1
|
Xiao Y, Gao Y, Hu Y, Zhang X, Wang L, Li H, Yu L, Ma Q, Dai J, Ning Z, Liu J, Zhang L, Yang Y, Xiong H, Dong G. FASN contributes to the pathogenesis of lupus by promoting TLR-mediated activation of macrophages and dendritic cells. Int Immunopharmacol 2024; 142:113136. [PMID: 39293316 DOI: 10.1016/j.intimp.2024.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Hyper-activations of monocytes/macrophages and dendritic cells (DCs) contribute to the pathogenesis of various autoimmune diseases, such as systemic lupus erythematosus (SLE). Fatty acid synthase (FASN) is essential for the de novo synthesis of long-chain fatty acids, which play a key role in controlling the activation, differentiation, and function of immune cells. However, the role of FASN in regulating the activations of monocytes/macrophages and DCs has not been studied. In this study, we investigated the involvement of the FASN in modulating the activations of macrophages and DCs, as well as the pathogenesis of SLE. Importantly, we observed a significant upregulation of FASN expression in monocytes and DCs from patients with SLE. This increase is strongly correlated with disease severity and activation status of the immune cells. Furthermore, overexpression of FASN significantly boosts the TLR4/7/9-mediated activation of macrophages and DCs, while knockdown of FASN markedly inhibits this activation. Notably, knockdown of FASN alleviates TLR7 agonist imiquimod (IMQ)-induced lupus in mice and the activation of macrophages and DCs. It makes more sense that pharmaceutical targeting of FASN by using TVB-2640 significantly alleviates IMQ-induced lupus in mice and the activation of macrophages and DCs, as well as in spontaneous lupus MRL/lpr mice. Thus, FASN contributes to the TLRs-mediated activation of macrophages and DCs, as well as the pathogenesis of SLE. More importantly, FASN inhibitor TVB-2640 is expected to be an effective drug in the treatment of SLE.
Collapse
Affiliation(s)
- Yucai Xiao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haochen Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lu Yu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jiakun Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lili Zhang
- Department of Rheumatology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Arnaud L, Chasset F, Martin T. Immunopathogenesis of systemic lupus erythematosus: An update. Autoimmun Rev 2024; 23:103648. [PMID: 39343084 DOI: 10.1016/j.autrev.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by dysregulated immune responses leading to widespread inflammation and damage in various organs. Environmental factors such as infections, hormonal influences and exposure to ultraviolet light can trigger the disease in genetically predisposed individuals. Genome-wide association studies have identified over 100 susceptibility loci linked to immune regulation, interferon (IFN) signaling and antigen presentation in SLE. In addition, rare cases of monogenic lupus have been instrumental in understanding critical underlying disease mechanisms. Several immunological abnormalities contribute to the loss of self-tolerance and the perpetuation of autoimmune responses in SLE. In particular, defective clearance of apoptotic cells due to defective phagocytosis and complement activation leads to accumulation of self-antigens. Dysregulated innate immune responses activate the adaptive immune system, amplifying the inflammatory response with an important role for type I IFNs. Abnormalities in B cell development and activation lead to the production of autoreactive antibodies, forming immune complexes that cause tissue damage. Similarly, disturbances in T-cell compartments, altered regulatory T-cell functions and altered cytokine production, particularly IFN-α, contribute to tissue damage. Understanding of the immunopathogenesis of SLE is evolving rapidly, with ongoing research identifying new molecular pathways and potential therapeutic targets. Future classifications of SLE are likely to be based on underlying biological pathways rather than clinical and serological signs alone. This review aims to provide a detailed update on the most recent findings regarding the immunopathogenesis of SLE, focusing on the variability of biological pathways and the implications for future therapeutic strategies, in particular chimeric antigen receptor T (CAR T) cells.
Collapse
Affiliation(s)
- Laurent Arnaud
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares Est Sud-Ouest, INSERM UMRS-1109, Université de Strasbourg, Strasbourg, France.
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, AP-HP, Service de Dermatologie et Allergologie, Hôpital Tenon, INSERM U1135, CIMI, Paris, France
| | - Thierry Martin
- Service d'immunologie Clinique et de médecine interne, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares, Strasbourg, France
| |
Collapse
|
3
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
4
|
Pan L, Liu J, Liu C, Guo L, Yang S. Intermittent pulses of methylprednisolone with low-dose prednisone attenuate lupus symptoms in B6.MRL-Fas lpr/J mice with fewer glucocorticoid side effects. Biomed Pharmacother 2024; 177:117138. [PMID: 39018878 DOI: 10.1016/j.biopha.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressant medications and remain the cornerstone of systemic lupus erythematosus (SLE) therapy. However, ongoing exposure to GCs has the potential to elicit multiple adverse effects. Considering the irreplaceability of GCs in SLE therapy, it is important to explore the optimal regimen of GCs. Here, we compared the long-term efficacy and safety of pulsed and oral GC therapy in a lupus-prone mouse model. Mice were grouped using a randomized block design. We monitored survival rates, proteinuria, serum autoantibodies, and complement 3 (C3) levels up to 28 weeks of age, and assessed renal damage, bone quality, lipid deposition in the liver and marrow, glucose metabolic parameters, and levels of hormones of the hypothalamic-pituitary-adrenal (HPA) axis. Finally, we explored the mechanisms underlying the superior efficacy of the pulse regimen over oral prednisone regimen. We found that both GC regimens alleviated the poor survival rate, proteinuria, and glomerulonephritis, while also reducing serum autoantibodies and increasing the level of C3. The pulsed GC regimen showed less resistance to insulin, less suppression of the HPA axis, less bone loss, and less bone marrow fat deposition than the oral GC regimen. Additionally, GC-induced leucine zipper (GILZ) was significantly overexpressed in the GC pulse group. These results suggest that the GC pulse regimen ameliorated symptoms in lupus-prone mice, with fewer side effects, which may be related to GILZ overexpression. Our findings offer a potentially promising GC treatment option for SLE.
Collapse
Affiliation(s)
- Lu Pan
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; The Child Health Clinical Research Center of Jilin Province, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Congcong Liu
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Lishuang Guo
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; The Child Health Clinical Research Center of Jilin Province, China
| | - Sirui Yang
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; The Child Health Clinical Research Center of Jilin Province, China.
| |
Collapse
|
5
|
Jones SA, Morand EF. Targeting Interferon Signalling in Systemic Lupus Erythematosus: Lessons Learned. Drugs 2024; 84:625-635. [PMID: 38807010 PMCID: PMC11196297 DOI: 10.1007/s40265-024-02043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The development of new medicines for systemic lupus erythematosus (SLE) has not addressed unmet clinical need, with only three drugs receiving regulatory approval for SLE in the last 60 years, one of which was specifically licensed for lupus nephritis. In the last 20 years it has become clear that activation of type 1 interferons (IFN) is reproducibly detected in the majority of SLE patients, and the actions of IFN in the immune system and on target tissues is consistent with a pathogenic role in SLE. These findings led to considerable drug discovery activity, first with agents directly targeting IFN family cytokines, with results that were encouraging but underwhelming. In contrast, targeting the type I IFN receptor with the monoclonal antibody anifrolumab, thereby blocking all IFN family members, was effective in a phase II clinical trial. This led to a pair of phase III trials, one of which was negative and the other positive, reflecting the difficulty of obtaining outcomes from trials in this complex disease. Nonetheless, the balance of evidence resulted in approval of anifrolumab in multiple jurisdictions from 2021 onwards. Multiple approaches to targeting the type 1 IFN pathway have subsequently had positive phase II clinical trials, including antibodies targeting cells that produce IFN, and small molecules targeting the receptor kinase TYK2, required for IFN signalling. Despite multiple hurdles, it is clear that IFN targeting in SLE is here to stay. The story of IFN-targeting therapy in SLE has lessons for drug development overall in this disease.
Collapse
Affiliation(s)
- Sarah A Jones
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | - Eric F Morand
- Centre for Inflammatory Disease, Monash University, Clayton, Australia.
- Department of Rheumatology, Monash Health, Melbourne, Australia.
- Monash Medical Centre, 246 Clayton Rd, Clayton, VIC, 3168, Australia.
| |
Collapse
|
6
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
7
|
Shirahama Y, Hashimoto A, Ono N, Takeyama Y, Maruyama A, Inoue T, Tada Y, Niiro H. Relationships between Type 1 interferon signatures and clinical features of the new-onset lupus patients in Japan. Mod Rheumatol 2024; 34:346-351. [PMID: 36695430 DOI: 10.1093/mr/road015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The objective of the study is to investigate the relationships between Type 1 interferon (T1-IFN) signatures and clinical characteristics of lupus patients. METHODS We examined 49 new-onset lupus patients who were diagnosed between 1999 and 2017. The patients treated with >10 mg of prednisolone or hydroxychloroquine were excluded from this study. Serum T1-IFN signatures were revealed by a functional reporter assay and standardized by recombinant IFN-α. Patient backgrounds, clinical findings, and treatments were retrospectively extracted from their electrical medical records. Clinical data were also available, including SLE Disease Activity Index of SLE patients on admission. RESULTS T1-IFN signatures of lupus patients closely correlated with lupus disease activities, such as SLE Disease Activity Index-2K, white blood cell, C3 levels, and the titre of double-strand DNA antibody. We found fever and acute lupus dermatitis closely associated with T1-IFN signature. CONCLUSIONS In lupus patients, fever and acute lupus dermatitis are good indicators of a strong T1-IFN signature.
Collapse
Affiliation(s)
- Yuri Shirahama
- Department of Rheumatology, Saga University Hospital, Saga, Japan
| | - Aki Hashimoto
- Department of Dermatology, Saga University Hospital, Saga, Japan
| | - Nobuyuki Ono
- Department of Rheumatology, Saga University Hospital, Saga, Japan
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Yukiko Takeyama
- Department of Rheumatology, Saga University Hospital, Saga, Japan
| | - Akihito Maruyama
- Department of Rheumatology, Saga University Hospital, Saga, Japan
| | - Takuya Inoue
- Department of Dermatology, Saga University Hospital, Saga, Japan
| | - Yoshifumi Tada
- Department of Rheumatology, Saga University Hospital, Saga, Japan
| | - Hiroaki Niiro
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
- Department of Medical Education, Graduate School of Medical Sciences, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Wolf C, Lim EL, Mokhtari M, Kind B, Odainic A, Lara-Villacanas E, Koss S, Mages S, Menzel K, Engel K, Dückers G, Bernbeck B, Schneider DT, Siepermann K, Niehues T, Goetzke CC, Durek P, Minden K, Dörner T, Stittrich A, Szelinski F, Guerra GM, Massoud M, Bieringer M, de Oliveira Mann CC, Beltrán E, Kallinich T, Mashreghi MF, Schmidt SV, Latz E, Klughammer J, Majer O, Lee-Kirsch MA. UNC93B1 variants underlie TLR7-dependent autoimmunity. Sci Immunol 2024; 9:eadi9769. [PMID: 38207055 DOI: 10.1126/sciimmunol.adi9769] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.
Collapse
Affiliation(s)
- Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Ee Lyn Lim
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Mohammad Mokhtari
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Barbara Kind
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eusebia Lara-Villacanas
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Sarah Koss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Simon Mages
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Katharina Menzel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Kerstin Engel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Gregor Dückers
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Benedikt Bernbeck
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Dominik T Schneider
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | | | - Tim Niehues
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Carl Christoph Goetzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Kirsten Minden
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Anna Stittrich
- Labor Berlin Charité-Vivantes GmbH, Department of Human Genetics, Berlin 13353, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Mona Massoud
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Markus Bieringer
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin 13125, Germany
| | | | - Eduardo Beltrán
- Institute for Clinical Neuroimmunology, BioMedizinisches Zentrum, Ludwig-Maximilians-Universität Munich, Munich 82152, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
| | - Johanna Klughammer
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
9
|
Burris TP. How to Make Glucocorticoids Safer. J Pharmacol Exp Ther 2024; 388:748-750. [PMID: 38360801 DOI: 10.1124/jpet.123.001931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 02/17/2024] Open
Affiliation(s)
- Thomas P Burris
- Department of Pharmacodynamics, College of Pharmacy, Genetics Institute, University of Florida
| |
Collapse
|
10
|
Deshmukh A, Pereira A, Geraci N, Tzvetkov E, Przetak M, Catalina MD, Morand EF, Bender AT, Vaidyanathan B. Preclinical Evidence for the Glucocorticoid-Sparing Potential of a Dual Toll-Like Receptor 7/8 Inhibitor in Autoimmune Diseases. J Pharmacol Exp Ther 2024; 388:751-764. [PMID: 37673681 DOI: 10.1124/jpet.123.001744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Toll-like receptor 7 (TLR7) and TLR8 are single-stranded RNA-sensing endosomal pattern recognition receptors that evolved to defend against viral infections. However, aberrant TLR7/8 activation by endogenous ligands has been implicated in the pathogenesis of autoimmune diseases including systemic lupus erythematosus. TLR activation and type I interferon (IFN) were shown recently to impart resistance to glucocorticoids (GC), which are part of the standard of care for multiple autoimmune diseases. While GCs are effective, a plethora of undesirable effects limit their use. New treatment approaches that allow for the use of lower and safer doses of GCs would be highly beneficial. Herein, we report that a dual TLR7/8 inhibitor (TLR7/8i) increases the effectiveness of GCs in inflammatory settings. Human peripheral blood mononuclear cell studies revealed increased GC sensitivity in the presence of TLR7/8i for reducing inflammatory cytokine production, a synergistic effect that was most pronounced in myeloid cells, particularly monocytes. Gene expression analysis by NanoString and single-cell RNA sequencing revealed that myeloid cells were substantially impacted by combining low-dose TLR7/8i and GC, as evidenced by the effects on nuclear factor-kappa B-regulated cytokines and GC-response genes, although IFNs were affected to a smaller degree. Low dose of TLR7/8i plus GC was more efficacious then either agent alone in the MRL/lpr mouse model of lupus, with improved proteinuria and survival. Overall, our findings indicate a GC-sparing potential for TLR7/8i compounds, suggesting TLR7/8i may offer a new strategy for the treatment of autoimmune diseases. SIGNIFICANCE STATEMENT: Some features of autoimmune diseases may be resistant to glucocorticoids, mediated at least in part by toll-like receptor (TLR) activation, necessitating higher doses that are associated with considerable toxicities. We demonstrate that TLR7/8 inhibition and glucocorticoids work synergistically to reduce inflammation in a cell-type specific manner and suppress disease in a mouse model of lupus. TLR7/8 inhibition is a promising strategy for the treatment of autoimmune diseases and has glucocorticoid-sparing potential.
Collapse
Affiliation(s)
- Ankita Deshmukh
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| | - Albertina Pereira
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| | - Nicholas Geraci
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| | - Evgeni Tzvetkov
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| | - Melinda Przetak
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| | - Michelle D Catalina
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| | - Eric F Morand
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| | - Andrew T Bender
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| | - Bharat Vaidyanathan
- Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.)
| |
Collapse
|
11
|
Kalliolias GD, Basdra EK, Papavassiliou AG. Targeting TLR Signaling Cascades in Systemic Lupus Erythematosus and Rheumatoid Arthritis: An Update. Biomedicines 2024; 12:138. [PMID: 38255243 PMCID: PMC10813148 DOI: 10.3390/biomedicines12010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Evidence from animal models and human genetics implicates Toll-like Receptors (TLRs) in the pathogenesis of Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). Endosomal TLRs sensing nucleic acids were proposed to induce lupus-promoting signaling in dendritic cells, B cells, monocytes, and macrophages. Ligation of TLR4 in synovial macrophages and fibroblast-like synoviocytes (FLSs) by endogenous ligands was suggested to induce local production of mediators that amplify RA synovitis. Inhibition of TLRs using antagonists or monoclonal antibodies (mAbs) that selectively prevent extracellular or endosomal TLR ligation has emerged as an attractive treatment strategy for SLE and RA. Despite the consistent success of selective inhibition of TLR ligation in animal models, DV-1179 (dual TLR7/9 antagonist) failed to achieve pharmacodynamic effectiveness in SLE, and NI-0101 (mAb against TLR4) failed to improve arthritis in RA. Synergistic cooperation between TLRs and functional redundancy in human diseases may require pharmacologic targeting of intracellular molecules that integrate signaling downstream of multiple TLRs. Small molecules inhibiting shared kinases involved in TLR signaling and peptidomimetics disrupting the assembly of common signalosomes ("Myddosome") are under development. Targeted degraders (proteolysis-targeting chimeras (PROTACs)) of intracellular molecules involved in TLR signaling are a new class of TLR inhibitors with promising preliminary data awaiting further clinical validation.
Collapse
Affiliation(s)
- George D. Kalliolias
- Hospital for Special Surgery, Arthritis & Tissue Degeneration, New York, NY 10021, USA;
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
12
|
Echavarria R, Cardona-Muñoz EG, Ortiz-Lazareno P, Andrade-Sierra J, Gómez-Hermosillo LF, Casillas-Moreno J, Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Miranda-Díaz AG. The Role of the Oxidative State and Innate Immunity Mediated by TLR7 and TLR9 in Lupus Nephritis. Int J Mol Sci 2023; 24:15234. [PMID: 37894915 PMCID: PMC10607473 DOI: 10.3390/ijms242015234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) and is considered one of the leading causes of mortality. Multiple immunological pathways are involved in the pathogenesis of SLE, which makes it imperative to deepen our knowledge about this disease's immune-pathological complexity and explore new therapeutic targets. Since an altered redox state contributes to immune system dysregulation, this document briefly addresses the roles of oxidative stress (OS), oxidative DNA damage, antioxidant enzymes, mitochondrial function, and mitophagy in SLE and LN. Although adaptive immunity's participation in the development of autoimmunity is undeniable, increasing data emphasize the importance of innate immunity elements, particularly the Toll-like receptors (TLRs) that recognize nucleic acid ligands, in inflammatory and autoimmune diseases. Here, we discuss the intriguing roles of TLR7 and TLR9 in developing SLE and LN. Also included are the essential characteristics of conventional treatments and some other novel and little-explored alternatives that offer options to improve renal function in LN.
Collapse
Affiliation(s)
- Raquel Echavarria
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (R.E.); (P.O.-L.)
- Investigadores por México, Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México 03940, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Pablo Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (R.E.); (P.O.-L.)
| | - Jorge Andrade-Sierra
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Jorge Casillas-Moreno
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| |
Collapse
|
13
|
Huang Y, Liu D, Chen M, Xu S, Peng Q, Zhu Y, Long J, Liu T, Deng Z, Xie H, Li J, Liu F, Xiao W. TLR7 promotes skin inflammation via activating NFκB-mTORC1 axis in rosacea. PeerJ 2023; 11:e15976. [PMID: 37780385 PMCID: PMC10540772 DOI: 10.7717/peerj.15976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Rosacea is a chronic inflammatory skin disease originated from damaged skin barrier and innate/adaptive immune dysregulation. Toll-like receptors (TLRs) sense injured skin and initiate downstream inflammatory and immune responses, whose role in rosacea is not fully understood. Here, via RNA-sequencing analysis, we found that the TLR signaling pathway is the top-ranked signaling pathway enriched in rosacea skin lesions, in which TLR7 is highlighted and positively correlated with the inflammation severity of disease. In LL37-induced rosacea-like mouse models, silencing TLR7 prevented the development of rosacea-like skin inflammation. Specifically, we demonstrated that overexpressing TLR7 in keratinocytes stimulates rapamycin-sensitive mTOR complex 1 (mTORC1) pathway via NFκB signaling. Ultimately, TLR7/NFκ B/mTORC1 axis promotes the production of cytokines and chemokines, leading to the migration of CD4+T cells, which are infiltrated in the lesional skin of rosacea. Our report reveals the crucial role of TLR7 in rosacea pathogenesis and indicatesa promising candidate for rosacea treatments.
Collapse
Affiliation(s)
- Yaqun Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Da Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Long
- Department of Dermatology, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Tangxiele Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Crawford JD, Wang H, Trejo-Zambrano D, Cimbro R, Talbot CC, Thomas MA, Curran AM, Girgis AA, Schroeder JT, Fava A, Goldman DW, Petri M, Rosen A, Antiochos B, Darrah E. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI Insight 2023; 8:e169344. [PMID: 37733447 PMCID: PMC10634230 DOI: 10.1172/jci.insight.169344] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with a dramatic sex bias, affecting 9 times more women than men. Activation of Toll-like receptor 7 (TLR7) by self-RNA is a central pathogenic process leading to aberrant production of type I interferon (IFN) in SLE, but the specific RNA molecules that serve as TLR7 ligands have not been defined. By leveraging gene expression data and the known sequence specificity of TLR7, we identified the female-specific X-inactive specific transcript (XIST) long noncoding RNA as a uniquely rich source of TLR7 ligands in SLE. XIST RNA stimulated IFN-α production by plasmacytoid DCs in a TLR7-dependent manner, and deletion of XIST diminished the ability of whole cellular RNA to activate TLR7. XIST levels were elevated in blood leukocytes from women with SLE compared with controls, correlated positively with disease activity and the IFN signature, and were enriched in extracellular vesicles released from dying cells in vitro. Importantly, XIST was not IFN inducible, suggesting that XIST is a driver, rather than a consequence, of IFN in SLE. Overall, our work elucidated a role for XIST RNA as a female sex-specific danger signal underlying the sex bias in SLE.
Collapse
Affiliation(s)
| | - Hong Wang
- Division of Rheumatology, Department of Medicine
| | | | | | - C. Conover Talbot
- The Single Cell and Transcriptomics Core, Institute for Basic Biomedical Sciences; and
| | | | | | | | - John T. Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Fava
- Division of Rheumatology, Department of Medicine
| | | | | | - Antony Rosen
- Division of Rheumatology, Department of Medicine
| | | | - Erika Darrah
- Division of Rheumatology, Department of Medicine
| |
Collapse
|
15
|
Pan L, Liu J, Liu C, Guo L, Punaro M, Yang S. Childhood-onset systemic lupus erythematosus: characteristics and the prospect of glucocorticoid pulse therapy. Front Immunol 2023; 14:1128754. [PMID: 37638017 PMCID: PMC10448525 DOI: 10.3389/fimmu.2023.1128754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is an autoimmune disease that results in significant damage and often needs more aggressive treatment. Compared to adult-onset SLE, cSLE has a stronger genetic background and more prevalent elevated type I Interferon expression. The management of cSLE is more challenging because the disease itself and treatment can affect physical, psychological and emotional growth and development. High dose oral glucocorticoid (GC) has become the rule for treating moderate to severe cSLE activity. However, GC-related side effects and potential toxicities are problems that cannot be ignored. Recent studies have suggested that GC pulse therapy can achieve disease remission rapidly and reduce GC-related side effects with a reduction in oral prednisone doses. This article reviews characteristics, including pathogenesis and manifestations of cSLE, and summarized the existing evidence on GC therapy, especially on GC pulse therapy in cSLE, followed by our proposal for GC therapy according to the clinical effects and pathogenesis.
Collapse
Affiliation(s)
- Lu Pan
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Congcong Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Lishuang Guo
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Marilynn Punaro
- Pediatric Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Rheumatology, Texas Scottish Rite Hospital for Children, Houston, TX, United States
- Pediatric Rheumatology, Children’s Medical Center of Dallas, Dallas, TX, United States
| | - Sirui Yang
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
16
|
Hua MR, Zhao YL, Yang JZ, Zou L, Zhao YY, Li X. Membranous nephropathy: Mechanistic insights and therapeutic perspectives. Int Immunopharmacol 2023; 120:110317. [PMID: 37207447 DOI: 10.1016/j.intimp.2023.110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Membranous nephropathy (MN) is one of the most common causes of non-diabetic nephrotic syndrome in adults. About 80% of cases are renal limited (primary MN) and 20% are associated with other systemic diseases or exposures (secondary MN). Autoimmune reaction is the main pathogenic factor of MN, and the discovery of autoantigens including the phospholipase A2 receptor and thrombospondin type-1 domain-containing protein 7A has led to new insights into the pathogenesis, they can induce humoral immune responses led by IgG4 makes them suitable for the diagnosis and monitoring of MN. In addition, complement activation, genetic susceptibility genes and environmental pollution are also involved in MN immune response. In clinical practice, due to the spontaneous remission of MN, the combination of supportive therapy and pharmacological treatment is widely used. Immunosuppressive drugs are the cornerstone of MN treatment, and the dangers and benefits of this approach vary from person to person. In summary, this review provides a more comprehensive review of the immune pathogenesis, interventions and unresolved issues of MN in the hope of providing some new ideas for clinical and scientific researchers in the treatment of MN.
Collapse
Affiliation(s)
- Meng-Ru Hua
- Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi 710000, China
| | - Yan-Long Zhao
- Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi 710000, China
| | - Jun-Zheng Yang
- Guangdong nephrotic drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, No. 71 Dongpeng avenue, Guangzhou, Guangdong 510530, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Ying-Yong Zhao
- Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi 710000, China; School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China; School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Xia Li
- Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
17
|
Hawtin S, André C, Collignon-Zipfel G, Appenzeller S, Bannert B, Baumgartner L, Beck D, Betschart C, Boulay T, Brunner HI, Ceci M, Deane J, Feifel R, Ferrero E, Kyburz D, Lafossas F, Loetscher P, Merz-Stoeckle C, Michellys P, Nuesslein-Hildesheim B, Raulf F, Rush JS, Ruzzante G, Stein T, Zaharevitz S, Wieczorek G, Siegel R, Gergely P, Shisha T, Junt T. Preclinical characterization of the Toll-like receptor 7/8 antagonist MHV370 for lupus therapy. Cell Rep Med 2023; 4:101036. [PMID: 37196635 DOI: 10.1016/j.xcrm.2023.101036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Genetic and in vivo evidence suggests that aberrant recognition of RNA-containing autoantigens by Toll-like receptors (TLRs) 7 and 8 drives autoimmune diseases. Here we report on the preclinical characterization of MHV370, a selective oral TLR7/8 inhibitor. In vitro, MHV370 inhibits TLR7/8-dependent production of cytokines in human and mouse cells, notably interferon-α, a clinically validated driver of autoimmune diseases. Moreover, MHV370 abrogates B cell, plasmacytoid dendritic cell, monocyte, and neutrophil responses downstream of TLR7/8. In vivo, prophylactic or therapeutic administration of MHV370 blocks secretion of TLR7 responses, including cytokine secretion, B cell activation, and gene expression of, e.g., interferon-stimulated genes. In the NZB/W F1 mouse model of lupus, MHV370 halts disease. Unlike hydroxychloroquine, MHV370 potently blocks interferon responses triggered by specific immune complexes from systemic lupus erythematosus patient sera, suggesting differentiation from clinical standard of care. These data support advancement of MHV370 to an ongoing phase 2 clinical trial.
Collapse
Affiliation(s)
- Stuart Hawtin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Cédric André
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Simone Appenzeller
- Department of Orthopedics, Rheumatology, and Traumatology, School of Medical Science, University of Campinas (UNICAMP), Campinas, 13083-887 São Paulo, Brazil
| | - Bettina Bannert
- Department of Rheumatology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lea Baumgartner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Damian Beck
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Claudia Betschart
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Thomas Boulay
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melanie Ceci
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Jonathan Deane
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | - Roland Feifel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Enrico Ferrero
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Frederique Lafossas
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Pius Loetscher
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Pierre Michellys
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | | | - Friedrich Raulf
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - James S Rush
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Giulia Ruzzante
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Thomas Stein
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Samantha Zaharevitz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | - Grazyna Wieczorek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Richard Siegel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Tamas Shisha
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.
| |
Collapse
|
18
|
Fong CC, Spencer J, Howlett-Prieto Q, Feng X, Reder AT. Adaptive and innate immune responses in multiple sclerosis with anti-CD20 therapy: Gene expression and protein profiles. Front Neurol 2023; 14:1158487. [PMID: 37168665 PMCID: PMC10166068 DOI: 10.3389/fneur.2023.1158487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Background Anti-CD20 is a highly effective therapy for multiple sclerosis (MS), a disease with multiple abnormalities in function of B and T cells and innate immune cells. Anti-CD20 therapy depletes B cells, which alters antibody production and has diverse effects on B cell immunity. These changes potentially affect immunity beyond B cells in MS. Objective Determine if anti-CD20 therapy effects non-B cell, as well as B cell, gene expression, and serum protein levels. Methods Samples were collected from 10 healthy controls and from clinically stable relapsing-remitting MS - 10 untreated, 9 interferon-β-treated, and 15 ocrelizumab-treated patients were studied before, and 2 weeks and 6 months after, the first anti-CD20 infusion. Peripheral blood mononuclear cells (PBMC) were analyzed with sensitive, 135,000-transcript RNA expression microarrays, using stringent criteria. Gene expression was compared to 43 MS-relevant serum immune and neurotrophic proteins, using multiplex protein assays. Results Anti-CD20 therapy reduced expression of 413 total genes and 185 B-cell-regulated genes at 2 weeks vs. pre-therapy. Expression of 19 (15%) of these B cell genes returned toward baseline by 6 months, including genes for the B cell activation protein, CD79A, and for immunoglobulin A, D, and G heavy chains. Expression pathways for Th17 and CD4 regulatory T-cell (Treg) development, differentiation, and proliferation also quieted. In contrast, expression increased in Th1 and myeloid cell antiviral, pro-inflammatory, and toll-like receptor (TLR) gene pathways. Conclusion These findings have clinical implications. B cell gene expression diminishes 2 weeks after anti-CD20 antibody infusion, but begins to rebound by 6 months. This suggests that the optimum time for vaccination is soon before reinfusion of anti-CD20 therapy. In addition, at 6 months, there is enhanced Th1 cell gene expression and induction of innate immune response genes and TLR expression, which can enhance anti-viral and anti-tumor immunity. This may compensate for diminished B cell gene expression after therapy. These data suggest that anti-CD20 therapy has dynamic effect on B cells and causes a compensatory rise in Th1 and myeloid immunity.
Collapse
Affiliation(s)
| | | | | | - Xuan Feng
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Anthony T. Reder
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
19
|
Cheng D, Luo Z, Fitting S, Stoops W, Heath SL, Ndhlovu LC, Jiang W. The link between chronic cocaine use, B cell perturbations, and blunted immune recovery in HIV-infected individuals on suppressive ART. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:71-79. [PMID: 37027536 PMCID: PMC10070012 DOI: 10.1515/nipt-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 06/04/2023]
Abstract
Background We recently reveal that anti-CD4 autoantibodies contribute to blunted CD4+ T cell reconstitution in HIV+ individuals on antiretroviral therapy (ART). Cocaine use is common among HIV+ individuals and is associated with accelerated disease progression. However, the mechanisms underlying cocaine-induced immune perturbations remain obscure. Methods We evaluated plasma levels of anti-CD4 IgG and markers of microbial translocation, as well as B-cell gene expression profiles and activation in HIV+ chronic cocaine users and non-users on suppressive ART, as well as uninfected controls. Plasma purified anti-CD4 IgGs were assessed for antibody-dependent cytotoxicity (ADCC). Results HIV+ cocaine users had increased plasma levels of anti-CD4 IgGs, lipopolysaccharide (LPS), and soluble CD14 (sCD14) versus non-users. An inverse correlation was observed in cocaine users, but not non-drug users. Anti-CD4 IgGs from HIV+ cocaine users mediated CD4+ T cell death through ADCC in vitro. B cells from HIV+ cocaine users exhibited activation signaling pathways and activation (cycling and TLR4 expression) related to microbial translocation versus non-users. Conclusions This study improves our understanding of cocaine associated B cell perturbations and immune failure and the new appreciation for autoreactive B cells as novel therapeutic targets.
Collapse
Affiliation(s)
- Da Cheng
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Stoops
- Department of Behavioral Science, Department of Psychiatry, Center on Drug and Alcohol Research, Department of Psychology, University of Kentucky College of Medicine and College of Arts and Sciences, Lexington, KY, USA
| | - Sonya L. Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
20
|
Riedel JH, Robben L, Paust HJ, Zhao Y, Asada N, Song N, Peters A, Kaffke A, Borchers A, Tiegs G, Seifert L, Tomas NM, Hoxha E, Wenzel UO, Huber TB, Wiech T, Turner JE, Krebs CF, Panzer U. Glucocorticoids target the CXCL9/CXCL10-CXCR3 axis and confer protection against immune-mediated kidney injury. JCI Insight 2023; 8:160251. [PMID: 36355429 PMCID: PMC9870076 DOI: 10.1172/jci.insight.160251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Glucocorticoids remain a cornerstone of therapeutic regimes for autoimmune and chronic inflammatory diseases - for example, in different forms of crescentic glomerulonephritis - because of their rapid antiinflammatory effects, low cost, and wide availability. Despite their routine use for decades, the underlying cellular mechanisms by which steroids exert their therapeutic effects need to be fully elucidated. Here, we demonstrate that high-dose steroid treatment rapidly reduced the number of proinflammatory CXCR3+CD4+ T cells in the kidney by combining high-dimensional single-cell and morphological analyses of kidney biopsies from patients with antineutrophil cytoplasmic antibody-associated (ANCA-associated) crescentic glomerulonephritis. Using an experimental model of crescentic glomerulonephritis, we show that the steroid-induced decrease in renal CD4+ T cells is a consequence of reduced T cell recruitment, which is associated with an ameliorated disease course. Mechanistic in vivo and in vitro studies revealed that steroids act directly on renal tissue cells, such as tubular epithelial cells, but not on T cells, which resulted in an abolished renal expression of CXCL9 and CXCL10 as well as in the prevention of CXCR3+CD4+ T cell recruitment to the inflamed kidneys. Thus, we identified the CXCL9/CXCL10-CXCR3 axis as a previously unrecognized cellular and molecular target of glucocorticoids providing protection from immune-mediated pathology.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Robben
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yu Zhao
- Division of Translational Immunology, III. Department of Medicine and,Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), Hamburg, Germany
| | - Nariaki Asada
- Division of Translational Immunology, III. Department of Medicine and
| | - Ning Song
- Division of Translational Immunology, III. Department of Medicine and
| | - Anett Peters
- Division of Translational Immunology, III. Department of Medicine and
| | - Anna Kaffke
- Division of Translational Immunology, III. Department of Medicine and
| | - Alina Borchers
- Division of Translational Immunology, III. Department of Medicine and
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology,,Institute of Pathology, Section of Nephropathology, and
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Section of Nephropathology, and
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O. Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Perico N, Cortinovis M, Suter F, Remuzzi G. Home as the new frontier for the treatment of COVID-19: the case for anti-inflammatory agents. THE LANCET. INFECTIOUS DISEASES 2023. [PMID: 36030796 DOI: 10.1016/s1473-3099(22)00433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is characterised by a broad spectrum of symptom severity that requires varying amounts of care according to the different stages of the disease. Intervening at the onset of mild to moderate COVID-19 symptoms in the outpatient setting would provide the opportunity to prevent progression to a more severe illness and long-term complications. As early disease symptoms variably reflect an underlying excessive inflammatory response to the viral infection, the use of anti-inflammatory drugs, especially non-steroidal anti-inflammatory drugs (NSAIDs), in the initial outpatient stage of COVID-19 seems to be a valuable therapeutic strategy. A few observational studies have tested NSAIDs (especially relatively selective COX-2 inhibitors), often as part of multipharmacological protocols, for early outpatient treatment of COVID-19. The findings from these studies are promising and point to a crucial role of NSAIDs for the at-home management of people with initial COVID-19 symptoms.
Collapse
Affiliation(s)
- Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy
| | - Fredy Suter
- Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy; Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
22
|
Perico N, Cortinovis M, Suter F, Remuzzi G. Home as the new frontier for the treatment of COVID-19: the case for anti-inflammatory agents. THE LANCET. INFECTIOUS DISEASES 2023; 23:e22-e33. [PMID: 36030796 PMCID: PMC9411261 DOI: 10.1016/s1473-3099(22)00433-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/09/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is characterised by a broad spectrum of symptom severity that requires varying amounts of care according to the different stages of the disease. Intervening at the onset of mild to moderate COVID-19 symptoms in the outpatient setting would provide the opportunity to prevent progression to a more severe illness and long-term complications. As early disease symptoms variably reflect an underlying excessive inflammatory response to the viral infection, the use of anti-inflammatory drugs, especially non-steroidal anti-inflammatory drugs (NSAIDs), in the initial outpatient stage of COVID-19 seems to be a valuable therapeutic strategy. A few observational studies have tested NSAIDs (especially relatively selective COX-2 inhibitors), often as part of multipharmacological protocols, for early outpatient treatment of COVID-19. The findings from these studies are promising and point to a crucial role of NSAIDs for the at-home management of people with initial COVID-19 symptoms.
Collapse
Affiliation(s)
- Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy
| | - Fredy Suter
- Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy; Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
23
|
Blanco-Nistal MM, Fernández-Fernández JA. Glucocorticoid Effect in Cancer Patients. Methods Mol Biol 2023; 2704:339-352. [PMID: 37642855 DOI: 10.1007/978-1-0716-3385-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The use of glucocorticoids is very varied in the context of cancer patients and includes the treatment of symptoms related to cancer, but also the management of the most common side effects of antitumor treatments or adverse events related to the immune system. There is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anticancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen-presenting cells such as dendritic cells (DCs). The classic strategies to improve the medical management of inflammation are aimed at exacerbating the host's immune response. Although successful in treating a number of diseases, these drugs have limited efficacy and variable responses can lead to unpredictable results. The ideal therapy should reduce inflammation without inducing immunosuppression and remains a challenge for healthcare personnel.
Collapse
|
24
|
Dankers W, Northcott M, Bennett T, D’Cruz A, Sherlock R, Gearing LJ, Hertzog P, Russ B, Miceli I, Scheer S, Fujishiro M, Hayakawa K, Ikeda K, Morand EF, Jones SA. Type 1 interferon suppresses expression and glucocorticoid induction of glucocorticoid-induced leucine zipper (GILZ). Front Immunol 2022; 13:1034880. [PMID: 36505447 PMCID: PMC9727222 DOI: 10.3389/fimmu.2022.1034880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
SLE is a systemic multi-organ autoimmune condition associated with reduced life expectancy and quality of life. Glucocorticoids (GC) are heavily relied on for SLE treatment but are associated with detrimental metabolic effects. Type 1 interferons (IFN) are central to SLE pathogenesis and may confer GC insensitivity. Glucocorticoid-induced leucine zipper (GILZ) mediates many effects of GC relevant to SLE pathogenesis, but the effect of IFN on GC regulation of GILZ is unknown. We performed in vitro experiments using human PBMC to examine the effect of IFN on GILZ expression. JAK inhibitors tofacitinib and tosylate salt were used in vivo and in vitro respectively to investigate JAK-STAT pathway dependence of our observations. ChiP was performed to examine glucocorticoid receptor (GR) binding at the GILZ locus. Several public data sets were mined for correlating clinical data. High IFN was associated with suppressed GILZ and reduced GILZ relevant to GC exposure in a large SLE population. IFN directly reduced GILZ expression and suppressed the induction of GILZ by GC in vitro in human leukocytes. IFN actions on GILZ expression were dependent on the JAK1/Tyk2 pathway, as evidenced by loss of the inhibitory effect of IFN on GILZ in the presence of JAK inhibitors. Activation of this pathway led to reduced GR binding in key regulatory regions of the GILZ locus. IFN directly suppresses GILZ expression and GILZ upregulation by GC, indicating a potential mechanism for IFN-induced GC resistance. This work has important implications for the ongoing development of targeted GC-sparing therapeutics in SLE.
Collapse
Affiliation(s)
- Wendy Dankers
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Melissa Northcott
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Taylah Bennett
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Akshay D’Cruz
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Rochelle Sherlock
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Paul Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Brendan Russ
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Iolanda Miceli
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Sebastian Scheer
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Maki Fujishiro
- Institutes for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kunihiro Hayakawa
- Institutes for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Keigo Ikeda
- Institutes for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Eric F. Morand
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| | - Sarah A. Jones
- Centre for Inflammatory Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Chaudhary V, Ah Kioon MD, Hwang SM, Mishra B, Lakin K, Kirou KA, Zhang-Sun J, Wiseman RL, Spiera RF, Crow MK, Gordon JK, Cubillos-Ruiz JR, Barrat FJ. Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. J Exp Med 2022; 219:e20221085. [PMID: 36053251 PMCID: PMC9441715 DOI: 10.1084/jem.20221085] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) chronically produce type I interferon (IFN-I) in autoimmune diseases, including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). We report that the IRE1α-XBP1 branch of the unfolded protein response (UPR) inhibits IFN-α production by TLR7- or TLR9-activated pDCs. In SSc patients, UPR gene expression was reduced in pDCs, which inversely correlated with IFN-I-stimulated gene expression. CXCL4, a chemokine highly secreted in SSc patients, downregulated IRE1α-XBP1-controlled genes and promoted IFN-α production by pDCs. Mechanistically, IRE1α-XBP1 activation rewired glycolysis to serine biosynthesis by inducing phosphoglycerate dehydrogenase (PHGDH) expression. This process reduced pyruvate access to the tricarboxylic acid (TCA) cycle and blunted mitochondrial ATP generation, which are essential for pDC IFN-I responses. Notably, PHGDH expression was reduced in pDCs from patients with SSc and SLE, and pharmacological blockade of TCA cycle reactions inhibited IFN-I responses in pDCs from these patients. Hence, modulating the IRE1α-XBP1-PHGDH axis may represent a hitherto unexplored strategy for alleviating chronic pDC activation in autoimmune disorders.
Collapse
Affiliation(s)
- Vidyanath Chaudhary
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
| | - Sung-Min Hwang
- Sandra and Edward Meyer Cancer Center and Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | - Bikash Mishra
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
| | - Kimberly Lakin
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Kyriakos A. Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
| | - Jeffrey Zhang-Sun
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Robert F. Spiera
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Mary K. Crow
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jessica K. Gordon
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Juan R. Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center and Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| |
Collapse
|
26
|
Delgado M, Lennon-Duménil AM. How cell migration helps immune sentinels. Front Cell Dev Biol 2022; 10:932472. [PMID: 36268510 PMCID: PMC9577558 DOI: 10.3389/fcell.2022.932472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The immune system relies on the migratory capacity of its cellular components, which must be mobile in order to defend the host from invading micro-organisms or malignant cells. This applies in particular to immune sentinels from the myeloid lineage, i.e. macrophages and dendritic cells. Cell migration is already at work during mammalian early development, when myeloid cell precursors migrate from the yolk sac, an extra embryonic structure, to colonize tissues and form the pool of tissue-resident macrophages. Later, this is accompanied by a migration wave of precursors and monocytes from the bone marrow to secondary lymphoid organs and the peripheral tissues. They differentiate into DCs and monocyte-derived macrophages. During adult life, cell migration endows immune cells with the ability to patrol their environment as well as to circulate between peripheral tissues and lymphoid organs. Hence migration of immune cells is key to building an efficient defense system for an organism. In this review, we will describe how cell migratory capacity regulates the various stages in the life of myeloid cells from development to tissue patrolling, and migration to lymph nodes. We will focus on the role of the actin cytoskeletal machinery and its regulators, and how it contributes to the establishment and function of the immune system.
Collapse
|
27
|
Kirou KA, Dall`Era M, Aranow C, Anders HJ. Belimumab or anifrolumab for systemic lupus erythematosus? A risk-benefit assessment. Front Immunol 2022; 13:980079. [PMID: 36119023 PMCID: PMC9472122 DOI: 10.3389/fimmu.2022.980079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023] Open
Abstract
Treatment of systemic lupus erythematosus (SLE) currently employs agents with relatively unselective immunosuppressive properties. However, two target-specific biological drugs have been approved: belimumab (anti-B-cell-activating factor/BAFF) and anifrolumab (anti-interferon alpha receptor-1/IFNAR1). Here, we performed a comparative risk-benefit assessment for both drugs based on the role of BAFF and IFNAR1 in host defense and the pathogenesis of SLE and by considering the available data on safety and efficacy. Due to differences in target expression sites, anti-IFNAR1, but not anti-BAFF, might elicit organ-specific effects, consistent with clinical efficacy data. The IFNAR1 is specifically involved in innate and adaptive antiviral immunity in most cells of the body. Consistent with this observation, the available safety data obtained from patients negatively selected for LN and neuropsychiatric SLE, primary immunodeficiencies, splenectomy and chronic HIV, HBV, HCV infections suggest an increased risk for some viral infections such as varicella zoster and perhaps influenza. In contrast, BAFF is mainly involved in adaptive immune responses in lymphoid tissues, thus anti-BAFF therapy modulates SLE activity and prevents SLE flares without interfering with local innate host defense mechanisms and should only marginally affect immune memory to previous pathogen exposures consistent with the available safety data from SLE patients without chronic HIV, HBV or HCV infections. When using belimumab and anifrolumab, careful patient stratification and specific precautions may minimize risks and maximize beneficial treatment effects for patients with SLE.
Collapse
Affiliation(s)
- Kyriakos A. Kirou
- Department of Medicine, Hospital for Special Surgery and Weill Cornell Medical College, New York, NY, United States
| | - Maria Dall`Era
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Cynthia Aranow
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Hans-Joachim Anders
- Department of Medicine IV, University Hospital of the Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
28
|
Yu C, Li P, Dang X, Zhang X, Mao Y, Chen X. Lupus nephritis: new progress in diagnosis and treatment. J Autoimmun 2022; 132:102871. [PMID: 35999111 DOI: 10.1016/j.jaut.2022.102871] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease that affects many organs, including the kidney. Lupus nephritis (LN) is a common manifestation characterized by heterogeneous clinical and histopathological findings, and often associates with poor prognosis. The diagnosis and treatment of LN is challenging, depending largely on renal biopsy, and there is no reliable non-invasive LN biomarker. Up to now, the complete remission rate of LN is only 20%∼30% after receiving six months of standard treatment, which is far from satisfactory. Moreover, adverse reactions to immunosuppressants, especially glucocorticoids, further compromise the prognosis of LN. Biological reagents targetting autoimmune responses and inflammatory pathways, bring hope to the treatment of intractable lupus. The European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) and KDIGO (Kidney Disease: Improving Global Outcomes) have been working on and launched the recommendations for the management of LN. In this review, we update our knowledge in the pathogenesis, diagnosis, and management of LN and prospect for the future potential targets in the management of LN.
Collapse
Affiliation(s)
- Chen Yu
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xin Dang
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yonghui Mao
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
29
|
Nataraja C, Flynn J, Dankers W, Northcott M, Zhu W, Sherlock R, Bennett TJ, Russ BE, Miceli I, Pervin M, D'Cruz A, Harris J, Morand EF, Jones SA. GILZ regulates type I interferon release and sequesters STAT1. J Autoimmun 2022; 131:102858. [PMID: 35810690 DOI: 10.1016/j.jaut.2022.102858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Glucocorticoids remain a mainstay of modern medicine due to their ability to broadly suppress immune activation. However, they cause severe adverse effects that warrant urgent development of a safer alternative. The glucocorticoid-induced leucine zipper (GILZ) gene, TSC22D3, is one of the most highly upregulated genes in response to glucocorticoid treatment, and reduced GILZ mRNA and protein levels are associated with increased severity of inflammation in systemic lupus erythematosus (SLE), Ulcerative Colitis, Psoriasis, and other autoimmune/autoinflammatory diseases. Here, we demonstrate that low GILZ permits expression of a type I interferon (IFN) signature, which is exacerbated in response to TLR7 and TLR9 stimulation. Conversely, overexpression of GILZ prevents IFN-stimulated gene (ISG) up-regulation in response to IFNα. Moreover, GILZ directly binds STAT1 and prevents its nuclear translocation, thereby negatively regulating IFN-induced gene expression and the auto-amplification loop of the IFN response. Thus, GILZ powerfully regulates both the expression and action of type I IFN, suggesting restoration of GILZ as an attractive therapeutic strategy for reducing reliance on glucocorticoids.
Collapse
Affiliation(s)
- Champa Nataraja
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Jacqueline Flynn
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Wendy Dankers
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Melissa Northcott
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Wendy Zhu
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Rochelle Sherlock
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Taylah J Bennett
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Brendan E Russ
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Iolanda Miceli
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Mehnaz Pervin
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Akshay D'Cruz
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - James Harris
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Eric F Morand
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia
| | - Sarah A Jones
- Rheumatology Research Group, Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, 246 Clayton Rd, Clayton, 3168, Melbourne, Australia.
| |
Collapse
|
30
|
Jones JM, Smith F, Littlejohn E, Jorgensen TN. Lack of Association Between Sex Hormones, MDSCs, LDGs and pDCs in Males and Females With Systemic Lupus Erythematosus. Front Immunol 2022; 13:888501. [PMID: 35833144 PMCID: PMC9271771 DOI: 10.3389/fimmu.2022.888501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) and low-density granulocytes (LDGs) are interferon-alpha producing cells that create a pro-inflammatory response in Systemic Lupus Erythematosus (SLE) leading to auto antibody production and organ damage. Both pDCs and LDGs have been shown to be dysfunctional in patients with active SLE. Myeloid-derived suppressor cells (MDSCs) have the capacity to control T and B cell activation and differentiation, and have recently been identified as cells of interest in SLE as well. While not fully understood, previous studies have suggested that pDCs are regulated in part by both X chromosome inactivation and estradiol. Whether sex chromosomes or sex hormones regulate MDSCs and LDGs remain to be determined. We aimed to explore the relative role of sex and sex hormones on pDC, MDSC and LDG frequency and function in SLE patients. We recruited patients with SLE as defined by ACR or SLICC classification criteria and healthy controls in conjunction with the Cleveland Clinic Lupus Cohort and Clinical Research Unit. We analyzed serum sex hormone levels by ELISA, and frequencies of pDCs, MDSCs, and LDGs among PBMCs and serum cytokine levels by flow cytometry. PBMCs were further analyzed for expression of genes involved in or induced by toll-like receptor (TLR)7 or TLR9 stimulation. In all SLE patients, the serum estradiol/testosterone ratio and levels of granulocytic MDSCs and LDGs were increased, while levels of pDCs were decreased. Furthermore, pDCs from active SLE patients expressed lower levels of TLR7 and TLR9 and showed diminished production of TLR9-induced IFNα and TNFα as compared to healthy controls. LDGs from healthy controls and SLE patients expressed very low levels of TLR7 and TLR9 and largely failed to respond to TLR9 stimulation. Thus, regardless of sex and sex-hormone levels, frequencies of pDCs, MDSCs and LDGs, TLR7 and TLR9 expression, and TLR9-driven cytokine production were similarly altered in male and female SLE patients.
Collapse
Affiliation(s)
- Jessica M. Jones
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Frances Smith
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Emily Littlejohn
- Department of Rheumatologic and Immunologic Disease, Orthopaedic and Rheumatologic Institute, Lupus Clinic, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Trine N. Jorgensen
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, United States
- *Correspondence: Trine N. Jorgensen,
| |
Collapse
|
31
|
Aslani N, Raeeskarami SR, Aghaei-Moghadam E, Tahghighi F, Assari R, Sadeghi P, Ziaee V. Intravenous Methylprednisolone Pulse Therapy Versus Intravenous Immunoglobulin in the Prevention of Coronary Artery Disease in Children with Kawasaki Disease: A Randomized Controlled Trial. Cureus 2022; 14:e26252. [PMID: 35911298 PMCID: PMC9312282 DOI: 10.7759/cureus.26252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Kawasaki disease (KD) is often complicated by coronary artery lesion (CAL), including dilatation or aneurysms. Intravenous immunoglobulin (IVIG) is used with aspirin to prevent CAL in KD. Objective: Given that the primary treatment for other vasculitis is the use of corticosteroids, this study has been performed to evaluate the effect of intravenous methylprednisolone pulse (IVMP) therapy in preventing CAL in KD. Method: A randomized, single-blind clinical trial was conducted on 40 KD patients aged six months to five years. Patients were randomized into two groups according to the main treatment plan in addition to aspirin: case group (IVMP for three consecutive days and then oral prednisolone for three days) and control group (intravenous immunoglobulin 2 g/kg). Echocardiography was performed for all children at least three times, during the acute phase, two weeks, and two months later. Results: Data analysis at the end of the study was done on 40 patients (20 patients in each group). There were no significant differences in age and sex distribution, mean fever, and acute phase duration, as well as baseline echocardiography in the two groups. The frequency of CAL was 20% in the case group and 45% in the control group, after two weeks (p<0.05), but there was no significant difference between two groups in types of coronary artery lesion after two weeks and the frequency and severity of CAL after two months. Conclusion: IVMP as initial line therapy effectively control systemic and vascular inflammation and decrease coronary artery damage in KD.
Collapse
|
32
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
33
|
Northcott M, Jones S, Koelmeyer R, Bonin J, Vincent F, Kandane-Rathnayake R, Hoi A, Morand E. Type 1 interferon status in systemic lupus erythematosus: a longitudinal analysis. Lupus Sci Med 2022; 9:e000625. [PMID: 35197305 PMCID: PMC8867321 DOI: 10.1136/lupus-2021-000625] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Type 1 interferon (IFN) is key to the pathogenesis of SLE, evidenced by the expression of IFN-stimulated genes (ISGs) in most patients, but the clinical utility of serial ISG assessment remains unknown. With the emergence of IFN-blocking drugs, we aimed to examine IFN status in relation to clinical findings longitudinally to provide insights into the value of testing ISG levels over time. METHODS Clinical data and whole blood were collected prospectively on adult patients with SLE from a single tertiary lupus centre. IFN status was measured using a panel of ISGs. FINDINGS 729 samples were analysed from 205 patients. At baseline, 62.9% of patients were IFN high, 30.2% IFN low and 6.8% borderline. 142 patients had multiple samples collected, and 87.3% of these demonstrated stable ISG status over time. In longitudinal follow-up, IFN high patients had higher activity in multiple organ domains and spent less time in Lupus Low Disease Activity State, but IFN score did not correlate with SLE Disease Activity Index in individual patients. In the small subset of patients who had large fluctuations in ISG across the observation period, most had high-dose glucocorticoids that correlated with ISG suppression. However, low-moderate-dose glucocorticoids did not suppress ISG expression. CONCLUSION Although IFN high status is associated with indicators of more severe SLE, in the majority of patients, ISGs are stable across time and do not correlate with disease activity. Changes in ISG expression may be seen with high-dose, but not routine dose, glucocorticoid exposure. These findings suggest baseline but not serial ISG measurement may be of value in the management of SLE.
Collapse
Affiliation(s)
- Melissa Northcott
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarah Jones
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rachel Koelmeyer
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Julie Bonin
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Fabien Vincent
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rangi Kandane-Rathnayake
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Alberta Hoi
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Eric Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Greene TT, Zuniga EI. Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses 2021; 13:1839. [PMID: 34578420 PMCID: PMC8472174 DOI: 10.3390/v13091839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as "pDC exhaustion", favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.
Collapse
Affiliation(s)
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
35
|
Caielli S, Cardenas J, de Jesus AA, Baisch J, Walters L, Blanck JP, Balasubramanian P, Stagnar C, Ohouo M, Hong S, Nassi L, Stewart K, Fuller J, Gu J, Banchereau JF, Wright T, Goldbach-Mansky R, Pascual V. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell 2021; 184:4464-4479.e19. [PMID: 34384544 PMCID: PMC8380737 DOI: 10.1016/j.cell.2021.07.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Emerging evidence supports that mitochondrial dysfunction contributes to systemic lupus erythematosus (SLE) pathogenesis. Here we show that programmed mitochondrial removal, a hallmark of mammalian erythropoiesis, is defective in SLE. Specifically, we demonstrate that during human erythroid cell maturation, a hypoxia-inducible factor (HIF)-mediated metabolic switch is responsible for the activation of the ubiquitin-proteasome system (UPS), which precedes and is necessary for the autophagic removal of mitochondria. A defect in this pathway leads to accumulation of red blood cells (RBCs) carrying mitochondria (Mito+ RBCs) in SLE patients and in correlation with disease activity. Antibody-mediated internalization of Mito+ RBCs induces type I interferon (IFN) production through activation of cGAS in macrophages. Accordingly, SLE patients carrying both Mito+ RBCs and opsonizing antibodies display the highest levels of blood IFN-stimulated gene (ISG) signatures, a distinctive feature of SLE.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | | | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeanine Baisch
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Preetha Balasubramanian
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Cristy Stagnar
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Marina Ohouo
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Seunghee Hong
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lorien Nassi
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katie Stewart
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julie Fuller
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinghua Gu
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Tracey Wright
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Trindade VC, Carneiro-Sampaio M, Bonfa E, Silva CA. An Update on the Management of Childhood-Onset Systemic Lupus Erythematosus. Paediatr Drugs 2021; 23:331-347. [PMID: 34244988 PMCID: PMC8270778 DOI: 10.1007/s40272-021-00457-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is a prototype of a multisystemic, inflammatory, heterogeneous autoimmune condition. This disease is characterized by simultaneous or sequential organ and system involvement, with unpredictable flare and high levels of morbidity and mortality. Racial/ethnic background, socioeconomic status, cost of medications, difficulty accessing health care, and poor adherence seem to impact lupus outcomes and treatment response. In this article, the management of cSLE patients is updated. Regarding pathogenesis, a number of potential targets for drugs have been studied. However, most treatments in pediatric patients are off-label drugs with recommendations based on inadequately powered studies, therapeutic consensus guidelines, or case series. Management practices for cSLE patients include evaluations of disease activity and cumulative damage scores, routine non-live vaccinations, physical activity, and addressing mental health issues. Antimalarials and glucocorticoids are still the most common drugs used to treat cSLE, and hydroxychloroquine is recommended for nearly all cSLE patients. Disease-modifying antirheumatic drugs (DMARDs) should be standardized for each patient, based on disease flare and cSLE severity. Mycophenolate mofetil or intravenous cyclophosphamide is suggested as induction therapy for lupus nephritis classes III and IV. Calcineurin inhibitors (cyclosporine, tacrolimus, voclosporin) appear to be another good option for cSLE patients with lupus nephritis. Regarding B-cell-targeting biologic agents, rituximab may be used for refractory lupus nephritis patients in combination with another DMARD, and belimumab was recently approved by the US Food and Drug Administration for cSLE treatment in children aged > 5 years. New therapies targeting CD20, such as atacicept and telitacicept, seem to be promising drugs for SLE patients. Anti-interferon therapies (sifalimumab and anifrolumab) have shown beneficial results in phase II randomized control trials in adult SLE patients, as have some Janus kinase inhibitors, and these could be alternative treatments for pediatric patients with severe interferon-mediated inflammatory disease in the future. In addition, strict control of proteinuria and blood pressure is required in cSLE, especially with angiotensin-converting enzyme inhibitor and angiotensin receptor blocker use.
Collapse
Affiliation(s)
- Vitor Cavalcanti Trindade
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647, Cerqueira César, São Paulo, SP, 05403-000, Brazil
| | - Clovis Artur Silva
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
37
|
Baek WY, Lee SM, Lee SW, Son IO, Choi S, Suh CH. Intravenous Administration of Toll-Like Receptor Inhibitory Peptide 1 is Effective for the Treatment of Systemic Lupus Erythematosus in a Mus musculus Model. JOURNAL OF RHEUMATIC DISEASES 2021; 28:133-142. [PMID: 37475994 PMCID: PMC10324895 DOI: 10.4078/jrd.2021.28.3.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 07/22/2023]
Abstract
Objective Systemic lupus erythematosus (SLE) is a common chronic autoimmune inflammatory disease According to recent studies, signaling through Toll-like receptor (TLR) protein, which promotes the production of inflammatory cytokines, leads to the development of SLE TLR-inhibitory peptide 1 (TIP1) has been newly identified for the treatment of autoimmune diseases. Methods The effect of TIP1 was analyzed in an SLE mouse model (MRL/lpr) The mice in the control treatment group (n=5) were administered an intravenous injection of phosphate-buffered saline twice weekly, whereas the mice in the TIP1 treatment group (n=6) were administered an intravenous injection of TIP1 (1 nmol/g) twice weekly MRL/mpj mice (n=5) were selected as normal controls The mice were injected for 4 weeks between 14 and 18 weeks of age, followed by assays of their spleen, kidneys, lymph nodes, serum, and urine. Results The antinuclear antibody and inflammatory cytokine (interferon-α) in the serum as well as levels of albumin in the urine of the mice in the TIP1 treatment group had decreased when compared to those of mice in the control treatment group Kidney inflammation in mice in the TIP1 treatment group was alleviated The mRNA expression levels of TLR7- or TLR9-related downstream signaling molecules also decreased in all organs of the mice in the TIP1 treatment group. Conclusion Intravenous treatment with TIP1 reduces symptoms and markers of inflammation in MRL/lpr mice Hence, TIP1 is a promising medication for the treatment of SLE.
Collapse
Affiliation(s)
- Wook-Young Baek
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sung-Min Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Sang-Won Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - In-Ok Son
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
38
|
Abstract
Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.
Collapse
|
39
|
Ramkissoon CM, Güemes A, Vehi J. Overview of therapeutic applications of non-invasive vagus nerve stimulation: a motivation for novel treatments for systemic lupus erythematosus. Bioelectron Med 2021; 7:8. [PMID: 34030736 PMCID: PMC8145832 DOI: 10.1186/s42234-021-00069-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder that commonly affects the skin, joints, kidneys, and central nervous system. Although great progress has been made over the years, patients still experience unfavorable secondary effects from medications, increased economic burden, and higher mortality rates compared to the general population. To alleviate these current problems, non-invasive, non-pharmacological interventions are being increasingly investigated. One such intervention is non-invasive vagus nerve stimulation, which promotes the upregulation of the cholinergic anti-inflammatory pathway that reduces the activation and production of pro-inflammatory cytokines and reactive oxygen species, culpable processes in autoimmune diseases such as SLE. This review first provides a background on the important contribution of the autonomic nervous system to the pathogenesis of SLE. The gross and structural anatomy of the vagus nerve and its contribution to the inflammatory response are described afterwards to provide a general understanding of the impact of stimulating the vagus nerve. Finally, an overview of current clinical applications of invasive and non-invasive vagus nerve stimulation for a variety of diseases, including those with similar symptoms to the ones in SLE, is presented and discussed. Overall, the review presents neuromodulation as a promising strategy to alleviate SLE symptoms and potentially reverse the disease.
Collapse
Affiliation(s)
| | - Amparo Güemes
- Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Josep Vehi
- Institut d’Informàtica i Aplicacions, Universitat de Girona, Girona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
40
|
Northcott M, Gearing LJ, Nim HT, Nataraja C, Hertzog P, Jones SA, Morand EF. Glucocorticoid gene signatures in systemic lupus erythematosus and the effects of type I interferon: a cross-sectional and in-vitro study. THE LANCET. RHEUMATOLOGY 2021; 3:e357-e370. [PMID: 38279391 DOI: 10.1016/s2665-9913(21)00006-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Glucocorticoids, used as a therapy in systemic lupus erythematosus (SLE), interact with the cytoplasmic glucocorticoid receptor to modulate gene transcription. Minimising the use of glucocorticoids is a goal in SLE; however, pharmacological measures to support clinical guidelines are scarce. We evaluated glucocorticoid-regulated genes for their potential use as biomarkers of glucocorticoid exposure in SLE. We examined interactions between changes in gene expression that are induced by glucocorticoids and type I interferon. METHODS Genes regulated by glucocorticoids and type I interferon were analysed in relation to glucocorticoid exposure in adult patients meeting the American College of Rheumatology criteria for SLE from three cross-sectional cohorts: a local cohort from a tertiary hospital in Melbourne, VIC, Australia, and two public datasets (GSE49454, Hospital de la Conception, Marseille, France, and GSE88884, patients enrolled in a large, multicentre clinical trial). RNA sequencing was done using RNA from healthy donor leucocytes treated with the glucocorticoid dexamethasone, or type I interferon, or both. FINDINGS Glucocorticoid-regulated genes were analysed in a local SLE cohort (n=18) and public dataset GSE49454 (n=62). Five genes correlated with glucocorticoid dose in both cohorts and were combined to make a glucocorticoid gene signature. Validity of the glucocorticoid gene signature was tested in the public dataset GSE88884 (n=1756). A dose-dependent association was observed with glucocorticoid dose (p<0·0001), and the glucocorticoid gene signature had moderate ability to identify patients taking high-dose glucocorticoid (area under the curve [AUC]=0·77) although was less discriminatory when including all doses (AUC=0·69). We saw no effect of glucocorticoid dose on type I interferon -regulated gene expression. Patients with a high type I interferon gene signature had reduced glucocorticoid gene signature expression compared with patients with a low type I interferon gene signature matched for glucocorticoid dose, suggesting type I interferon inhibits glucocorticoid-stimulated gene expression. In RNA sequencing experiments, type I interferon impaired the expression of glucocorticoid-induced genes, whereas dexamethasone had minimal effect on the expression of type I interferon-stimulated genes. We identified genes regulated by dexamethasone but not affected by type I interferon; combined signatures using these genes also showed moderate ability to distinguish patients taking glucocorticoids. INTERPRETATION A gene signature for glucocorticoid exposure was identified, but the substantial effect of type I interferon on glucocorticoid-induced genes might limit its application in SLE. These data confirm the insensitivity of type I interferon-regulated genes to glucocorticoids, and together support the concept that type I interferon has a role in glucocorticoid resistance in SLE. FUNDING Lupus Research Alliance and Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Melissa Northcott
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Linden J Gearing
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia; Systems Biology Laboratory, Monash University, Clayton, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Champa Nataraja
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Paul Hertzog
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sarah A Jones
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
41
|
Huang X, Zhang X, Lu M. Recent trends in the development of Toll-like receptor 7/8-targeting therapeutics. Expert Opin Drug Discov 2021; 16:869-880. [PMID: 33678093 DOI: 10.1080/17460441.2021.1898369] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Toll-like receptor (TLR) 7 and TLR8 are functionally localized to endosomes and recognize specific RNA sequences. They play crucial roles in initiating innate and adaptive immune responses. TLR7/8 activation protects the host against invading pathogens and enhances immune responses. In contrast, sustained TLR7/8 signaling leads to immune overreaction. Therefore, agonists or antagonists targeting TLR7/8 signaling are favorable drug candidates for the treatment of immune disorders.Areas covered: Basic knowledge about TLR7 and TLR8 and their signaling pathways are briefly reviewed. Various therapeutic agents have been designed to activate or antagonize TLR7/8 signaling pathways, and their safety and efficacy for the treatment of multiple diseases have been investigated in preclinical animal models and clinical trials. TLR7/8 agonists exhibit potent antiviral activity and regulate anti-tumor immune responses. TLR7 agonists have also been used as adjuvants to improve vaccine immunogenicity and generate greater seroprotection. TLR7/8 antagonists are promising candidates for the treatment of autoimmune and inflammatory diseases.Expert opinion: TLR7/8 pathways are favorable targets for immunological therapies. Future research should concentrate on the optimization of drug safety, efficiency, and specificity. Detailed mechanistic studies will contribute to the development of TLR7/8 immunomodulators and novel therapeutic strategies.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
42
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
43
|
Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease. Blood 2021; 136:429-440. [PMID: 32526035 DOI: 10.1182/blood.2019000953] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is 1 of the major life-threating complications after allogeneic cell transplantation. Although steroids remain first-line treatment, roughly one-half of patients will develop steroid-refractory GVHD (SR-GVHD), which portends an extremely poor prognosis. Many agents that have shown encouraging response rates in early phase 1/2 trials for prevention and treatment have been unsuccessful in demonstrating a survival advantage when applied in the setting of SR-GVHD. The discovery of novel treatments has been further complicated by the absence of clinically informative animal models that address what may reflect a distinct pathophysiology. Nonetheless, the combined knowledge of established bone marrow transplantation models and recent human trials in SR-GVHD patients are beginning to illuminate novel mechanisms for inhibiting T-cell signaling and promoting tissue tolerance that provide an increased understanding of the underlying biology of SR-GVHD. Here, we discuss recent findings of newly appreciated cellular and molecular mechanisms and provide novel translational opportunities for advancing the effectiveness of treatment in SR-GVHD.
Collapse
|
44
|
Sha S, Pearson JA, Peng J, Hu Y, Huang J, Xing Y, Zhang L, Zhu Y, Zhao H, Wong FS, Chen L, Wen L. TLR9 Deficiency in B Cells Promotes Immune Tolerance via Interleukin-10 in a Type 1 Diabetes Mouse Model. Diabetes 2021; 70:504-515. [PMID: 33154070 PMCID: PMC7881860 DOI: 10.2337/db20-0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Toll-like receptor 9 (TLR9) is highly expressed in B cells, and B cells are important in the pathogenesis of type 1 diabetes (T1D) development. However, the intrinsic effect of TLR9 in B cells on β-cell autoimmunity is not known. To fill this knowledge gap, we generated NOD mice with a B-cell-specific deficiency of TLR9 (TLR9fl/fl/CD19-Cre+ NOD). The B-cell-specific deletion of TLR9 resulted in near-complete protection from T1D development. Diabetes protection was accompanied by an increased proportion of interleukin-10 (IL-10)-producing B cells. We also found that TLR9-deficient B cells were hyporesponsive to both innate and adaptive immune stimuli. This suggested that TLR9 in B cells modulates T1D susceptibility in NOD mice by changing the frequency and function of IL-10-producing B cells. Molecular analysis revealed a network of TLR9 with matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, and CD40, all of which are interconnected with IL-10. Our study has highlighted an important connection of an innate immune molecule in B cells to the immunopathogenesis of T1D. Thus, targeting the TLR9 pathway, specifically in B cells, may provide a novel therapeutic strategy for T1D treatment.
Collapse
Affiliation(s)
- Sha Sha
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - James A Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Jian Peng
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Youjia Hu
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Juan Huang
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Yanpeng Xing
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Luyao Zhang
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhu
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT
| | - Hongyu Zhao
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
| | - Li Chen
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
45
|
Ferriere A, Santa P, Garreau A, Bandopadhyay P, Blanco P, Ganguly D, Sisirak V. Self-Nucleic Acid Sensing: A Novel Crucial Pathway Involved in Obesity-Mediated Metaflammation and Metabolic Syndrome. Front Immunol 2021; 11:624256. [PMID: 33574823 PMCID: PMC7870860 DOI: 10.3389/fimmu.2020.624256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity and overweight are a global health problem affecting almost one third of the world population. There are multiple complications associated with obesity including metabolic syndrome that commonly lead to development of type II diabetes and non-alcoholic fatty liver disease. The development of metabolic syndrome and severe complications associated with obesity is attributed to the chronic low-grade inflammation that occurs in metabolic tissues such as the liver and the white adipose tissue. In recent years, nucleic acids (mostly DNA), which accumulate systemically in obese individuals, were shown to aberrantly activate innate immune responses and thus to contribute to metabolic tissue inflammation. This minireview will focus on (i) the main sources and forms of nucleic acids that accumulate during obesity, (ii) the sensing pathways required for their detection, and (iii) the key cellular players involved in this process. Fully elucidating the role of nucleic acids in the induction of inflammation induced by obesity would promote the identification of new and long-awaited therapeutic approaches to limit obesity-mediated complications.
Collapse
Affiliation(s)
| | - Pauline Santa
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence, Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Patrick Blanco
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France.,Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Vanja Sisirak
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| |
Collapse
|
46
|
Robinson PC, Morand E. Divergent effects of acute versus chronic glucocorticoids in COVID-19. LANCET RHEUMATOLOGY 2021; 3:e168-e170. [PMID: 33521656 PMCID: PMC7833899 DOI: 10.1016/s2665-9913(21)00005-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Philip C Robinson
- University of Queensland School of Clinical Medicine, Herston, QLD 4006, Australia
| | - Eric Morand
- Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Wölfl M, Qayed M, Benitez Carabante MI, Sykora T, Bonig H, Lawitschka A, Diaz-de-Heredia C. Current Prophylaxis and Treatment Approaches for Acute Graft-Versus-Host Disease in Haematopoietic Stem Cell Transplantation for Children With Acute Lymphoblastic Leukaemia. Front Pediatr 2021; 9:784377. [PMID: 35071133 PMCID: PMC8771910 DOI: 10.3389/fped.2021.784377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) continues to be a leading cause of morbidity and mortality following allogeneic haematopoietic stem cell transplantation (HSCT). However, higher event-free survival (EFS) was observed in patients with acute lymphoblastic leukaemia (ALL) and grade II aGvHD vs. patients with no or grade I GvHD in the randomised, controlled, open-label, international, multicentre Phase III For Omitting Radiation Under Majority age (FORUM) trial. This finding suggests that moderate-severity aGvHD is associated with a graft-versus-leukaemia effect which protects against leukaemia recurrence. In order to optimise the benefits of HSCT for leukaemia patients, reduction of non-relapse mortality-which is predominantly caused by severe GvHD-is of utmost importance. Herein, we review contemporary prophylaxis and treatment options for aGvHD in children with ALL and the key challenges of aGvHD management, focusing on maintaining the graft-versus-leukaemia effect without increasing the severity of GvHD.
Collapse
Affiliation(s)
- Matthias Wölfl
- Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Würzburg University Hospital, Würzburg, Germany
| | - Muna Qayed
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Maria Isabel Benitez Carabante
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Tomas Sykora
- Haematopoietic Stem Cell Transplantation Unit, Department of Pediatric Haematology and Oncology, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt/Main, Frankfurt, Germany.,German Red Cross Blood Service BaWüHe, Frankfurt, Germany
| | - Anita Lawitschka
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Cristina Diaz-de-Heredia
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| |
Collapse
|
48
|
Li J, Ding H, Meng Y, Li G, Fu Q, Guo Q, Yin Z, Ye Z, Zhou H, Shen N. Taurine Metabolism Aggravates the Progression of Lupus by Promoting the Function of Plasmacytoid Dendritic Cells. Arthritis Rheumatol 2020; 72:2106-2117. [PMID: 32608557 DOI: 10.1002/art.41419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 05/21/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Type I interferons (IFNs) are critical in the development of systemic lupus erythematosus (SLE). Metabolic abnormalities cause dysregulation of multiple immune cells, but the metabolic regulation of type I IFN production is not well clarified in SLE. We undertook this study to define amino acid metabolism features in SLE and to explore the function of disease-relevant metabolites in the control of plasmacytoid dendritic cell (pDC)-mediated type I IFN production and the progression of SLE. METHODS Metabolomic profiling of the serum from SLE patients and healthy controls was performed by mass spectrometry. The effects of SLE-related metabolites on type I IFN production were explored in human and mouse pDCs. The reactive oxygen species (ROS) levels of pDCs from wild-type and Ncf1-/- mice were measured by flow cytometry. Mechanisms were investigated by RNA sequencing and immunoblotting. In vivo effects of SLE-relevant metabolites were systemically analyzed in B6.Cg-Sle1NZM2410/Aeg Yaa/DcrJ mice. RESULTS Taurine was higher in the serum from SLE patients compared to healthy controls (P < 0.001) and rheumatoid arthritis patients (P < 0.001). Taurine content was positively correlated with disease activity and the expression of IFN signature genes. The addition of taurine facilitated IFN regulatory factor 7 phosphorylation and enhanced type I IFN production by reducing the ROS levels in pDCs in a neutrophil cytosolic factor 1-dependent manner. Taurine supplementation promoted expression of type I IFN-induced genes, activated lymphocytes, and increased autoantibodies and proteinuria, leading to more serious nephritis. CONCLUSION Taurine metabolism is involved in the development of SLE by enhancing pDC-mediated type I IFN production. Targeted inhibition of taurine or implementation of a taurine-restricted diet has therapeutic potential in SLE.
Collapse
Affiliation(s)
- Jun Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Meng
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanhua Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Fu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, State Key Laboratory of Oncogenes and Related Genes, and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China, and Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
49
|
Stuckrad SLV, Klotsche J, Biesen R, Lieber M, Thumfart J, Meisel C, Unterwalder N, Kallinich T. SIGLEC1 (CD169) is a sensitive biomarker for the deterioration of the clinical course in childhood systemic lupus erythematosus. Lupus 2020; 29:1914-1925. [PMID: 33081587 PMCID: PMC7684796 DOI: 10.1177/0961203320965699] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background To analyse the validity of membrane-bound SIGLEC1 (CD169) as a sensitive biomarker for monitoring disease activity in pediatric systemic lupus erythematosus (SLE). Methods 27 children and adolescents with SLE were followed for a mean of 13.5 months. During consecutive routine visits SLEDAI-2k, C3, C4 and ds-DNA values were determined. Additionally, expression of SIGLEC1 on monocytes was determined by flow cytometry. The amount of PE-labelled CD169 mAb bound per monocyte was analyzed using QuantiBRITE™ PE tubes. Associations between biomarkers and the clinical course were investigated by regression analysis. Results In general, SIGLEC1 expression is high on SLE-derived monocytes (mean 6 359 (SD 6 056) molecules/monocyte, cut-off 2 500 molecules/monocyte), all patients with newly diagnosed SLE exhibit elevated expression (mean 13366 (SD 7 750) molecules/monocyte). Changes (Δ) in SIGLEC1 levels during the clinical course is the only biomarker that significantly correlates with the change in SLEDAI-2k (betaST = 0.28, p = 0.001). At follow-up visit, a clinically important worsening was experienced by 47.6% of patients with a Δ SIGLEC1 > 2 151 molecules/cell (OR 5.31) and 72.4% with a Δ SIGLEC1 > 756 molecules/cell (OR 8.90). Conversely, 36.4% of patients with a Δ SIGLEC1 < -2 818 molecules/cell (OR 4.16, percentiles as cut-off criteria) and 50.0% of patients with a Δ SIGLEC1 < -1 370 molecules/cell (OR 3.55, application of Youden index) showed clinical improvement. SIGLEC1 expression correlates inversely with the amount of therapeutically applied hydroxychloroquine (p < 0.001). Conclusions SIGLEC1 expression on monocytes is a sensitive biomarker for adjusting disease activity in childhood SLE and represents a promising and easily applicable tool for disease monitoring.
Collapse
Affiliation(s)
- Sae Lim von Stuckrad
- Pediatric Pneumology, Immunology and Critical Care Medicine and SPZ (Center for Chronically Sick Children), Charité University Medicine Berlin, Berlin, Germany
| | - Jens Klotsche
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology, Charité University Medicine Berlin, Berlin, Germany
| | - Mareike Lieber
- Pediatric Pneumology, Immunology and Critical Care Medicine and SPZ (Center for Chronically Sick Children), Charité University Medicine Berlin, Berlin, Germany
| | - Julia Thumfart
- Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité University Medicine Berlin, Berlin, Germany
| | - Christian Meisel
- Immunology Department, LaborBerlin - Charité Vivantes GmbH, Berlin, Germany
| | - Nadine Unterwalder
- Immunology Department, LaborBerlin - Charité Vivantes GmbH, Berlin, Germany
| | - Tilmann Kallinich
- Pediatric Pneumology, Immunology and Critical Care Medicine and SPZ (Center for Chronically Sick Children), Charité University Medicine Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
50
|
Mathias LM, Stohl W. Systemic lupus erythematosus (SLE): emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1283-1302. [PMID: 33034541 DOI: 10.1080/14728222.2020.1832464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a heterogeneous clinical presentation whose etiologies are multifactorial. A myriad of genetic, hormonal, immunologic, and environmental factors contribute to its pathogenesis, and its diverse biological basis and phenotypic presentations make development of therapeutics difficult. In the past decade, tens of therapeutic targets with hundreds of individual candidate therapeutics have been investigated. AREAS COVERED We used a PUBMED database search through April 2020 to review the relevant literature. This review discusses therapeutic targets in the adaptive and innate immune systems, specifically: B cell surface antigens, B cell survival factors, Bruton's tyrosine kinase, costimulators, IL-12/IL-23, the calcineurin pathway, the JAK/STAT pathway, and interferons. EXPERT OPINION Our ever-improving understanding of SLE pathophysiology in the past decade has allowed us to identify new therapeutic targets. Multiple new drugs are on the horizon that target different elements of the adaptive and innate immune systems. SLE research remains challenging due to the heterogenous clinical presentation of SLE, confounding from background immunosuppressives being taken by SLE patients, animal models that inadequately recapitulate human disease, and imperfect and complicated outcome measures. Despite these limitations, research is promising and ongoing. The search for new therapies that target specific elements of SLE pathophysiology are discussed as well as key findings, pitfalls, and questions surrounding these targets.
Collapse
Affiliation(s)
- Lauren M Mathias
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| |
Collapse
|