1
|
Franco-Fuquen P, Figueroa-Aguirre J, Martínez DA, Moreno-Cortes EF, Garcia-Robledo JE, Vargas-Cely F, Castro-Martínez DA, Almaini M, Castro JE. Cellular therapies in rheumatic and musculoskeletal diseases. J Transl Autoimmun 2025; 10:100264. [PMID: 39931050 PMCID: PMC11808717 DOI: 10.1016/j.jtauto.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
A substantial proportion of patients diagnosed with rheumatologic and musculoskeletal diseases (RMDs) exhibit resistance to conventional therapies or experience recurrent symptoms. These diseases, which include autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus, are marked by the presence of autoreactive B cells that play a critical role in their pathogenesis. The persistence of these autoreactive B cells within lymphatic organs and inflamed tissues impairs the effectiveness of B-cell-depleting monoclonal antibodies like rituximab. A promising therapeutic approach involves using T cells genetically engineered to express chimeric antigen receptors (CARs) that target specific antigens. This strategy has demonstrated efficacy in treating B-cell malignancies by achieving long-term depletion of malignant and normal B cells. Preliminary data from patients with RMDs, particularly those with lupus erythematosus and dermatomyositis, suggest that CAR T-cells targeting CD19 can induce rapid and sustained depletion of circulating B cells, leading to complete clinical and serological responses in cases that were previously unresponsive to conventional therapies. This review will provide an overview of the current state of preclinical and clinical studies on the use of CAR T-cells and other cellular therapies for RMDs. Additionally, it will explore potential future applications of these innovative treatment modalities for managing patients with refractory and recurrent manifestations of these diseases.
Collapse
Affiliation(s)
- Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juana Figueroa-Aguirre
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - David A. Martínez
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Eider F. Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Fabio Vargas-Cely
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | | | - Mustafa Almaini
- Rheumatology, Allergy & Clinical Immunology Division, Mafraq Hospital, United Arab Emirates
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
2
|
David DB, Mezence J, Lange CR, Menges D, Carette C. Antidiabetic Drugs Consumption in France Over a Decade: An Observational Study. Clin Ther 2025; 47:371-376. [PMID: 40087082 DOI: 10.1016/j.clinthera.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
AIMS The prevalence of type 2 diabetes has increased in France over the past decade, with changes in available pharmacologic treatments. This study aimed to assess trends in the sales of antidiabetic drugs in France over the last decade. METHODS This retrospective cohort study used data from French national health insurance databases. Defined daily doses per 1000 inhabitants per day (DDD/TID), expenditures associated, and the proportion of the population receiving treatment were analyzed from January 2013 to December 2022. RESULTS Between 2013 and 2022, the proportion of patients purchasing at least one antidiabetic drug per month increased from 3.07% to 4.12%, with average monthly consumption rising from 82.62 to 101.68 DDD/TID. Biguanides were the most sold antidiabetic drug, followed by sulfonylureas and insulin. The greatest increases in consumption and expenditures were observed for GLP-1 analogs and SGLT2 inhibitors. CONCLUSION The consumption and cost of antidiabetic drugs increased with the diabetes prevalence. GLP-1 analogs and SGLT2 inhibitors accounted for the main growth, reflecting their growing clinical adoption and evidence of efficacy, while sales of sulfonylureas and DPP4 inhibitors remained substantial despite concerns regarding their benefit-risk profiles. In 2022, expenditures for GLP-1 analogs surpassed insulin. These findings have implications for healthcare policy and resource allocation planning.
Collapse
Affiliation(s)
- De Bandt David
- Family Medicine Department, Simon Veil Health Science UFR, University of Versailles Saint Quentin, Saint Quentin, France; Center for Research in Epidemiology and Population Health, (INSERM U 1018), University of Versailles, Saint-Quentin-en-Yvelines, University Paris-Sud, Villejuif, France.
| | - Johanna Mezence
- Family Medicine Department, Simon Veil Health Science UFR, University of Versailles Saint Quentin, Saint Quentin, France
| | - Claire Rives Lange
- Nutrition Department, Hopital Européen Georges Pompidou, AP-HP, Paris Cité University, Paris, France; INSERM, UMR1153, Methods Team, Epidemiology and Biostatistics Sorbonne Paris Cité Center, Paris, France
| | - Dominik Menges
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland
| | - Claire Carette
- Nutrition Department, Hopital Européen Georges Pompidou, AP-HP, Paris Cité University, Paris, France; CIC1418, Hopital Européen Georges Pompidou, AP-HP, Paris Cité University, Paris, France
| |
Collapse
|
3
|
Jiang Y, Xu Z, Wu Y, Li X, Ling J, Chen Y, Zhu Z, Yang P, Liu X, Zhang D, Liu J, Yin X, Zhang J, Yu P. Exploring the progress and trends of immunotherapy for type 1 diabetes: A comprehensive bibliometric analysis spanning nearly two decades. Obes Rev 2025; 26:e13888. [PMID: 39871677 DOI: 10.1111/obr.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 10/21/2024] [Indexed: 01/29/2025]
Abstract
INTRODUCTION Immunotherapy is a crucial treatment for type 1 diabetes (T1D), yet analyses focusing on research priorities and trends in this field are limited. Therefore, this study employs bibliometric methods to systematically explore the current research status of immunotherapy for T1D. METHODS Based on the Web of Science Core Collection Database, 1573 articles and review articles related to immunotherapy for T1D published from 2004 to 2023 were screened for bibliometric analysis. VOSviewer, CiteSpace, and R software were applied to comprehensively analyze the number of publications, journals, countries, authors, institutions, keywords, and references. RESULTS In the past two decades, the global annual publication rate has seen a significant increase of 238.24%. Almost 40% of all publications have appeared in the last 5 years, accounting for over 50% of total citations. Journals such as Diabetes, Journal of Autoimmunity and Frontiers in Immunology have exerted substantial influence. Collaboration across nations has been notably strong, with the United States leading the way. The University of Florida is the most productive institution. Terms like "nivolumab," "ipilimumab," "pembrolizumab," and "immune checkpoint inhibitor(s)" gain considerable traction. The majority of research has clustered around themes such as immunomodulation, autoimmune diseases, immune checkpoint inhibitors, mesenchymal stem cells, and cell therapy. Precision medicine, immune checkpoint inhibitors, and nanotechnology are trending focal points in contemporary research. CONCLUSION The outcomes of the study are instrumental in enabling scholars to comprehend the evolving trajectory of immunotherapeutic approaches for T1D and facilitate the swift recognition of emerging research pathways.
Collapse
Affiliation(s)
- Yixin Jiang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, The Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinglei Li
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Zhao X, Xue W, Ding W, Qiao Y, Chu X, Qiu Y, Tang M, Sun D, Fu X. A novel injectable sodium alginate/chitosan/sulfated bacterial cellulose hydrogel as biohybrid artificial pancreas for real-time glycaemic regulation. Carbohydr Polym 2025; 354:123323. [PMID: 39978905 DOI: 10.1016/j.carbpol.2025.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/22/2025]
Abstract
Type 1 diabetes mellitus (T1DM) are characterized by blood glucose elevation with pancreatic β cells deficiency. As a safe alternative to frequent subcutaneous insulin injection, pancreatic β cell transplantation provides a promising therapeutic option for blood glucose control in T1DM. However, pancreatic β cell transplantation faces intractable challenges of the poor viability and severe host immune rejection. Therefore, a novel approach capable of improving the poor oxygen/nutrients supply and severe host immune rejection is highly desired. Herein, a novel biohybrid artificial pancreas, presenting glucose-dependent insulin release behavior, is constructed via pancreatic β cells encapsulating in a hydrogel scaffold. The hydrogel scaffold is made of the commixture of sodium alginate (SA), chitosan (CS) and sulfated bacterial cellulose (SBC). The biocompatible three-dimensional (3D) hydrogels protected pancreatic β cells from immune response but also allowed the exchange of nutrients and insulin. As a result of the synergistic effect, the biohybrid artificial pancreas can reverse the hyperglycemia and achieve sustained glycemic control for at least 30 days in diabetic mice. Collectively, we consider that this biohybrid artificial pancreas with an elaborate structure could provide an effective option for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China; The Fourth Affiliated Hospital of Nanjing Medical University, China
| | - Wei Xue
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weixiao Ding
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yalei Qiao
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xuehui Chu
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yudong Qiu
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Tang
- Department of Imaging, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Xiao Fu
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| |
Collapse
|
5
|
Tang S, Feng K, Yang R, Cheng Y, Shi N, Zhang H, Wei Z, Ma Y. A dual-action strategy: Wound microenvironment responsive hydrogel and exosome-mediated glucose regulation enhance inside-out diabetic wound repair. J Control Release 2025; 382:113716. [PMID: 40210123 DOI: 10.1016/j.jconrel.2025.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Sustained hyperglycemia induces complex pathological microenvironment in diabetic wounds, significantly hindering wound healing. Most current therapeutic approaches (e.g., hydrogel dressings) have paid little attention to the effect of blood glucose levels on diabetic wound healing. In this study, a synergetic therapeutic strategy including a wound microenvironment responsive, multifunctional hydrogel and the exosome-mediated glucose regulation is developed for diabetic wound treatment. First, a gelatin-dopamine (Gel-DA) crosslinked hyaluronic acid-phenylboronic acid (HA-PBA) hydrogel (GDHP) is constructed with good injectable, self-healing, and adhesive abilities. Such GDHP hydrogel not only can effectively relieve oxidative stress and reduce inflammation, but also promote keratinocyte migration. Then, ciprofloxacin hydrochloride (CIP·H) is loaded to prepare the GDHPC hydrogel that may respond to diabetic wound microenvironment (e.g., low pH, high glucose and reactive oxygen species) and degrade for controlled release of CIP·H, showing on-demand antibacterial properties. Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-exos) are administered via tail vein injection in diabetic mice, which may repair injured pancreatic islets by modulating the pancreatic immune microenvironment, thus promoting insulin secretion and further reducing blood glucose levels. By applying this synergetic therapeutic strategy, the full-thickness cutaneous wounds in type 1 diabetic mice heal well and quickly compared to that treated with the GDHPC hydrogel and the hucMSC-exos alone. This promotion effect on wound healing may associate with reducing inflammation and promoting angiogenesis. This study sheds new light on the development of a dual-action strategy that can effectively maintain glucose homeostasis, improve the wound microenvironment, and consequently promote inside-out repair of diabetic wounds, offering a promising therapeutic avenue for future diabetic wound treatment.
Collapse
Affiliation(s)
- Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Keru Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rui Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yang Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
6
|
Foster TP, Bruggeman BS, Haller MJ. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025; 85:457-473. [PMID: 39873914 PMCID: PMC11949705 DOI: 10.1007/s40265-025-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring. That said, immunotherapies are widely used to interdict autoimmune and autoinflammatory diseases and are emerging as potential therapeutics seeking the preservation of β-cell function among those with T1DM. In the past 4 decades of diabetes research, several immunomodulatory therapies have been explored, culminating with the US Food and Drug Administration approval of teplizumab to delay stage 3 (clinical) onset of T1DM. Clinical trials seeking to prevent or reverse T1DM by repurposing immunotherapies approved for other autoimmune conditions and by exploring new therapeutics are ongoing. Collectively, these efforts have the potential to transform the future of diabetes care. We encapsulate the past 40 years of immunotherapy trials, take stock of our successes and failures, and chart paths forward in this new age of clinically available immune therapies for T1DM.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
| | - Brittany S Bruggeman
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Song H, Li J, Yang H, Kong B, Xu Y, Li X, Li H. Enhancement of functional insulin-producing cell differentiation from embryonic stem cells through MST1-silencing. Diabetol Metab Syndr 2025; 17:93. [PMID: 40108649 PMCID: PMC11924671 DOI: 10.1186/s13098-025-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Islet β-cell transplantation offers a promising treatment for repairing pancreatic damage in diabetes, with the transcription factor pancreatic duodenal homeobox-1 (PDX1) being crucial for β-cell function and insulin secretion. Mammalian threonine protein kinase (MST1) is recognized for its role in regulating PDX1 during cell apoptosis, yet its function in embryonic stem cell (ESC) differentiation into insulin-producing cells (IPCs) remain underexplored. This study investigated the effect of MST1-silencing on the differentiation of ESC into IPCs. METHODS ESCs were transfected utilizing a recombinant MST1-silencing lentiviral vector (shMST1). qRT-PCR, immunofluorescence, flow cytometry, western blot and ELISA assays were performed to examine function of IPCs in vitro. Furthermore, these IPCs were transplanted into type 1 diabetic mellitus (T1DM) rats. Measuring the changes in blood glucose concentration of animals before and after IPCs transplantation. Intraperitoneal glucose tolerance test (IPGT) was used to determine the regulatory effect of IPCs transplantation on blood glucose stimulation and immunohistochemistry was used to detect the expression of pancreatic Insulin protein in T1DM rats. RESULTS It was observed that IPCs from the shMST1 group exhibited notably improvement in insulin secretion and glucose responsiveness, suggesting MST1 suppression may enhance IPC maturity. The rats demonstrated significant normalization of blood sugar levels and increased insulin levels, akin to non-diabetic controls. This implies that MST1-silencing not only augments IPC function in vitro but also their therapeutic efficacy in vivo. CONCLUSIONS The findings indicate that targeting MST1 offers a novel approach for deriving functionally mature IPCs from ESCs, potentially advancing cell replacement therapies for diabetes. This research underscores the importance of developing IPCs with competent insulin secretion for diabetes treatment in vitro.
Collapse
Affiliation(s)
- Hui Song
- Basic Medical School of Ningxia Medical University, Yinchuan, 750004, China
- Institute of Endocrinology, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiarui Li
- Basic Medical School of Ningxia Medical University, Yinchuan, 750004, China
- Institute of Endocrinology, Ningxia Medical University, Yinchuan, 750004, China
| | - Haohao Yang
- Basic Medical School of Ningxia Medical University, Yinchuan, 750004, China
- Institute of Endocrinology, Ningxia Medical University, Yinchuan, 750004, China
| | - Bin Kong
- Basic Medical School of Ningxia Medical University, Yinchuan, 750004, China
| | - Yu Xu
- Basic Medical School of Ningxia Medical University, Yinchuan, 750004, China
- Institute of Endocrinology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiong Li
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China.
| | - Hui Li
- Basic Medical School of Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
8
|
Codazzi V, Salvatore V, Ragogna F, Marzinotto I, Anselmo A, Baldoni N, Pastore MR, Martinenghi S, Stabilini A, Bosi E, Giustina A, Piemonti L, Libman I, Ismail HM, Redondo MJ, Lampasona V, Monti P, Giovenzana A, Petrelli A. Metabolic, genetic and immunological features of relatives of type 1 diabetes patients with elevated insulin resistance. J Endocrinol Invest 2025; 48:765-775. [PMID: 39656436 PMCID: PMC11876269 DOI: 10.1007/s40618-024-02497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 03/04/2025]
Abstract
PURPOSE Insulin resistance plays a pivotal role in the preclinical stages of type 1 diabetes (T1D). OBJECTIVE This study aims at exploring the genetic, metabolic, and immunological features associated with insulin resistance among individuals at risk of developing T1D. METHODS We retrospectively selected relatives of individuals with T1D from participants in the TrialNet Pathway to Prevention study. They were categorized into two groups: high-H (n = 27) and low-H (n = 30), based on the upper and lower quartiles of insulin resistance assessed using the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). Genetic predisposition was determined using the T1D Genetic Risk Score 1 (GRS1). Additionally, glucose control was evaluated through an oral glucose tolerance test and levels of metabolic hormones and inflammatory cytokines were measured in the serum. Flow cytometry analysis was employed to assess frequency and phenotype of islet-specific CD8 T cells. RESULTS While GRS1 were similar between the low-H and high-H groups, high-H individuals displayed a distinct metabolic profile, characterized by compensatory hyperinsulinemia, even while maintaining normoglycemia. Circulating cytokine levels were similar between the two groups. However, immune profiling revealed a central memory and activated profile of GAD65-specific CD8 T cells, along with an increased frequency of insulin-specific CD8 T cells in high-H individuals. The enrichment in insulin-specific CD8 T cells was independent of body mass. CONCLUSION These findings highlight the intricate interplay between insulin resistance, genetic factors, and immune activation in the context of T1D susceptibility, indicating potential connections between insulin resistance and immune responses specific to islet cells.
Collapse
Affiliation(s)
- V Codazzi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - V Salvatore
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - F Ragogna
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - I Marzinotto
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Anselmo
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - N Baldoni
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - M R Pastore
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - S Martinenghi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Stabilini
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - E Bosi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Giustina
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - L Piemonti
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - I Libman
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - H M Ismail
- Indiana University School of Medicine, Indianapolis, USA
| | - M J Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, USA
| | - V Lampasona
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - P Monti
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Giovenzana
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Petrelli
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy.
- University of Milan and Pio Albergo Trivulzio, Milan, Italy.
| |
Collapse
|
9
|
Huber MK, Widener AE, Cuaycal AE, Smurlick D, Butterworth EA, Lenchik NI, Chen J, Beery M, Hiller H, Verney E, Kusmartseva I, Rupnik MS, Campbell-Thompson M, Gerling IC, Atkinson MA, Mathews CE, Phelps EA. Beta cell dysfunction occurs independently of insulitis in type 1 diabetes pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.29.630665. [PMID: 39763971 PMCID: PMC11703223 DOI: 10.1101/2024.12.29.630665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The loss of insulin secretory function associated with type 1 diabetes (T1D) is attributed to the immune-mediated destruction of beta cells. Yet, at onset of T1D, patients often have a significant beta cell mass remaining while T cell infiltration of pancreatic islets is sporadic. Thus, we investigated the hypothesis that the remaining beta cells in T1D are largely dysfunctional using live human pancreas tissue slices prepared from organ donors with recently diagnosed T1D. Beta cells in slices from donors with T1D had significantly diminished Ca2+ mobilization and insulin secretion responses to glucose. Beta cell function was equally impaired in T cell-infiltrated and non-infiltrated islets. Fixed tissue staining and gene expression profiling of laser-capture microdissected islets revealed significant decreases of proteins and genes in the glucose stimulus secretion coupling pathway. From these data, we posit that functional defects occur in the remaining mass of beta cells during human T1D pathogenesis.
Collapse
Affiliation(s)
- Mollie K. Huber
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Adrienne E. Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Alexandra E. Cuaycal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, UF College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Dylan Smurlick
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Elizabeth A. Butterworth
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Nataliya I. Lenchik
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Maria Beery
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Helmut Hiller
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Ellen Verney
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea University—European Center Maribor, Maribor, Slovenia
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Ivan C. Gerling
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, UF College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Edward A. Phelps
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2025; 27:259-278. [PMID: 39755978 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Zhang Y, Li M, Liu H, Fan Y, Liu HH. The application of procyanidins in diabetes and its complications: a review of preclinical studies. Front Pharmacol 2025; 16:1532246. [PMID: 39995417 PMCID: PMC11847907 DOI: 10.3389/fphar.2025.1532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus (DM) and its various complications, including diabetic nephropathy, retinopathy, neuropathy, cardiovascular disease, and ulcers, pose significant challenges to global health. This review investigates the potential of procyanidins (PCs), a natural polyphenolic compound, in preventing and managing diabetes and its complications. PCs, recognized for their strong antioxidant, anti-inflammatory, and anti-hyperglycemic properties, play a crucial role in reducing oxidative stress and enhancing endothelial function, which are essential for managing diabetic complications. This review elucidates the molecular mechanisms by which PCs improve insulin sensitivity and endothelial health, thereby providing protection against the various complications of diabetes. The comprehensive analysis underscores the promising therapeutic role of PCs in diabetes care, indicating the need for further clinical studies to confirm and leverage their potential in comprehensive diabetes management strategies.
Collapse
Affiliation(s)
- Yongchuang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengna Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Haoyuan Liu
- Rehabilitation Department, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yongfu Fan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huan Huan Liu
- International institute for Traditional Chinese Medicine, Guanzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Terracina S, Caronti B, Lucarelli M, Francati S, Piccioni MG, Tarani L, Ceccanti M, Caserta M, Verdone L, Venditti S, Fiore M, Ferraguti G. Alcohol Consumption and Autoimmune Diseases. Int J Mol Sci 2025; 26:845. [PMID: 39859557 PMCID: PMC11766456 DOI: 10.3390/ijms26020845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alcohol is the second-most misused substance after tobacco. It has been identified as a causal factor in more than 200 diseases and 5.3% of all deaths and is associated with significant behavioral, social, and economic difficulties. As alcohol consumption may modulate the immune system's regulatory mechanisms to avoid attacking the body's tissues, it has been proven to play a dichotomic role in autoimmune diseases (ADs) based on the quantity of consumption. In this review, we report updated evidence on the role of alcohol in ADs, with a focus on alcohol addiction and the human biological immune system and the relationship between them, with alcohol as a risk or protective factor. Then, in this narrative review, we report the main evidence on the most studied ADs where alcohol represents a key modulator, including autoimmune thyroiditis, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, diabetes, allergic rhinitis, and primary biliary cholangitis. Alcohol at low-moderate dosages seems mostly to have a protective role in these diseases, while at higher dosages, the collateral risks surpass possible benefits. The specific mechanisms by which low-to-moderate alcohol intake relieves AD symptoms are not yet fully understood; however, emerging studies suggest that alcohol may have a systemic immunomodulatory effect, potentially altering the balance of anti-inflammatory innate and adaptive immune cells, as well as cytokines (via the NF-κB or NLRP3 pathways). It might influence the composition of the gut microbiome (increasing amounts of beneficial gut microbes) and the production of their fatty acid metabolites, such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs), as well as elevated concentrations of acetate, high-density lipoprotein (HDL), and nitric oxide (NO). Unfortunately, a definite acceptable daily intake (ADI) of ethanol is complicated to establish because of the many mechanisms associated with alcohol consumption such that despite the interesting content of these findings, there is a limit to their applicability and risks should be weighed in cases of alcoholic drinking recommendations. The aim of future studies should be to modulate those beneficial pathways involved in the alcohol-protective role of ADs with various strategies to avoid the risks associated with alcohol intake.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.G.P.); (L.T.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.G.P.); (L.T.)
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, 00185 Rome, Italy;
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy; (M.C.); (L.V.)
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy; (M.C.); (L.V.)
| | - Sabrina Venditti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), c/o Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| |
Collapse
|
13
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Wang Z, Gong M, Fang Y, Yuan H, Zhang C. Reconstruction characteristics of gut microbiota from patients with type 1 diabetes affect the phenotypic reproducibility of glucose metabolism in mice. SCIENCE CHINA. LIFE SCIENCES 2025; 68:176-188. [PMID: 39285046 DOI: 10.1007/s11427-024-2658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 01/03/2025]
Abstract
The human microbiota-associated (HMA) mice model, especially the germ-free (GF)-humanized mice, has been widely used to probe the causal relationships between gut microbiota and human diseases such as type 1 diabetes (T1D). However, most studies have not clarified the extent to which the reconstruction of the human donor microbiota in recipient mice correlates with corresponding phenotypic reproducibility. In this study, we transplanted fecal microbiota from five patients with T1D and four healthy people into GF mice, and microbiota from each donor were transplanted into 10 mice. Mice with similar microbiota structure to the donor exhibited better phenotypic reproducibility. The characteristics of the microbial community assembly of donors also influenced the phenotypic reproducibility in mice, and individuals with a higher proportion of stochastic processes showed more severe disorders. Microbes enriched in patients with T1D had a stronger colonization potential in mice with impaired glucose metabolism, and microbiota functional features related to T1D were better reproduced in these mice. This indicates that assembly traits and colonization efficacy of microbiota influence phenotypic reproducibility in GF-humanized mice. Our findings provide important insights for using HMA mice models to explore links between gut microbiota and human diseases.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Chen L, Hou T, Ge F, Jiang H, Liu F, Tian J, Zheng M. Idiopathic Pulmonary Fibrosis Is Associated With Type 1 Diabetes: A Two-Sample Mendelian Randomization Study. J Gene Med 2025; 27:e70008. [PMID: 39822044 DOI: 10.1002/jgm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unclear; previous studies revealed the underlying connection between IPF and diabetes, but there is no consensual opinion. This study is aimed at examining the association between Type 1 diabetes (T1D) and IPF using Mendelian randomization (MR). METHOD In our two-sample MR study, we selected single nucleotide polymorphisms (SNPs) that are strongly associated with T1D in a genome-wide association study (GWAS) from IEU (dataset: ebi-a-GCST005536) and obtained their corresponding effect estimates on T1D risk in an IPF GWAS from IEU (dataset: finn-b-IPF). We conducted a multivariable Mendelian randomization (MVMR) analysis to eliminate the interference of aging. RESULT In the outcome of inverse-variance weighted (IVW) method, T1D showed a promoting effect on IPF (odds ratio (OR): 1.132, p = 0.005). The statistics passed the MR-PRESSO test, and no outliers were observed (global test p = 0.238). MVMR study was performed, and the aging-adjusted result remains almost the same (OR = 1.132, OR_95% CI: 1.034-1.239, p = 0.007). CONCLUSION Our study shows a causal relation between T1D and IPF; further investigation should be conducted.
Collapse
Affiliation(s)
- Leyan Chen
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Tianzhichao Hou
- Department of Medical Biophysics, Princess Margaret Cancer Centre-University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Feifan Ge
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Huachi Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingfeng Zheng
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
16
|
Khaiz Y, Al Idrissi N, Bakkali M, Ahid S. Association of the Immunity Genes with Type 1 Diabetes Mellitus. Curr Diabetes Rev 2025; 21:38-46. [PMID: 38310481 DOI: 10.2174/0115733998275617231218101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/05/2024]
Abstract
Type 1 diabetes mellitus (T1D) is a complicated illness marked by the death of insulin- producing pancreatic beta cells, which ultimately leads to insulin insufficiency and hyperglycemia. T lymphocytes are considered to destroy pancreatic beta cells in the etiology of T1D as a result of hereditary and environmental factors. Although the latter factors are very important causes of T1D development, this disease is very genetically predisposed, so there is a significant genetic component to T1D susceptibility. Among the T1D-associated gene mutations, those that affect genes that encode the traditional Human Leukocyte Antigens (HLA) entail the highest risk of T1D development. Accordingly, the results of decades of genetic linkage and association studies clearly demonstrate that mutations in the HLA genes are the most associated mutations with T1D. They can, therefore, be used as biomarkers for prediction strategies and may even prove to be of value for personalized treatments. Other immunity-associated genetic loci are also associated with higher T1D risk. Indeed, T1D is considered an autoimmune disease. Its prevalence is rising globally, especially among children and young people. Given the global rise of, and thus interest in, autoimmune diseases, here we present a short overview of the link between immunity, especially HLA, genes and T1D.
Collapse
Affiliation(s)
- Youssef Khaiz
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco
| | - Najib Al Idrissi
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco
| | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Fuentenueva S/N, 18071, Granada, Spain
| | - Samir Ahid
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco
- Pharmaco-Epidemiology and Pharmaco-Economics Research Team, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| |
Collapse
|
17
|
Gonzalez GC, Li CM, Pasolini I, Pete SI, Verheyen C, Vignolo SM, De Toni T, Stock AA, Tomei AA. High-Yield Generation of Glucose-Responsive Pseudoislets From Murine Insulinoma Cells for In Vitro Studies and Longitudinal Monitoring of Graft Survival In Vivo. Cell Transplant 2025; 34:9636897251315123. [PMID: 39881520 PMCID: PMC11780636 DOI: 10.1177/09636897251315123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Compared to primary pancreatic islets, insulinoma cell-derived 3D pseudoislets offer a more accessible, consistent, renewable, and widely applicable model system for optimization and mechanistic studies in type 1 diabetes (T1D). Here, we report a simple and efficient method for generating 3D pseudoislets from MIN6 and NIT-1 murine insulinoma cells. These pseudoislets are homogeneous in size and morphology (~150 µm), exhibit functional glucose-stimulated insulin secretion (GSIS) up to 18 days (NIT-1) enabling long-term studies, are produced in high yield [>35,000 Islet Equivalence from 30 ml culture], and are suitable for both in vitro and in vivo studies, including for encapsulation studies. To enable non-invasive longitudinal monitoring of graft survival in vivo, we transduced NIT-1 cells with green fluorescent protein-luciferase and confirmed comparable morphology, viability, and GSIS to untransduced cells in vitro. After subcutaneous implantation, we show capability to monitor graft survival in immunodeficient mice, recurrence of autoimmunity in non-obese diabetic mice, and allorejection in C57BL/6 mice. Overall, this platform provides an accessible protocol for generating high yields of 3D pseudoislets and non-invasive longitudinal monitoring of graft survival in different models offer advantages over primary islets for optimization and mechanistic studies of β cell biology, drug discovery, T1D pathogenesis and prevention, and β cell transplantation.
Collapse
Affiliation(s)
- Grisell C. Gonzalez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chris M. Li
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ilaria Pasolini
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Sophia I. Pete
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Connor Verheyen
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Sofia M. Vignolo
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Teresa De Toni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Aaron A. Stock
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Alice A. Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Kondo T, Senokuchi T, Morinaga J, Miyashita A, Yano M, Takeda H, Nishida K, Kubota N. The benefits and accuracy of real-time continuous glucose monitoring in children and adolescents with type 1 diabetes attending a summer camp. J Diabetes Investig 2025; 16:154-162. [PMID: 39474860 DOI: 10.1111/jdi.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
Abstract
AIMS/INTRODUCTION This study evaluated the usability, satisfaction, and accuracy of a real-time continuous glucose monitoring (rt-CGM) in children and adolescents with type 1 diabetes (T1D) attending a summer camp. MATERIALS AND METHODS Seven children and adolescents with T1D (camper) and 31 of healthcare providers (HCPs) participating in a 2-day summer camp in Kumamoto, Japan were enrolled. The usability and satisfaction were evaluated by tailored questionnaire. The accuracy of rt-CGM was evaluated using self-monitoring of blood glucose (BG) and sensor glucose (SG) values before or after (off camp) and during (on camp) the camp. RESULTS The score of the usefulness of rt-CGM showed 3.29 ± 0.90 in campers and 4.23 ± 0.87 in HCPs (P = 0.017). The degree of recommendation score for rt-CGM was 3.29 ± 1.11 in campers and 4.23 ± 0.79 in HCPs (P = 0.013). Time in range (TIR) off camp was 45.9% and that on camp was 57.0%. Time above range (TAR) off camp was 53.4% and that on camp was 42.4%. The mean absolute relative difference (MARD) off camp was 19.7% ± 25.2%, whereas that on camp was 16.0% ± 14.8% (P = 0.367). Clinically acceptable zones of the error grid analyses were approximately 96% in total. CONCLUSIONS Rt-CGM exhibited higher usability and recommendation scores in HCPs than those in campers. This may be related to relatively lower accuracy in rt-CGM. Overall usability and recommendation are clinically satisfactory, but due to relatively low accuracy, no decision should be made based on a single, non-verified SG value alone.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Diabetes, Metabolism and Endocrinology, Aso Medical Center, Aso, Japan
| | - Takafumi Senokuchi
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Kumamoto, Japan
| | - Jun Morinaga
- Department of Clinical Investigation, Kumamoto University Hospital, Kumamoto, Japan
| | - Azusa Miyashita
- Department of Clinical Investigation, Kumamoto University Hospital, Kumamoto, Japan
| | - Mayumi Yano
- Division of Diabetology, Morinoki Clinic, Kumamoto, Japan
| | - Haruo Takeda
- Division of Diabetology, Misato Rehabilitation Clinic, Kumamoto, Japan
| | - Kenro Nishida
- Division of Diabetes, Endocrinology and Metabolism, Kumamoto Chuo Hospital, Kumamoto, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
He K, An F, Zhang H, Yan D, Li T, Wu J, Wu R. Akkermansia muciniphila: A Potential Target for the Prevention of Diabetes. Foods 2024; 14:23. [PMID: 39796314 PMCID: PMC11720440 DOI: 10.3390/foods14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Akkermansia muciniphila, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of A. muciniphila abundance. Thus, A. muciniphil and its components, including the outer membrane protein Amuc_1100, A. muciniphila-derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus. Diabetes treatments that rely on altering changes in A. muciniphila abundance are also reviewed, including the identification of A. muciniphila active ingredients, and dietary and pharmacological interventions for A. mucinihila abundance. The potential and challenges of using A. muciniphila are also highlighted, and it is anticipated that this work will serve as a reference for more in-depth studies on A. muciniphila and diabetes development, as well as the creation of new therapeutic targets by colleagues domestically and internationally.
Collapse
Affiliation(s)
- Kairu He
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Danli Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| |
Collapse
|
20
|
Wang YN, Li R, Huang Y, Chen H, Nie H, Liu L, Zou X, Zhong J, Zheng B, Gong Q. The role of B cells in the pathogenesis of type 1 diabetes. Front Immunol 2024; 15:1450366. [PMID: 39776900 PMCID: PMC11703732 DOI: 10.3389/fimmu.2024.1450366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies. In non-obese diabetic (NOD) mice, the absence of B cells prevents the development of T1D, and B-cell depletion can even restore the function of pancreatic β cells, emphasizing their involvement in the development of T1D. Naturally, besides pathogenic B cells, regulatory B cells (Bregs) might have a protective function in T1D. This article examines the mechanisms behind B-cell tolerance and the defects in B-cell tolerance checkpoints in T1D. We explored possible functions of B cells in T1D, including the role of islet autoantibodies in T1D, T-B cell interactions, and the role of Bregs in the pathogenesis of T1D. We also summarized the advances of B cell-targeted therapy, exploring new methods for intervention and treatment of T1D.
Collapse
Affiliation(s)
- Ya-nan Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Ruihua Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yaxuan Huang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Lian Liu
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Xiaoting Zou
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
21
|
Yu Y, Yang X, Deng J, Wu J, Bai S, Yu R. How do immune cells shape type 1 diabetes? Insights from Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1402956. [PMID: 39777226 PMCID: PMC11703746 DOI: 10.3389/fendo.2024.1402956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Objective The role of immune cells in type 1 diabetes (T1D) is unclear. The aim of this study was to assess the causal effect of different immune cells on T1D using Mendelian randomization (MR). Methods A dataset of immune cell phenotypes (numbered from GCST0001391 to GCST0002121) was obtained from the European Bioinformatics Institute, while a T1D dataset (numbered finngen_R10_T1D) was obtained from FinnGen. Single nucleotide polymorphisms meeting the conditions were screened stepwise according to the assumptions of association, independence, and exclusivity. Inverse variance weighted was used as the main method for the MR analysis. MR-Egger was used to assess the horizontal pleiotropy of the results. Cochran's Q and the leave-one-out method were respectively used for the heterogeneity analysis and the sensitivity analysis of the results. Results MR analysis showed that effector memory (EM) double-negative (DN) (CD4-CD8-) %T cells [odds ratio (OR) = 1.157, 95% confidence interval (95% CI) = 1.016-1.318, p = 0.028, false discovery rate (FDR) = 0.899], EM CD8br %T cells (OR = 1.049, 95% CI = 1.003-1.098, p = 0.037, FDR = 0.902), CD28 on CD28+CD45RA+CD8br (OR = 1.334, 95% CI = 1.132-1.571, p = 0.001, FDR = 0.044), IgD+CD38dim %lymphocytes (OR = 1.045, 95% CI = 1.002-1.089, p = 0.039, FDR = 0.902), CD80 on monocytes (OR = 1.084, 95% CI = 1.013-1.161, p = 0.020, FDR = 0.834), SSC-A on plasmacytoid dendritic cells (pDCs) (OR = 1.174, 95% CI = 1.004-1.372, p = 0.044, FDR = 0.902), and FSC-A on pDCs (OR = 1.182, 95% CI = 1.011-1.382, p = 0.036, FDR = 0.902) were associated with an increased genetic susceptibility to T1D. Cochran's Q showed that there was heterogeneity for CD28 on the CD28+CD45RA+CD8br results (p = 0.043), whereas there was no heterogeneity for the other results (p ≥ 0.05). The sensitivity analysis showed that the MR analysis results were robust. Conclusion The MR analysis demonstrated that seven immune cell phenotypes were associated with an increased genetic susceptibility to T1D. These findings provide a new direction for the pathogenesis of and the drug development for T1D.
Collapse
Affiliation(s)
- Yunfeng Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Juan Deng
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingyi Wu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Siyang Bai
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
22
|
Chen HC, Wang HH, Kohn LA, Sailer D, Zhang S, McCarthy E, Seyedsadr M, Zhou Z, Yin X, Wilkinson N, Ortega J, Lechner MG, Hugo W, Su MA. UTX Epigenetically Imposes a Cytolytic Effector Program in Autoreactive Stem-like CD8+ T cell Progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628206. [PMID: 39763836 PMCID: PMC11702527 DOI: 10.1101/2024.12.12.628206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease caused by unremitting immune attack on pancreas insulin-producing beta cells. Persistence of the autoimmune response is mediated by TCF1+ Ly108+ progenitor CD8+ T (Tprog) cells, a stem-like population that gives rise to exhausted effectors with limited cytolytic function in chronic virus infection and cancer. What paradoxically drives Tprog conversion to highly cytolytic effectors in T1D, however, remains unclear. Here, we show that the epigenetic regulator UTX controls diabetogenic CD8+ Tprog differentiation by poising chromatin for transition to a cytolytic effector state. Indeed, deletion of UTX function in T cells impairs conversion of Tprog to autoimmune effectors and protects mice from spontaneous diabetes, as well as an aggressive form of autoimmune diabetes induced by anti-PD1 cancer immunotherapy. Furthermore, short-term treatment with UTX inhibitor GSKJ4 similarly protects from T1D, highlighting the therapeutic potential of targeting UTX-mediated mechanisms to break unremitting autoimmune responses.
Collapse
Affiliation(s)
- Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Hsing Hui Wang
- Department of Pediatrics, UNC Chapel Hill, Chapel Hill, NC, 27599
| | - Lisa A. Kohn
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - David Sailer
- Department of Pediatrics, UNC Chapel Hill, Chapel Hill, NC, 27599
| | - Shirley Zhang
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ethan McCarthy
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maryam Seyedsadr
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Zikang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Xihui Yin
- Department of Biology, Massachusetts Institute of Technology, Boston, MA 02139
| | - Nicole Wilkinson
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Jessica Ortega
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Department of Pediatrics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Lead contact
| |
Collapse
|
23
|
Yu J, Lalwani A, Gunton JE. β-Cell Deletion of Hypoxia-Inducible Factor 1α (HIF-1α) Increases Pancreatic β-Cell Susceptibility to Streptozotocin. Int J Mol Sci 2024; 25:13451. [PMID: 39769216 PMCID: PMC11676740 DOI: 10.3390/ijms252413451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS). MDLS triggers auto-immunity in susceptible animal models, such as non-obese diabetic (NOD) mice. These experiments used a novel mouse model with β-cell-specific deletion of HIF-1α on a NOD background (BIN mice). Mice were given 20 mg/kg MLDS for 5 consecutive days. Following MLDS, 100% of BIN mice developed frank diabetes versus 33% of floxed-control (FC) littermates and 17% of NOD controls (p < 0.001). BIN mice had obvious loss of β-cell mass (p < 0.0001) and increased necrotic areas within islets (p < 0.001). To confirm that diabetes was T1D, adoptive transfers of splenocytes from diabetic BIN and FC mice were performed on NOD-SCID (Severe Combined ImmunoDeficiency) recipients. All mice receiving BIN-splenocytes developed frank diabetes, confirming that MLDS induced true T1D. Interestingly, diabetes developed significantly faster in BIN-adoptive transfer mice compared to mice which developed diabetes after receiving an FC-adoptive transfer. These studies demonstrate the importance of β-cell HIF-1α in the preservation of β-cell mass and avoidance of auto-immunity.
Collapse
Affiliation(s)
- Josephine Yu
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Amit Lalwani
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
24
|
Ning X, Munir KM, Davis SN. Drugs stimulating insulin secretion in early clinical development for the treatment of type 1 diabetes: what's new? Expert Opin Investig Drugs 2024; 33:1199-1208. [PMID: 39645243 DOI: 10.1080/13543784.2024.2439501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Type 1 diabetes is a chronic autoimmune condition characterized by the selective destruction of insulin-producing beta cells in the pancreas. The etiology of T1D is multifactorial, with a combination of genetic susceptibility and environmental triggers believed to underlie beta-cell destruction. Preserving and prolonging beta-cell function in T1D is a pivotal therapeutic objective that can mitigate disease progression and improve glycemic control. AREAS COVERED Insulin secretagogues have long been used in the management of type 2 diabetes, but do not have a significant beneficial effect in individuals with long-standing type 1 diabetes. Enhancement of beta-cell function early in the course of type 1 diabetes may offer important benefits in glycemic control and reduced hypoglycemia risk. Glucagon-like peptide-1 receptor agonists, glucokinase activators, free fatty acid receptor agonists, and glimins are drug classes which may offer benefit in enhancing insulin secretion in individuals with type 1 diabetes. EXPERT OPINION Drugs which enhance insulin secretion in individuals may offer clinical benefits to individuals with type 1 diabetes. However, the lack of beta-cell capacity introduces a challenge without regeneration of insulin-producing cells. Stem cell therapies combined with regulation of islet autoimmunity may offer the best prospect of increased insulin secretion in individuals with T1D.
Collapse
Affiliation(s)
- Xinyuan Ning
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Ren Z, He L, Wang J, Shu L, Li C, Ma Y. The harmful effect of ankylosing spondylitis on diabetes mellitus: new evidence from the Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1369466. [PMID: 39649224 PMCID: PMC11624504 DOI: 10.3389/fendo.2024.1369466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024] Open
Abstract
Background While observational research has highlighted a possible link between ankylosing spondylitis (AS) and type 2 diabetes (T2DM), the quality of evidence remains limited, and the causal relationship is yet to be established. This study aims to explore the causal link between AS and T2DM, as well as its impact on traits related to glucose metabolism. Method To infer a causal relationship between AS and various diabetes-related traits, including type 1 diabetes (T1DM), T2DM, blood glucose levels, fasting glucose, glycated hemoglobin, and fasting insulin, we employed Mendelian randomization (MR) analysis. We sourced GWAS summary data for both exposure and outcome variables from the IEU OpenGWAS database, GWAS Catalog, and FinnGen database. To synthesize the results of the MR analyses, we applied meta-analysis techniques using either a fixed or random effects model. For identifying and excluding instrumental variants (IVs) that exhibit horizontal pleiotropy with the outcomes, we utilized the MR-PRESSO method. Sensitivity analyses were conducted using the MR-Egger method, along with Q and I^2 tests, to ensure the robustness of our findings. Results Our analysis revealed a significant association between AS and an increased risk of T1DM with an odds ratio (OR) of 1.5754 (95% CI: 1.2935 to 1.9187) and T2DM with an OR of 1.0519 (95% CI: 1.0059 to 1.1001). Additionally, AS was associated with elevated levels of fasting glucose (beta coefficient = 0.0165, 95% CI: 0.0029 to 0.0301) and blood glucose (beta coefficient = 0.0280, 95% CI: 0.0086 to 0.0474), alongside a decrease in fasting insulin levels (beta coefficient = -0.0190, 95% CI: -0.0330 to -0.0050). Conclusion Our findings collectively underscore the detrimental impact of AS on the development of diabetes, highlighting the critical influence of autoimmune disorders in diabetes onset. This provides profound insights into the pathogenesis of diabetes from an immunological standpoint.
Collapse
Affiliation(s)
- Zheng Ren
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang He
- Institute of General Surgery, Wulumuqi General Hospital of People’s Liberation Army (PLA), Urumqi, China
| | - Jing Wang
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Shu
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chenyang Li
- Micro Operation of the Third People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yuan Ma
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
26
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
27
|
Chuang ST, Alcazar O, Watts B, Abdulreda MH, Buchwald P. Small-molecule inhibitors of the CD40-CD40L costimulatory interaction are effective in pancreatic islet transplantation and prevention of type 1 diabetes models. Front Immunol 2024; 15:1484425. [PMID: 39606229 PMCID: PMC11599200 DOI: 10.3389/fimmu.2024.1484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon Watts
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Midhat H. Abdulreda
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
28
|
O’Donovan AJ, Gorelik S, Nally LM. Shifting the paradigm of type 1 diabetes: a narrative review of disease modifying therapies. Front Endocrinol (Lausanne) 2024; 15:1477101. [PMID: 39568817 PMCID: PMC11576206 DOI: 10.3389/fendo.2024.1477101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
A new diagnosis of type 1 diabetes (T1D) may be accompanied by numerous lifelong financial, emotional, and physical challenges, thus advancements in therapies that can delay the onset of clinical disease are crucial. T1D is an autoimmune condition involving destruction of pancreatic beta cells leading to insulin deficiency, hyperglycemia, and long-term insulin dependence. The pathogenesis of T1D is classified into stages, with the first signal being the detection of autoantibodies without any glycemic changes. In the second stage, dysglycemia develops without symptoms, and in stage 3, symptoms of hyperglycemia become apparent, and at this time a clinical diagnosis of T1D is made. As a greater understanding of these stages of T1D have evolved, research efforts have been devoted to delaying the onset of clinical disease. To date, only one medication, teplizumab, has been approved by the Food and Drug Administration (FDA) for the treatment of stage 2 T1D. This narrative review present published trials and ongoing research on disease modifying therapies (DMT) in T1D, the mechanisms of action for each therapy, and the stages of T1D that these interventions are being studied.
Collapse
Affiliation(s)
- Alexander J. O’Donovan
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| | - Seth Gorelik
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
- Bowdoin College, Brunswick, ME, United States
| | - Laura M. Nally
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| |
Collapse
|
29
|
You L, Ferrat LA, Oram RA, Parikh HM, Steck AK, Krischer J, Redondo MJ. Identification of type 1 diabetes risk phenotypes using an outcome-guided clustering analysis. Diabetologia 2024; 67:2507-2517. [PMID: 39103721 DOI: 10.1007/s00125-024-06246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024]
Abstract
AIMS/HYPOTHESIS Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal the heterogeneity of the at-risk population by identifying clinically meaningful clusters are lacking. We aimed to identify and characterise clusters of islet autoantibody-positive individuals who share similar characteristics and type 1 diabetes risk. METHODS We tested a novel outcome-guided clustering method in initially non-diabetic autoantibody-positive relatives of individuals with type 1 diabetes, using the TrialNet Pathway to Prevention study data (n=1123). The outcome of the analysis was the time to development of type 1 diabetes, and variables in the model included demographic characteristics, genetics, metabolic factors and islet autoantibodies. An independent dataset (the Diabetes Prevention Trial of Type 1 Diabetes Study) (n=706) was used for validation. RESULTS The analysis revealed six clusters with varying type 1 diabetes risks, categorised into three groups based on the hierarchy of clusters. Group A comprised one cluster with high glucose levels (median for glucose mean AUC 9.48 mmol/l; IQR 9.16-10.02) and high risk (2-year diabetes-free survival probability 0.42; 95% CI 0.34, 0.51). Group B comprised one cluster with high IA-2A titres (median 287 DK units/ml; IQR 250-319) and elevated autoantibody titres (2-year diabetes-free survival probability 0.73; 95% CI 0.67, 0.80). Group C comprised four lower-risk clusters with lower autoantibody titres and glucose levels (with 2-year diabetes-free survival probability ranging from 0.84-0.99 in the four clusters). Within group C, the clusters exhibit variations in characteristics such as glucose levels, C-peptide levels and age. A decision rule for assigning individuals to clusters was developed. Use of the validation dataset confirmed that the clusters can identify individuals with similar characteristics. CONCLUSIONS/INTERPRETATION Demographic, metabolic, immunological and genetic markers may be used to identify clusters of distinctive characteristics and different risks of progression to type 1 diabetes among autoantibody-positive individuals with a family history of type 1 diabetes. The results also revealed the heterogeneity in the population and complex interactions between variables.
Collapse
Affiliation(s)
- Lu You
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Lauric A Ferrat
- Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Faculty of Medicine, Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Richard A Oram
- Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
30
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
31
|
Wang X, Xie M, Li T, Shi J, Wu M, Zhang S, Sun J, Hu Y. Comparative Ability of Various Immunosuppressants as Adjuvants on the Activity of T1D Vaccine. Vaccines (Basel) 2024; 12:1117. [PMID: 39460283 PMCID: PMC11511529 DOI: 10.3390/vaccines12101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Type 1 diabetes (T1D) is an autoimmune disorder characterised by the destruction of insulin-producing beta cells in the pancreatic islets, resulting from a breakdown in immunological tolerance. Currently, T1D treatment primarily relies on insulin replacement or immunosuppressive therapies. However, these approaches often have significant drawbacks, including adverse effects, high costs, and limited long-term efficacy. Consequently, there is a pressing need for innovative immunotherapeutic strategies capable of inducing antigen-specific tolerance and protecting beta cells from autoimmune destruction. Among the various antigens, β-cell antigens like 65 kDa glutamic acid decarboxylase (GAD65) have been explored as vaccine candidates for T1D. Despite their potential, their effectiveness in humans remains modest, necessitating the use of appropriate adjuvants to enhance the vaccine's protective effects. Methods: In this study, we evaluated the therapeutic potential of kynurenine (KYN), dexamethasone (DXMS), tacrolimus (FK506), and aluminium hydroxide (Alum) in combination with the GAD65 phage vaccine as adjuvants. Results: Our findings demonstrate that KYN, when used in conjunction with the GAD65 vaccine, significantly enhances the vaccine's immunosuppressive effects. Compared to dexamethasone, FK506, and Alum adjuvants, KYN more effectively reduced the incidence and delayed the onset of T1D, preserved β-cell function, and promoted the induction of regulatory T cells and antigen-specific tolerance. These results suggest that KYN combined with vaccines could offer superior preventive and therapeutic benefits for T1D compared to existing treatments. Additionally, we investigated the dose-dependent effects of the GAD65 vaccine by including a low-dose group in our study. The results indicated that reducing the vaccine dose below 1010 plaque-forming units (pfu) did not confer any protective advantage or therapeutic benefit in combination with KYN. This finding underscores that 1010 pfu is the minimum effective dose for the GAD65 vaccine in achieving a protective response. In conclusion, KYN shows considerable promise as an adjuvant for the GAD65 vaccine in T1D therapy, potentially offering a more effective and durable treatment option than current immunosuppressive strategies.
Collapse
Affiliation(s)
- Xinyi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Mengxin Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Tengjiao Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Meini Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Shihan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| |
Collapse
|
32
|
Maier JA, Castiglioni S, Petrelli A, Cannatelli R, Ferretti F, Pellegrino G, Sarzi Puttini P, Fiorina P, Ardizzone S. Immune-Mediated Inflammatory Diseases and Cancer - a dangerous liaison. Front Immunol 2024; 15:1436581. [PMID: 39359726 PMCID: PMC11445042 DOI: 10.3389/fimmu.2024.1436581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Patients with Immune-Mediated Inflammatory Diseases (IMIDs) are known to have an elevated risk of developing cancer, but the exact causative factors remain subject to ongoing debate. This narrative review aims to present the available evidence concerning the intricate relationship between these two conditions. Environmental influences and genetic predisposition lead to a dysregulated immune response resulting in chronic inflammation, which is crucial in the pathogenesis of IMIDs and oncogenic processes. Mechanisms such as the inflammatory microenvironment, aberrant intercellular communication due to abnormal cytokine levels, excessive reparative responses, and pathological angiogenesis are involved. The chronic immunosuppression resulting from IMIDs treatments further adds to the complexity of the pathogenic scenario. In conclusion, this review highlights critical gaps in the current literature, suggesting potential avenues for future research. The intricate interplay between IMIDs and cancer necessitates more investigation to deepen our understanding and improve patient management.
Collapse
Affiliation(s)
- Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Alessandra Petrelli
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | | | | | | | - Piercarlo Sarzi Puttini
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Paolo Fiorina
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, ASST Fatebenefratelli-Sacco, Milano, Italy
| |
Collapse
|
33
|
Medenica S, Stojanovic V, Capece U, Mazzilli R, Markovic M, Zamponi V, Vojinovic T, Migliaccio S, Defeudis G, Cinti F. The interlink between thyroid autoimmunity and type 1 diabetes and the impact on male and female fertility. Hormones (Athens) 2024; 23:429-437. [PMID: 38748060 DOI: 10.1007/s42000-024-00563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/18/2024] [Indexed: 09/28/2024]
Abstract
The aim of this review is to discuss the several interconnections between thyroid autoimmunity and type 1 diabetes in terms of epidemiology, immunoserology, genetic predisposition, and pathogenic mechanisms. We will also analyze the impact of these conditions on both male and female fertility. A literature search was carried out using the MEDLINE/PubMed, Scopus, Google Scholar, ResearchGate, and Clinical Trials Registry databases with a combination of keywords. It was found that the prevalence of thyroid autoantibodies in individuals with type 1 diabetes (T1DM) varied in different countries and ethnic groups from 7 to 35% in both sexes. There are several types of autoantibodies responsible for the immunoserological presentation of autoimmune thyroid diseases (AITDs) which can be either stimulating or inhibiting, which results in AITD being in the plus phase (thyrotoxicosis) or the minus phase (hypothyroidism). Different types of immune cells such as T cells, B cells, natural killer (NK) cells, antigen presenting cells (APCs), and other innate immune cells participate in the damage of the beta cells of the islets of Langerhans, which inevitably leads to T1D. Multiple genetic and environmental factors found in variable combinations are involved in the pathogenesis of AITD and T1D. In conclusion, although it is now well-known that both diabetes and thyroid diseases can affect fertility, only a few data are available on possible effects of autoimmune conditions. Recent findings nevertheless point to the importance of screening patients with immunologic infertility for AITDs and T1D, and vice versa.
Collapse
Affiliation(s)
- Sanja Medenica
- Department of Endocrinology, Internal Medicine Clinic, Clinical Center of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Vukasin Stojanovic
- Emergency Medicine Center of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Umberto Capece
- UOS Centro Malattie Endocrine e Metaboliche, UOC Endocrinologia e Diabetologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rossella Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - Milica Markovic
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Virginia Zamponi
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - Tanja Vojinovic
- Faculty of Medicine, University od Montenegro, Podgorica, Montenegro
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University Foro Italico of Rome, Rome, 00135, Italy
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | - Giuseppe Defeudis
- Department of Movement, Human and Health Sciences, University Foro Italico of Rome, Rome, 00135, Italy.
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy.
| | - Francesca Cinti
- UOS Centro Malattie Endocrine e Metaboliche, UOC Endocrinologia e Diabetologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
34
|
Li Y, Ahamed Younis D, He C, Ni C, Liu R, Zhou Y, Sun Z, Lin H, Xiao Z, Sun B. Engineered IRES-mediated promoter-free insulin-producing cells reverse hyperglycemia. Front Endocrinol (Lausanne) 2024; 15:1439351. [PMID: 39279997 PMCID: PMC11392723 DOI: 10.3389/fendo.2024.1439351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background Endogenous insulin supplementation is essential for individuals with type 1 diabetes (T1D). However, current treatments, including pancreas transplantation, insulin injections, and oral medications, have significant limitations. The development of engineered cells that can secrete endogenous insulin offers a promising new therapeutic strategy for type 1 diabetes (T1D). This approach could potentially circumvent autoimmune responses associated with the transplantation of differentiated β-cells or systemic delivery of viral vectors. Methods We utilized CRISPR/Cas9 gene editing coupled with homology-directed repair (HDR) to precisely integrate a promoter-free EMCVIRES-insulin cassette into the 3' untranslated region (UTR) of the GAPDH gene in human HEK-293T cells. Subsequently quantified insulin expression levels in these engineered cells, the viability and functionality of the engineered cells when seeded on different cell vectors (GelMA and Cytopore I) were also assessed. Finally, we investigated the therapeutic potential of EMCVIRES-based insulin secretion circuits in reversing Hyperglycaemia in T1D mice. Result Our results demonstrate that HDR-mediated gene editing successfully integrated the IRES-insulin loop into the genome of HEK-293T cells, a non-endocrine cell line, enabling the expression of human-derived insulin. Furthermore, Cytopore I microcarriers facilitated cell attachment and proliferation during in vitro culture and enhanced cell survival post-transplantation. Transplantation of these cell-laden microcarriers into mice led to the development of a stable, fat-encapsulated structure. This structure exhibited the expression of the platelet-endothelial cell adhesion molecule CD31, and no significant immune rejection was observed throughout the experiment. Diabetic mice that received the cell carriers reversed hyperglycemia, and blood glucose fluctuations under simulated feeding stimuli were very similar to those of healthy mice. Conclusion In summary, our study demonstrates that Cytopore I microcarriers are biocompatible and promote long-term cell survival in vivo. The promoter-free EMCVIRES-insulin loop enables non-endocrine cells to secrete mature insulin, leading to a rapid reduction in glucose levels. We have presented a novel promoter-free genetic engineering strategy for insulin secretion and proposed an efficient cell transplantation method. Our findings suggest the potential to expand the range of cell sources available for the treatment of diabetes, offering new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Doulathunnisa Ahamed Younis
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| | - Cong He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Bio functional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
| | - Chengming Ni
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Hwaseong, Kyunggi-Do, Republic of Korea
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hao Lin
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhongdang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Xian J, Du R, Yuan H, Li J, Pei Q, Hao Y, Zeng X, Wang J, Ye T. The application of predictive value of diabetes autoantibody profile combined with clinical data and routine laboratory indexes in the classification of diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1349117. [PMID: 39247917 PMCID: PMC11377899 DOI: 10.3389/fendo.2024.1349117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Objective Currently, distinct use of clinical data, routine laboratory indicators or the detection of diabetic autoantibodies in the diagnosis and management of diabetes mellitus is limited. Hence, this study was aimed to screen the indicators, and to establish and validate a multifactorial logistic regression model nomogram for the non-invasive differential prediction of type 1 diabetes mellitus. Methods Clinical data, routine laboratory indicators, and diabetes autoantibody profiles of diabetic patients admitted between September 2018 and December 2022 were retrospectively analyzed. Logistic regression was used to select the independent influencing factors, and a prediction nomogram based on the multiple logistic regression model was constructed using these independent factors. Moreover, the predictive accuracy and clinical application value of the nomogram were evaluated using Receiver Operating Characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC). Results A total of 522 diabetic patients were included in this study. These patients were randomized into training and validation sets in a 7:3 ratio. The predictors screened included age, prealbumin (PA), high-density lipoprotein cholesterol (HDL-C), islet cells autoantibodies (ICA), islets antigen 2 autoantibodies (IA-2A), glutamic acid decarboxylase antibody (GADA), and C-peptide levels. Based on these factors, a multivariate model nomogram was constructed, which had an Area Under Curve (AUC) of 0.966 and 0.961 for the training set and validation set, respectively. Subsequently, the calibration curves demonstrated a strong accuracy of the graph; the DCA and CIC results indicated that the graph could be used as a non-invasive valid predictive tool for the differential diagnosis of type 1 diabetes mellitus, clinically. Conclusion The established prediction model combining patient's age, PA, HDL-C, ICA, IA-2A, GADA, and C-peptide can assist in differential diagnosis of type 1 diabetes mellitus and type 2 diabetes mellitus and provides a basis for the clinical as well as therapeutic management of the disease.
Collapse
Affiliation(s)
- Jiawen Xian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Rongrong Du
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Hui Yuan
- School of Basic Medical Sciences and School of Stomatology, Mudanjiang Medical University, Heilongjiang, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qin Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Yongjie Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xi Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingying Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
36
|
Kitamura RA, Hummel D, Ustione A, Piston DW, Urano F. Dual role of neuroplastin in pancreatic β cells: Regulating insulin secretion and promoting islet inflammation. Proc Natl Acad Sci U S A 2024; 121:e2411234121. [PMID: 39666939 PMCID: PMC11331099 DOI: 10.1073/pnas.2411234121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 12/14/2024] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident secretory protein that reduces inflammation and promotes proliferation in pancreatic β cells. Numerous studies have highlighted the potential of MANF as a therapeutic agent for diabetes mellitus (DM), making it essential to understand the mechanisms underlying MANF's functions. In our previous search for a molecule that mediates MANF signaling, we identified Neuroplastin (NPTN) as a binding partner of MANF that localizes on the cell surface. However, the roles of NPTN in pancreatic β cells remain unclear. In this study, we generated β cell-specific Nptn knockout (KO) mice and conducted metabolic characterization. NPTN deficiency improved glucose tolerance by increasing insulin secretion and β cell mass in the pancreas. Moreover, proliferation and mitochondrial numbers in β cells increased in Nptn KO islets. These phenotypes resulted from elevated cytosolic Ca2+ levels and subsequent activation of downstream molecules. Simultaneously, we demonstrated that NPTN induces the expression of proinflammatory cytokines via the TRAF6-NF-κB axis in β cells. Additionally, NPTN deficiency conferred resistance to streptozotocin-induced diabetic phenotypes. Finally, exogenous MANF treatment in islets or β cells led to similar phenotypes as those observed in NPTN-deficient models. These results indicate that NPTN plays important roles in the regulation of insulin secretion, proliferation, and mitochondrial quantity, as well as proinflammatory responses, which are antagonized by MANF treatment. Thus, targeting the MANF-NPTN interaction may lead to a novel treatment for improving β cell functions in DM.
Collapse
Affiliation(s)
- Rie Asada Kitamura
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
| | - Devynn Hummel
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO63110
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO63110
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
37
|
Huo G, Gao Y. Type 1 diabetes and combined acute and chronic complications are associated with risk of progression of liver fibrosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1302611. [PMID: 39161391 PMCID: PMC11330757 DOI: 10.3389/fendo.2024.1302611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Background There has been controversy and uncertainty regarding the causal relationship between type 1 diabetes, its consequences, liver fibrosis, and cirrhosis. In order to determine the causal relationship, we conducted a Mendelian randomization study (MR). Methods For the first time, we subjected multiple diabetes data to analyze its relationship with the progression of liver fibrosis. Once the instrumental variables had been extracted, we assessed them employing Cochran's Q multi-analysis, inverse variance weighted, MR-Egger, MR-PRESSO, weighted mode, and weighted median. Results Genetically predicted type 1 diabetes (OR = 1.13, 95% CI: 1.04-1.23, ** P = 3.42 × 10-3), type 1 diabetes without complications (OR = 1.12, 95% CI: 1.03-1.23, * P = 1.26 × 10-2), type 1 diabetes with coma (OR = 1.09, 95% CI: 1-1.18, * P = 4.74 × 10-2), type 1 diabetes with ketoacidosis (OR = 1.07, 95% CI: 1.01-1.13, * P = 1.3 × 10-2), type 1 diabetes with neurological complications (OR = 1.18, 95% CI: 1.11-1.26, *** P = 4.05 × 10-7), type 1 diabetes with ophthalmic complications (OR = 1.16, 95% CI: 1.05-1.28, ** P = 3.06 × 10-3), type 1 diabetes with renal complications (OR = 1.07, 95% CI: 1-1.13, *P = 3.45 × 10-2), type 1 diabetes with other specified/multiple/unspecified complications (OR = 1.12, 95% CI: 1.02-1.23, * P = 1.41 × 10-2) were all associated with an increased risk of liver fibrosis progression. Conclusions According to our MR investigation, type 1 diabetes and both its acute and chronic implications may increase the likelihood that liver fibrosis could continue to develop. Additionally, type 1 diabetes with neurological and ocular problems is more likely to accelerate the development of liver fibrosis and inflammation, which offers new insights for genetic investigations.
Collapse
Affiliation(s)
| | - Yueqiu Gao
- Department of Hepatology, Shuguang Hospital Attached to Shanghai Chinese Medicine University, Shanghai, China
| |
Collapse
|
38
|
Luo Z, Mejia-Cordova M, Hamze N, Berggren E, Chopra S, Safi B, Blixt M, Sandler S, Singh K. Assessing the effectiveness of Interleukin-2 therapy in experimental type 1 diabetes. Endocrine 2024; 85:626-637. [PMID: 38424350 PMCID: PMC11291609 DOI: 10.1007/s12020-024-03753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
AIM Much focus of immunotherapy for type 1 diabetes (T1D) has been devoted on selectively boosting regulatory T (Treg) cells using low dose IL-2 due to their constitutive expression of IL-2Rα, CD25. However, several clinical trials using a low dose of IL-2 only showed a limited improvement of metabolic control. It can therefore be hypothesized that further decreasing IL-2 dosage may increase the selective responsiveness of Treg cells. METHODS We induced experimental T1D using multiple low dose streptozotocin (STZ) injections and treated the mice with an ultra-low dose IL-2 (uIL-2, approximately 7-fold lower than low dose). Immune response was studied using multicolor flow cytometry. RESULTS We found that uIL-2 did not protect STZ mice from developing hyperglycemia. It did neither increase Treg cell proportions, nor did it correct the phenotypic shift of Treg cells seen in T1D. It only partially decreased the proportion of IFN-γ+ T cells. Likewise, uIL-2 also did not protect the dysfunction of regulatory B (Breg) cells. Strikingly, when administered in combination with an anti-inflammatory cytokine IL-35, uIL-2 abrogated IL-35's protective effect. Low dose IL-2, on the other hand, protected half of the STZ mice from developing hyperglycemia. No difference was found in the Treg and Breg response, and it only tended to decrease CD80 expression in macrophages and dendritic cells. CONCLUSION In conclusion, further decreasing IL-2 dosage may not be a suitable approach for T1D therapy, and the limited success suggests that an alternative low dose IL-2 therapy strategy or other immunotherapies should be considered.
Collapse
Affiliation(s)
- Zhengkang Luo
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | - Nour Hamze
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Elin Berggren
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Saloni Chopra
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Bilal Safi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Martin Blixt
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stellan Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Kailash Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
39
|
Schnell A. Stem-like T cells in cancer and autoimmunity. Immunol Rev 2024; 325:9-22. [PMID: 38804499 DOI: 10.1111/imr.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem-like T cells are characterized by their ability to self-renew, survive long-term, and give rise to a heterogeneous pool of effector and memory T cells. Recent advances in single-cell RNA-sequencing (scRNA-seq) and lineage tracing technologies revealed an important role for stem-like T cells in both autoimmunity and cancer. In cancer, stem-like T cells constitute an important arm of the anti-tumor immune response by giving rise to effector T cells that mediate tumor control. In contrast, in autoimmunity stem-like T cells perform an unfavorable role by forming a reservoir of long-lived autoreactive cells that replenish the pathogenic, effector T-cell pool and thereby driving disease pathology. This review provides background on the discovery of stem-like T cells and their function in cancer and autoimmunity. Moreover, the influence of the microbiota and metabolism on the stem-like T-cell pool is summarized. Lastly, the implications of our knowledge about stem-like T cells for clinical treatment strategies for cancer and autoimmunity will be discussed.
Collapse
Affiliation(s)
- Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
40
|
Zhao Y, Veysman B, Antolijao K, Zhao Y, Papagni Y, Wang H, Ross R, Tibbot T, Povrzenic D, Fox R. Increase in the Expression of Glucose Transporter 2 (GLUT2) on the Peripheral Blood Insulin-Producing Cells (PB-IPC) in Type 1 Diabetic Patients after Receiving Stem Cell Educator Therapy. Int J Mol Sci 2024; 25:8337. [PMID: 39125908 PMCID: PMC11313087 DOI: 10.3390/ijms25158337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Multicenter international clinical trials demonstrated the clinical safety and efficacy by using stem cell educator therapy to treat type 1 diabetes (T1D) and other autoimmune diseases. Previous studies characterized the peripheral blood insulin-producing cells (PB-IPC) from healthy donors with high potential to give rise to insulin-producing cells. PB-IPC displayed the molecular marker glucose transporter 2 (GLUT2), contributing to the glucose transport and sensing. To improve the clinical efficacy of stem cell educator therapy in the restoration of islet β-cell function, we explored the GLUT2 expression on PB-IPC in recent onset and longstanding T1D patients. In the Food and Drug Administration (FDA)-approved phase 2 clinical studies, patients received one treatment with the stem cell educator therapy. Peripheral blood mononuclear cells (PBMC) were isolated for flow cytometry analysis of PB-IPC and other immune markers before and after the treatment with stem cell educator therapy. Flow cytometry revealed that both recent onset and longstanding T1D patients displayed very low levels of GLUT2 on PB-IPC. After the treatment with stem cell educator therapy, the percentages of GLUT2+CD45RO+ PB-IPC were markedly increased in these T1D subjects. Notably, we found that T1D patients shared common clinical features with patients with other autoimmune and inflammation-associated diseases, such as displaying low or no expression of GLUT2 on PB-IPC at baseline and exhibiting a high profile of the inflammatory cytokine interleukin (IL)-1β. Flow cytometry demonstrated that their GLUT2 expressions on PB-IPC were also markedly upregulated, and the levels of IL-1β-positive cells were significantly downregulated after the treatment with stem cell educator therapy. Stem cell educator therapy could upregulate the GLUT2 expression on PB-IPC and restore their function in T1D patients, leading to the improvement of clinical outcomes. The clinical data advances current understanding about the molecular mechanisms underlying the stem cell educator therapy, which can be expanded to treat patients with other autoimmune and inflammation-associated diseases.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | | | | | - Yelu Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | | | | | - Robin Ross
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Terri Tibbot
- Life Line Stem Cell Tissue, Cord Blood Bank, New Haven, IN 46774, USA
| | | | - Richard Fox
- Throne Biotechnologies, Paramus, NJ 07652, USA
| |
Collapse
|
41
|
Yuan X, Yang X, Xu Z, Li J, Sun C, Chen R, Wei H, Chen L, Du H, Li G, Yang Y, Chen X, Cui L, Fu J, Wu J, Chen Z, Fang X, Su Z, Zhang M, Wu J, Chen X, Zhou J, Luo Y, Zhang L, Wang R, Luo F. The profile of blood microbiome in new-onset type 1 diabetes children. iScience 2024; 27:110252. [PMID: 39027370 PMCID: PMC11255850 DOI: 10.1016/j.isci.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Blood microbiome signatures in patients with type 1 diabetes (T1D) remain unclear. We profile blood microbiome using 16S rRNA gene sequencing in 77 controls and 64 children with new-onset T1D, and compared it with the gut and oral microbiomes. The blood microbiome of patients with T1D is characterized by increased diversity and perturbed microbial features, with a significant increase in potentially pathogenic bacteria compared with controls. Thirty-six representative genera of blood microbiome were identified by random forest analysis, providing strong discriminatory power for T1D with an AUC of 0.82. PICRUSt analysis suggested that bacteria capable of inducing inflammation were more likely to enter the bloodstream in T1D. The overlap of the gut and oral microbiome with the blood microbiome implied potential translocation of bacteria from the gut and oral cavity to the bloodstream. Our study raised the necessity of further mechanistic investigations into the roles of blood microbiome in T1D.
Collapse
Affiliation(s)
- Xiaoxiao Yuan
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Xin Yang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, United States
| | - Zhenran Xu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Jie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - ChengJun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Ruimin Chen
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Haiyan Wei
- Department of Endocrinology and Inherited Metabolic, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, China
| | - Linqi Chen
- Children’s Hospital of Soochow University, Suzhou 215000, China
| | - Hongwei Du
- The First Hospital of Jilin University, Jilin 130000, China
| | - Guimei Li
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yu Yang
- The Affiliated Children’s Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaojuan Chen
- Department of Endocrinology, Genetics and Metabolism, The Children’s Hospital of Shanxi Province, Taiyuan 030013, China
| | - Lanwei Cui
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310005, China
| | - Jin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihong Chen
- Department of Neuroendocrinology Pediatrics, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xin Fang
- Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhe Su
- Shenzhen Children’s Hospital, Shenzhen 518038, China
| | - Miaoying Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Jing Wu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Xin Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Jiawei Zhou
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Yue Luo
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
42
|
Liu XW, Li HL, Ma CY, Shi TY, Wang TY, Yan D, Tang H, Lin H, Deng KJ. Predicting the role of the human gut microbiome in type 1 diabetes using machine-learning methods. Brief Funct Genomics 2024; 23:464-474. [PMID: 38376798 DOI: 10.1093/bfgp/elae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Gut microbes is a crucial factor in the pathogenesis of type 1 diabetes (T1D). However, it is still unclear which gut microbiota are the key factors affecting T1D and their influence on the development and progression of the disease. To fill these knowledge gaps, we constructed a model to find biomarker from gut microbiota in patients with T1D. We first identified microbial markers using Linear discriminant analysis Effect Size (LEfSe) and random forest (RF) methods. Furthermore, by constructing co-occurrence networks for gut microbes in T1D, we aimed to reveal all gut microbial interactions as well as major beneficial and pathogenic bacteria in healthy populations and type 1 diabetic patients. Finally, PICRUST2 was used to predict Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways and KO gene levels of microbial markers to investigate the biological role. Our study revealed that 21 identified microbial genera are important biomarker for T1D. Their AUC values are 0.962 and 0.745 on discovery set and validation set. Functional analysis showed that 10 microbial genera were significantly positively associated with D-arginine and D-ornithine metabolism, spliceosome in transcription, steroid hormone biosynthesis and glycosaminoglycan degradation. These genera were significantly negatively correlated with steroid biosynthesis, cyanoamino acid metabolism and drug metabolism. The other 11 genera displayed an inverse correlation. In summary, our research identified a comprehensive set of T1D gut biomarkers with universal applicability and have revealed the biological consequences of alterations in gut microbiota and their interplay. These findings offer significant prospects for individualized management and treatment of T1D.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Han-Lin Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Cai-Yi Ma
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tian-Yu Shi
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tian-Yu Wang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dan Yan
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Institute of Clinical Pharmacy, Beijing 100050, China
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic diseases, Ministry of Education, Luzhou 646000, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ke-Jun Deng
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
43
|
Eken B, Rawshani A, Rawshani A, Mandalenakis Z, Thunstrom E, Louca A, Petursson P, Angerås O, Nadhir S, Dworeck C, Råmunddal T. Effects of pre-existing type 1 diabetes mellitus on survival outcome following out-of-hospital cardiac arrest: a registry-based observational study in Sweden. BMJ Open 2024; 14:e080710. [PMID: 39009457 PMCID: PMC11253740 DOI: 10.1136/bmjopen-2023-080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND It has been estimated that 80% of cases of out-of-hospital cardiac arrest (OHCA) are due to cardiac causes. It is well-documented that diabetes is a risk factor for conditions associated with sudden cardiac arrest. Type 1 diabetes (T1D) displays a threefold to fivefold increased risk of cardiovascular disease and death compared with the general population. OBJECTIVE This study aims to assess the characteristics and survival outcomes of individuals with and without T1D who experienced an OHCA. Design: A registry-based nationwide observational study with two cohorts, patients with T1D and patients without T1D. Setting: All emergency medical services and hospitals in Sweden were included in the study. PARTICIPANTS Using the Swedish Cardiopulmonary Resuscitation Registry, we enrolled 54 568 cases of OHCA where cardiopulmonary resuscitation was attempted between 2010 and 2020. Among them, 448 patients with T1D were identified using International Classification of Diseases-code: E10. METHODS Survival analysis was performed using Kaplan-Meier and logistic regression. Multiple regression was adjusted for age, sex, cause of arrest, prevalence of T1D and time to cardiopulmonary resuscitation. MAIN OUTCOME MEASURES The outcomes were discharge status (alive vs dead), 30 days survival and neurological outcome at discharge. RESULTS There were no significant differences in patients discharged alive with T1D 37.3% versus, 46% among cases without T1D. There was also no difference in neurological outcome. Kaplan-Meier curves yielded no significant difference in long-term survival. Multiple regression showed no significant association with survival after accounting for covariates, OR 0.99 (95% CI 0.96 to 1.02), p value=0.7. Baseline characteristics indicate that patients with T1D were 5 years younger at OHCA occurrence and had proportionally fewer cases of heart disease as the cause of arrest (57.6% vs 62.7%). CONCLUSION We conclude, with the current sample size, that there is no statistically significant difference in long-term or short-term survival between patients with and without T1D following OHCA.
Collapse
Affiliation(s)
- Berkan Eken
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Araz Rawshani
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Aidin Rawshani
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Zacharias Mandalenakis
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Erik Thunstrom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Antros Louca
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Petur Petursson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Oskar Angerås
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Sadek Nadhir
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christian Dworeck
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Truls Råmunddal
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| |
Collapse
|
44
|
Chen Y, Liu M, Lu M, Luo L, Han Z, Liu X. Exploring the impact of m 6A modification on immune diseases: mechanisms and therapeutic implication. Front Immunol 2024; 15:1387582. [PMID: 39072324 PMCID: PMC11272477 DOI: 10.3389/fimmu.2024.1387582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
N6-methyladenosine (m6A) is a chemical modification of RNA and has become a widely discussed topic among scientific researchers in recent years. It is distributed in various organisms, including eukaryotes and bacteria. It has been found that m6A is composed of writers, erasers and readers and is involved in biological functions such as splicing, transport and translation of RNA. The balance of the human immune microenvironment is important for human health abnormalities. Increasing studies have found that m6A affects the development of immune diseases such as inflammatory enteritis and systemic lupus erythematosus (SLE) by participating in the homeostatic regulation of the immune microenvironment in vivo. In this manuscript, we introduce the composition, biological function, regulation of m6A in the immune microenvironment and its progression in various immune diseases, providing new targets and directions for the treatment of immune diseases in clinical practice.
Collapse
Affiliation(s)
- Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Miao Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linling Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xide Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Mancino F, Nouri H, Moccaldi N, Arpaia P, Kanoun O. Equivalent Electrical Circuit Approach to Enhance a Transducer for Insulin Bioavailability Assessment. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:533-541. [PMID: 39155919 PMCID: PMC11329217 DOI: 10.1109/jtehm.2024.3425269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024]
Abstract
The equivalent electrical circuit approach is explored to improve a bioimpedance-based transducer for measuring the bioavailability of synthetic insulin already presented in previous studies. In particular, the electrical parameter most sensitive to the variation of insulin amount injected was identified. Eggplants were used to emulate human electrical behavior under a quasi-static assumption guaranteed by a very low measurement time compared to the estimated insulin absorption time. Measurements were conducted with the EVAL-AD5940BIOZ by applying a sinusoidal voltage signal with an amplitude of 100 mV and acquiring impedance spectra in the range [1-100] kHz. 14 units of insulin were gradually administered using a Lilly's Insulin Pen having a 0.4 cm long needle. Modified Hayden's model was adopted as a reference circuit and the electrical component modeling the extracellular fluids was found to be the most insulin-sensitive parameter. The trnasducer achieves a state-of-the-art sensitivity of 225.90 ml1. An improvement of 223 % in sensitivity, 44 % in deterministic error, 7 % in nonlinearity, and 42 % in reproducibility was achieved compared to previous experimental studies. The clinical impact of the transducer was evaluated by projecting its impact on a Smart Insulin Pen for real-time measurement of insulin bioavailability. The wide gain in sensitivity of the bioimpedance-based transducer results in a significant reduction of the uncertainty of the Smart Insulin Pen. Considering the same improvement in in-vivo applications, the uncertainty of the Smart Insulin Pen is decreased from [Formula: see text]l to [Formula: see text]l.Clinical and Translational Impact Statement: A Smart Insulin Pen based on impedance spectroscopy and equivalent electrical circuit approach could be an effective solution for the non-invasive and real-time measurement of synthetic insulin uptake after subcutaneous administration.
Collapse
Affiliation(s)
- Francesca Mancino
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Hanen Nouri
- Department of Electrical Engineering and Information TechnologyChemnitz University of TechnologyChemnitz09107Germany
| | - Nicola Moccaldi
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Pasquale Arpaia
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Olfa Kanoun
- Department of Electrical Engineering and Information TechnologyChemnitz University of TechnologyChemnitz09107Germany
| |
Collapse
|
46
|
Wang ZJ, Ma P, Xu CY, Xu TS, Zhang L, He P, Hou BY, Yang XY, Du GH, Ji TF, Qiang GF. Identification of a novel hypoglycemic small molecule, trans-2, 4-dimethoxystilbene by rectifying gut microbiota and activating hepatic AMPKα-PPARγ pathway through gut-liver axis. Biomed Pharmacother 2024; 176:116760. [PMID: 38788595 DOI: 10.1016/j.biopha.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
With the increasing prevalence of metabolic disorders, hyperglycemia has become a common risk factor that endangers people's lives and the need for new drug solutions is burgeoning. Trans-2, 4-dimethoxystilbene (TDMS), a synthetic stilbene, has been found as a novel hypoglycemic small molecule from glucose consumption test. Normal C57BL/6 J mice, mouse models of type 1 diabetes mellitus and diet-induced obesity subjected to TDMS gavage were found with lower glycemic levels and better glycemic control. TDMS significantly improved the symptoms of polydipsia and wasting in type 1 diabetic mice, and could rise their body temperature at the same time. It was found that TDMS could promote the expression of key genes of glucose metabolism in HepG2, as do in TDMS-treated liver, while it could improve the intestinal flora and relieve intestinal metabolic dysbiosis in hyperglycemic models, which in turn affected its function in the liver, forming the gut-liver axis. We further fished PPARγ by virtual screening that could be promoted by TDMS both in-vitro and in-vivo, which was regulated by upstream signaling of AMPKα phosphorylation. As a novel hypoglycemic small molecule, TDMS was proven to be promising with its glycemic improvements and amelioration of diabetes symptoms. It promoted glucose absorption and utilization by the liver and improved the intestinal flora of diabetic mice. Therefore, TDMS is expected to become a new hypoglycemic drug that acts through gut-liver axis via AMPKα-PPARγ signaling pathway in improving glycemic metabolism, bringing new hope to patients with diabetes and glucose metabolism disorders.
Collapse
Affiliation(s)
- Zi-Jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Tian-Shu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Ping He
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
47
|
Negi V, Lee J, Mandi V, Danvers J, Liu R, Perez-Garcia EM, Li F, Jagannathan R, Yang P, Filingeri D, Kumar A, Ma K, Moulik M, Yechoor VK. Bromodomain Protein Inhibition Protects β-Cells from Cytokine-Induced Death and Dysfunction via Antagonism of NF-κB Pathway. Cells 2024; 13:1108. [PMID: 38994961 PMCID: PMC11240345 DOI: 10.3390/cells13131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Cytokine-induced β-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect β-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on β-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected β-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced β-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in β-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for β-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting β-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving β-cell functional mass in T1D.
Collapse
Affiliation(s)
- Vinny Negi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Varun Mandi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Joseph Danvers
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Ruya Liu
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Eliana M. Perez-Garcia
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Feng Li
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Rajaganapati Jagannathan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; (R.J.); (M.M.)
| | - Ping Yang
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Domenic Filingeri
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Amit Kumar
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Ke Ma
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; (R.J.); (M.M.)
| | - Vijay K. Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| |
Collapse
|
48
|
Ferreira LL, Gonçalves ABR, Adiala IJB, Loiola S, Dias A, Azulay RS, Silva DA, Gomes MB. A pilot study of mitochondrial genomic ancestry in admixed Brazilian patients with type 1 diabetes. Diabetol Metab Syndr 2024; 16:130. [PMID: 38879575 PMCID: PMC11179274 DOI: 10.1186/s13098-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/01/2024] [Indexed: 06/19/2024] Open
Abstract
Interactions between multiple genes and environmental factors could be related to the pathogenesis of type 1 diabetes (T1D). The Brazilian population results from different historical miscegenation events, resulting in a highly diverse genetic pool. This study aimed to analyze the mtDNA of patients with T1D and to investigate whether there is a relationship between maternal ancestry, self-reported color and the presence of T1D. The mtDNA control region of 204 patients with T1D residing in three geographic regions of Brazil was sequenced following the International Society for Forensic Genetics (ISFG) recommendations. We obtained a frequency of Native American matrilineal origin (43.6%), African origin (38.2%), and European origin (18.1%). For self-declared color, 42.6% of the patients with diabetes reported that they were White, 50.9% were Brown, and 5.4% were Black. Finally, when we compared the self-declaration data with maternal ancestral origin, we found that for the self-declared White group, there was a greater percentage of haplogroups of Native American origin (50.6%); for the self-declared Black group, there was a greater percentage of African haplogroups (90.9%); and for the Brown group, there was a similar percentage of Native American and African haplogroups (42.3% and 45.2%, respectively). The Brazilian population with diabetic has a maternal heritage of more than 80% Native American and African origin, corroborating the country's colonization history.
Collapse
Affiliation(s)
- Lívia Leite Ferreira
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Silvia Loiola
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Dias
- Forensic Science and Technology Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana Sousa Azulay
- Service of Endocrinology, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marília Brito Gomes
- Department of Internal Medicine, Diabetes Unit, Rio de Janeiro State University (UERJ), Boulevard 28 Setembro 77, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
49
|
Sutedja JC, de Liyis BG, Saraswati MR. Gamma-aminobutyric acid for delaying type 1 diabetes mellitus: an update. Ann Pediatr Endocrinol Metab 2024; 29:142-151. [PMID: 38956751 PMCID: PMC11220392 DOI: 10.6065/apem.2346184.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
The current gold-standard management of hyperglycemia in individuals with type 1 diabetes mellitus (T1DM) is insulin therapy. However, this therapy is associated with a high incidence of complications, and delaying the onset of this disease produces a substantially positive impact on quality of life for individuals with a predisposition to T1DM, especially children. This review aimed to assess the use of gamma-aminobutyric acid (GABA) to delay the onset of T1DM in children. GABA produces protective and proliferative effects in 2 ways, β cell and immune cell modulation. Various in vitro and in vivo studies have shown that GABA induces proliferation of β cells, increases insulin levels, inhibits β-cell apoptosis, and suppresses T helper 1 cell activity against islet antigens. Oral GABA is safe as no serious adverse effects were reported in any of the studies included in this review. These findings demonstrate promising results for the use of GABA treatment to delay T1DM, specifically in genetically predisposed children, through immunoregulatory effects and the ability to induce β-cell proliferation.
Collapse
Affiliation(s)
| | | | - Made Ratna Saraswati
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University/Prof. IGNG Ngoerah General Hospital, Bali, Indonesia
| |
Collapse
|
50
|
El-Fadeal NMA, Saad MA, Mehanna ET, Atwa H, Abo-elmatty DM, Hosny N. Association of CIITA (rs8048002) and CLEC2D (rs2114870) gene variants and type 1 diabetes mellitus. J Diabetes Metab Disord 2024; 23:1151-1162. [PMID: 38932894 PMCID: PMC11196453 DOI: 10.1007/s40200-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 06/28/2024]
Abstract
Background Type I diabetes mellitus (T1DM) is a significant health challenge, especially for children, owing to its chronic autoimmune nature. Although the exact etiology of T1DM remains elusive, the interplay of genetic predisposition, immune responses, and environmental factors are postulated. Genetic factors control immune reactivity against β-cells. Given the pivotal roles of CIITA and CLEC2D genes in modulating a variety of immune pathologies, we hypothesized that genetic variations in CIITA and CLEC2D genes may impact T1DM disease predisposition. This study was designed to explore the association between gene polymorphisms in CIITA (rs8048002) and CLEC2D (rs2114870) and type 1 diabetes (T1DM), with a focus on analyzing the functional consequence of those gene variants. Methods The study enlisted 178 healthy controls and 148 individuals with type 1 diabetes (T1DM) from Suez Canal University Hospital. Genotyping for CIITA and CLEC2D was done using allelic-discrimination polymerase chain reaction (PCR). Levels of glycated hemoglobin (HbA1c) and lipid profiles were determined through automated analyzer, while fasting blood glucose and insulin serum levels were measured using the enzyme-linked immunosorbent assay (ELISA) technique. RegulomeDB was used to examine the regulatory functions of CIITA (rs8048002) and CLEC2D (rs2114870) gene variants. Results Analysis of the genotype distribution of the CIITA rs8048002 polymorphism revealed a significantly higher prevalence of the rare C allele in T1DM patients compared to the control group (OR = 1.77; P = 0.001). Both the CIITA rs8048002 heterozygote TC genotype (OR = 1.93; P = 0.005) and the rare homozygote CC genotype (OR = 3.62; P = 0.006) were significantly more frequent in children with T1DM when compared to the control group. Conversely, the rare A allele of CLEC2D rs2114870 was found to be significantly less frequent in T1DM children relative to the control group (OR = 0.58; P = 0.002). The heterozygote GA genotype (OR = 0.61; P = 0.033) and the rare homozygote AA genotype (OR = 0.25; P = 0.004) were also significantly less frequent in T1DM patients compared to the control group. Both CIITA (rs8048002) and CLEC2D (rs2114870) gene variants were predicted to have regulatory functions, indicated by a RegulomeDB score of (1f) for each. Conclusion The rare C allele of CIITA rs8048002 genetic variant was associated with an increased risk of developing T1DM, while the less common A allele of CLEC2D rs2114870 was associated with a reduced risk of T1DM. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01402-w.
Collapse
Affiliation(s)
- Noha M. Abd El-Fadeal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
- Department of Biochemistry, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Hoda Atwa
- Department of Pediatric Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Nora Hosny
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|