1
|
Sheng J, Trelle AN, Romero A, Park J, Tran TT, Sha SJ, Andreasson KI, Wilson EN, Mormino EC, Wagner AD. Top-down attention and Alzheimer's pathology affect cortical selectivity during learning, influencing episodic memory in older adults. SCIENCE ADVANCES 2025; 11:eads4206. [PMID: 40512843 PMCID: PMC12164959 DOI: 10.1126/sciadv.ads4206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 05/12/2025] [Indexed: 06/16/2025]
Abstract
Effective memory formation declines in human aging. Diminished neural selectivity-reduced differential responses to preferred versus nonpreferred stimuli-may contribute to memory decline, but its drivers remain unclear. We investigated the effects of top-down attention and preclinical Alzheimer's disease (AD) pathology on neural selectivity in 166 cognitively unimpaired older participants using functional magnetic resonance imaging during a word-face/word-place associative memory task. During learning, neural selectivity in place- and, to a lesser extent, face-selective regions was greater for subsequently remembered than forgotten events; positively scaled with variability in dorsal attention network activity, within and across individuals; and negatively related to AD pathology, evidenced by elevated plasma phosphorylated Tau181 (pTau181). Path analysis revealed that neural selectivity mediated the effects of age, attention, and pTau181 on memory. These data reveal multiple pathways that contribute to memory differences among older adults-AD-independent reductions in top-down attention and AD-related pathology alter the precision of cortical representations of events during experience, with consequences for remembering.
Collapse
Affiliation(s)
- Jintao Sheng
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Alexandra N. Trelle
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - America Romero
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Park
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tammy T. Tran
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharon J. Sha
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward N. Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Elizabeth C. Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Anthony D. Wagner
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Zeng Z, Zhang C, Xu Y, He H, Gu Y. Distinct neural population code and causal roles of primate caudate nucleus in multimodal decision-making. Nat Commun 2025; 16:5253. [PMID: 40480988 PMCID: PMC12144284 DOI: 10.1038/s41467-025-60504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 05/23/2025] [Indexed: 06/11/2025] Open
Abstract
Perceptual decision-making involves distributed networks spanning both association cortices and subcortical areas. A fundamental question is whether such a network is highly redundant, or each node is distinct with unique function. Using a visuo-vestibular decision-making task, here we show the subcortical caudate nucleus (CN) of male primates displays distinct population code compared to association cortices along the modality dimension. Specifically, in a low-dimensional state subspace, neural trajectory in the frontal and posterior-parietal association cortical activity during multimodal-stimulus condition evolves along the visual trajectory, whereas along the vestibular trajectory in the CN. We then show CN population activity is consistent with the animal's behavioral strategy employed within a generalized drift-diffusion framework. Importantly, causal-link experiments, including application of GABAa-receptor agonist, D1-receptor antagonist, and electrical microstimulation, further confirmed CN's critical contributions to perceptual behavior. Our results confirm CN's vital importance to decision making in complex environments with multimodal information.
Collapse
Affiliation(s)
- Zhao Zeng
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ce Zhang
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Xu
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua He
- Department of Neurosurgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Yong Gu
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Saint-Georges Z, MacDonald J, Al-Khalili R, Hamati R, Solmi M, Keshavan MS, Tuominen L, Guimond S. Cholinergic system in schizophrenia: A systematic review and meta-analysis. Mol Psychiatry 2025:10.1038/s41380-025-03023-y. [PMID: 40394282 DOI: 10.1038/s41380-025-03023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND/OBJECTIVES Studies have shown widespread alterations in different components of the cholinergic system in schizophrenia, but to date the evidence has not been systematically reviewed and summarized. Here, we systematically review imaging and post-mortem studies on the central cholinergic system in schizophrenia/schizoaffective disorder. SUBJECTS/METHODS Searches were performed in Embase and Medline. Study designs included cross-sectional case control studies comparing individuals with schizophrenia/schizoaffective disorder to control population. Risk of bias was assessed with the NIH/NHLBI tool for Quality Assessment of Case-Control Studies. The current study followed the PRISMA 2020 guidelines (PROSPERO: CRD42023402126). RESULTS A total of 3259 studies were screened and 61 met eligibility criteria for the systematic review, including 8 in vivo neuroimaging and 53 post-mortem studies. About 74% of these studies described significant alterations, most often reductions in either muscarinic or nicotinic receptor levels in schizophrenia. We also conducted 3 meta-analyses showing reductions in M1/M4 muscarinic receptors in the striatum (g = -0.809, k = 3, n = 108), hippocampus (g = -0.872, k = 3, n = 84), and fronto-cingulate cortex (g = -0.438, k = 4, n = 295). Six neuroimaging studies reported associations with clinical symptom severity measures, and four investigations with cognitive dysfunction. CONCLUSIONS Our review demonstrates a widespread decrease in muscarinic and nicotinic receptor levels in schizophrenia, evident in both neuroimaging and post-mortem studies. Our meta-analyses show large to moderate effects for the reductions in M1/M4 muscarinic receptors in the striatum, hippocampus, and fronto-cingulate cortex. Limitations and future directions for the field are discussed.
Collapse
Affiliation(s)
- Zacharie Saint-Georges
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julia MacDonald
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Roya Al-Khalili
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
| | - Rami Hamati
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marco Solmi
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Lauri Tuominen
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada.
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
| | - Synthia Guimond
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada.
| |
Collapse
|
4
|
Caie B, Endres D, Khan AZ, Blohm G. Choice anticipation as gated accumulation of sensory predictions. J Neurophysiol 2025; 133:1159-1175. [PMID: 39970908 DOI: 10.1152/jn.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Predictions are combined with sensory information when making choices. Accumulator models have conceptualized predictions as trial-by-trial updates to a baseline evidence level. These models have been successful in explaining the influence of choice history across-trials, however, they do not account for how sensory information is transformed into choice evidence. Here, we derive a gated accumulator that models the onset of evidence accumulation as a combination of delayed sensory information and a prediction of sensory timing. To test how delays interact with predictions, we designed a free-choice saccade task where participants directed eye movements to either of two targets that appeared with variable delays and asynchronies. Despite instructions not to anticipate, participants responded before target onset on some trials. We reasoned that anticipatory responses reflected a trade-off between inhibiting and facilitating the onset of evidence accumulation via a gating mechanism as target appearance became more likely. We then found that anticipatory responses were more likely following repeated choices, suggesting that the balance between anticipatory and sensory responses was driven by a prediction of sensory timing. By fitting the gated accumulator model to the data, we found that variance in within-trial fluctuations in baseline evidence best explained the joint increase of anticipatory responses and faster sensory-guided responses with longer delays. Thus, we conclude that a prediction of sensory timing is involved in balancing the costs of anticipation with lowering the amount of accumulated evidence required to trigger saccadic choice.NEW & NOTEWORTHY Evidence accumulation models are used to study how recent history impacts the processes underlying how we make choices. Biophysical evidence suggests that the accumulation of evidence is gated, however, classic accumulator models do not account for this. In this work, we show that predictions of the timing of sensory information are important in controlling how evidence accumulation is gated and that signatures of these predictions can be detected even in randomized task environments.
Collapse
|
5
|
Jonikaitis D, Xia R, Moore T. Robust encoding of stimulus-response mapping by neurons in visual cortex. Proc Natl Acad Sci U S A 2025; 122:e2408079122. [PMID: 39993188 DOI: 10.1073/pnas.2408079122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/07/2025] [Indexed: 02/26/2025] Open
Abstract
Neural activity in sensory cortex is modulated by behavioral and cognitive factors, and this modulation is thought to contribute to the selection of specific sensory information needed to achieve behavioral goals. In contrast, more abstract behavioral variables that are independent of stimulus selection, such as stimulus-response mapping, are thought to be encoded by neurons outside of sensory cortex. We show that information about such mapping is robustly encoded in the responses of neurons in primate visual cortex. Monkeys were trained to alternate between two tasks that differed in the rule governing the mapping of a remembered visual cue onto an eye movement response. During the memory-delay period, neurons in area V4 reliably signaled the remembered cue location in both tasks. However, the encoding of cue location depended critically on the stimulus-response mapping rule. Thus, V4 delay activity encoded the mapping rule and signaled the preparation of the appropriate motor response rather than spatial working memory per se, contrary to previous assumptions. In addition, we probed the origins of motor-related delay activity and found that it was reduced during local inactivation of the frontal eye field (FEF). The results demonstrate that behavioral modulation of visual cortical activity is not solely related to the selection of sensory stimuli but instead reflects a distinct mechanism for sensory-guided motor output.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ruobing Xia
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Tirin Moore
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
6
|
Trudel C, Risko EF, Eastwood JD, van Tilburg WAP, Elpidorou A, Danckert J. Boredom signals deviation from a cognitive homeostatic set point. COMMUNICATIONS PSYCHOLOGY 2025; 3:22. [PMID: 39929959 PMCID: PMC11811027 DOI: 10.1038/s44271-025-00209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
Boredom is the feeling of wanting but failing to engage the mind and can be conceived as one among many signals of suboptimal utilization of cognitive and neural resources. Using homeostasis as an analogy, this perspective argues that boredom represents a signal indicating deviation from optimal engagement-that is, deviation from a cognitive homeostatic set point. Within this model, allostasis accounts for chronic boredom (i.e., trait boredom proneness), according to which faulty internal models are responsible for why the highly boredom prone may set unrealistic expectations for engagement. In other words, the model characterizes boredom as a dynamic response to both internal and external exigencies, leading to testable hypotheses for both the nature of the state and the trait disposition. Furthermore, this perspective presents the broader notion that humans strive to optimally engage with their environs to maintain a kind of cognitive homeostatic set-point.
Collapse
Affiliation(s)
- Chantal Trudel
- Department of Psychology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Evan F Risko
- Department of Psychology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John D Eastwood
- Department of Psychology, York University, Toronto, Ontario, M3J 1P3, Canada
| | | | - Andreas Elpidorou
- Department of Philosophy, University of Louisville, Louisville, Kentucky, 40292, USA
| | - James Danckert
- Department of Psychology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
7
|
Fujimoto A, Elorette C, Fujimoto SH, Fleysher L, Rudebeck PH, Russ BE. Pharmacological Modulation of Dopamine Receptors Reveals Distinct Brain-Wide Networks Associated with Learning and Motivation in Nonhuman Primates. J Neurosci 2025; 45:e1301242024. [PMID: 39730205 PMCID: PMC11800751 DOI: 10.1523/jneurosci.1301-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
The neurotransmitter dopamine (DA) has a multifaceted role in healthy and disordered brains through its action on multiple subtypes of dopaminergic receptors. How the modulation of these receptors influences learning and motivation by altering intrinsic brain-wide networks remains unclear. Here, we performed parallel behavioral and resting-state functional MRI experiments after administration of two different DA receptor antagonists in male and female macaque monkeys. Systemic administration of SCH-23390 (D1 antagonist) slowed probabilistic learning when subjects had to learn new stimulus-reward associations and diminished functional connectivity (FC) in corticocortical and frontostriatal connections. In contrast, haloperidol (D2 antagonist) improved learning and broadly enhanced FC in cortical connections. Further comparisons between the effect of SCH-23390/haloperidol on behavioral and resting-state FC revealed specific cortical and subcortical networks associated with the cognitive and motivational effects of DA manipulation, respectively. Thus, we reveal distinct brain-wide networks that are associated with the dopaminergic control of learning and motivation via DA receptors.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Satoka H Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York 10962
- Department of Psychiatry, New York University at Langone, New York, New York 10016
| |
Collapse
|
8
|
Ramezanpour H, Kehoe DH, Schall JD, Fallah M. Dynamics of Saccade Trajectory Modulation by Distractors: Neural Activity Patterns in the Frontal Eye Field. J Neurosci 2024; 44:e0635242024. [PMID: 39353728 PMCID: PMC11561864 DOI: 10.1523/jneurosci.0635-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The sudden appearance of a visual distractor shortly before saccade initiation can capture spatial attention and modulate the saccade trajectory in spite of the ongoing execution of the initial plan to shift gaze straight to the saccade target. To elucidate the neural correlates underlying these curved saccades, we recorded from single neurons in the frontal eye field of two male rhesus monkeys shifting gaze to a target while a distractor with the same eccentricity appeared either left or right of the target at various delays after target presentation. We found that the population level of presaccadic activity of neurons representing the distractor location encoded the direction of the saccade trajectory. Stronger activity occurred when saccades curved toward the distractor, and weaker when saccades curved away. This relationship held whether the distractor was ipsilateral or contralateral to the recorded neurons. Meanwhile, visually responsive neurons showed asymmetrical patterns of excitatory responses that varied with the location of the distractor and the duration of distractor processing relating to attentional capture and distractor inhibition. During earlier distractor processing, neurons encoded curvature toward the distractor. During later distractor processing, neurons encoded curvature away from the distractor. This was observed when saccades curved away from distractors contralateral to the recording site and when saccades curved toward distractors ipsilateral to the recording site. These findings indicate that saccadic motor planning involves dynamic push-pull hemispheric interactions producing attraction or repulsion for potential but unselected saccade targets.
Collapse
Affiliation(s)
- Hamidreza Ramezanpour
- Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Biology, Faculty of Science, York University, Toronto, Ontario M3J 1P3, Canada
- VISTA: Vision Science to Application, York University, Toronto, Ontario M3J 1P3, Canada
| | - Devin Heinze Kehoe
- Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
- VISTA: Vision Science to Application, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neuroscience, University of Montréal, Montréal H3T 1J4, Canada
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jeffrey D Schall
- Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Biology, Faculty of Science, York University, Toronto, Ontario M3J 1P3, Canada
- VISTA: Vision Science to Application, York University, Toronto, Ontario M3J 1P3, Canada
| | - Mazyar Fallah
- Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
- VISTA: Vision Science to Application, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
9
|
Cross ZR, Gray SM, Dede AJO, Rivera YM, Yin Q, Vahidi P, Rau EMB, Cyr C, Holubecki AM, Asano E, Lin JJ, McManus OK, Sattar S, Saez I, Girgis F, King-Stephens D, Weber PB, Laxer KD, Schuele SU, Rosenow JM, Wu JY, Lam SK, Raskin JS, Chang EF, Shaikhouni A, Brunner P, Roland JL, Braga RM, Knight RT, Ofen N, Johnson EL. The development of aperiodic neural activity in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622714. [PMID: 39574667 PMCID: PMC11581045 DOI: 10.1101/2024.11.08.622714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The neurophysiological mechanisms supporting brain maturation are fundamental to attention and memory capacity across the lifespan. Human brain regions develop at different rates, with many regions developing into the third and fourth decades of life. Here, in this preregistered study (https://osf.io/gsru7), we analyzed intracranial EEG (iEEG) recordings from widespread brain regions in a large developmental cohort. Using task-based (i.e., attention to-be-remembered visual stimuli) and task-free (resting-state) data from 101 children and adults (5.93 - 54.00 years, 63 males; n electrodes = 5691), we mapped aperiodic (1/ƒ-like) activity, a proxy of excitation:inhibition (E:I) balance with steeper slopes indexing inhibition and flatter slopes indexing excitation. We reveal that aperiodic slopes flatten with age into young adulthood in both association and sensorimotor cortices, challenging models of early sensorimotor development based on brain structure. In prefrontal cortex (PFC), attentional state modulated age effects, revealing steeper task-based than task-free slopes in adults and the opposite in children, consistent with the development of cognitive control. Age-related differences in task-based slopes also explained age-related gains in memory performance, linking the development of PFC cognitive control to the development of memory. Last, with additional structural imaging measures, we reveal that age-related differences in gray matter volume are differentially associated with aperiodic slopes in association and sensorimotor cortices. Our findings establish developmental trajectories of aperiodic activity in localized brain regions and illuminate the development of PFC inhibitory control during adolescence in the development of attention and memory.
Collapse
Affiliation(s)
| | | | | | | | - Qin Yin
- Wayne State University
- University of Texas, Dallas
| | | | | | | | | | | | | | | | - Shifteh Sattar
- University of California, San Diego, and Rady Children’s Hospital
| | - Ignacio Saez
- University of California, Davis
- University of Calgary
| | - Fady Girgis
- University of California, Davis
- University of Calgary
| | | | | | | | | | | | - Joyce Y. Wu
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Sandi K. Lam
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Jeffrey S. Raskin
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | | | | | | | - Jarod L. Roland
- Washington University in St. Louis
- Department of Neurosurgery, Washington University in St Louis
| | | | | | - Noa Ofen
- Wayne State University
- University of Texas, Dallas
| | | |
Collapse
|
10
|
Fujimoto A, Elorette C, Fujimoto SH, Fleysher L, Rudebeck PH, Russ BE. Pharmacological modulation of dopamine receptors reveals distinct brain-wide networks associated with learning and motivation in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573487. [PMID: 38234858 PMCID: PMC10793459 DOI: 10.1101/2023.12.27.573487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The neurotransmitter dopamine (DA) has a multifaceted role in healthy and disordered brains through its action on multiple subtypes of dopaminergic receptors. How modulation of these receptors influences learning and motivation by altering intrinsic brain-wide networks remains unclear. Here we performed parallel behavioral and resting-state functional MRI experiments after administration of two different DA receptor antagonists in macaque monkeys. Systemic administration of SCH-23390 (D1 antagonist) slowed probabilistic learning when subjects had to learn new stimulus-reward associations and diminished functional connectivity (FC) in cortico-cortical and fronto-striatal connections. By contrast, haloperidol (D2 antagonist) improved learning and broadly enhanced FC in cortical connections. Further comparisons between the effect of SCH-23390/haloperidol on behavioral and resting-state FC revealed specific cortical and subcortical networks associated with the cognitive and motivational effects of DA manipulation, respectively. Thus, we reveal distinct brain-wide networks that are associated with the dopaminergic control of learning and motivation via DA receptors.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| |
Collapse
|
11
|
Ohtake M, Abe K, Hasegawa M, Itokazu T, Selvakumar V, Matunis A, Stacy E, Froebrich E, Huynh N, Lee H, Kambe Y, Yamamoto T, Sato TK, Sato TR. Encoding of self-initiated actions in axon terminals of the mesocortical pathway. NEUROPHOTONICS 2024; 11:033408. [PMID: 38726349 PMCID: PMC11080647 DOI: 10.1117/1.nph.11.3.033408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/12/2024]
Abstract
Significance The initiation of goal-directed actions is a complex process involving the medial prefrontal cortex and dopaminergic inputs through the mesocortical pathway. However, it is unclear what information the mesocortical pathway conveys and how it impacts action initiation. In this study, we unveiled the indispensable role of mesocortical axon terminals in encoding the execution of movements in self-initiated actions. Aim To investigate the role of mesocortical axon terminals in encoding the execution of movements in self-initiated actions. Approach We designed a lever-press task in which mice internally determine the timing of the press, receiving a larger reward for longer waiting periods. Results Our study revealed that self-initiated actions depend on dopaminergic signaling mediated by D2 receptors, whereas sensory-triggered lever-press actions do not involve D2 signaling. Microprism-mediated two-photon calcium imaging further demonstrated ramping activity in mesocortical axon terminals approximately 0.5 s before the self-initiated lever press. Remarkably, the ramping patterns remained consistent whether the mice responded to cues immediately for a smaller reward or held their response for a larger reward. Conclusions We conclude that mesocortical dopamine axon terminals encode the timing of self-initiated actions, shedding light on a crucial aspect of the intricate neural mechanisms governing goal-directed behavior.
Collapse
Affiliation(s)
- Makoto Ohtake
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
- Yokohama City University, Department of Neurosurgery, Yokohama, Japan
| | - Kenta Abe
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
| | - Masashi Hasegawa
- Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Piscataway, New Jersey, United States
| | - Takahide Itokazu
- Osaka University, Department of Neuro-Medical Science, Osaka, Japan
| | - Vihashini Selvakumar
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
| | - Ashley Matunis
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
- College of Charleston, Department of Biology, Charleston, South Carolina, United States
| | - Emma Stacy
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
- College of Charleston, Department of Biology, Charleston, South Carolina, United States
| | - Emily Froebrich
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
- College of Charleston, Department of Biology, Charleston, South Carolina, United States
| | - Nathan Huynh
- Kagoshima University, Department of Pharmacology, Kagoshima, Japan
| | - Haesuk Lee
- Kagoshima University, Department of Pharmacology, Kagoshima, Japan
| | - Yuki Kambe
- Kagoshima University, Department of Pharmacology, Kagoshima, Japan
| | - Tetsuya Yamamoto
- Yokohama City University, Department of Neurosurgery, Yokohama, Japan
| | - Tatsuo K. Sato
- Kagoshima University, Department of Pharmacology, Kagoshima, Japan
- FOREST, Japan Science and Technology Agency, Saitama, Japan
| | - Takashi R. Sato
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
| |
Collapse
|
12
|
Li L, Rana AN, Li EM, Travis MO, Bruchas MR. Noradrenergic tuning of arousal is coupled to coordinated movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599619. [PMID: 38948871 PMCID: PMC11212988 DOI: 10.1101/2024.06.18.599619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Matching arousal level to the motor activity of an animal is important for efficiently allocating cognitive resources and metabolic supply in response to behavioral demands, but how the brain coordinates changes in arousal and wakefulness in response to motor activity remains an unclear phenomenon. We hypothesized that the locus coeruleus (LC), as the primary source of cortical norepinephrine (NE) and promoter of cortical and sympathetic arousal, is well-positioned to mediate movement-arousal coupling. Here, using a combination of physiological recordings, fiber photometry, optogenetics, and behavioral tracking, we show that the LCNE activation is tightly coupled to the return of organized movements during waking from an anesthetized state. Moreover, in an awake animal, movement initiations are coupled to LCNE activation, while movement arrests, to LCNE deactivation. We also report that LCNE activity covaries with the depth of anesthesia and that LCNE photoactivation leads to sympathetic activation, consistent with its role in mediating increased arousal. Together, these studies reveal a more nuanced, modulatory role that LCNE plays in coordinating movement and arousal.
Collapse
Affiliation(s)
- Li Li
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Seattle Children's Research Institute" Seattle, WA 98101, USA
| | - Akshay N Rana
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Esther M Li
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Myesa O Travis
- Seattle Children's Research Institute" Seattle, WA 98101, USA
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Ambrad Giovannetti E, Rancz E. Behind mouse eyes: The function and control of eye movements in mice. Neurosci Biobehav Rev 2024; 161:105671. [PMID: 38604571 DOI: 10.1016/j.neubiorev.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The mouse visual system has become the most popular model to study the cellular and circuit mechanisms of sensory processing. However, the importance of eye movements only started to be appreciated recently. Eye movements provide a basis for predictive sensing and deliver insights into various brain functions and dysfunctions. A plethora of knowledge on the central control of eye movements and their role in perception and behaviour arose from work on primates. However, an overview of various eye movements in mice and a comparison to primates is missing. Here, we review the eye movement types described to date in mice and compare them to those observed in primates. We discuss the central neuronal mechanisms for their generation and control. Furthermore, we review the mounting literature on eye movements in mice during head-fixed and freely moving behaviours. Finally, we highlight gaps in our understanding and suggest future directions for research.
Collapse
Affiliation(s)
| | - Ede Rancz
- INMED, INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
14
|
Xia R, Chen X, Engel TA, Moore T. Common and distinct neural mechanisms of attention. Trends Cogn Sci 2024; 28:554-567. [PMID: 38388258 PMCID: PMC11153008 DOI: 10.1016/j.tics.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Despite a constant deluge of sensory stimulation, only a fraction of it is used to guide behavior. This selective processing is generally referred to as attention, and much research has focused on the neural mechanisms controlling it. Recently, research has broadened to include more ways by which different species selectively process sensory information, whether due to the sensory input itself or to different behavioral and brain states. This work has produced a complex and disjointed body of evidence across different species and forms of attention. However, it has also provided opportunities to better understand the breadth of attentional mechanisms. Here, we summarize the evidence that suggests that different forms of selective processing are supported by mechanisms both common and distinct.
Collapse
Affiliation(s)
- Ruobing Xia
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaomo Chen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Tatiana A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Phangwiwat T, Phunchongharn P, Wongsawat Y, Chatnuntawech I, Wang S, Chunharas C, Sprague TC, Woodman GF, Itthipuripat S. Sustained attention operates via dissociable neural mechanisms across different eccentric locations. Sci Rep 2024; 14:11188. [PMID: 38755251 PMCID: PMC11099062 DOI: 10.1038/s41598-024-61171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.
Collapse
Affiliation(s)
- Tanagrit Phangwiwat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Phond Phunchongharn
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Yodchanan Wongsawat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sisi Wang
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Chaipat Chunharas
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thomas C Sprague
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Geoffrey F Woodman
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand.
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand.
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
16
|
Cortese A, Kawato M. The cognitive reality monitoring network and theories of consciousness. Neurosci Res 2024; 201:31-38. [PMID: 38316366 DOI: 10.1016/j.neures.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Theories of consciousness abound. However, it is difficult to arbitrate reliably among competing theories because they target different levels of neural and cognitive processing or anatomical loci, and only some were developed with computational models in mind. In particular, theories of consciousness need to fully address the three levels of understanding of the brain proposed by David Marr: computational theory, algorithms and hardware. Most major theories refer to only one or two levels, often indirectly. The cognitive reality monitoring network (CRMN) model is derived from computational theories of mixture-of-experts architecture, hierarchical reinforcement learning and generative/inference computing modules, addressing all three levels of understanding. A central feature of the CRMN is the mapping of a gating network onto the prefrontal cortex, making it a prime coding circuit involved in monitoring the accuracy of one's mental states and distinguishing them from external reality. Because the CRMN builds on the hierarchical and layer structure of the cerebral cortex, it may connect research and findings across species, further enabling concrete computational models of consciousness with new, explicitly testable hypotheses. In sum, we discuss how the CRMN model can help further our understanding of the nature and function of consciousness.
Collapse
Affiliation(s)
- Aurelio Cortese
- Computational Neuroscience Labs, ATR Institute International, Kyoto 619-0228, Japan.
| | - Mitsuo Kawato
- Computational Neuroscience Labs, ATR Institute International, Kyoto 619-0228, Japan; XNef, Kyoto 619-0288, Japan.
| |
Collapse
|
17
|
Arrigoni E, Antoniotti P, Bellocchio V, Veronelli L, Corbo M, Pisoni A. Neural alterations underlying executive dysfunction in Parkinson's disease: A systematic review and coordinate-based meta-analysis of functional neuroimaging studies. Ageing Res Rev 2024; 95:102207. [PMID: 38281709 DOI: 10.1016/j.arr.2024.102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Parkinson's Disease's (PD) neuropsychological profile is often characterized by altered performance in executive functions (EF) tasks, with a remarkable impact on patients' quality of life. To date, the available neuroimaging literature lacks conclusive evidence about neural patterns underlying EF deficits in PD. Here, we aimed to synthesize the results of PET/fMRI studies examining the differences in brain activation between PD patients and controls during EF tasks, focusing on the three main EF sub-components: cognitive flexibility, working memory, and response inhibition. We conducted a coordinate-based meta-analysis to assess the converging alterations in brain activity in PD patients compared to controls. We assessed the association between aberrant patterns of activity and the EF sub-domains. We found a significant association between hypoactivation patterns in PD converging at the level of the right inferior frontal gyrus in response inhibition tasks, whereas hypoactivation in the left inferior frontal gyrus was found in association with the cognitive flexibility domain. Our results confirm the existence of neural alterations in PD patients in relation to specific EF sub-domains.
Collapse
Affiliation(s)
- Eleonora Arrigoni
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; Department of Psychology, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy.
| | - Paola Antoniotti
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; Department of Neurorehabilitation Sciences, Casa di Cura IGEA, via Dezza 48, 20144 Milano, Italy
| | - Virginia Bellocchio
- Department of Psychology, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy
| | - Laura Veronelli
- Department of Psychology, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy; Department of Neurorehabilitation Sciences, Casa di Cura IGEA, via Dezza 48, 20144 Milano, Italy; NeuroMi, Milan Centre for Neuroscience, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura IGEA, via Dezza 48, 20144 Milano, Italy; NeuroMi, Milan Centre for Neuroscience, Milan, Italy
| | - Alberto Pisoni
- Department of Psychology, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy; NeuroMi, Milan Centre for Neuroscience, Milan, Italy.
| |
Collapse
|
18
|
Lasaponara S, Scozia G, Lozito S, Pinto M, Conversi D, Costanzi M, Vriens T, Silvetti M, Doricchi F. Temperament and probabilistic predictive coding in visual-spatial attention. Cortex 2024; 171:60-74. [PMID: 37979232 DOI: 10.1016/j.cortex.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 10/16/2023] [Indexed: 11/20/2023]
Abstract
Cholinergic (Ach), Noradrenergic (NE), and Dopaminergic (DA) pathways play an important role in the regulation of spatial attention. The same neurotransmitters are also responsible for inter-individual differences in temperamental traits. Here we explored whether biologically defined temperamental traits determine differences in the ability to orient spatial attention as a function of the probabilistic association between cues and targets. To this aim, we administered the Structure of Temperament Questionnaire (STQ-77) to a sample of 151 participants who also performed a Posner task with central endogenous predictive (80 % valid/20 % invalid) or non-predictive cues (50 % valid/50 % invalid). We found that only participants with high scores in Plasticity and Intellectual Endurance showed a selective abatement of attentional costs with non-predictive cues. In addition, stepwise regression showed that costs in the non-predictive condition were negatively predicted by scores in Plasticity and positively predicted by scores in Probabilistic Thinking. These results show that stable temperamental characteristics play an important role in defining the inter-individual differences in attentional behaviour, especially in the presence of different probabilistic organisations of the sensory environment. These findings emphasize the importance of considering temperamental and personality traits in social and professional environments where the ability to control one's attention is a crucial functional skill.
Collapse
Affiliation(s)
- Stefano Lasaponara
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Gabriele Scozia
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy; PhD Programme in Behavioural Neuroscience, "Sapienza" University of Rome, Italy
| | - Silvana Lozito
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy; PhD Programme in Behavioural Neuroscience, "Sapienza" University of Rome, Italy
| | - Mario Pinto
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - David Conversi
- Department of Psychology, "Sapienza" University of Rome, Italy
| | - Marco Costanzi
- Department of Human Science, LUMSA University, Rome, Italy
| | - Tim Vriens
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Fabrizio Doricchi
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
19
|
Hüer J, Saxena P, Treue S. Pathway-selective optogenetics reveals the functional anatomy of top-down attentional modulation in the macaque visual cortex. Proc Natl Acad Sci U S A 2024; 121:e2304511121. [PMID: 38194453 PMCID: PMC10801865 DOI: 10.1073/pnas.2304511121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/07/2023] [Indexed: 01/11/2024] Open
Abstract
Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses. We used pathway-selective optogenetics in rhesus macaques performing a spatial attention task to inhibit the direct input from the FEF to area MT, an area along the dorsal visual pathway specialized for the processing of visual motion information. Our results show that the optogenetic inhibition of the FEF input specifically reduces attentional modulation in MT by about a third without affecting the neurons' sensory response component. We find that the direct FEF-to-MT pathway contributes to both the enhanced processing of target stimuli and the suppression of distractors. The FEF, thus, selectively modulates firing rates in visual area MT, and it does so via its direct axonal projections.
Collapse
Affiliation(s)
- Janina Hüer
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt60528, Germany
| | - Pankhuri Saxena
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen37073, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen37077, Germany
- Bernstein Center for Computational Neuroscience, Göttingen37073, Germany
| |
Collapse
|
20
|
Li L, Rana AN, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. Cell Rep 2023; 42:113566. [PMID: 38100349 PMCID: PMC11090260 DOI: 10.1016/j.celrep.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together, these findings provide a more complete understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Akshay N Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Esther M Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
Ott T, Stein AM, Nieder A. Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons. Nat Commun 2023; 14:7537. [PMID: 37985776 PMCID: PMC10661983 DOI: 10.1038/s41467-023-43271-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Dopamine neurons respond to reward-predicting cues but also modulate information processing in the prefrontal cortex essential for cognitive control. Whether dopamine controls reward expectation signals in prefrontal cortex that motivate cognitive control is unknown. We trained two male macaques on a working memory task while varying the reward size earned for successful task completion. We recorded neurons in lateral prefrontal cortex while simultaneously stimulating dopamine D1 receptor (D1R) or D2 receptor (D2R) families using micro-iontophoresis. We show that many neurons predict reward size throughout the trial. D1R stimulation showed mixed effects following reward cues but decreased reward expectancy coding during the memory delay. By contrast, D2R stimulation increased reward expectancy coding in multiple task periods, including cueing and memory periods. Stimulation of either dopamine receptors increased the neurons' selective responses to reward size upon reward delivery. The differential modulation of reward expectancy by dopamine receptors suggests that dopamine regulates reward expectancy necessary for successful cognitive control.
Collapse
Affiliation(s)
- Torben Ott
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany.
- Bernstein Center for Computational Neuroscience and Institute of Biology, Humboldt-University of Berlin, 10099, Berlin, Germany.
| | - Anna Marlina Stein
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
22
|
Phangwiwat T, Punchongham P, Wongsawat Y, Chatnuntawech I, Wang S, Chunharas C, Sprague T, Woodman GF, Itthipuripat S. Sustained attention operates via dissociable neural mechanisms across different eccentric locations. RESEARCH SQUARE 2023:rs.3.rs-3562186. [PMID: 37986807 PMCID: PMC10659535 DOI: 10.21203/rs.3.rs-3562186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.
Collapse
Affiliation(s)
- Tanagrit Phangwiwat
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi
| | - Phond Punchongham
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi
| | - Yodchanan Wongsawat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency
| | - Sisi Wang
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam
| | - Chaipat Chunharas
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society
| | - Thomas Sprague
- Psychological and Brain Science, 251, University of California Santa Barbara
| | | | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi
| |
Collapse
|
23
|
Shams M, Thier P, Lomber SG, Merrikhi Y. Resilience of FEF neuronal saccade code to V4 perturbations. J Neurophysiol 2023; 130:1243-1251. [PMID: 37850785 PMCID: PMC10994545 DOI: 10.1152/jn.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/06/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
The frontal eye field (FEF) plays a key role in initiating rapid eye movements known as saccades. Accumulation models have been proposed to explain the dynamic of these neurons and how they may enable the initiation of saccades. To update the scope of the viability of this model, we studied single neurons recorded from the FEF of two rhesus monkeys while they performed a memory-guided saccade task. We evaluated the degree to which each type of FEF neuron complied with these models by quantifying how precisely their discharge predicted an imminent saccade based on their immediate presaccadic activity. We found that decoders trained on single neurons with a stronger motor component performed better than decoders trained on neurons with a stronger visual component in predicting the saccade. Importantly, despite a dramatic effect on the reaction times, the perturbations delivered to the FEF neurons via area V4 did not impact their saccade predictability. Our results demonstrate a high degree of resilience of the FEF neuronal presaccadic discharge patterns, fulfilling the predictions of accumulation models.NEW & NOTEWORTHY We studied neurons in the brain's frontal eye field (FEF) to understand how these neurons predict swift eye shifts called saccades. We found that neurons with more movement-related activity were better at predicting saccades than those with sensory-related activity. Interestingly, electrical disruptions of this region strongly impacted saccade onset times but did not affect the individual neuron's saccade predictability, consistent with models suggesting that a specific threshold in neural activity triggers the saccade.
Collapse
Affiliation(s)
- Mohammad Shams
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Peter Thier
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stephen G Lomber
- Department of Physiology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Yaser Merrikhi
- Department of Physiology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
24
|
Antono JE, Dang S, Auksztulewicz R, Pooresmaeili A. Distinct Patterns of Connectivity between Brain Regions Underlie the Intra-Modal and Cross-Modal Value-Driven Modulations of the Visual Cortex. J Neurosci 2023; 43:7361-7375. [PMID: 37684031 PMCID: PMC10621764 DOI: 10.1523/jneurosci.0355-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Past reward associations may be signaled from different sensory modalities; however, it remains unclear how different types of reward-associated stimuli modulate sensory perception. In this human fMRI study (female and male participants), a visual target was simultaneously presented with either an intra- (visual) or a cross-modal (auditory) cue that was previously associated with rewards. We hypothesized that, depending on the sensory modality of the cues, distinct neural mechanisms underlie the value-driven modulation of visual processing. Using a multivariate approach, we confirmed that reward-associated cues enhanced the target representation in early visual areas and identified the brain valuation regions. Then, using an effective connectivity analysis, we tested three possible patterns of connectivity that could underlie the modulation of the visual cortex: a direct pathway from the frontal valuation areas to the visual areas, a mediated pathway through the attention-related areas, and a mediated pathway that additionally involved sensory association areas. We found evidence for the third model demonstrating that the reward-related information in both sensory modalities is communicated across the valuation and attention-related brain regions. Additionally, the superior temporal areas were recruited when reward was cued cross-modally. The strongest dissociation between the intra- and cross-modal reward-driven effects was observed at the level of the feedforward and feedback connections of the visual cortex estimated from the winning model. These results suggest that, in the presence of previously rewarded stimuli from different sensory modalities, a combination of domain-general and domain-specific mechanisms are recruited across the brain to adjust the visual perception.SIGNIFICANCE STATEMENT Reward has a profound effect on perception, but it is not known whether shared or disparate mechanisms underlie the reward-driven effects across sensory modalities. In this human fMRI study, we examined the reward-driven modulation of the visual cortex by visual (intra-modal) and auditory (cross-modal) reward-associated cues. Using a model-based approach to identify the most plausible pattern of inter-regional effective connectivity, we found that higher-order areas involved in the valuation and attentional processing were recruited by both types of rewards. However, the pattern of connectivity between these areas and the early visual cortex was distinct between the intra- and cross-modal rewards. This evidence suggests that, to effectively adapt to the environment, reward signals may recruit both domain-general and domain-specific mechanisms.
Collapse
Affiliation(s)
- Jessica Emily Antono
- Perception and Cognition Lab, European Neuroscience Institute Goettingen-A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Germany, Goettingen, 37077, Germany
| | - Shilpa Dang
- Perception and Cognition Lab, European Neuroscience Institute Goettingen-A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Germany, Goettingen, 37077, Germany
- School of Artificial Intelligence and Data Science, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| | - Ryszard Auksztulewicz
- Center for Cognitive Neuroscience Berlin, Free University Berlin, Berlin, 14195, Germany
| | - Arezoo Pooresmaeili
- Perception and Cognition Lab, European Neuroscience Institute Goettingen-A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Germany, Goettingen, 37077, Germany
| |
Collapse
|
25
|
Isabel Vanegas M, Akbarian A, Clark KL, Nesse WH, Noudoost B. Prefrontal activity sharpens spatial sensitivity of extrastriate neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564095. [PMID: 37961256 PMCID: PMC10634826 DOI: 10.1101/2023.10.25.564095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Prefrontal cortex is known to exert its control over representation of visual signals in extrastriate areas such as V4. Frontal Eye Field (FEF) is suggested to be the proxy for the prefrontal control of visual signals. However, it is not known which aspects of sensory representation within extrastriate areas are under the influence of FEF activity. We employed a causal manipulation to examine how FEF activity contributes to spatial sensitivity of extrastriate neurons. Finding FEF and V4 areas with overlapping response field (RF) in two macaque monkeys, we recorded V4 responses before and after inactivation of the overlapping FEF. We assessed spatial sensitivity of V4 neurons in terms of their response gain, RF spread, coding capacity, and spatial discriminability. Unexpectedly, we found that in the absence of FEF activity, spontaneous and visually-evoked activity of V4 neurons both increase and their RFs enlarge. However, assessing the spatial sensitivity within V4, we found that these changes were associated with a reduction in the ability of V4 neurons to represent spatial information: After FEF inactivation, V4 neurons showed a reduced response gain and a decrease in their spatial discriminability and coding capacity. These results show the necessity of FEF activity for shaping spatial responses of extrastriate neurons and indicates the importance of FEF inputs in sharpening the sensitivity of V4 responses.
Collapse
Affiliation(s)
- M. Isabel Vanegas
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Akbarian
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Kelsey L. Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - William H. Nesse
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Mathematics, University of Utah, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
26
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
27
|
Emonds AMX, Srinath R, Nielsen KJ, Connor CE. Object representation in a gravitational reference frame. eLife 2023; 12:e81701. [PMID: 37561119 PMCID: PMC10414968 DOI: 10.7554/elife.81701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
When your head tilts laterally, as in sports, reaching, and resting, your eyes counterrotate less than 20%, and thus eye images rotate, over a total range of about 180°. Yet, the world appears stable and vision remains normal. We discovered a neural strategy for rotational stability in anterior inferotemporal cortex (IT), the final stage of object vision in primates. We measured object orientation tuning of IT neurons in macaque monkeys tilted +25 and -25° laterally, producing ~40° difference in retinal image orientation. Among IT neurons with consistent object orientation tuning, 63% remained stable with respect to gravity across tilts. Gravitational tuning depended on vestibular/somatosensory but also visual cues, consistent with previous evidence that IT processes scene cues for gravity's orientation. In addition to stability across image rotations, an internal gravitational reference frame is important for physical understanding of a world where object position, posture, structure, shape, movement, and behavior interact critically with gravity.
Collapse
Affiliation(s)
- Alexandriya MX Emonds
- Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ramanujan Srinath
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kristina J Nielsen
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Charles E Connor
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
28
|
Schuurmans JP, Bennett MA, Petras K, Goffaux V. Backward masking reveals coarse-to-fine dynamics in human V1. Neuroimage 2023; 274:120139. [PMID: 37137434 DOI: 10.1016/j.neuroimage.2023.120139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Natural images exhibit luminance variations aligned across a broad spectrum of spatial frequencies (SFs). It has been proposed that, at early stages of processing, the coarse signals carried by the low SF (LSF) of the visual input are sent rapidly from primary visual cortex (V1) to ventral, dorsal and frontal regions to form a coarse representation of the input, which is later sent back to V1 to guide the processing of fine-grained high SFs (i.e., HSF). We used functional resonance imaging (fMRI) to investigate the role of human V1 in the coarse-to-fine integration of visual input. We disrupted the processing of the coarse and fine content of full-spectrum human face stimuli via backward masking of selective SF ranges (LSFs: <1.75cpd and HSFs: >1.75cpd) at specific times (50, 83, 100 or 150ms). In line with coarse-to-fine proposals, we found that (1) the selective masking of stimulus LSF disrupted V1 activity in the earliest time window, and progressively decreased in influence, while (2) an opposite trend was observed for the masking of stimulus' HSF. This pattern of activity was found in V1, as well as in ventral (i.e. the Fusiform Face area, FFA), dorsal and orbitofrontal regions. We additionally presented subjects with contrast negated stimuli. While contrast negation significantly reduced response amplitudes in the FFA, as well as coupling between FFA and V1, coarse-to-fine dynamics were not affected by this manipulation. The fact that V1 response dynamics to strictly identical stimulus sets differed depending on the masked scale adds to growing evidence that V1 role goes beyond the early and quasi-passive transmission of visual information to the rest of the brain. It instead indicates that V1 may yield a 'spatially registered common forum' or 'blackboard' that integrates top-down inferences with incoming visual signals through its recurrent interaction with high-level regions located in the inferotemporal, dorsal and frontal regions.
Collapse
Affiliation(s)
- Jolien P Schuurmans
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium.
| | - Matthew A Bennett
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience (IONS), UC Louvain, Louvain-la-Neuve, Belgium
| | - Kirsten Petras
- Integrative Neuroscience and Cognition Center, CNRS, Université Paris Cité, Paris, France
| | - Valérie Goffaux
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience (IONS), UC Louvain, Louvain-la-Neuve, Belgium; Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
29
|
Merenstein JL, Mullin HA, Madden DJ. Age-related differences in frontoparietal activation for target and distractor singletons during visual search. Atten Percept Psychophys 2023; 85:749-768. [PMID: 36627473 PMCID: PMC10066832 DOI: 10.3758/s13414-022-02640-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Age-related decline in visual search performance has been associated with different patterns of activation in frontoparietal regions using functional magnetic resonance imaging (fMRI), but whether these age-related effects represent specific influences of target and distractor processing is unclear. Therefore, we acquired event-related fMRI data from 68 healthy, community-dwelling adults ages 18-78 years, during both conjunction (T/F target among rotated Ts and Fs) and feature (T/F target among Os) search. Some displays contained a color singleton that could correspond to either the target or a distractor. A diffusion decision analysis indicated age-related increases in sensorimotor response time across all task conditions, but an age-related decrease in the rate of evidence accumulation (drift rate) was specific to conjunction search. Moreover, the color singleton facilitated search performance when occurring as a target and disrupted performance when occurring as a distractor, but only during conjunction search, and these effects were independent of age. The fMRI data indicated that decreased search efficiency for conjunction relative to feature search was evident as widespread frontoparietal activation. Activation within the left insula mediated the age-related decrease in drift rate for conjunction search, whereas this relation in the FEF and parietal cortex was significant only for individuals younger than 30 or 44 years, respectively. Finally, distractor singletons were associated with significant parietal activation, whereas target singletons were associated with significant frontoparietal deactivation, and this latter effect increased with adult age. Age-related differences in frontoparietal activation therefore reflect both the overall efficiency of search and the enhancement from salient targets.
Collapse
Affiliation(s)
- Jenna L. Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Hollie A. Mullin
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - David J. Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
30
|
Li L, Rana A, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534970. [PMID: 37034631 PMCID: PMC10081217 DOI: 10.1101/2023.03.30.534970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together this provides a clearer understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle WA 98145, USA
| | - Akshay Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Equal contribution
| | - Esther M. Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle WA 98105, USA
- Equal contribution
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R. Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
31
|
Smart C, Mitchell A, McCutcheon F, Medcalf RL, Thiele A. Tissue-type plasminogen activator induces conditioned receptive field plasticity in the mouse auditory cortex. iScience 2023; 26:105947. [PMID: 36711245 PMCID: PMC9874071 DOI: 10.1016/j.isci.2023.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) is a serine protease that is expressed in various compartments in the brain. It is involved in neuronal plasticity, learning and memory, and addiction. We evaluated whether tPA, exogenously applied, could influence neuroplasticity within the mouse auditory cortex. We used a frequency-pairing paradigm to determine whether neuronal best frequencies shift following the pairing protocol. tPA administration significantly affected the best frequency after pairing, whereby this depended on the pairing frequency relative to the best frequency. When the pairing frequency was above the best frequency, tPA caused a best frequency shift away from the conditioned frequency. tPA significantly widened auditory tuning curves. Our data indicate that regional changes in proteolytic activity within the auditory cortex modulate the fine-tuning of auditory neurons, supporting the function of tPA as a modulator of neuronal plasticity.
Collapse
Affiliation(s)
- Caitlin Smart
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Anna Mitchell
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Fiona McCutcheon
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
32
|
Learned value modulates the access to visual awareness during continuous flash suppression. Sci Rep 2023; 13:756. [PMID: 36641499 PMCID: PMC9840604 DOI: 10.1038/s41598-023-28004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/11/2023] [Indexed: 01/16/2023] Open
Abstract
Monetary value enhances visual perception and attention and boosts activity in the primary visual cortex, however, it is still unclear whether monetary value can modulate the conscious access to rewarding stimuli. Here we investigate this issue by employing a breaking continuous flash suppression (b-CFS) paradigm. We measured suppression durations of sinusoidal gratings having orthogonal orientations under CFS in adult volunteers before and after a short session of Pavlovian associative learning in which each orientation was arbitrarily associated either with high or low monetary reward. We found that monetary value accelerated the access to visual awareness during CFS. Specifically, after the associative learning, suppression durations of the visual stimulus associated with high monetary value were shorter compared to the visual stimulus associated with low monetary value. Critically, the effect was replicated in a second experiment using a detection task for b-CFS that was orthogonal to the reward associative learning. These results indicate that monetary reward facilitates the access to awareness of visual stimuli associated with monetary value probably by boosting their representation at the early stages of visual processing in the brain.
Collapse
|
33
|
A Reinforcement Meta-Learning framework of executive function and information demand. Neural Netw 2023; 157:103-113. [DOI: 10.1016/j.neunet.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
|
34
|
De Martino B, Cortese A. Goals, usefulness and abstraction in value-based choice. Trends Cogn Sci 2023; 27:65-80. [PMID: 36446707 DOI: 10.1016/j.tics.2022.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
Colombian drug lord Pablo Escobar, while on the run, purportedly burned two million dollars in banknotes to keep his daughter warm. A stark reminder that, in life, circumstances and goals can quickly change, forcing us to reassess and modify our values on-the-fly. Studies in decision-making and neuroeconomics have often implicitly equated value to reward, emphasising the hedonic and automatic aspect of the value computation, while overlooking its functional (concept-like) nature. Here we outline the computational and biological principles that enable the brain to compute the usefulness of an option or action by creating abstractions that flexibly adapt to changing goals. We present different algorithmic architectures, comparing ideas from artificial intelligence (AI) and cognitive neuroscience with psychological theories and, when possible, drawing parallels.
Collapse
Affiliation(s)
- Benedetto De Martino
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Computational Neuroscience Laboratories, ATR Institute International, 619-0288 Kyoto, Japan.
| | - Aurelio Cortese
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Computational Neuroscience Laboratories, ATR Institute International, 619-0288 Kyoto, Japan.
| |
Collapse
|
35
|
Li Y, Daddaoua N, Horan M, Foley NC, Gottlieb J. Uncertainty modulates visual maps during noninstrumental information demand. Nat Commun 2022; 13:5911. [PMID: 36207316 PMCID: PMC9547007 DOI: 10.1038/s41467-022-33585-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Animals are intrinsically motivated to obtain information independently of instrumental incentives. This motivation depends on two factors: a desire to resolve uncertainty by gathering accurate information and a desire to obtain positively-valenced observations, which predict favorable rather than unfavorable outcomes. To understand the neural mechanisms, we recorded parietal cortical activity implicated in prioritizing stimuli for spatial attention and gaze, in a task in which monkeys were free (but not trained) to obtain information about probabilistic non-contingent rewards. We show that valence and uncertainty independently modulated parietal neuronal activity, and uncertainty but not reward-related enhancement consistently correlated with behavioral sensitivity. The findings suggest uncertainty-driven and valence-driven information demand depend on partially distinct pathways, with the former being consistently related to parietal responses and the latter depending on additional mechanisms implemented in downstream structures.
Collapse
Affiliation(s)
- Yvonne Li
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nabil Daddaoua
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Mattias Horan
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Nicholas C Foley
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jacqueline Gottlieb
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
36
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
37
|
Lim T, Kim M, Akbarian A, Kim J, Tresco PA, Zhang H. Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronic Applications. Adv Healthc Mater 2022; 11:e2102382. [PMID: 35112800 DOI: 10.1002/adhm.202102382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Indexed: 12/11/2022]
Abstract
Gallium (Ga)-based liquid metal materials have emerged as a promising material platform for soft bioelectronics. Unfortunately, Ga has limited biostability and electrochemical performance under physiological conditions, which can hinder the implementation of its use in bioelectronic devices. Here, an effective conductive polymer deposition strategy on the liquid metal surface to improve the biostability and electrochemical performance of Ga-based liquid metals for use under physiological conditions is demonstrated. The conductive polymer [poly(3,4-ethylene dioxythiophene):tetrafluoroborate]-modified liquid metal surface significantly outperforms the liquid metal.based electrode in mechanical, biological, and electrochemical studies. In vivo action potential recordings in behaving nonhuman primate and invertebrate models demonstrate the feasibility of using liquid metal electrodes for high-performance neural recording applications. This is the first demonstration of single-unit neural recording using Ga-based liquid metal bioelectronic devices to date. The results determine that the electrochemical deposition of conductive polymer over liquid metal can improve the material properties of liquid metal electrodes for use under physiological conditions and open numerous design opportunities for next-generation liquid metal-based bioelectronics.
Collapse
Affiliation(s)
- Taehwan Lim
- Department of Chemical Engineering University of Utah Salt Lake City Utah 84112 USA
| | - Minju Kim
- Department of Mechanical Engineering University of Utah Salt Lake City Utah 84112 USA
| | - Amir Akbarian
- Department of Ophthalmology and Visual Science University of Utah Salt Lake City Utah 84112 USA
| | - Jungkyu Kim
- Department of Mechanical Engineering University of Utah Salt Lake City Utah 84112 USA
| | - Patrick A. Tresco
- Department of Biomedical Engineering University of Utah Salt Lake City Utah 84112 USA
| | - Huanan Zhang
- Department of Chemical Engineering University of Utah Salt Lake City Utah 84112 USA
| |
Collapse
|
38
|
van Kempen J, Brandt C, Distler C, Bellgrove MA, Thiele A. Dopamine influences attentional rate modulation in Macaque posterior parietal cortex. Sci Rep 2022; 12:6914. [PMID: 35484302 PMCID: PMC9050696 DOI: 10.1038/s41598-022-10634-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cognitive neuroscience has made great strides in understanding the neural substrates of attention, but our understanding of its neuropharmacology remains incomplete. Although dopamine has historically been studied in relation to frontal functioning, emerging evidence suggests important dopaminergic influences in parietal cortex. We recorded single- and multi-unit activity whilst iontophoretically administering dopaminergic agonists and antagonists while rhesus macaques performed a spatial attention task. Out of 88 units, 50 revealed activity modulation by drug administration. Dopamine inhibited firing rates according to an inverted-U shaped dose-response curve and increased gain variability. D1 receptor antagonists diminished firing rates according to a monotonic function and interacted with attention modulating gain variability. Finally, both drugs decreased the pupil light reflex. These data show that dopamine shapes neuronal responses and modulates aspects of attentional processing in parietal cortex.
Collapse
Affiliation(s)
- Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Christian Brandt
- Research Unit for ORL - Head and Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Claudia Distler
- Allgemeine Zoologie Und Neurobiologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
39
|
Ni AM, Bowes BS, Ruff DA, Cohen MR. Methylphenidate as a causal test of translational and basic neural coding hypotheses. Proc Natl Acad Sci U S A 2022; 119:e2120529119. [PMID: 35467980 PMCID: PMC9169912 DOI: 10.1073/pnas.2120529119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Most systems neuroscience studies fall into one of two categories: basic science work aimed at understanding the relationship between neurons and behavior, or translational work aimed at developing treatments for neuropsychiatric disorders. Here we use these two approaches to inform and enhance each other. Our study both tests hypotheses about basic science neural coding principles and elucidates the neuronal mechanisms underlying clinically relevant behavioral effects of systemically administered methylphenidate (Ritalin). We discovered that orally administered methylphenidate, used clinically to treat attention deficit hyperactivity disorder (ADHD) and generally to enhance cognition, increases spatially selective visual attention, enhancing visual performance at only the attended location. Further, we found that this causal manipulation enhances vision in rhesus macaques specifically when it decreases the mean correlated variability of neurons in visual area V4. Our findings demonstrate that the visual system is a platform for understanding the neural underpinnings of both complex cognitive processes (basic science) and neuropsychiatric disorders (translation). Addressing basic science hypotheses, our results are consistent with a scenario in which methylphenidate has cognitively specific effects by working through naturally selective cognitive mechanisms. Clinically, our findings suggest that the often staggeringly specific symptoms of neuropsychiatric disorders may be caused and treated by leveraging general mechanisms.
Collapse
Affiliation(s)
- Amy M. Ni
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Brittany S. Bowes
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Douglas A. Ruff
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Marlene R. Cohen
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
40
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
41
|
Grujic N, Brus J, Burdakov D, Polania R. Rational inattention in mice. SCIENCE ADVANCES 2022; 8:eabj8935. [PMID: 35245128 PMCID: PMC8896787 DOI: 10.1126/sciadv.abj8935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Behavior exhibited by humans and other organisms is generally inconsistent and biased and, thus, is often labeled irrational. However, the origins of this seemingly suboptimal behavior remain elusive. We developed a behavioral task and normative framework to reveal how organisms should allocate their limited processing resources such that sensory precision and its related metabolic investment are balanced to guarantee maximal utility. We found that mice act as rational inattentive agents by adaptively allocating their sensory resources in a way that maximizes reward consumption in previously unexperienced stimulus-reward association environments. Unexpectedly, perception of commonly occurring stimuli was relatively imprecise; however, this apparent statistical fallacy implies "awareness" and efficient adaptation to their neurocognitive limitations. Arousal systems carry reward distribution information of sensory signals, and distributional reinforcement learning mechanisms regulate sensory precision via top-down normalization. These findings reveal how organisms efficiently perceive and adapt to previously unexperienced environmental contexts within the constraints imposed by neurobiology.
Collapse
Affiliation(s)
- Nikola Grujic
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zürich, Zurich, Switzerland
| | - Jeroen Brus
- Neuroscience Center Zürich, Zurich, Switzerland
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Denis Burdakov
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zürich, Zurich, Switzerland
- Corresponding author. (R.P.); (D.B.)
| | - Rafael Polania
- Neuroscience Center Zürich, Zurich, Switzerland
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Corresponding author. (R.P.); (D.B.)
| |
Collapse
|
42
|
Skirzewski M, Molotchnikoff S, Hernandez LF, Maya-Vetencourt JF. Multisensory Integration: Is Medial Prefrontal Cortex Signaling Relevant for the Treatment of Higher-Order Visual Dysfunctions? Front Mol Neurosci 2022; 14:806376. [PMID: 35110996 PMCID: PMC8801884 DOI: 10.3389/fnmol.2021.806376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
In the mammalian brain, information processing in sensory modalities and global mechanisms of multisensory integration facilitate perception. Emerging experimental evidence suggests that the contribution of multisensory integration to sensory perception is far more complex than previously expected. Here we revise how associative areas such as the prefrontal cortex, which receive and integrate inputs from diverse sensory modalities, can affect information processing in unisensory systems via processes of down-stream signaling. We focus our attention on the influence of the medial prefrontal cortex on the processing of information in the visual system and whether this phenomenon can be clinically used to treat higher-order visual dysfunctions. We propose that non-invasive and multisensory stimulation strategies such as environmental enrichment and/or attention-related tasks could be of clinical relevance to fight cerebral visual impairment.
Collapse
Affiliation(s)
- Miguel Skirzewski
- Rodent Cognition Research and Innovation Core, University of Western Ontario, London, ON, Canada
| | - Stéphane Molotchnikoff
- Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Génie Electrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luis F. Hernandez
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- *Correspondence: José Fernando Maya-Vetencourt
| |
Collapse
|
43
|
Shi YL, Steinmetz NA, Moore T, Boahen K, Engel TA. Cortical state dynamics and selective attention define the spatial pattern of correlated variability in neocortex. Nat Commun 2022; 13:44. [PMID: 35013259 PMCID: PMC8748999 DOI: 10.1038/s41467-021-27724-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/03/2021] [Indexed: 01/20/2023] Open
Abstract
Correlated activity fluctuations in the neocortex influence sensory responses and behavior. Neural correlations reflect anatomical connectivity but also change dynamically with cognitive states such as attention. Yet, the network mechanisms defining the population structure of correlations remain unknown. We measured correlations within columns in the visual cortex. We show that the magnitude of correlations, their attentional modulation, and dependence on lateral distance are explained by columnar On-Off dynamics, which are synchronous activity fluctuations reflecting cortical state. We developed a network model in which the On-Off dynamics propagate across nearby columns generating spatial correlations with the extent controlled by attentional inputs. This mechanism, unlike previous proposals, predicts spatially non-uniform changes in correlations during attention. We confirm this prediction in our columnar recordings by showing that in superficial layers the largest changes in correlations occur at intermediate lateral distances. Our results reveal how spatially structured patterns of correlated variability emerge through interactions of cortical state dynamics, anatomical connectivity, and attention.
Collapse
Affiliation(s)
- Yan-Liang Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Tirin Moore
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kwabena Boahen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
44
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
45
|
Riedel P, Domachowska IM, Lee Y, Neukam PT, Tönges L, Li SC, Goschke T, Smolka MN. L-DOPA administration shifts the stability-flexibility balance towards attentional capture by distractors during a visual search task. Psychopharmacology (Berl) 2022; 239:867-885. [PMID: 35147724 PMCID: PMC8891202 DOI: 10.1007/s00213-022-06077-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
RATIONALE The cognitive control dilemma describes the necessity to balance two antagonistic modes of attention: stability and flexibility. Stability refers to goal-directed thought, feeling, or action and flexibility refers to the complementary ability to adapt to an ever-changing environment. Their balance is thought to be maintained by neurotransmitters such as dopamine, most likely in a U-shaped rather than linear manner. However, in humans, studies on the stability-flexibility balance using a dopaminergic agent and/or measurement of brain dopamine are scarce. OBJECTIVE The study aimed to investigate the causal involvement of dopamine in the stability-flexibility balance and the nature of this relationship in humans. METHODS Distractibility was assessed as the difference in reaction time (RT) between distractor and non-distractor trials in a visual search task. In a randomized, placebo-controlled, double-blind, crossover study, 65 healthy participants performed the task under placebo and a dopamine precursor (L-DOPA). Using 18F-DOPA-PET, dopamine availability in the striatum was examined at baseline to investigate its relationship to the RT distractor effect and to the L-DOPA-induced change of the RT distractor effect. RESULTS There was a pronounced RT distractor effect in the placebo session that increased under L-DOPA. Neither the RT distractor effect in the placebo session nor the magnitude of its L-DOPA-induced increase were related to baseline striatal dopamine. CONCLUSIONS L-DOPA administration shifted the stability-flexibility balance towards attentional capture by distractors, suggesting causal involvement of dopamine. This finding is consistent with current theories of prefrontal cortex dopamine function. Current data can neither confirm nor falsify the inverted U-shaped function hypothesis with regard to cognitive control.
Collapse
Affiliation(s)
- P. Riedel
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - I. M. Domachowska
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - Y. Lee
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - P. T. Neukam
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - L. Tönges
- Department of Neurology, Ruhr University Bochum, St. Josef-Hospital, Gudrunstraße 56, 44791 Bochum, Germany
| | - S. C. Li
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany ,Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Georg-Schumman-Str. 9, 01187 Dresden, Germany
| | - T. Goschke
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - M. N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
46
|
Srinath R, Ruff DA, Cohen MR. Attention improves information flow between neuronal populations without changing the communication subspace. Curr Biol 2021; 31:5299-5313.e4. [PMID: 34699782 PMCID: PMC8665027 DOI: 10.1016/j.cub.2021.09.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Visual attention allows observers to change the influence of different parts of a visual scene on their behavior, suggesting that information can be flexibly shared between visual cortex and neurons involved in decision making. We investigated the neural substrate of flexible information routing by analyzing the activity of populations of visual neurons in the medial temporal area (MT) and oculo-motor neurons in the superior colliculus (SC) while rhesus monkeys switched spatial attention. We demonstrated that attention increases the efficacy of visuomotor communication: trial-to-trial variability in SC population activity could be better predicted by the activity of the MT population (and vice versa) when attention was directed toward their joint receptive fields. Surprisingly, this improvement in prediction was not explained by changes in the dimensionality of the shared subspace or in the magnitude of local or shared pairwise noise correlations. These results lay a foundation for future theoretical and experimental studies into how visual attention can flexibly change information flow between sensory and decision neurons.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Douglas A Ruff
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene R Cohen
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Krajbich I, Mitsumasu A, Polania R, Ruff CC, Fehr E. A causal role for the right frontal eye fields in value comparison. eLife 2021; 10:e67477. [PMID: 34779767 PMCID: PMC8592572 DOI: 10.7554/elife.67477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Recent studies have suggested close functional links between overt visual attention and decision making. This suggests that the corresponding mechanisms may interface in brain regions known to be crucial for guiding visual attention - such as the frontal eye field (FEF). Here, we combined brain stimulation, eye tracking, and computational approaches to explore this possibility. We show that inhibitory transcranial magnetic stimulation (TMS) over the right FEF has a causal impact on decision making, reducing the effect of gaze dwell time on choice while also increasing reaction times. We computationally characterize this putative mechanism by using the attentional drift diffusion model (aDDM), which reveals that FEF inhibition reduces the relative discounting of the non-fixated option in the comparison process. Our findings establish an important causal role of the right FEF in choice, elucidate the underlying mechanism, and provide support for one of the key causal hypotheses associated with the aDDM.
Collapse
Affiliation(s)
- Ian Krajbich
- Departments of Psychology, Economics, The Ohio State UniversityColumbusUnited States
| | - Andres Mitsumasu
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Rafael Polania
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
- Decision Neuroscience Lab, Depterment of Heatlh Sciences and Technology, ETH ZurichZurichSwitzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Ernst Fehr
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| |
Collapse
|
48
|
Furman DJ, Pappas I, White RL, Kayser AS, D'Esposito M. Enhancing dopamine tone modulates global and local cortical perfusion as a function of COMT val158met genotype. Neuroimage 2021; 242:118472. [PMID: 34390874 DOI: 10.1016/j.neuroimage.2021.118472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
The cognitive effects of pharmacologically enhancing cortical dopamine (DA) tone are variable across healthy human adults. It has been postulated that individual differences in drug responses are linked to baseline cortical DA activity according to an inverted-U-shaped function. To better understand the effect of divergent starting points along this curve on DA drug responses, researchers have leveraged a common polymorphism (rs4680) in the gene encoding the enzyme catechol-O-methyltransferase (COMT) that gives rise to greater (Met allele) or lesser (Val allele) extracellular levels of cortical DA. Here we examined the extent to which changes in resting cortical perfusion following the administration of two mechanistically-distinct dopaminergic drugs vary by COMT genotype, and thereby track predictions of the inverted-U model. Using arterial spin labeling (ASL) and a double-blind, within-subject design, perfusion was measured in 75 healthy, genotyped participants once each after administration of tolcapone (a COMT inhibitor), bromocriptine (a DA D2/3 agonist), and placebo. COMT genotype and drug interacted such that COMT Val homozygotes exhibited increased prefusion in response to both drugs, whereas Met homozygotes did not. Additionally, tolcapone-related perfusion changes in the right inferior frontal gyrus correlated with altered performance on a task of executive function. No comparable effects were found for a genetic polymorphism (rs1800497) affecting striatal DA system function. Together, these results indicate that both the directionality and magnitude of drug-induced perfusion change provide meaningful information about individual differences in response to enhanced cortical DA tone.
Collapse
Affiliation(s)
- Daniella J Furman
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States.
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew S Kayser
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| |
Collapse
|
49
|
Akbarian A, Clark K, Noudoost B, Nategh N. A sensory memory to preserve visual representations across eye movements. Nat Commun 2021; 12:6449. [PMID: 34750376 PMCID: PMC8575989 DOI: 10.1038/s41467-021-26756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Saccadic eye movements (saccades) disrupt the continuous flow of visual information, yet our perception of the visual world remains uninterrupted. Here we assess the representation of the visual scene across saccades from single-trial spike trains of extrastriate visual areas, using a combined electrophysiology and statistical modeling approach. Using a model-based decoder we generate a high temporal resolution readout of visual information, and identify the specific changes in neurons' spatiotemporal sensitivity that underly an integrated perisaccadic representation of visual space. Our results show that by maintaining a memory of the visual scene, extrastriate neurons produce an uninterrupted representation of the visual world. Extrastriate neurons exhibit a late response enhancement close to the time of saccade onset, which preserves the latest pre-saccadic information until the post-saccadic flow of retinal information resumes. These results show how our brain exploits available information to maintain a representation of the scene while visual inputs are disrupted.
Collapse
Affiliation(s)
- Amir Akbarian
- grid.223827.e0000 0001 2193 0096Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT USA
| | - Kelsey Clark
- grid.223827.e0000 0001 2193 0096Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Neda Nategh
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA. .,Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
50
|
Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K, Zilles K, Kennedy H, Palomero-Gallagher N, Wang XJ. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 2021; 109:3500-3520.e13. [PMID: 34536352 PMCID: PMC8571070 DOI: 10.1016/j.neuron.2021.08.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
Collapse
Affiliation(s)
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xingyu Ding
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Meiqi Niu
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | - Karl Zilles
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Henry Kennedy
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS), Key Laboratory of Primate Neurobiology CAS, Shanghai, China
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, INM-1, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|