1 specifically within central cholinergic neurons induces both excessive neuronal firing and tactile hypersensitivity, suggesting the two may be linked. Furthermore, both impaired synaptic transmission and behavioral deficits are fully rescued via knock-down of Ras proteins. These findings validate NF1 -/- Drosophila as a tractable model of ASD with the potential to elucidate important pathophysiological mechanisms.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) affects 1-2% of the overall population and can considerably impact an individual's quality of life. However, there are currently no treatments available for its core symptoms, largely because of a poor understanding of the underlying mechanisms involved. Examining how loss of function of the ASD-associated NF1 gene affects behavior and physiology in Drosophila may shed light on this. In this study, we identify a novel, ASD-relevant behavioral phenotype in NF1 -/- larvae, namely an enhanced response to mechanical stimulation, which is associated with Ras-dependent synaptic transmission deficits indicative of neuronal hyperexcitability. Such insights support the use of Drosophila neurofibromatosis type 1 (NF1) models in ASD research and may provide outputs for genetic or pharmacological screens in future studies.
Collapse
Affiliation(s)
- Alex Dyson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Megan Ryan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, United Kingdom
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
8
|
Perry-Hauser NA, VanDyck MW, Lee KH, Shi L, Javitch JA. Disentangling autoproteolytic cleavage from tethered agonist-dependent activation of the adhesion receptor ADGRL3. J Biol Chem 2022; 298:102594. [PMID: 36244455 PMCID: PMC9674912 DOI: 10.1016/j.jbc.2022.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Adhesion G protein-coupled receptor latrophilin 3 (ADGRL3), a cell adhesion molecule highly expressed in the central nervous system, acts in synapse formation through trans interactions with its ligands. It is largely unknown if these interactions serve a purely adhesive function or can modulate G protein signaling. To assess how different structural elements of ADGRL3 (e.g., the adhesive domains, autoproteolytic cleavage site, or tethered agonist (TA)) impact receptor function, we require constructs that disrupt specific receptor features without impacting others. While we showed previously that mutating conserved Phe and Met residues in the TA of ADGRL3-C-terminal fragment (CTF), a CTF truncated to the G protein-coupled receptor proteolysis site, abolishes receptor-mediated G protein activation, we now find that autoproteolytic cleavage is disrupted in the full-length version of this construct. To identify a construct that disrupts TA-dependent activity without impacting proteolysis, we explored other mutations in the TA. We found that mutating the sixth and seventh residues of the TA, Leu and Met, to Ala impaired activity in a serum response element activity assay for both full-length and CTF constructs. We confirmed this activity loss results from impaired G protein coupling using an assay that acutely exposes the TA through controlled proteolysis. The ADGRL3 mutant expresses normally at the cell surface, and immunoblotting shows that it undergoes normal autoproteolysis. Thus, we found a construct that disrupts tethered agonism while retaining autoproteolytic cleavage, providing a tool to disentangle these functions in vivo. Our approach and specific findings are likely to be broadly applicable to other adhesion receptors.
Collapse
Affiliation(s)
- Nicole A Perry-Hauser
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Max W VanDyck
- Department of Biochemistry, Vassar College, Poughkeepsie, New York, USA
| | - Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA.
| |
Collapse
|
9
|
Liebscher I, Cevheroğlu O, Hsiao CC, Maia AF, Schihada H, Scholz N, Soave M, Spiess K, Trajković K, Kosloff M, Prömel S. A guide to adhesion GPCR research. FEBS J 2022; 289:7610-7630. [PMID: 34729908 DOI: 10.1111/febs.16258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.
Collapse
Affiliation(s)
- Ines Liebscher
- Division of Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | | | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IBMC - Instituto Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Hannes Schihada
- C3 Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, UK
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katarina Trajković
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, The University of Haifa, Israel
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
11
|
Qu S, Zhu Q, Zhou H, Gao Y, Wei Y, Ma Y, Wang Z, Sun X, Zhang L, Yang Q, Kong L, Zhang L. EasyFlyTracker: A Simple Video Tracking Python Package for Analyzing Adult Drosophila Locomotor and Sleep Activity to Facilitate Revealing the Effect of Psychiatric Drugs. Front Behav Neurosci 2022; 15:809665. [PMID: 35221942 PMCID: PMC8868375 DOI: 10.3389/fnbeh.2021.809665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanism of psychiatric drugs (stimulant and non-stimulant) is still unclear. Precision medication of psychiatric disorders faces challenges in pharmacogenetics and pharmacodynamics research due to difficulties in recruiting human subjects because of possibility of substance abuse and relatively small sample sizes. Drosophila is a powerful animal model for large-scale studies of drug effects based on the precise quantification of behavior. However, a user-friendly system for high-throughput simultaneous tracking and analysis of drug-treated individual adult flies is still lacking. It is critical to quickly setup a working environment including both the hardware and software at a reasonable cost. Thus, we have developed EasyFlyTracker, an open-source Python package that can track single fruit fly in each arena and analyze Drosophila locomotor and sleep activity based on video recording to facilitate revealing the psychiatric drug effects. The current version does not support multiple fruit fly tracking. Compared with existing software, EasyFlyTracker has the advantages of low cost, easy setup and scaling, rich statistics of movement trajectories, and compatibility with different video recording systems. Also, it accepts multiple video formats such as common MP4 and AVI formats. EasyFlyTracker provides a cross-platform and user-friendly interface combining command line and graphic configurations, which allows users to intuitively understand the process of tracking and downstream analyses and automatically generates multiple files, especially plots. Users can install EasyFlyTracker, go through tutorials, and give feedback on http://easyflytracker.cibr.ac.cn. Moreover, we tested EasyFlyTracker in a study of Drosophila melanogaster on the hyperactivity-like behavior effects of two psychiatric drugs, methylphenidate and atomoxetine, which are two commonly used drugs treating attention-deficit/hyperactivity disorder (ADHD) in human. This software has the potential to accelerate basic research on drug effect studies with fruit flies.
Collapse
Affiliation(s)
- Susu Qu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- *Correspondence: Susu Qu,
| | - Qingjie Zhu
- Chinese Institute for Brain Research, Beijing, China
| | - Han Zhou
- Chinese Institute for Brain Research, Beijing, China
| | - Yuan Gao
- Chinese Institute for Brain Research, Beijing, China
| | - Yi Wei
- Chinese Institute for Brain Research, Beijing, China
| | - Yuan Ma
- Chinese Institute for Brain Research, Beijing, China
| | - Zhicheng Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xueting Sun
- Chinese Institute for Brain Research, Beijing, China
| | - Lei Zhang
- Chinese Institute for Brain Research, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
- Li Zhang,
| |
Collapse
|
12
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
13
|
Convergent selective signaling impairment exposes the pathogenicity of latrophilin-3 missense variants linked to inheritable ADHD susceptibility. Mol Psychiatry 2022; 27:2425-2438. [PMID: 35393556 PMCID: PMC9135631 DOI: 10.1038/s41380-022-01537-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Latrophilin-3 (Lphn3; also known as ADGRL3) is a member of the adhesion G Protein Coupled Receptor subfamily, which participates in the stabilization and maintenance of neuronal networks by mediating intercellular adhesion through heterophilic interactions with transmembrane ligands. Polymorphisms modifying the Lphn3 gene are associated with attention-deficit/hyperactivity disorder (ADHD) in children and its persistence into adulthood. How these genetic alterations affect receptor function remains unknown. Here, we conducted the functional validation of distinct ADHD-related Lphn3 variants bearing mutations in the receptor's adhesion motif-containing extracellular region. We found that all variants tested disrupted the ability of Lphn3 to stabilize intercellular adhesion in a manner that was distinct between ligands classes, but which did not depend on ligand-receptor interaction parameters, thus pointing to altered intrinsic receptor signaling properties. Using G protein signaling biosensors, we determined that Lphn3 couples to Gαi1, Gαi2, Gαs, Gαq, and Gα13. However, all ADHD-related receptor variants consistently lacked intrinsic as well as ligand-dependent Gα13 coupling efficiency while maintaining unaltered coupling to Gαi, Gαs, and Gαq. Consistent with these alterations, actin remodeling functions as well as actin-relevant RhoA signaling normally displayed by the constitutively active Lphn3 receptor were impeded by select receptor variants, thus supporting additional signaling defects. Taken together, our data point to Gα13 selective signaling impairments as representing a disease-relevant pathogenicity pathway that can be inherited through Lphn3 gene polymorphisms. This study highlights the intricate interplay between Lphn3 GPCR functions and the actin cytoskeleton in modulating neurodevelopmental cues related to ADHD etiology.
Collapse
|
14
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
15
|
Karam CS, Williams BL, Jones SK, Javitch JA. The Role of the Dopamine Transporter in the Effects of Amphetamine on Sleep and Sleep Architecture in Drosophila. Neurochem Res 2022; 47:177-189. [PMID: 33630236 PMCID: PMC8384956 DOI: 10.1007/s11064-021-03275-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
The dopamine transporter (DAT) mediates the inactivation of released dopamine (DA) through its reuptake, and thereby plays an important homeostatic role in dopaminergic neurotransmission. Amphetamines exert their stimulant effects by targeting DAT and inducing the reverse transport of DA, leading to a dramatic increase of extracellular DA. Animal models have proven critical to investigating the molecular and cellular mechanisms underlying transporter function and its modulation by psychostimulants such as amphetamine. Here we establish a behavioral model for amphetamine action using adult Drosophila melanogaster. We use it to characterize the effects of amphetamine on sleep and sleep architecture. Our data show that amphetamine induces hyperactivity and disrupts sleep in a DA-dependent manner. Flies that do not express a functional DAT (dDAT null mutants) have been shown to be hyperactive and to exhibit significantly reduced sleep at baseline. Our data show that, in contrast to its action in control flies, amphetamine decreases the locomotor activity of dDAT null mutants and restores their sleep by modulating distinct aspects of sleep structure. To begin to explore the circuitry involved in the actions of amphetamine on sleep, we also describe the localization of dDAT throughout the fly brain, particularly in neuropils known to regulate sleep. Together, our data establish Drosophila as a robust model for studying the regulatory mechanisms that govern DAT function and psychostimulant action.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Brenna L Williams
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Sandra K Jones
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Dr, Unit 19, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Houpt AC, Schwartz SE, Coover RA. Assessing Psychiatric Comorbidity and Pharmacologic Treatment Patterns Among Patients With Neurofibromatosis Type 1. Cureus 2021; 13:e20244. [PMID: 35004058 PMCID: PMC8735883 DOI: 10.7759/cureus.20244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background and objective Neurofibromatosis 1 (NF1) is a genetic disorder that is accompanied by psychiatric comorbidities such as depression, anxiety, and attention-deficit hyperactivity disorder (ADHD) in more than half of the patients. However, there are limited data describing optimal treatment strategies for these conditions. This study aimed to address that gap in understanding and explore the neurobiological basis of psychiatric comorbidities in NF1. Materials and methods A retrospective cohort study was conducted among NF1 patients with a comorbid diagnosis of depression, anxiety, and/or ADHD. These disease states were chosen based on their relatively high reported prevalence in NF1 and shared pathophysiological mechanisms via monoaminergic dysfunction. Information regarding demographics, psychotherapeutic medication use, and clinical outcomes was gathered from electronic medical records. Relationships between patient- and medication-related factors and outcome measures were assessed using statistical analysis. Results The study population (n = 82) consisted of NF1 patients with a comorbid diagnosis of depression (76.8%), anxiety (53.7%), and/or ADHD (23.2%). The use of second-generation antipsychotic agent augmentation therapy or hydroxyzine monotherapy was associated with significantly more behavioral health (BH)-related emergency department (ED) visits, admissions, and inpatient days in the study population. Conversely, the use of bupropion augmentation therapy, buspirone augmentation therapy, and stimulants was associated with improved clinical outcomes, though these results were not statistically significant. Conclusions Based on our findings in this real-world study setting, patients with NF1 and psychiatric comorbidities appear to experience significant benefits from medications that enhance dopaminergic neurotransmission (e.g., bupropion, stimulants) when compared to drugs that oppose it (e.g., second-generation antipsychotics).
Collapse
|
17
|
Hime GR, Stonehouse SLA, Pang TY. Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatry 2021; 11:711-735. [PMID: 34733638 PMCID: PMC8546770 DOI: 10.5498/wjp.v11.i10.711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mental illness remains the greatest chronic health burden globally with few in-roads having been made despite significant advances in genomic knowledge in recent decades. The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations, and that has to be supported by a continuous growth in knowledge. The majority of neuropsychiatric symptoms reflect complex gene-environment interactions, with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms. It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stress-related behavioural phenotypes in both paternal and maternal lineages, providing further supporting evidence for heritability in humans. However, unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions. While rodents will remain the dominant model system for preclinical studies (especially for addressing complex behavioural phenotypes), there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models. Here, we will discuss the utility and advantages of two alternative model organisms-Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Sophie LA Stonehouse
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| | - Terence Y Pang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| |
Collapse
|
18
|
Machado Almeida P, Lago Solis B, Stickley L, Feidler A, Nagoshi E. Neurofibromin 1 in mushroom body neurons mediates circadian wake drive through activating cAMP-PKA signaling. Nat Commun 2021; 12:5758. [PMID: 34599173 PMCID: PMC8486785 DOI: 10.1038/s41467-021-26031-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
Various behavioral and cognitive states exhibit circadian variations in animals across phyla including Drosophila melanogaster, in which only ~0.1% of the brain's neurons contain circadian clocks. Clock neurons transmit the timing information to a plethora of non-clock neurons via poorly understood mechanisms. Here, we address the molecular underpinning of this phenomenon by profiling circadian gene expression in non-clock neurons that constitute the mushroom body, the center of associative learning and sleep regulation. We show that circadian clocks drive rhythmic expression of hundreds of genes in mushroom body neurons, including the Neurofibromin 1 (Nf1) tumor suppressor gene and Pka-C1. Circadian clocks also drive calcium rhythms in mushroom body neurons via NF1-cAMP/PKA-C1 signaling, eliciting higher mushroom body activity during the day than at night, thereby promoting daytime wakefulness. These findings reveal the pervasive, non-cell-autonomous circadian regulation of gene expression in the brain and its role in sleep.
Collapse
Affiliation(s)
- Pedro Machado Almeida
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Blanca Lago Solis
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Luca Stickley
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Alexis Feidler
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland ,grid.412750.50000 0004 1936 9166Present Address: University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Emi Nagoshi
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| |
Collapse
|
19
|
Coll-Tané M, Gong NN, Belfer SJ, van Renssen LV, Kurtz-Nelson EC, Szuperak M, Eidhof I, van Reijmersdal B, Terwindt I, Durkin J, Verheij MMM, Kim CN, Hudac CM, Nowakowski TJ, Bernier RA, Pillen S, Earl RK, Eichler EE, Kleefstra T, Kayser MS, Schenck A. The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. SCIENCE ADVANCES 2021; 7:7/23/eabe2626. [PMID: 34088660 PMCID: PMC8177706 DOI: 10.1126/sciadv.abe2626] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/19/2021] [Indexed: 05/11/2023]
Abstract
Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient's quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet's sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| | - Naihua N Gong
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel J Belfer
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lara V van Renssen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | | | - Milan Szuperak
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Isabel Terwindt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Jaclyn Durkin
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Chang N Kim
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Caitlin M Hudac
- Center for Youth Development and Intervention and Department of Psychology, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tomasz J Nowakowski
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Sigrid Pillen
- Center for Sleep Medicine, Kempenhaeghe, Heeze, Netherlands
| | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Matthew S Kayser
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| |
Collapse
|
20
|
Regan SL, Williams MT, Vorhees CV. Latrophilin-3 disruption: Effects on brain and behavior. Neurosci Biobehav Rev 2021; 127:619-629. [PMID: 34022279 DOI: 10.1016/j.neubiorev.2021.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Moscato EH, Dubowy C, Walker JA, Kayser MS. Social Behavioral Deficits with Loss of Neurofibromin Emerge from Peripheral Chemosensory Neuron Dysfunction. Cell Rep 2021; 32:107856. [PMID: 32640222 DOI: 10.1016/j.celrep.2020.107856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder associated with social and communicative disabilities. The cellular and circuit mechanisms by which loss of neurofibromin 1 (Nf1) results in social deficits are unknown. Here, we identify social behavioral dysregulation with Nf1 loss in Drosophila. These deficits map to primary dysfunction of a group of peripheral sensory neurons. Nf1 regulation of Ras signaling in adult ppk23+ chemosensory cells is required for normal social behaviors in flies. Loss of Nf1 attenuates ppk23+ neuronal activity in response to pheromones, and circuit-specific manipulation of Nf1 expression or neuronal activity in ppk23+ neurons rescues social deficits. This disrupted sensory processing gives rise to persistent changes in behavior beyond the social interaction, indicating a sustained effect of an acute sensory misperception. Together our data identify a specific circuit mechanism through which Nf1 regulates social behaviors and suggest social deficits in NF1 arise from propagation of sensory misinformation.
Collapse
Affiliation(s)
- Emilia H Moscato
- Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine Dubowy
- Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Rahi V, Kumar P. Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 2021; 81:107-124. [PMID: 33428802 DOI: 10.1002/jdn.10089] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous neuropsychiatric disorder characterized by three primary symptoms hyperactivity, attention deficit, and impulsiveness, observed in both children and adults. In childhood, this disorder is more common in boys than in girls, and at least 75% will continue to suffer from the disorder until adulthood. Individuals with ADHD generally have poor academic, occupational, and social functioning resulting from developmentally inappropriate levels of hyperactivity and impulsivity, as well as impaired ability to maintain attention on motivationally relevant tasks. Very few drugs available in clinical practice altogether abolish the symptoms of ADHD, therefore, to find new drugs and target it is essential to understand the neuropathological, neurochemical, and genetic alterations that lead to the progression of ADHD. With this contrast, an animal study is the best approach because animal models provide relatively fast invasive manipulation, rigorous hypothesis testing, as well as it provides a better angle to understand the pathological mechanisms involved in disease progression. Moreover, animal models, especially for ADHD, serve with good predictive validity would allow the assessment and development of new therapeutic interventions, with this aim, the present review collect the various animal models on a single platform so that the research can select an appropriate model to pursue his study.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
23
|
Singgih EL, van der Voet M, Schimmel-Naber M, Brinkmann EL, Schenck A, Franke B. Investigating cytosolic 5'-nucleotidase II family genes as candidates for neuropsychiatric disorders in Drosophila (114/150 chr). Transl Psychiatry 2021; 11:55. [PMID: 33462198 PMCID: PMC7813868 DOI: 10.1038/s41398-020-01149-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Cytosolic 5'-nucleotidases II (cNT5-II) are an evolutionary conserved family of 5'-nucleotidases that catalyze the intracellular hydrolysis of nucleotides. In humans, the family is encoded by five genes, namely NT5C2, NT5DC1, NT5DC2, NT5DC3, and NT5DC4. While very little is known about the role of these genes in the nervous system, several of them have been associated with neuropsychiatric disorders. Here, we tested whether manipulating neuronal expression of cNT5-II orthologues affects neuropsychiatric disorders-related phenotypes in the model organism Drosophila melanogaster. We investigated the brain expression of Drosophila orthologues of cNT5-II family (dNT5A-CG2277, dNT5B-CG32549, and dNT5C-CG1814) using quantitative real-time polymerase chain reaction (qRT-PCR). Using the UAS/Gal4 system, we also manipulated the expression of these genes specifically in neurons. The knockdown was subjected to neuropsychiatric disorder-relevant behavioral assays, namely light-off jump reflex habituation and locomotor activity, and sleep was measured. In addition, neuromuscular junction synaptic morphology was assessed. We found that dNT5A, dNT5B, and dNT5C were all expressed in the brain. dNT5C was particularly enriched in the brain, especially at pharate and adult stages. Pan-neuronal knockdown of dNT5A and dNT5C showed impaired habituation learning. Knockdown of each of the genes also consistently led to mildly reduced activity and/or increased sleep. None of the knockdown models displayed significant alterations in synaptic morphology. In conclusion, in addition to genetic associations with psychiatric disorders in humans, altered expression of cNT5-II genes in the Drosophila nervous system plays a role in disease-relevant behaviors.
Collapse
Affiliation(s)
- Euginia L. Singgih
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique van der Voet
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marlies Schimmel-Naber
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma L. Brinkmann
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annette Schenck
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Gao H, Li Y, Wang M, Song X, Tang J, Feng F, Li B. Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Front Endocrinol (Lausanne) 2021; 12:773669. [PMID: 34899608 PMCID: PMC8660763 DOI: 10.3389/fendo.2021.773669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 01/31/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell and they play a vital role in the regulation of multiple physiological processes. The family Miridae (Hemiptera: Heteroptera) is one of the most diverse families of insects. Until now, information on GPCRs has been lacking in Miridae. Apolygus lucorum, a representative species of the Miridae, is an omnivorous pest that occurs worldwide and is notorious for causing serious damage to various crops and substantial economic losses. By searching the genome, 133 GPCRs were identified in A. lucorum. Compared with other model insects, we have observed GPCR genes to be remarkably expanded in A. lucorum, especially focusing on biogenic amine receptors and neuropeptide receptors. Among these, there is a novel large clade duplicated from known FMRFamide receptors (FMRFaRs). Moreover, the temporal and spatial expression profiles of the 133 genes across developmental stages were determined by transcriptome analysis. Most GPCR genes showed a low expression level in the whole organism of A. lucorum. However, there were a few highly expressed GPCR genes. The highly expressed LW opsins in the head probably relate to nocturning of A. lucorum, and the expression of Cirl at different times and in different tissues indicated it may be involved in growth and development of A. lucorum. We also found C2 leucine-rich repeat-containing GPCRs (LGRs) were mainly distributed in Hemiptera and Phthiraptera among insects. Our study was the first investigation on GPCRs in A. lucorum and it provided a molecular target for the regulation and control of Miridae pests.
Collapse
|
25
|
Mathiasen S, Palmisano T, Perry NA, Stoveken HM, Vizurraga A, McEwen DP, Okashah N, Langenhan T, Inoue A, Lambert NA, Tall GG, Javitch JA. G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nat Chem Biol 2020; 16:1343-1350. [PMID: 32778842 PMCID: PMC7990041 DOI: 10.1038/s41589-020-0617-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
The adhesion G-protein-coupled receptor (GPCR) latrophilin 3 (ADGRL3) has been associated with increased risk of attention deficit hyperactivity disorder (ADHD) and substance use in human genetic studies. Knockdown in multiple species leads to hyperlocomotion and altered dopamine signaling. Thus, ADGRL3 is a potential target for treatment of neuropsychiatric disorders that involve dopamine dysfunction, but its basic signaling properties are poorly understood. Identification of adhesion GPCR signaling partners has been limited by a lack of tools to acutely activate these receptors in living cells. Here, we design a novel acute activation strategy to characterize ADGRL3 signaling by engineering a receptor construct in which we could trigger acute activation enzymatically. Using this assay, we found that ADGRL3 signals through G12/G13 and Gq, with G12/13 the most robustly activated. Gα12/13 is a new player in ADGRL3 biology, opening up unexplored roles for ADGRL3 in the brain. Our methodological advancements should be broadly useful in adhesion GPCR research.
Collapse
MESH Headings
- Activating Transcription Factor 6/agonists
- Activating Transcription Factor 6/chemistry
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Animals
- Arrestin/chemistry
- Arrestin/genetics
- Arrestin/metabolism
- CRISPR-Cas Systems
- Cell Engineering
- GTP-Binding Protein alpha Subunits, G12-G13/chemistry
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression
- HEK293 Cells
- Humans
- Kinetics
- Mice
- Mitogen-Activated Protein Kinase 1/chemistry
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/chemistry
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Peptides/chemistry
- Peptides/metabolism
- Peptides/pharmacology
- Protein Binding
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Signe Mathiasen
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Tiago Palmisano
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Nicole A Perry
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Hannah M Stoveken
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alex Vizurraga
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Dyke P McEwen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Najeah Okashah
- Department of Pharmacology and Toxicology, Augusta University Medical College of Georgia, Augusta, GA, USA
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Augusta University Medical College of Georgia, Augusta, GA, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
26
|
Dark C, Williams C, Bellgrove MA, Hawi Z, Bryson-Richardson RJ. Functional validation of CHMP7 as an ADHD risk gene. Transl Psychiatry 2020; 10:385. [PMID: 33159045 PMCID: PMC7648633 DOI: 10.1038/s41398-020-01077-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder of childhood with a strong genetic component. Despite the success of mapping ADHD risk loci, little work has been done to experimentally verify the contribution of these loci to ADHD phenotypes. Meta-analysis of four genome-wide association studies in ADHD suggested CHMP7 as a predisposing gene for ADHD. A DNA variant (rs2294123) mapped to CHMP7 has been shown (via bioinformatic analysis) to have a high likelihood for functionality and correlate with reduced transcript levels. We used CRISPR-Cas9 genome editing to generate a chmp7 zebrafish model for ADHD. chmp7+/- fish showed comparable reductions in mRNA levels to individuals homozygous for the CHMP7 ADHD risk allele. These fish displayed significant hyperactivity over a 24-h period at 6 days post-fertilisation compared to chmp7+/+, but this effect did not persist into juvenile and adulthood stages. In addition, chmp7+/- fish had significantly smaller total brain volumes than chmp7+/+ fish. Finally, the hyperactivity at 6 days post-fertilisation was significantly reduced through the application of methylphenidate, a mainstay pharmacological treatment for ADHD. Overall, this study highlights an important role for CHMP7 in the neurodevelopment of ADHD, and demonstrates the utility of zebrafish for modelling the functional effects of genes conferring risk to ADHD.
Collapse
Affiliation(s)
- Callum Dark
- grid.1002.30000 0004 1936 7857School of Biological Sciences, Faculty of Science, Monash University, Clayton, Australia
| | - Caitlin Williams
- grid.1002.30000 0004 1936 7857School of Biological Sciences, Faculty of Science, Monash University, Clayton, Australia
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Ziarih Hawi
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Robert J. Bryson-Richardson
- grid.1002.30000 0004 1936 7857School of Biological Sciences, Faculty of Science, Monash University, Clayton, Australia
| |
Collapse
|
27
|
GC-TOF-MS-Based Metabolomic Analysis and Evaluation of the Effects of HX106, a Nutraceutical, on ADHD-Like Symptoms in Prenatal Alcohol Exposed Mice. Nutrients 2020; 12:nu12103027. [PMID: 33023237 PMCID: PMC7600704 DOI: 10.3390/nu12103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in children characterized by inattention and hyperactivity. Prenatal alcohol exposure (PAE) can disrupt fetal neuronal development and cause an ADHD-like hyperactive behavior in the offspring. In this study, we hypothesized that metabolic disturbance would involve in ADHD neuropathology and aimed to investigate the changes in metabolite profile in PAE-induced ADHD-like model and the effects of HX106, a nutraceutical, on ADHD-like pathophysiology and metabolite changes. To this end, we administered HX106 to the mouse offspring affected by PAE (OPAE) and assessed the hyperactivity using the open field test. We observed that HX106-treated OPAE showed less hyperactive behavior than vehicle-treated OPAE. The effects of HX106 were found to be related to the regulation of dopamine transporter and D2 dopamine receptor expression. Furthermore, using gas chromatography time-of-flight mass spectrometry-based metabolomics, we explored the metabolite changes among the experimental groups. The metabolite profile, particularly related with the amino acids, linoleic acid and amino sugar pathways, was altered by PAE and reversed by HX106 treatment partially similar to that observed in the control group. Overall, this study suggest that metabolite alteration would be involved in ADHD pathology and that HX106 can be an efficient supplement to overcome ADHD by regulating dopamine signaling-related protein expression and metabolite changes.
Collapse
|
28
|
Harich B, van der Voet M, Klein M, Čížek P, Fenckova M, Schenck A, Franke B. From Rare Copy Number Variants to Biological Processes in ADHD. Am J Psychiatry 2020; 177:855-866. [PMID: 32600152 DOI: 10.1176/appi.ajp.2020.19090923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is a highly heritable psychiatric disorder. The objective of this study was to define ADHD-associated candidate genes and their associated molecular modules and biological themes, based on the analysis of rare genetic variants. METHODS The authors combined data from 11 published copy number variation studies in 6,176 individuals with ADHD and 25,026 control subjects and prioritized genes by applying an integrative strategy based on criteria including recurrence in individuals with ADHD, absence in control subjects, complete coverage in copy number gains, and presence in the minimal region common to overlapping copy number variants (CNVs), as well as on protein-protein interactions and information from cross-species genotype-phenotype annotation. RESULTS The authors localized 2,241 eligible genes in the 1,532 reported CNVs, of which they classified 432 as high-priority ADHD candidate genes. The high-priority ADHD candidate genes were significantly coexpressed in the brain. A network of 66 genes was supported by ADHD-relevant phenotypes in the cross-species database. Four significantly interconnected protein modules were found among the high-priority ADHD genes. A total of 26 genes were observed across all applied bioinformatic methods. Lookup in the latest genome-wide association study for ADHD showed that among those 26 genes, POLR3C and RBFOX1 were also supported by common genetic variants. CONCLUSIONS Integration of a stringent filtering procedure in CNV studies with suitable bioinformatics approaches can identify ADHD candidate genes at increased levels of credibility. The authors' analytic pipeline provides additional insight into the molecular mechanisms underlying ADHD and allows prioritization of genes for functional validation in validated model organisms.
Collapse
Affiliation(s)
- Benjamin Harich
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Monique van der Voet
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Marieke Klein
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Pavel Čížek
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Michaela Fenckova
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Annette Schenck
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Barbara Franke
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| |
Collapse
|
29
|
Karam CS, Coie LA, Javitch JA. Small Flies Meet Big Data: Genetic Convergence of Neurodevelopmental Disorders Modeled in Drosophila. Am J Psychiatry 2020; 177:482-484. [PMID: 32475139 PMCID: PMC7537407 DOI: 10.1176/appi.ajp.2020.20040412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caline S. Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Lilian A. Coie
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States,Department of Neurobiology and Behavior, Columbia University, New York, NY, United States
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States,Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
30
|
Klein M, Singgih EL, van Rens A, Demontis D, Børglum AD, Mota NR, Castells-Nobau A, Kiemeney LA, Brunner HG, Arias-Vasquez A, Schenck A, van der Voet M, Franke B. Contribution of Intellectual Disability-Related Genes to ADHD Risk and to Locomotor Activity in Drosophila. Am J Psychiatry 2020; 177:526-536. [PMID: 32046534 DOI: 10.1176/appi.ajp.2019.18050599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder. ADHD often co-occurs with intellectual disability, and shared overlapping genetics have been suggested. The aim of this study was to identify novel ADHD genes by investigating whether genes carrying rare mutations linked to intellectual disability contribute to ADHD risk through common genetic variants. Validation and characterization of candidates were performed using Drosophila melanogaster. METHODS Common genetic variants in a diagnostic gene panel of 396 autosomal intellectual disability genes were tested for association with ADHD risk through gene set and gene-wide analyses, using ADHD meta-analytic data from the Psychiatric Genomics Consortium for discovery (N=19,210) and ADHD data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research for replication (N=37,076). The significant genes were functionally validated and characterized in Drosophila by assessing locomotor activity and sleep upon knockdown of those genes in brain circuits. RESULTS The intellectual disability gene set was significantly associated with ADHD risk in the discovery and replication data sets. The three genes most consistently associated were MEF2C, ST3GAL3, and TRAPPC9. Performing functional characterization of the two evolutionarily conserved genes in Drosophila melanogaster, the authors found that their knockdown in dopaminergic (dMEF2) and circadian neurons (dTRAPPC9) resulted in increased locomotor activity and reduced sleep, concordant with the human phenotype. CONCLUSIONS This study reveals that a large set of intellectual disability-related genes contribute to ADHD risk through effects of common alleles. Utilizing this continuity, the authors identified TRAPPC9, MEF2C, and ST3GAL3 as novel ADHD candidate genes. Characterization in Drosophila suggests that TRAPPC9 and MEF2C contribute to ADHD-related behavior through distinct neural substrates.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Euginia L Singgih
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Anne van Rens
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Ditte Demontis
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Anders D Børglum
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Nina Roth Mota
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Anna Castells-Nobau
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Lambertus A Kiemeney
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Han G Brunner
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Alejandro Arias-Vasquez
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Annette Schenck
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Monique van der Voet
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| | - Barbara Franke
- Department of Human Genetics (Klein, Singgih, van Rens, Mota, Castells-Nobau, Brunner, Arias-Vasquez, Schenck, van der Voet, Franke), Department of Psychiatry (Mota, Arias-Vasquez, Franke), and Department for Health Evidence (Kiemeney), Radboud University Medical Center and Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Biomedicine and Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark (Demontis, Børglum); and Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Denmark (Demontis, Børglum)
| |
Collapse
|
31
|
Harich B, Klein M, Ockeloen CW, van der Voet M, Schimmel‐Naber M, de Leeuw N, Schenck A, Franke B. From man to fly - convergent evidence links FBXO25 to ADHD and comorbid psychiatric phenotypes. J Child Psychol Psychiatry 2020; 61:545-555. [PMID: 31849056 PMCID: PMC7217029 DOI: 10.1111/jcpp.13161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mental disorders, including Attention-Deficit/Hyperactivity Disorder (ADHD), have a complex etiology, and identification of underlying genetic risk factors is challenging. This study used a multistep approach to identify and validate a novel risk gene for ADHD and psychiatric comorbidity. METHODS In a single family, severely affected by ADHD and cooccurring disorders, we applied single nucleotide polymorphism (SNP)-array analysis to detect copy-number variations (CNVs) linked to disease. Genes present in the identified CNV were subsequently tested for their association with ADHD in the largest data set currently available (n = 55,374); this gene-set and gene-based association analyses were based on common genetic variants. Significant findings were taken forward for functional validation using Drosophila melanogaster as biological model system, altering gene expression using the GAL4-UAS system and a pan-neuronal driver, and subsequently characterizing locomotor activity and sleep as functional readouts. RESULTS We identified a copy number gain in 8p23.3, which segregated with psychiatric phenotypes in the family and was confirmed by quantitative RT-PCR. Common genetic variants in this locus were associated with ADHD, especially those in FBXO25 and TDRP. Overexpression of the FBXO25 orthologue in two Drosophila models consistently led to increased locomotor activity and reduced sleep compared with the genetic background control. CONCLUSIONS We combine ADHD risk gene identification in an individual family with genetic association testing in a large case-control data set and functional validation in a model system, together providing an important illustration of an integrative approach suggesting that FBXO25 contributes to key features of ADHD and comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
- Benjamin Harich
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marieke Klein
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charlotte W. Ockeloen
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Monique van der Voet
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marlies Schimmel‐Naber
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Nicole de Leeuw
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Annette Schenck
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Barbara Franke
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
32
|
Regan SL, Cryan MT, Williams MT, Vorhees CV, Ross AE. Enhanced Transient Striatal Dopamine Release and Reuptake in Lphn3 Knockout Rats. ACS Chem Neurosci 2020; 11:1171-1177. [PMID: 32203648 DOI: 10.1021/acschemneuro.0c00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Latrophilin-3 (LPHN3) is an adhesion G protein coupled receptor involved in regulating neuroplasticity. Variants of LPHN3 are associated with increased risk of attention-deficit hyperactivity disorder. Data from mouse, zebrafish, Drosophila, and rat show that disruption of LPHN3 results in hyperactivity, and in the Sprague-Dawley Lphn3 knockout rat, exhibit deficits in learning and memory and changes in dopamine (DA) markers in the neostriatum. To determine the effects of Lphn3 deletion on DA neurotransmission, we compared the concentration, duration, and frequency of DA transients in KO and wild-type rats using fast-scan cyclic voltammetry in brain slices. Lphn3 KO rats showed higher release of DA, and the duration and interevent time were markedly decreased compared with wild-type rats. The data demonstrate that LPHN3 plays a heretofore unrecognized role in DA signaling and may represent a new target for small molecule regulation of DA neurotransmission with translational implications.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Michael T. Cryan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Ashley E. Ross
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229, United States
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45229, United States
| |
Collapse
|
33
|
Genetic Networks Underlying Natural Variation in Basal and Induced Activity Levels in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:1247-1260. [PMID: 32014853 PMCID: PMC7144082 DOI: 10.1534/g3.119.401034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exercise is recommended by health professionals across the globe as part of a healthy lifestyle to prevent and/or treat the consequences of obesity. While overall, the health benefits of exercise and an active lifestyle are well understood, very little is known about how genetics impacts an individual's inclination for and response to exercise. To address this knowledge gap, we investigated the genetic architecture underlying natural variation in activity levels in the model system Drosophila melanogaster Activity levels were assayed in the Drosophila Genetics Reference Panel fly strains at baseline and in response to a gentle exercise treatment using the Rotational Exercise Quantification System. We found significant, sex-dependent variation in both activity measures and identified over 100 genes that contribute to basal and induced exercise activity levels. This gene set was enriched for genes with functions in the central nervous system and in neuromuscular junctions and included several candidate genes with known activity phenotypes such as flightlessness or uncoordinated movement. Interestingly, there were also several chromatin proteins among the candidate genes, two of which were validated and shown to impact activity levels. Thus, the study described here reveals the complex genetic architecture controlling basal and exercise-induced activity levels in D. melanogaster and provides a resource for exercise biologists.
Collapse
|
34
|
Neurofibromatosis Type 1 Implicates Ras Pathways in the Genetic Architecture of Neurodevelopmental Disorders. Behav Genet 2020; 50:191-202. [DOI: 10.1007/s10519-020-09991-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/04/2020] [Indexed: 01/12/2023]
|
35
|
Del Toro D, Carrasquero-Ordaz MA, Chu A, Ruff T, Shahin M, Jackson VA, Chavent M, Berbeira-Santana M, Seyit-Bremer G, Brignani S, Kaufmann R, Lowe E, Klein R, Seiradake E. Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. Cell 2020; 180:323-339.e19. [PMID: 31928845 PMCID: PMC6978801 DOI: 10.1016/j.cell.2019.12.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance. Crystal structures reveal binding site for Latrophilin on the Teneurin YD shell A ternary Latrophilin-Teneurin-FLRT complex forms in vitro and in vivo Latrophilin controls cortical migration by binding to Teneurins and FLRTs Latrophilin elicits repulsion of cortical cell bodies/small neurites but not axons
Collapse
Affiliation(s)
- Daniel Del Toro
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany; Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | | | - Amy Chu
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Tobias Ruff
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Meriam Shahin
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Verity A Jackson
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | | | | | - Goenuel Seyit-Bremer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Sara Brignani
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Rainer Kaufmann
- Center for Structural Systems Biology, University of Hamburg, Hamburg 22607, Germany; Department of Physics, University of Hamburg, Hamburg 20355, Germany
| | - Edward Lowe
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.
| | - Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK.
| |
Collapse
|
36
|
CK1δ over-expressing mice display ADHD-like behaviors, frontostriatal neuronal abnormalities and altered expressions of ADHD-candidate genes. Mol Psychiatry 2020; 25:3322-3336. [PMID: 31363163 PMCID: PMC7714693 DOI: 10.1038/s41380-018-0233-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 11/08/2022]
Abstract
The cognitive mechanisms underlying attention-deficit hyperactivity disorder (ADHD), a highly heritable disorder with an array of candidate genes and unclear genetic architecture, remain poorly understood. We previously demonstrated that mice overexpressing CK1δ (CK1δ OE) in the forebrain show hyperactivity and ADHD-like pharmacological responses to D-amphetamine. Here, we demonstrate that CK1δ OE mice exhibit impaired visual attention and a lack of D-amphetamine-induced place preference, indicating a disruption of the dopamine-dependent reward pathway. We also demonstrate the presence of abnormalities in the frontostriatal circuitry, differences in synaptic ultra-structures by electron microscopy, as well as electrophysiological perturbations of both glutamatergic and GABAergic transmission, as observed by altered frequency and amplitude of mEPSCs and mIPSCs. Furthermore, gene expression profiling by next-generation sequencing alone, or in combination with bacTRAP technology to study specifically Drd1a versus Drd2 medium spiny neurons, revealed that developmental CK1δ OE alters transcriptional homeostasis in the striatum, including specific alterations in Drd1a versus Drd2 neurons. These results led us to perform a fine molecular characterization of targeted gene networks and pathway analysis. Importantly, a large fraction of 92 genes identified by GWAS studies as associated with ADHD in humans are significantly altered in our mouse model. The multiple abnormalities described here might be responsible for synaptic alterations and lead to complex behavioral abnormalities. Collectively, CK1δ OE mice share characteristics typically associated with ADHD and should represent a valuable model to investigate the disease in vivo.
Collapse
|
37
|
Blanco-Redondo B, Nuwal N, Kneitz S, Nuwal T, Halder P, Liu Y, Ehmann N, Scholz N, Mayer A, Kleber J, Kähne T, Schmitt D, Sadanandappa MK, Funk N, Albertova V, Helfrich-Förster C, Ramaswami M, Hasan G, Kittel RJ, Langenhan T, Gerber B, Buchner E. Implications of the Sap47 null mutation for synapsin phosphorylation, longevity, climbing proficiency and behavioural plasticity in adult Drosophila. ACTA ACUST UNITED AC 2019; 222:jeb.203505. [PMID: 31488622 DOI: 10.1242/jeb.203505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The Sap47 gene of Drosophila melanogaster encodes a highly abundant 47 kDa synaptic vesicle-associated protein. Sap47 null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin. Site-specific phosphorylation of Drosophila synapsin has repeatedly been shown to be important for behavioural plasticity but it was not known where these phospho-synapsin isoforms are localized in the brain. Here, we report the distribution of serine-6-phosphorylated synapsin in the adult brain and show that it is highly enriched in rings of synapses in the ellipsoid body and in large synapses near the lateral triangle. The effects of knockout of Sap47 or synapsin on olfactory associative learning/memory support the hypothesis that both proteins operate in the same molecular pathway. We therefore asked if this might also be true for other aspects of their function. We show that knockout of Sap47 but not synapsin reduces lifespan, whereas knockout of Sap47 and synapsin, either individually or together, affects climbing proficiency, as well as plasticity in circadian rhythms and sleep. Furthermore, electrophysiological assessment of synaptic properties at the larval neuromuscular junction (NMJ) reveals increased spontaneous synaptic vesicle fusion and reduced paired pulse facilitation in Sap47 and synapsin single and double mutants. Our results imply that Sap47 and synapsin cooperate non-uniformly in the control of synaptic properties in different behaviourally relevant neuronal networks of the fruitfly.
Collapse
Affiliation(s)
- Beatriz Blanco-Redondo
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany .,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany.,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Nidhi Nuwal
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Tulip Nuwal
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Partho Halder
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Yiting Liu
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany.,Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Annika Mayer
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Jörg Kleber
- Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Dominique Schmitt
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Madhumala K Sadanandappa
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Natalja Funk
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Viera Albertova
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany.,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Mani Ramaswami
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany.,Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Bertram Gerber
- Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany.,Institute of Biology, University of Magdeburg, 39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Erich Buchner
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany .,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
38
|
Rohde PD, Jensen IR, Sarup PM, Ørsted M, Demontis D, Sørensen P, Kristensen TN. Genetic Signatures of Drug Response Variability in Drosophila melanogaster. Genetics 2019; 213:633-650. [PMID: 31455722 PMCID: PMC6781897 DOI: 10.1534/genetics.119.302381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Knowledge of the genetic basis underlying variation in response to environmental exposures or treatments is important in many research areas. For example, knowing the set of causal genetic variants for drug responses could revolutionize personalized medicine. We used Drosophila melanogaster to investigate the genetic signature underlying behavioral variability in response to methylphenidate (MPH), a drug used in the treatment of attention-deficit/hyperactivity disorder. We exposed a wild-type D. melanogaster population to MPH and a control treatment, and observed an increase in locomotor activity in MPH-exposed individuals. Whole-genome transcriptomic analyses revealed that the behavioral response to MPH was associated with abundant gene expression alterations. To confirm these patterns in a different genetic background and to further advance knowledge on the genetic signature of drug response variability, we used a system of inbred lines, the Drosophila Genetic Reference Panel (DGRP). Based on the DGRP, we showed that the behavioral response to MPH was strongly genotype-dependent. Using an integrative genomic approach, we incorporated known gene interactions into the genomic analyses of the DGRP, and identified putative candidate genes for variability in drug response. We successfully validated 71% of the investigated candidate genes by gene expression knockdown. Furthermore, we showed that MPH has cross-generational behavioral and transcriptomic effects. Our findings establish a foundation for understanding the genetic mechanisms driving genotype-specific responses to medical treatment, and highlight the opportunities that integrative genomic approaches have in optimizing medical treatment of complex diseases.
Collapse
Affiliation(s)
- Palle Duun Rohde
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus C, Denmark
- Center for Integrative Sequencing, Aarhus University, 8000, Denmark
| | - Iben Ravnborg Jensen
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
| | - Pernille Merete Sarup
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Michael Ørsted
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus C, Denmark
- Center for Integrative Sequencing, Aarhus University, 8000, Denmark
- Department of Biomedicine, Aarhus University, 8000, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Torsten Nygaard Kristensen
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, 8000, Denmark
| |
Collapse
|
39
|
Xiong W, Gao S, Lu Y, Wei L, Mao J, Xie J, Cao Q, Liu J, Bi J, Song X, Li B. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:107-117. [PMID: 31400772 DOI: 10.1016/j.pestbp.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Latrophilin (LPH) is an adhesion G protein-coupled receptor (aGPCR) that participates in multiple essential physiological processes. Our previous studies have shown that lph is not only indispensable for the development and reproduction of red flour beetles (Tribolium castaneum), but also for their resistance against dichlorvos or carbofuran insecticides. However, the regulatory mechanism of lph-mediated insecticide susceptibility remains unclear. Here, we revealed that knockdown of lph in beetles resulted in opposing changes in two chemoreception genes, chemosensory protein 10 (CSP10) and odorant-binding protein C01 (OBPC01), in which the expression of TcCSP10 was downregulated, whereas the expression of TcOBPC01 was upregulated. TcCSP10 and TcOBPC01 were expressed at the highest levels in early pupal and late larval stages, respectively. High levels of expression of both these genes were observed in the heads (without antennae) of adults. TcCSP10 and TcOBPC01 were significantly induced by dichlorvos or carbofuran between 12 and 72 h (hrs) after exposure, suggesting that they are likely associated with increasing the binding affinity of insecticides, leading to a decrease in sensitivity to the insecticides. Moreover, once these two genes were knocked down, the susceptibility of the beetles to dichlorvos or carbofuran was enhanced. Additionally, RNA interference (RNAi) targeting of lph followed by exposure to dichlorvos or carbofuran also caused the opposing expression levels of TcCSP10 and TcOBPC01 compared to the expression levels of wild-type larvae treated with insecticides alone. All these results indicate that lph is involved in insecticide susceptibility through positively regulating TcCSP10; and the susceptibility could also further partially compensated for through the negative regulation of TcOBPC01 when lph was knockdown in the red flour beetle. Our studies shed new light on the molecular regulatory mechanisms of lph related to insecticide susceptibility.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Rui-Jin Hospital, Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Quanquan Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Marine Biodiversity, Exploitation and Conservation, University of Montpellier, France.
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
40
|
Wei L, Gao S, Xiong W, Liu J, Mao J, Lu Y, Song X, Li B. Latrophilin mediates insecticides susceptibility and fecundity through two carboxylesterases, esterase4 and esterase6, in Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:534-543. [PMID: 30789108 DOI: 10.1017/s0007485318000895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Latrophilin (LPH) is known as an adhesion G-protein-coupled receptor which involved in multiple physiological processes in organisms. Previous studies showed that lph not only involved the susceptibility to anticholinesterase insecticides but also affected fecundity in Tribolium castaneum. However, its regulatory mechanisms in these biological processes are still not clear. Here, we identified two potential downstream carboxylesterase (cce) genes of Tclph, esterase4 and esterase6, and further characterized their interactions with Tclph. After treatment of T. castaneum larvae with carbofuran or dichlorvos insecticides, the transcript levels of Tcest4 and Tcest6 were significantly induced from 12 to 72 h. RNAi against Tcest4 or Tcest6 led to the higher mortality compared with the controls after the insecticides treatment, suggesting that these two genes play a vital role in detoxification of insecticides in T. castaneum. Furthermore, with insecticides exposure to Tclph knockdown beetles, the expression of Tcest4 was upregulated but Tcest6 was downregulated, indicating that beetles existed a compensatory response against the insecticides. Additionally, RNAi of Tcest6 resulted in 43% reductions in female egg laying and completely inhibited egg hatching, which showed the similar phenotype as that of Tclph knockdown. These results indicated that Tclph affected fecundity by positively regulating Tcest6 expression. Our findings will provide a new insight into the molecular mechanisms of Tclph involved in physiological functions in T. castaneum.
Collapse
Affiliation(s)
- L Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - S Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - W Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - Y Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| |
Collapse
|
41
|
Moreno-Salinas AL, Avila-Zozaya M, Ugalde-Silva P, Hernández-Guzmán DA, Missirlis F, Boucard AA. Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 2019; 13:700. [PMID: 31354411 PMCID: PMC6629964 DOI: 10.3389/fnins.2019.00700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.
Collapse
Affiliation(s)
- Ana L. Moreno-Salinas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Monserrat Avila-Zozaya
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - David A. Hernández-Guzmán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Antony A. Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
42
|
Regan SL, Hufgard JR, Pitzer EM, Sugimoto C, Hu YC, Williams MT, Vorhees CV. Knockout of latrophilin-3 in Sprague-Dawley rats causes hyperactivity, hyper-reactivity, under-response to amphetamine, and disrupted dopamine markers. Neurobiol Dis 2019; 130:104494. [PMID: 31176715 DOI: 10.1016/j.nbd.2019.104494] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Attention deficit hyperactivity disorder is a pervasive developmental disorder characterized by inattention, impulsivity, and hyperactivity and is 75-90% heritable. Latrophilin-3 (LPHN3; or ADGRL(3)) is associated with a subtype of ADHD, but how it translates to symptoms is unknown. LPHN3 is a synaptic adhesion G protein coupled receptor that binds to fibronectin leucine rich transmembrane protein 3 and teneurin-3 (FLRT3 and TEN-3). We created a null mutation of Lphn3 (KO) in Sprague-Dawley rats using CRISPR/Cas9 to delete exon-3. The KO rats had no effects on reproduction or survival but reduced growth. KO females showed catch-up weight gain whereas KO males did not. We tested WT and KO littermates for home-cage activity, anxiety-like behavior, acoustic startle response, and activity after amphetamine challenge. Expression of Lphn3-related genes, monoamines, and receptors were determined. Lphn3 KO rats showed persistent hyperactivity, increased acoustic startle, reduced activity in response to amphetamine relative to baseline, and female-specific reduced anxiety-like behavior. Expression of Lphn1, Lphn2, and Flrt3 by qPCR and their protein products by western-blot analysis showed no compensatory upregulation. Striatal tyrosine hydroxylase, aromatic L-amino acid decarboxylase (AADC), and the dopamine transporter were increased and dopamine D1 receptor (DRD1) and dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) decreased with no changes in DRD2, DRD4, vesicular monoamine transporter-2, N-methyl-d-aspartate (NMDA)-NR1, -NR2A, or -NR2B. LPHN3 is expressed in many brain regions but its function is largely unknown. Data from human, mouse, zebrafish, Drosophila and our new Lphn3 KO rat data collectively show that its disruption is significantly correlated with hyperactivity and associated striatal changes in dopamine markers.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, United States of America
| | - Jillian R Hufgard
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, United States of America
| | - Emily M Pitzer
- Neuroscience Graduate Program, University of Cincinnati, United States of America
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, United States of America
| | - Yueh-Chiang Hu
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, United States of America
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, United States of America.
| |
Collapse
|
43
|
Sita LV, Diniz GB, Horta-Junior JAC, Casatti CA, Bittencourt JC. Nomenclature and Comparative Morphology of the Teneurin/TCAP/ADGRL Protein Families. Front Neurosci 2019; 13:425. [PMID: 31130838 PMCID: PMC6510184 DOI: 10.3389/fnins.2019.00425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Luciane V. Sita
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanne B. Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José A. C. Horta-Junior
- Department of Anatomy, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Claudio A. Casatti
- Department of Basic Sciences, São Paulo State University, São Paulo, Brazil
| | - Jackson C. Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Center for Neuroscience and Behavior, Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Jackson C. Bittencourt,
| |
Collapse
|
44
|
Bieliński M, Lesiewska N, Junik R, Kamińska A, Tretyn A, Borkowska A. Dopaminergic Genes Polymorphisms and Prefrontal Cortex Efficiency Among Obese People - Whether Gender is a Differentiating Factor? Curr Mol Med 2019; 19:405-418. [PMID: 31032750 DOI: 10.2174/1566524019666190424143653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is a chronic condition associated with poorer cognitive functioning. Wisconsin Card Sorting Test (WCST) is a useful tool for evaluating executive functions. In this study, we assessed the association between dopaminergic gene polymorphisms: DAT1 (SLC6A3), COMTVal158Met, DRD4 (48-bp variable number of tandem repeats - VNTR) and WCST parameters to investigate the functions of the frontal lobes in obese individuals. OBJECTIVE To find the significant correlations between polymorphisms of DAT1, COMTVal158Met, DRD4 and executive functions in obese subjects. METHODS The analysis of the frequency of individual alleles was performed in 248 obese patients (179 women, 69 men). Evaluation of the prefrontal cortex function (operating memory and executive functions) was measured with the Wisconsin Card Sorting Test (WCST). Separate analyzes were performed in age subgroups to determine different activities and regulation of genes in younger and older participants. RESULTS Scores of WCST parameters were different in the subgroups of women and men and in the age subgroups. Regarding the COMT gene, patients with A/A and G/A polymorphisms showed significantly better WCST results in WCST_P, WCST_CC and WCST_1st. Regarding DAT1 men with L/L and L/S made less non-perseverative errors, which was statistically significant. In DRD4, significantly better WCST_1st results were found only in older women with S allele. CONCLUSION Obtained results indicate the involvement of dopaminergic transmission in the regulation of prefrontal cortex function. Data analysis indicates that prefrontal cortex function may ensue, from different elements such as genetic factors, metabolic aspects of obesity, and hormonal activity (estrogen).
Collapse
Affiliation(s)
- Maciej Bieliński
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Natalia Lesiewska
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Roman Junik
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Anna Kamińska
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Andrzej Tretyn
- Department of Biotechnology, Nicolaus Copernicus University in Torun, Poland
| | - Alina Borkowska
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
45
|
Mortimer N, Ganster T, O'Leary A, Popp S, Freudenberg F, Reif A, Soler Artigas M, Ribasés M, Ramos-Quiroga JA, Lesch KP, Rivero O. Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation. Neuropharmacology 2019; 156:107557. [PMID: 30849401 DOI: 10.1016/j.neuropharm.2019.02.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/05/2023]
Abstract
Adhesion G protein-coupled receptor L3 (ADGRL3, LPHN3) has putative roles in neuronal migration and synapse function. Various polymorphisms in ADGRL3 have been linked with an increased risk of attention deficit/hyperactivity disorder (ADHD). In this study, we examined the characteristics of Adgrl3-deficient mice in multiple behavioural domains related to ADHD: locomotive activity, impulsivity, gait, visuospatial and recognition memory, sociability, anxiety-like behaviour and aggression. Additionally, we investigated the effect of Adgrl3-depletion at the transcriptomic level by RNA-sequencing three ADHD-relevant brain regions: prefrontal cortex (PFC), hippocampus and striatum. Adgrl3-/- mice show increased locomotive activity across all tests and subtle gait abnormalities. These mice also show impairments across spatial memory and learning domains, alongside increased levels of impulsivity and sociability with decreased aggression. However, these alterations were absent in Adgrl3+/- mice. Across all brain regions tested, the numbers of genes found to exhibit differential expression was relatively small, indicating a specific pathway of action, rather than a broad neurobiological perturbation. Gene-set analysis of differential expression in the PFC detected a number of ADHD-relevant pathways including dopaminergic synapses as well as cocaine and amphetamine addiction. The Slc6a3 gene coding for the dopamine transporter was the most dysregulated gene in the PFC. Unexpectedly, several neurohormone/peptides which are typically only expressed in the hypothamalus were found to be dysregulated in the striatum. Our study further validates Adgrl3 constitutive knockout mice as an experimental model of ADHD while providing neuroanatomical targets for future studies involving ADGRL3 modified models. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
Affiliation(s)
- Niall Mortimer
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Tatjana Ganster
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Psychoneuropharmacology, Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Sandy Popp
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.
| |
Collapse
|
46
|
Dalla Vecchia E, Mortimer N, Palladino VS, Kittel-Schneider S, Lesch KP, Reif A, Schenck A, Norton WH. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr Genet 2019; 29:1-17. [PMID: 30376466 PMCID: PMC7654943 DOI: 10.1097/ypg.0000000000000211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Animal and cellular models are essential tools for all areas of biological research including neuroscience. Model systems can also be used to investigate the pathophysiology of psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In this review, we provide a summary of animal and cellular models for three genes linked to ADHD and ASD in human patients - CNTNAP2, ADGRL3, and PARK2. We also highlight the strengths and weaknesses of each model system. By bringing together behavioral and neurobiological data, we demonstrate how a cross-species approach can provide integrated insights into gene function and the pathogenesis of ADHD and ASD. The knowledge gained from transgenic models will be essential to discover and validate new treatment targets for these disorders.
Collapse
Affiliation(s)
- Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Niall Mortimer
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Viola S. Palladino
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - William H.J. Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
47
|
Kappel DB, Schuch JB, Rovaris DL, da Silva BS, Müller D, Breda V, Teche SP, S Riesgo R, Schüler-Faccini L, Rohde LA, Grevet EH, Bau CHD. ADGRL3 rs6551665 as a Common Vulnerability Factor Underlying Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Neuromolecular Med 2019; 21:60-67. [PMID: 30652248 DOI: 10.1007/s12017-019-08525-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are prevalent, frequently occur in comorbidity and share substantial genetic correlation. Previous evidence has suggested a role for the ADGRL3 gene in Attention-Deficit/Hyperactivity Disorder (ADHD) susceptibility in several samples. Considering ADGRL3 functionality in central nervous system development and its previous association with neurodevelopmental disorders, we aimed to assess ADGRL3 influence in early-onset ADHD (before 7 years of age) and Autism Spectrum Disorder (ASD). The sample comprises 187 men diagnosed with early-onset ADHD, 135 boys diagnosed with ASD and 468 male blood donors. We tested the association of an ADGRL3 variant (rs6551665) with both early-onset ADHD and ASD susceptibility. We observed significant associations between ADGRL3-rs6551665 on ADHD and ASD susceptibilities; we found that G-carriers were at increased risk of ADHD and ASD, in accordance with previous studies. The overall evidence from the literature, corroborated by our results, suggests that ADGRL3 might be involved in brain development, and genetic modifications related to it might be part of a shared vulnerability factor associated with the underlying neurobiology of neurodevelopmental disorders such as ADHD and ASD.
Collapse
Affiliation(s)
- Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitor Breda
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania P Teche
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil
| | - Luís A Rohde
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil. .,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
48
|
Hong JH, Hwang IW, Lim MH, Kwon HJ, Jin HJ. Genetic associations between ADHD and dopaminergic genes (DAT1 and DRD4) VNTRs in Korean children. Genes Genomics 2018; 40:1309-1317. [PMID: 30099719 DOI: 10.1007/s13258-018-0726-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023]
Abstract
It is well known that dopaminergic genes affect the development of attention deficit hyperactivity disorder (ADHD) in various populations. Many studies have shown that variable number tandem repeats (VNTRs) located within the 3'-untranslated region of DAT1 and in exon 3 of DRD4 are associated with ADHD development; however, these results were inconsistent. Therefore, we investigated the genetic association between two VNTRs and ADHD in Korean children. We determined the VNTRs using PCR. We examined genotype and allele frequency differences between the experimental and control groups, along with the odds ratios, using Chi square and exact tests. We observed a significant association between the children with ADHD and the control group in the 10R/10R genotype of DAT1 VNTRs (p = 0.025). In addition, the 11R allele of DAT1 VNTRs showed a higher frequency in the control group than in the ADHD group (p = 0.023). Also, the short repeat (without 11R) and long repeat alleles (including 11R) were associated with ADHD (p < 0.05). The analysis of DRD4 VNTRs revealed that the 2R allele is associated with ADHD (p = 0.025). A significant result was also observed in long and short repeats (p < 0.05). Additionally, ADHD subtypes showed that the DRD4 VNTRs are associated with combined and hyperactive-impulsive subtype groups (p < 0.05). Therefore, our results suggest that DAT1 VNTRs and DRD4 VNTRs play a role in the genetic etiology of ADHD in Korean children.
Collapse
Affiliation(s)
- Jun Ho Hong
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea
| | - In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Myung Ho Lim
- Department of Psychology and Psychotherapy, College of Health Sciences, Dankook University, Cheonan, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Ho Jang Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea.
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea.
| |
Collapse
|
49
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
50
|
Dark C, Homman-Ludiye J, Bryson-Richardson RJ. The role of ADHD associated genes in neurodevelopment. Dev Biol 2018; 438:69-83. [DOI: 10.1016/j.ydbio.2018.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|