1
|
Padró-Villegas L, Gómez-Gaviria M, Martínez-Duncker I, López-Ramírez LA, Martínez-Álvarez JA, Niño-Vega GA, Mora-Montes HM. Sporothrix brasiliensis Gp70 is a cell wall protein required for adhesion, proper interaction with innate immune cells, and virulence. Cell Surf 2025; 13:100139. [PMID: 39866864 PMCID: PMC11763198 DOI: 10.1016/j.tcsw.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Sporothrix brasiliensis is one of the leading etiological agents of sporotrichosis, a cutaneous and subcutaneous mycosis worldwide distributed. This organism has been recently associated with epidemic outbreaks in Brazil. Despite the medical relevance of this species, little is known about its virulence factors, and most of the information on this subject is extrapolated from Sporothrix schenckii. Here, we generated S. brasiliensis mutants, where GP70 was silenced. In S. schenckii, this gene encodes a glycoprotein with adhesive properties required for virulence. The S. brasiliensis GP70 silencing led to an abnormal cellular phenotype, with smaller, round yeast-like cells that aggregate. Cell aggregation was disrupted with glucanase, suggesting this phenotype is linked to changes in the cell wall. The cell wall characterization confirmed changes in the structural polysaccharide β-1,3-glucan, which increased in quantity and exposure at the cell surface. This was accompanied by a reduction in protein content and N-linked glycans. Mutant strains with high GP70-silencing levels showed minimal levels of 3-carboxy-cis,cis-muconate cyclase activity, this glycoprotein's predicted enzyme function, and decreased ability to bind laminin and fibronectin. These phenotypical changes coincided with abnormal interaction with human peripheral blood mononuclear cells, where production of IL-1β, IL-17, and IL-22 was reduced and the strong dependence on cytokine stimulation via mannose receptor was lost. Phagocytosis by monocyte-derived macrophages was increased and virulence attenuated in a Galleria mellonella larvae. In conclusion, Gp70 is an abundant cell wall glycoprotein in S. brasiliensis that contributes to virulence and proper interaction with innate immnune cells.
Collapse
Affiliation(s)
- Leonardo Padró-Villegas
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor. 62209, Mexico
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| |
Collapse
|
2
|
Wu ZW, Zhao XF, Quan CX, Liu XC, Tao XY, Li YJ, Peng XR, Qiu MH. Structure-function insights of natural Ganoderma polysaccharides: advances in biosynthesis and functional food applications. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:15. [PMID: 40035898 PMCID: PMC11880470 DOI: 10.1007/s13659-025-00496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 03/06/2025]
Abstract
Ganoderma polysaccharides (GPs), derived from various species of the Ganoderma genus, exhibit diverse bioactivities, including immune modulation, anti-tumor effects, and gut microbiota regulation. These properties position GPs as dual-purpose agents for medicinal and functional food development. This review comprehensively explores the structural complexity of six key GPs and their specific mechanisms of action, such as TLR signaling in immune modulation, apoptosis pathways in anti-tumor activity, and their prebiotic effects on gut microbiota. Additionally, the structure-activity relationships (SARs) of GPs are highlighted to elucidate their biological efficacy. Advances in green extraction techniques, including ultrasonic-assisted and enzymatic methods, are discussed for their roles in enhancing yield and aligning with sustainable production principles. Furthermore, the review addresses biotechnological innovations in polysaccharide biosynthesis, improving production efficiency and making large-scale production feasible. These insights, combined with ongoing research into their bioactivity, provide a solid foundation for developing health-promoting functional food products that incorporate GPs. Furthermore, future research directions are suggested to optimize biosynthesis pathways and fully harness the health benefits of these polysaccharides.
Collapse
Affiliation(s)
- Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xue-Fang Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Chen-Xi Quan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Cui Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin-Yu Tao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yu-Jie Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
3
|
Huang HY, Zheng XN, Tian L. Vascular-Associated Mononuclear Phagocytes: First-Line Soldiers Ambushing Metastasis. Bioessays 2025; 47:e202400261. [PMID: 39988942 DOI: 10.1002/bies.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 02/25/2025]
Abstract
Mononuclear phagocytes (MPs), which consist of dendritic cells, monocytes, and macrophages, are distributed throughout the body and actively eliminate invading microorganisms and abnormal cells. Depending on the local microenvironment, MPs manifest considerably various lifespans and phenotypes to maintain tissue homeostasis. Vascular-associated mononuclear phagocytes (VaMPs) are the special subsets of MPs that are localized either within the lumen side or on the apical surface of vessels, acting as the critical sentinels to recognize and defend against disseminated tumor cells. In this review, we introduce three major types of VaMPs, patrolling monocytes, Kupffer cells, and perivascular macrophages, and discuss their emerging roles in immunosurveillance during incipient metastasis. We also explore the roles of lineage-determining transcription factors and cell surface receptors that endow VaMPs with potent anti-tumor activity. Finally, we highlight the molecular and cellular mechanisms that drive the phenotypic plasticity of VaMPs and summarize combinatory strategies for targeting VaMPs in overt metastasis.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
4
|
Zhang C, Yuan Y, Xia Q, Wang J, Xu K, Gong Z, Lou J, Li G, Wang L, Zhou L, Liu Z, Luo K, Zhou X. Machine Learning-Driven Prediction, Preparation, and Evaluation of Functional Nanomedicines Via Drug-Drug Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415902. [PMID: 39792782 DOI: 10.1002/advs.202415902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are identified as effective carriers for antineoplastic drugs, with high drug loading. Nanomedicines, PEG-coated indomethacin/paclitaxel nanomedicine (PiPTX), and laminarin-modified indomethacin/paclitaxel nanomedicine (LiDOX), are developed with extended circulation and active targeting functions. Indomethacin/paclitaxel nanomedicine iDOX exhibits pH-responsive drug release in the tumor microenvironment. These nanomedicines enhance anti-tumor effects and reduce side effects, offering a rapid approach to clinical nanomedicine development.
Collapse
Affiliation(s)
- Chengyuan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuchuan Yuan
- School of Medicine, Northwest University, Xi'an, 710068, China
| | - Qiong Xia
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Junjie Wang
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kangkang Xu
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhiwei Gong
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Lou
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Gen Li
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lu Wang
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Li Zhou
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhirui Liu
- Department of Pharmacy, Xinan Hospital, Army Medical University, Chongqing, 400038, China
| | - Kui Luo
- Department of Radiology, and Department of Geriatrics, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
5
|
Li T, Wu X, Li X, Chen M. Cancer-associated fungi: An emerging powerful player in cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189287. [PMID: 39971202 DOI: 10.1016/j.bbcan.2025.189287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The role of the human microbiome in cancer has been extensively studied, focusing mainly on bacteria-host interactions and their impact on tumor development and treatment response. However, fungi, an immune-active component of the human microbiome, have received less attention regarding their roles in cancer. Recent studies have identified the widespread and specific colonization and distribution of fungi in multiple sites in patients across various cancer types. Importantly, host-fungal immune interactions significantly influence immune regulation within the tumor microenvironment. The rapid advancement of immune-checkpoint blockade (ICB)-based cancer immunotherapy creates an urgent need for effective biomarkers and synergistic therapeutic targets. Cancer-associated fungi and their associated antifungal immunity demonstrate significant potential and efficacy in enhancing cancer immunotherapy. This review summarizes and discusses the growing evidence of the functions and mechanisms of commensal and pathogenic cancer-associated fungi in cancer immunotherapy. Additionally, we emphasize the potential of fungi as predictive biomarkers and therapeutic targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyang Li
- Department of Gastrointestinal Tumor Surgery, Nanjing Tianyinshan Hospital, Affiliated Hospital of China Pharmaceutical University, Nanjing, China.
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
6
|
Naiel S, Dowdall N, Zhou Q, Ali P, Hayat A, Vierhout M, Wong EY, Couto R, Yépez B, Seifried B, Moquin P, Kolb MR, Ask K, Hoare T. Modulating pro-fibrotic macrophages using yeast beta-glucan microparticles prepared by Pressurized Gas eXpanded liquid (PGX) Technology®. Biomaterials 2025; 313:122816. [PMID: 39250864 DOI: 10.1016/j.biomaterials.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Pro-fibrotic M2-like macrophages are widely implicated in the pathogenesis and progression of lung fibrosis due to their production of pro-fibrotic growth factors and cytokines. Yeast beta-glucan (YBG) microparticles have shown potential as immunomodulators that can convert macrophage polarization from a pro-fibrotic phenotype to an anti-fibrotic phenotype through the engagement of the Dectin-1 receptor. However, the processing conditions used to fabricate YBG microparticles can lead to unpredictable immunomodulatory effects. Herein, we report the use of Pressurized Gas eXpanded liquids (PGX) Technology® to fabricate YBG (PGX-YBG) microparticles with higher surface areas, lower densities, and smaller and more uniform size distributions compared to commercially available spray-dried YBGs. PGX-YBG is shown to activate Dectin-1 more efficiently in vitro while avoiding significant TLR 2/4 activation. Furthermore, PGX-YBG microparticles effectively modulate M2-like fibrosis-inducing murine and human macrophages into fibrosis-suppressing macrophages both in vitro as well as in ex vivo precision-cut murine lung slices, suggesting their potential utility as a therapeutic for addressing a broad spectrum of fibrotic end-point lung diseases.
Collapse
Affiliation(s)
- S Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - N Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Q Zhou
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - P Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - A Hayat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - M Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - E Y Wong
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - R Couto
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Yépez
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Seifried
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - P Moquin
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - M R Kolb
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - K Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada.
| | - T Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
7
|
Li S, Gao H, Wang H, Zhao X, Pan D, Pacheco-Fernández I, Ma M, Liu J, Hirvonen J, Liu Z, Santos HA. Tailored polysaccharide entrapping metal-organic framework for RNAi therapeutics and diagnostics in atherosclerosis. Bioact Mater 2025; 43:376-391. [PMID: 39399834 PMCID: PMC11470791 DOI: 10.1016/j.bioactmat.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Metal-organic frameworks (MOFs) hold promise as theranostic carriers for atherosclerosis. However, to further advance their therapeutic effects with higher complexity and functionality, integrating multiple components with complex synthesis procedures are usually involved. Here, we reported a facile and general strategy to prepare multifunctional anti-atherosclerosis theranostic platform in a single-step manner. A custom-designed multifunctional polymer, poly(butyl methacrylate-co-methacrylic acid) branched phosphorylated β-glucan (PBMMA-PG), can effectively entrap different MOFs via coordination, simultaneously endow the MOF with enhanced stability, lesional macrophages selectivity and enhanced endosome escape. Sequential ex situ characterization and computational studies elaborated the potential mechanism. This facile post-synthetic modification granted the administered nanoparticles atherosclerotic tropism by targeting Dectin-1+ macrophages, enhancing in situ MR signal intensity by 72 %. Delivery of siNLRP3 effectively mitigated NLRP3 inflammasomes activation, resulting a 43 % reduction of plaque area. Overall, the current study highlights a simple and general approach for fabricating a MOF-based theranostic platform towards atherosclerosis conditioning, which may also expand to other indications targeting the lesional macrophages.
Collapse
Affiliation(s)
- Sen Li
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Han Gao
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Haoji Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Xiaolin Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Idaira Pacheco-Fernández
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Zehua Liu
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
8
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
9
|
Murphy B, Miyamoto T, Manning BS, Mirji G, Ugolini A, Kannan T, Hamada K, Zhu YP, Claiborne DT, Huang L, Zhang R, Nefedova Y, Kossenkov A, Veglia F, Shinde R, Zhang N. Myeloid activation clears ascites and reveals IL27-dependent regression of metastatic ovarian cancer. J Exp Med 2024; 221:e20231967. [PMID: 39570374 PMCID: PMC11586802 DOI: 10.1084/jem.20231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/14/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of <30% due to the persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity. β-glucan alone cleared ascites and eliminated fluid tumor cells by inducing intraperitoneal clotting in the fluid and Dectin-1-Syk-dependent NETosis in the omentum. In omentum tumors, BI expanded a novel subset of immunostimulatory IL27+ macrophages and neutralizing IL27 impaired BI efficacy in vivo. Moreover, BI directly induced IL27 secretion in macrophages where single agent treatment did not. Finally, BI extended mouse survival in a chemoresistant model and significantly improved chemotherapy response in a chemo-sensitive model. In summary, we propose a new therapeutic strategy for the treatment of metastatic OvCa.
Collapse
Affiliation(s)
- Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Taito Miyamoto
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bryan S. Manning
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Cancer Biology Graduate Program, Saint Joseph’s University, Philadelphia,PA, USA
| | - Gauri Mirji
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alessio Ugolini
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Toshitha Kannan
- Gene Expression and Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yanfang P. Zhu
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel T. Claiborne
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Yulia Nefedova
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Filippo Veglia
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
10
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
11
|
Lin J, Zhou Y, Li C, Li B, Hao H, Tian F, Li H, Liu Z, Wang G, Shen XC, Tang R, Wang X. Hydrogel activation of Mincle receptors for tumor cell processing: A novel approach in cancer immunotherapy. Biomaterials 2024; 311:122703. [PMID: 39002516 DOI: 10.1016/j.biomaterials.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
An obstacle in current tumor immunotherapies lies in the challenge of achieving sustained and tumor-targeting T cell immunity, impeded by the limited antigen processing and cross-presentation of tumor antigens. Here, we propose a hydrogel-based multicellular immune factory within the body that autonomously converts tumor cells into an antitumor vaccine. Within the body, the scaffold, formed by a calcium-containing chitosan hydrogel complex (ChitoCa) entraps tumor cells and attracts immune cells to establish a durable and multicellular microenvironment. Within this context, tumor cells are completely eliminated by antigen-presenting cells (APCs) and processed for cross-antigen presentation. The regulatory mechanism relies on the Mincle receptor, a cell-phagocytosis-inducing C-type lectin receptor specifically activated on ChitoCa-recruited APCs, which serves as a recognition synapse, facilitating a tenfold increase in tumor cell engulfment and subsequent elimination. The ChitoCa-induced tumor cell processing further promotes the cross-presentation of tumor antigens to prime protective CD8+ T cell responses. Therefore, the ChitoCa treatment establishes an immune niche within the tumor microenvironment, resulting in effective tumor regression either used alone or in combination with other immunotherapies. This hydrogel-induced immune factory establishes a functional organ-like multicellular colony for tumor-specific immunotherapy, paving the way for innovative strategies in cancer treatment.
Collapse
Affiliation(s)
- Jiake Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chen Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Benke Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haibin Hao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fengchao Tian
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huixin Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhenyu Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guangchuan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
12
|
Ahmad F, Ahmad S, Srivastav AK, Upadhyay TK, Husain A, Khubaib M, Kang S, Park MN, Kim B, Sharma R. "β-glucan signalling stimulates NOX-2 dependent autophagy and LC-3 associated autophagy (LAP) pathway". Int J Biol Macromol 2024; 282:136520. [PMID: 39401634 DOI: 10.1016/j.ijbiomac.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/19/2024]
Abstract
β-Glucan, a complex polysaccharide derived from fungal and yeast cell walls, plays a crucial role in modulating immune responses through their interaction with receptors such as Dectin-1 and Complement receptor 3 (CR-3). This review provides an in-depth analysis of the molecular mechanisms by which β-glucans activate receptor-mediated signalling pathways, focusing particularly on the LC3-associated phagocytosis (LAP) and autophagy pathways. Hence, we explore how β-glucan receptor engagement stimulates NADPH oxidase 2 (NOX-2), leading to the intracellular production of significant level of reactive oxygen species (ROS) essential for both conventional autophagy and LAP. While significant progress has been made in elucidation of downstream signaling by glucans, the regulation of phago-lysosomal maturation and antigen presentation during LAP induction still remains less explored. This review aims to provide a comprehensive overview of these pathways and their regulation by β-glucans. By consolidating the current knowledge, we seek to highlight how these mechanisms can be leveraged for therapeutic applications, particularly in the context of tuberculosis (TB) management, where β-glucans could serve as host-directed adjuvant therapies to combat drug-resistant strains. Despite major advancements in this field, currently key research gaps still persist, including detailed molecular interactions between β-glucan receptors and NOX-2 and the translation of these findings to in-vivo models and clinical investigations. This review underscores the need for further research to explore the therapeutic potential of β-glucans in managing not only tuberculosis but also other diseases such as cancer, cardiovascular conditions, and metabolic disorders.
Collapse
Affiliation(s)
- Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Physiological Sciences, Oklahoma Centre for Respiratory and Infectious Diseases, Oklahoma State University, OK 74074, United States of America
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, Uttar Pradesh, India
| | - Anurag Kumar Srivastav
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| | - Adil Husain
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das [BBD] College of Dental Sciences BBD University, Lucknow 226028, Uttar Pradesh, India
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| | - Rolee Sharma
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur 228024, Uttar Pradesh, India.
| |
Collapse
|
13
|
Xu Z, Wu XM, Luo YB, Li H, Zhou YQ, Liu ZQ, Li ZY. Exploring the therapeutic potential of yeast β-glucan: Prebiotic, anti-infective, and anticancer properties - A review. Int J Biol Macromol 2024; 283:137436. [PMID: 39522898 DOI: 10.1016/j.ijbiomac.2024.137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Yeast β-glucan (YBG), an indigestible polysaccharide from yeast cell walls, is multifunctional. It plays a pivotal role in regulating gut microbiota (GM) and boosting the immune system, which is central to research on inflammation, cancer, and metabolic diseases. By modulating the GM, YBG exhibits various prebiotic effects, including hypoglycemic, hypolipidemic, and immune-regulating properties. Additionally, acting as a bioreactor modulator, it activates immune responses, demonstrating potential in anti-infection and anticancer applications. This article synthesizes the latest data from in vitro, in vivo, and clinical studies. It comprehensively evaluates the therapeutic potential of YBG, starting from its structure-function relationship. It particularly focuses on the application prospects of yeast β-glucan in probiotic-like effects, anti-infectious properties, and anti-cancer activity, and explores the underlying mechanisms of these actions. The aim of this article is to elucidate the positive impact of YBG on health by modulating the gut microbiota and enhancing immune responses. Simultaneously, it identifies critical areas for future research to provide theoretical support for its development in biomedical applications.
Collapse
Affiliation(s)
- Zhen Xu
- The Second Clinical Medical College, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiao Meng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yan Bin Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Hui Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yong Qin Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Zhao Qi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Zhi Ying Li
- The Second Clinical Medical College, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
14
|
Weth AF, Dangerfield EM, Timmer MSM, Stocker BL. Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants. Vaccines (Basel) 2024; 12:1320. [PMID: 39771982 PMCID: PMC11680293 DOI: 10.3390/vaccines12121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of TH1/TH17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines. In this review, we discuss those classes of Mincle agonists that have been explored for their adjuvant potential. These Mincle agonists have been used as stand-alone adjuvants or in combination with other pathogen-associated molecular patterns (PAMPs) or immunomodulatory agents. We will also highlight recently identified Mincle ligands with hitherto unknown adjuvanticity. Conjugate vaccines that contain covalently linked adjuvants and/or adjuvant-antigen combinations are also presented, as well as the different formulations (e.g., oil-in-water emulsions, liposomes, and particulate delivery systems) that have been used for the codelivery of antigens and adjuvants. Insofar the reader is presented with a thorough review of the potential of Mincle-mediated vaccine adjuvants, including historical context, present-day research and clinical trials, and outstanding research questions, such as the role of ligand presentation and Mincle clustering, which, if better understood, will aid in the development of the much-needed TH1/TH17-skewing vaccine adjuvants.
Collapse
Affiliation(s)
| | | | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
15
|
Gonzales-Huerta LE, Williams TJ, Aljohani R, Robertson B, Evans CA, Armstrong-James D. Mycobacterial lipoarabinomannan negatively interferes with macrophage responses to Aspergillus fumigatus in-vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623945. [PMID: 39605324 PMCID: PMC11601501 DOI: 10.1101/2024.11.18.623945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Introduction Over 1 million people have chronic pulmonary aspergillosis (CPA) secondary to pulmonary tuberculosis. Additionally, Aspergillus fumigatus (Af) has been reported as one of the most common pathogens associated with mycobacteria in patients with cystic fibrosis. Mycobacterial virulence factors, like lipoarabinomannan, have been shown to interfere with host's intracellular pathways required for an effective immune response, however, the immunological basis for mycobacterial-fungal coinfection is still unknown. We therefore investigated the effect of lipoarabinomannan on macrophage responses against Af. Methods Bone marrow-derived macrophages (BMDMs) were stimulated with non-mannose-capped lipoarabinomannan (LAM) from Mycobacterium smegmatis or mannose-capped lipoarabinomannan (ManLAM) from Mycobacterium tuberculosis for 2 hours and then infected with swollen Af conidia. Cell death was assessed by lactate dehydrogenase release. Cytokine release was measured in supernatant using Enzyme Linked Immuno-Sorbent Assay (ELISA). Colony forming units counting and time-lapse fluorescence microscopy was performed for studying conidia killing by macrophages. Results BMDMs stimulated with LAM showed increased cell death and inflammatory cytokine release in a dose-dependent manner, characterised by a significant increase of IL-1β release. Time-lapse fluorescence microscopy and CFUs revealed that both LAM and ManLAM significantly decrease the capacity of macrophages to kill Af conidia within the first 6 hours of infection. Conclusions The mycobacterial virulence factor, lipoarabinomannan, disrupts macrophage capacity to efficiently clear Af at early stages of infection in-vitro.
Collapse
Affiliation(s)
- L E Gonzales-Huerta
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
- Carrera de Medicina Humana, Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima 15024 Peru
- Departamento de Investigación, Instituto de Medicina Traslacional, Lima 15072, Peru
| | - T J Williams
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - R Aljohani
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - B Robertson
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - C A Evans
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
- Innovación Por la Salud Y Desarrollo (IPSYD), Asociación Benéfica PRISMA, Lima, 15073, Peru
- IFHAD: Innovation For Health And Development, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima 150135 Peru
- IFHAD: Innovation For Health And Development, Department of infectious disease, Imperial College London, London, UK
| | | |
Collapse
|
16
|
Bond A, Fiaz S, Rollins K, Nario JEQ, Snyder ET, Atkins DJ, Rosen SJ, Granados A, Dey SS, Wilson MZ, Morrissey MA. Prior Fc receptor activation primes macrophages for increased sensitivity to IgG via long-term and short-term mechanisms. Dev Cell 2024; 59:2882-2896.e7. [PMID: 39137774 PMCID: PMC11537821 DOI: 10.1016/j.devcel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Macrophages measure the "eat-me" signal immunoglobulin G (IgG) to identify targets for phagocytosis. We tested whether prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc receptor. To temporally control Fc receptor activation, we engineered an Fc receptor that is activated by the light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that subthreshold Fc receptor activation primes mouse bone-marrow-derived macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced subthreshold Fc receptor activation eat more IgG-bound human cancer cells. Increased phagocytosis occurs by two discrete mechanisms-a short- and long-term priming. Long-term priming requires new protein synthesis and Erk activity. Short-term priming does not require new protein synthesis and correlates with an increase in Fc receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kirstin Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Erika T Snyder
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Dixon J Atkins
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Samuel J Rosen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Siddharth S Dey
- Chemical Engineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA; Bioengineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
17
|
Gong M, Yu H, Qu H, Li Z, Liu D, Zhao X. Global research trends and hotspots on human intestinal fungi and health: a bibliometric visualization study. Front Cell Infect Microbiol 2024; 14:1460570. [PMID: 39483119 PMCID: PMC11525014 DOI: 10.3389/fcimb.2024.1460570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Background This article employs bibliometric methods and visual maps to delineate the research background, collaborative relationships, hotspots, and trends in the study of gut fungi in human diseases and health. Methods Publications related to human gut fungi were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, R software and Microsoft Excel were employed to generate visual representations illustrating the contributions made by countries/regions, authors, organizations, and journals. Employing VOSviewer and CiteSpace, we conducted a comprehensive analysis of the retrieved publications, revealing underlying tendencies, research hotspots, and intricate knowledge networks. Results This study analyzed a total of 3,954 publications. The United States ranks first in the number of published papers and has the highest number of citations and h-index. Mostafa S Elshahed is the most prolific author. The University of California System is the institution that published the most papers. Frontiers In Microbiology is the journal with the largest number of publications. Three frequently co-cited references have experienced a citation burst lasting until 2024. Conclusion Advancements in sequencing technologies have intensified research into human gut fungi and their health implications, shifting the research focus from gut fungal infections towards microbiome science. Inflammatory bowel diseases and Candida albicans have emerged as pivotal areas of interest in this endeavor. Through this study, we have gained a deeper insight into global trends and frontier hotspots within this field, thereby enhancing our understanding of the intricate relationship between gut fungi and human health.
Collapse
Affiliation(s)
- Ming Gong
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Hong Qu
- Bidding and Procurement Office, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhexian Li
- Dalian Medical University, Dalian, China
| | - Di Liu
- First Clinical Faculty, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhao
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Li Y, Huang M, Cardinale S, Su Y, Peters DE, Slusher BS, Zhu X. Dectin-1 as a therapeutic target for inflammatory bowel disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:237-264. [PMID: 39521602 PMCID: PMC11733682 DOI: 10.1016/bs.apha.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses chronic inflammatory conditions of the distal gastrointestinal tract, including Crohn's disease and ulcerative colitis. This chapter explores the potential of Dendritic cell-associated C-type lectin-1 (Dectin-1), a pattern recognition receptor, as a therapeutic target for IBD. We delve into the multifaceted roles of Dectin-1 in immune response modulation, focusing on its interactions with the gut microbiota and immune system. Key sections include an examination of intestinal dysbiosis and its impact on IBD, highlighting the critical role of fungal dysbiosis and immune responses mediated by Dectin-1. The chapter discusses the dual functions of Dectin-1 in maintaining gut homeostasis and its contribution to disease pathogenesis through interactions with the gut's fungal community. Furthermore, the genetic and molecular mechanisms underpinning Dectin-1's role in IBD susceptibility are explored, alongside its signaling pathways and their effects on immune modulation. We also present therapeutic strategies targeting Dectin-1, including innovative drug delivery systems that leverage its natural binding affinity for β-glucans, enhancing targeted delivery to inflamed tissues. The chapter underscores the potential of dietary modulation of Dectin-1 pathways to restore gut microbiota balance and suggests future research directions to fully exploit Dectin-1's therapeutic potential in managing IBD. By elucidating the complex interplay between Dectin-1 and the gut microbiota, this chapter provides insights into novel therapeutic approaches aimed at mitigating IBD symptoms and improving patient outcomes.
Collapse
Affiliation(s)
- Yannan Li
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meixiang Huang
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Santiago Cardinale
- Department of Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Su
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Diane E Peters
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Barbara S Slusher
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
19
|
Xu J, Yu Y, Zhang Y, Dai H, Yang Q, Wang B, Ma Q, Chen Y, Xu F, Shi X, Liu Z, Wang C. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells. NATURE NANOTECHNOLOGY 2024; 19:1569-1578. [PMID: 39054386 DOI: 10.1038/s41565-024-01722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Gamma-delta (γδ) T cell-based cancer immunotherapies represent a promising avenue for cancer treatment. However, their development is challenged by the limited expansion and differentiation of the cells ex vivo. Here we induced the endogenous expansion and activation of γδ T cells through oral administration of garlic-derived nanoparticles (GNPs). We found that GNPs could significantly promote the proliferation and activation of endogenous γδ T cells in the intestine, leading to generation of large amount of interferon-γ (IFNγ). Moreover GNP-treated mice showed increased levels of chemokine CXCR3 in intestinal γδ T cells, which can drive their migration from the gut to the tumour environment. The translocation of γδ T cells and IFNγ from the intestine to extraintestinal subcutaneous tumours remodels the tumour immune microenvironment and synergizes with anti-PD-L1, inducing robust antitumour immunity. Our study delineates mechanistic insight into the complex gut-tumour interactome and provides an alternative approach for γδ T cell-based immunotherapy.
Collapse
MESH Headings
- Animals
- Interferon-gamma/metabolism
- Nanoparticles/chemistry
- Garlic/chemistry
- Mice
- Administration, Oral
- Immunotherapy/methods
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Cell Line, Tumor
- Female
- B7-H1 Antigen/metabolism
- Intestines/immunology
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Neoplasms/therapy
- Neoplasms/immunology
Collapse
Affiliation(s)
- Jialu Xu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yue Yu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yue Zhang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Huaxing Dai
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Qianyu Yang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Beilei Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Qingle Ma
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yitong Chen
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Fang Xu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Xiaolin Shi
- Medical College of Soochow University, Suzhou, China
| | - Zhuang Liu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Wei J, Dai Y, Zhang N, Wang Z, Tian X, Yan T, Jin X, Jiang S. Natural plant-derived polysaccharides targeting macrophage polarization: a promising strategy for cancer immunotherapy. Front Immunol 2024; 15:1408377. [PMID: 39351237 PMCID: PMC11439661 DOI: 10.3389/fimmu.2024.1408377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Tumor associated macrophages (TAMs) are the predominant innate immune cells in the tumor microenvironment (TME). Cytokines induce the differentiation of macrophages into distinct types of TAMs, primarily characterized by two phenotypes: M1-polarized and M2-polarized. Cancer growth is suppressed by M1-polarized macrophages and promoted by M2-polarized macrophages. The regulation of macrophage M1 polarization has emerged as a promising strategy for cancer immunotherapy. Polysaccharides are important bioactive substances found in numerous plants, manifesting a wide range of noteworthy biological actions, such as immunomodulation, anti-tumor effects, antioxidant capabilities, and antiviral functions. In recent years, there has been a significant increase in interest regarding the immunomodulatory and anti-tumor properties of polysaccharides derived from plants. The regulatory impact of polysaccharides on the immune system is mainly associated with the natural immune response, especially with the regulation of macrophages. This review provides a thorough analysis of the regulatory effects and mechanisms of plant polysaccharides on TAMs. Additionally, an analysis of potential opportunities for clinical translation of plant polysaccharides as immune adjuvants is presented. These insights have greatly advanced the research of plant polysaccharides for immunotherapy in tumor-related applications.
Collapse
Affiliation(s)
- Jingyang Wei
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Institute of Chinese Medicine Processing, Shandong Academy of Chinese Medicine, Jinan, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohan Jin
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| | - Shulong Jiang
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| |
Collapse
|
21
|
Barton MI, Paterson RL, Denham EM, Goyette J, van der Merwe PA. Ligand requirements for immunoreceptor triggering. Commun Biol 2024; 7:1138. [PMID: 39271744 PMCID: PMC11399299 DOI: 10.1038/s42003-024-06817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Leukocytes interact with other cells using cell surface receptors. The largest group of such receptors are non-catalytic tyrosine phosphorylated receptors (NTRs), also called immunoreceptors. NTR signalling requires phosphorylation of cytoplasmic tyrosine residues by SRC-family tyrosine kinases. How ligand binding to NTRs induces this phosphorylation, also called NTR triggering, remains controversial, with roles suggested for size-based segregation, clustering, and mechanical force. Here we exploit a recently developed cell-surface generic ligand system to explore the ligand requirements for NTR triggering. We examine the effect of varying the ligand's length, mobility and valency on the activation of representative members of four NTR families: SIRPβ1, Siglec 14, NKp44 and TREM-1. Increasing the ligand length impairs activation via NTRs, despite enhancing cell-cell conjugation, while varying ligand mobility has little effect on either conjugation or activation. Increasing the valency of the ligand, while enhancing cell-cell conjugation, does not enhance activation at equivalent levels of conjugation. These findings are more consistent with a role for size-based segregation, rather than mechanical force or clustering, in NTR triggering, suggesting a role for the kinetic-segregation model.
Collapse
Affiliation(s)
- Michael I Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rachel L Paterson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Barco, Portugal
| | - Eleanor M Denham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Enara Bio, The Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, UK
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
22
|
Rainer H, Goretzki A, Lin YJ, Schiller HR, Krause M, Döring S, Strecker D, Junker AC, Wolfheimer S, Toda M, Scheurer S, Schülke S. Characterization of the Immune-Modulating Properties of Different β-Glucans on Myeloid Dendritic Cells. Int J Mol Sci 2024; 25:9914. [PMID: 39337403 PMCID: PMC11433108 DOI: 10.3390/ijms25189914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In allergen-specific immunotherapy, adjuvants are explored for modulating allergen-specific Th2 immune responses to re-establish clinical tolerance. One promising class of adjuvants are β-glucans, which are naturally derived sugar structures and components of dietary fibers that activate C-type lectin (CLR)-, "Toll"-like receptors (TLRs), and complement receptors (CRs). We characterized the immune-modulating properties of six commercially available β-glucans, using immunological (receptor activation, cytokine secretion, and T cell modulating potential) as well as metabolic parameters (metabolic state) in mouse bone marrow-derived myeloid dendritic cells (mDCs). All tested β-glucans activated the CLR Dectin-1a, whereas TLR2 was predominantly activated by Zymosan. Further, the tested β-glucans differentially induced mDC-derived cytokine secretion and activation of mDC metabolism. Subsequent analyses focusing on Zymosan, Zymosan depleted, β-1,3 glucan, and β-1,3 1,6 glucan revealed robust mDC activation with the upregulation of the cluster of differentiation 40 (CD40), CD80, CD86, and MHCII to different extents. β-glucan-induced cytokine secretion was shown to be, in part, dependent on the activation of the intracellular Dectin-1 adapter molecule Syk. In co-cultures of mDCs with Th2-biased CD4+ T cells isolated from birch allergen Bet v 1 plus aluminum hydroxide (Alum)-sensitized mice, these four β-glucans suppressed allergen-induced IL-5 secretion, while only Zymosan and β-1,3 glucan significantly suppressed allergen-induced interferon gamma (IFNγ) secretion, suggesting the tested β-glucans to have distinct effects on mDC T cell priming capacity. Our experiments indicate that β-glucans have distinct immune-modulating properties, making them interesting adjuvants for future allergy treatment.
Collapse
Affiliation(s)
- Hannah Rainer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Alexandra Goretzki
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Hannah Ruth Schiller
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Maren Krause
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Sascha Döring
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Daniel Strecker
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | - Sonja Wolfheimer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Stephan Scheurer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
23
|
Wan H, He M, Cheng C, Yang K, Wu H, Cong P, Huang X, Zhang Q, Shi Y, Hu J, Tian L, Xiong L. Clec7a Worsens Long-Term Outcomes after Ischemic Stroke by Aggravating Microglia-Mediated Synapse Elimination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403064. [PMID: 39088351 PMCID: PMC11423142 DOI: 10.1002/advs.202403064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/12/2024] [Indexed: 08/03/2024]
Abstract
Ischemic stroke (IS) is a leading cause of morbidity and mortality globally and triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia in the central nervous system play dual roles in neuroprotection and responding to ischemic brain damage. Here, an IS model is employed to determine the involvement of microglia in phagocytosis at excitatory synapses. Additionally, the effects of pharmacological depletion of microglia are investigated on improving neurobehavioral outcomes and mitigating brain injury. RNA sequencing of microglia reveals an increase in phagocytosis-associated pathway activity and gene expression, and C-type lectin domain family 7 member A (Clec7a) is identified as a key regulator of this process. Manipulating microglial Clec7a expression can potentially regulate microglial phagocytosis of synapses, thereby preventing synaptic loss and improving neurobehavioral outcomes after IS. It is further demonstrat that microglial Clec7a interacts with neuronal myeloid differentiation protein 2 (MD2), a key molecule mediating poststroke neurological injury, and propose the novel hypothesis that MD2 is a ligand for microglial Clec7a. These findings suggest that microglial Clec7a plays a critical role in mediating synaptic phagocytosis in a mouse model of IS, suggesting that Clec7a may be a therapeutic target for IS.
Collapse
Affiliation(s)
- Hanxi Wan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Mengfan He
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Chun Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Kexin Yang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Huanghui Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Peilin Cong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Qian Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Yufei Shi
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Ji Hu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Li Tian
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| |
Collapse
|
24
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
25
|
Gordon S, Roberti A, Kaufmann SHE. Mononuclear Phagocytes, Cellular Immunity, and Nobel Prizes: A Historic Perspective. Cells 2024; 13:1378. [PMID: 39195266 PMCID: PMC11352343 DOI: 10.3390/cells13161378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
26
|
Ma H, Zhu M, Chen M, Li X, Feng X. The role of macrophage plasticity in neurodegenerative diseases. Biomark Res 2024; 12:81. [PMID: 39135084 PMCID: PMC11321226 DOI: 10.1186/s40364-024-00624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Tissue-resident macrophages and recruited macrophages play pivotal roles in innate immunity and the maintenance of brain homeostasis. Investigating the involvement of these macrophage populations in eliciting pathological changes associated with neurodegenerative diseases has been a focal point of research. Dysregulated states of macrophages can compromise clearance mechanisms for pathological proteins such as amyloid-β (Aβ) in Alzheimer's disease (AD) and TDP-43 in Amyotrophic lateral sclerosis (ALS). Additionally, recent evidence suggests that abnormalities in the peripheral clearance of pathological proteins are implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, numerous genome-wide association studies have linked genetic risk factors, which alter the functionality of various immune cells, to the accumulation of pathological proteins. This review aims to unravel the intricacies of macrophage biology in both homeostatic conditions and neurodegenerative disorders. To this end, we initially provide an overview of the modifications in receptor and gene expression observed in diverse macrophage subsets throughout development. Subsequently, we outlined the roles of resident macrophages and recruited macrophages in neurodegenerative diseases and the progress of targeted therapy. Finally, we describe the latest advances in macrophage imaging methods and measurement of inflammation, which may provide information and related treatment strategies that hold promise for informing the design of future investigations and therapeutic interventions.
Collapse
Affiliation(s)
- Hongyue Ma
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mingxia Zhu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mengjie Chen
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiuli Li
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
27
|
Jo S, Fischer BR, Cronin NM, Nurmalasari NPD, Loyd YM, Kerkvliet JG, Bailey EM, Anderson RB, Scott BL, Hoppe AD. Antibody surface mobility amplifies FcγR signaling via Arp2/3 during phagocytosis. Biophys J 2024; 123:2312-2327. [PMID: 38321740 PMCID: PMC11331046 DOI: 10.1016/j.bpj.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
We report herein that the anti-CD20 therapeutic antibody, rituximab, is rearranged into microclusters within the phagocytic synapse by macrophage Fcγ receptors (FcγR) during antibody-dependent cellular phagocytosis. These microclusters were observed to potently recruit Syk and to undergo rearrangements that were limited by the cytoskeleton of the target cell, with depolymerization of target-cell actin filaments leading to modest increases in phagocytic efficiency. Total internal reflection fluorescence analysis revealed that FcγR total phosphorylation, Syk phosphorylation, and Syk recruitment were enhanced when IgG-FcγR microclustering was enabled on fluid bilayers relative to immobile bilayers in a process that required Arp2/3. We conclude that on fluid surfaces, IgG-FcγR microclustering promotes signaling through Syk that is amplified by Arp2/3-driven actin rearrangements. Thus, the surface mobility of antigens bound by IgG shapes the signaling of FcγR with an unrecognized complexity beyond the zipper and trigger models of phagocytosis.
Collapse
Affiliation(s)
- Seongwan Jo
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Brady R Fischer
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Nicholas M Cronin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Ni Putu Dewi Nurmalasari
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Yoseph M Loyd
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Robert B Anderson
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Brandon L Scott
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota.
| |
Collapse
|
28
|
Bitar L, Puig B, Oertner TG, Dénes Á, Magnus T. Changes in Neuroimmunological Synapses During Cerebral Ischemia. Transl Stroke Res 2024:10.1007/s12975-024-01286-1. [PMID: 39103660 DOI: 10.1007/s12975-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The direct interplay between the immune and nervous systems is now well established. Within the brain, these interactions take place between neurons and resident glial cells, i.e., microglia and astrocytes, or infiltrating immune cells, influenced by systemic factors. A special form of physical cell-cell interactions is the so-called "neuroimmunological (NI) synapse." There is compelling evidence that the same signaling pathways that regulate inflammatory responses to injury or ischemia also play potent roles in brain development, plasticity, and function. Proper synaptic wiring is as important during development as it is during disease states, as it is necessary for activity-dependent refinement of neuronal circuits. Since the process of forming synaptic connections in the brain is highly dynamic, with constant changes in strength and connectivity, the immune component is perfectly suited for the regulatory task as it is in constant turnover. Many cellular and molecular players in this interaction remain to be uncovered, especially in pathological states. In this review, we discuss and propose possible communication hubs between components of the adaptive and innate immune systems and the synaptic element in ischemic stroke pathology.
Collapse
Affiliation(s)
- Lynn Bitar
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany.
| |
Collapse
|
29
|
Wang M, Pan J, Xiang W, You Z, Zhang Y, Wang J, Zhang A. β-glucan: a potent adjuvant in immunotherapy for digestive tract tumors. Front Immunol 2024; 15:1424261. [PMID: 39100668 PMCID: PMC11294916 DOI: 10.3389/fimmu.2024.1424261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The immunotherapy for gastrointestinal tumors, as a significant research direction in the field of oncology treatment in recent years, has garnered extensive attention due to its potential therapeutic efficacy and promising clinical application prospects. Recent advances in immunotherapy notwithstanding, challenges persist, such as side effects, the complexity of the tumor immune microenvironment, variable patient responses, and drug resistance. Consequently, there is a pressing need to explore novel adjunctive therapeutic modalities. β-glucan, an immunomodulatory agent, has exhibited promising anti-tumor efficacy in preclinical studies involving colorectal cancer, pancreatic cancer, and gastric cancer, while also mitigating the adverse reactions associated with chemotherapy and enhancing patients' quality of life. However, further clinical and fundamental research is warranted to comprehensively evaluate its therapeutic potential and underlying biological mechanisms. In the future, β-glucan holds promise as an adjunctive treatment for gastrointestinal tumors, potentially bringing significant benefits to patients.
Collapse
Affiliation(s)
- Meiyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jinhua Pan
- Department of Ophthalmology, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Wu Xiang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilong You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Murphy B, Miyamoto T, Manning BS, Mirji G, Ugolini A, Kannan T, Hamada K, Zhu YP, Claiborne DT, Huang L, Zhang R, Nefedova Y, Kossenkov A, Veglia F, Shinde R, Zhang N. Intraperitoneal activation of myeloid cells clears ascites and reveals IL27-dependent regression of metastatic ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600597. [PMID: 38979222 PMCID: PMC11230450 DOI: 10.1101/2024.06.25.600597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of less than 30% due to persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity. β-glucan alone cleared ascites and eliminated fluid tumor cells by inducing intraperitoneal clotting in the fluid and Dectin-1-Syk-dependent NETosis in the omentum. In omentum tumors, BI expanded a novel subset of immunostimulatory IL27+ macrophages and neutralizing IL27 impaired BI efficacy in vivo. Moreover, BI directly induced IL27 secretion in macrophages where single agent treatment did not. Finally, BI extended mouse survival in a chemoresistant model and significantly improved chemotherapy response in a chemo-sensitive model. In summary, we propose a new therapeutic strategy for the treatment of metastatic OvCa.
Collapse
Affiliation(s)
- Brennah Murphy
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Taito Miyamoto
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Bryan S. Manning
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Gauri Mirji
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alessio Ugolini
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Toshitha Kannan
- Gene Expression & Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University, Japan
| | | | - Daniel T. Claiborne
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rugang Zhang
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Yulia Nefedova
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Gene Expression & Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Filippo Veglia
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rahul Shinde
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nan Zhang
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
31
|
Gao H, Li S, Lan Z, Pan D, Naidu GS, Peer D, Ye C, Chen H, Ma M, Liu Z, Santos HA. Comparative optimization of polysaccharide-based nanoformulations for cardiac RNAi therapy. Nat Commun 2024; 15:5398. [PMID: 38926348 PMCID: PMC11208445 DOI: 10.1038/s41467-024-49804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Ionotropic gelation is widely used to fabricate targeting nanoparticles (NPs) with polysaccharides, leveraging their recognition by specific lectins. Despite the fabrication scheme simply involves self-assembly of differently charged components in a straightforward manner, the identification of a potent combinatory formulation is usually limited by structural diversity in compound collections and trivial screen process, imposing crucial challenges for efficient formulation design and optimization. Herein, we report a diversity-oriented combinatory formulation screen scheme to identify potent gene delivery cargo in the context of precision cardiac therapy. Distinct categories of cationic compounds are tested to construct RNA delivery system with an ionic polysaccharide framework, utilizing a high-throughput microfluidics workstation coupled with streamlined NPs characterization system in an automatic, step-wise manner. Sequential computational aided interpretation provides insights in formulation optimization in a broader scenario, highlighting the usefulness of compound library diversity. As a result, the out-of-bag NPs, termed as GluCARDIA NPs, are utilized for loading therapeutic RNA to ameliorate cardiac reperfusion damages and promote the long-term prognosis. Overall, this work presents a generalizable formulation design strategy for polysaccharides, offering design principles for combinatory formulation screen and insights for efficient formulation identification and optimization.
Collapse
Affiliation(s)
- Han Gao
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Sen Li
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhengyi Lan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Gonna Somu Naidu
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hangrong Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ming Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Zehua Liu
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
32
|
Abdelwahab WM, Le-Vinh B, Riffey A, Hicks L, Buhl C, Ettenger G, Jackson KJ, Weiss AM, Miller S, Ryter K, Evans JT, Burkhart DJ. Promotion of Th17 Polarized Immunity via Co-Delivery of Mincle Agonist and Tuberculosis Antigen Using Silica Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3877-3889. [PMID: 38832760 DOI: 10.1021/acsabm.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Adjuvants and immunomodulators that effectively drive a Th17-skewed immune response are not part of the standard vaccine toolkit. Vaccine adjuvants and delivery technologies that can induce Th17 or Th1/17 immunity and protection against bacterial pathogens, such as tuberculosis (TB), are urgently needed. Th17-polarized immune response can be induced using agonists that bind and activate C-type lectin receptors (CLRs) such as macrophage inducible C-type lectin (Mincle). A simple but effective strategy was developed for codelivering Mincle agonists with the recombinant Mycobacterium tuberculosis fusion antigen, M72, using tunable silica nanoparticles (SNP). Anionic bare SNP, hydrophobic phenyl-functionalized SNP (P-SNP), and cationic amine-functionalized SNP (A-SNP) of different sizes were coated with three synthetic Mincle agonists, UM-1024, UM-1052, and UM-1098, and evaluated for adjuvant activity in vitro and in vivo. The antigen and adjuvant were coadsorbed onto SNP via electrostatic and hydrophobic interactions, facilitating multivalent display and delivery to antigen presenting cells. The cationic A-SNP showed the highest coloading efficiency for the antigen and adjuvant. In addition, the UM-1098-adsorbed A-SNP formulation demonstrated slow-release kinetics in vitro, excellent stability over 12 months of storage, and strong IL-6 induction from human peripheral blood mononuclear cells. Co-adsorption of UM-1098 and M72 on A-SNP significantly improved antigen-specific humoral and Th17-polarized immune responses in vivo in BALB/c mice relative to the controls. Taken together, A-SNP is a promising platform for codelivery and proper presentation of adjuvants and antigens and provides the basis for their further development as a vaccine delivery platform for immunization against TB or other diseases for which Th17 immunity contributes to protection.
Collapse
Affiliation(s)
- Walid M Abdelwahab
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Bao Le-Vinh
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Alexander Riffey
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Linda Hicks
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Cassandra Buhl
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - George Ettenger
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Konner J Jackson
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Adam M Weiss
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Shannon Miller
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Kendal Ryter
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Jay T Evans
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - David J Burkhart
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| |
Collapse
|
33
|
Baker C, Bruderer R, Abbott J, Arthur JSC, Brenes AJ. Optimizing Spectronaut Search Parameters to Improve Data Quality with Minimal Proteome Coverage Reductions in DIA Analyses of Heterogeneous Samples. J Proteome Res 2024; 23:1926-1936. [PMID: 38691771 PMCID: PMC11165578 DOI: 10.1021/acs.jproteome.3c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Data-independent acquisition has seen breakthroughs that enable comprehensive proteome profiling using short gradients. As the proteome coverage continues to increase, the quality of the data generated becomes much more relevant. Using Spectronaut, we show that the default search parameters can be easily optimized to minimize the occurrence of false positives across different samples. Using an immunological infection model system to demonstrate the impact of adjusting search settings, we analyzed Mus musculus macrophages and compared their proteome to macrophages spiked withCandida albicans. This experimental system enabled the identification of "false positives" as Candida albicans peptides and proteins should not be present in the Mus musculus-only samples. We show that adjusting the search parameters reduced "false positive" identifications by 89% at the peptide and protein level, thereby considerably increasing the quality of the data. We also show that these optimized parameters incurred a moderate cost, only reducing the overall number of "true positive" identifications across each biological replicate by <6.7% at both the peptide and protein level. We believe the value of our updated search parameters extends beyond a two-organism analysis and would be of great value to any DIA experiment analyzing heterogeneous populations of cell types or tissues.
Collapse
Affiliation(s)
- Christa
P. Baker
- Division
of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | - James Abbott
- Data
Analysis Group, Division of Computational Biology, School of Life
Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J. Simon C. Arthur
- Division
of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Alejandro J. Brenes
- Division
of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
34
|
Metwali N, Stapleton EM, Hadina S, Thorne PS. Exposure to structurally unique β-d-glucans differentially affects inflammatory responses in male mouse lungs. Physiol Rep 2024; 12:e16115. [PMID: 38923221 PMCID: PMC11194181 DOI: 10.14814/phy2.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Pro-inflammatory fungal β-d-glucan (BDG) polysaccharides cause respiratory pathology. However, specific immunological effects of unique BDG structures on pulmonary inflammation are understudied. We characterized the effect of four unique fungal BDGs with unique branching patterns, solubility, and molecular weights in murine airways. Scleroglucan (1 → 3)(1 → 6)-highly branched BDG, laminarin (1 → 3)(1 → 6)-branched BDG, curdlan (1 → 3)-linear BDG, and pustulan (1 → 6)-linear BDG were assessed by nuclear magnetic resonance spectroscopy. Each BDG was tested by inhalation model with C3HeB/FeJ mice and compared to saline-exposed control mice and unexposed sentinels (n = 3-19). Studies were performed ±heat-inactivation (1 h autoclave) to increase BDG solubility. Outcomes included bronchoalveolar lavage (BAL) differential cell counts (macrophages, neutrophils, lymphocytes, eosinophils), cytokines, serum IgE, and IgG2a (multiplex and ELISA). Ex vivo primary cells removed from lungs and plated at monolayer were stimulated (BDG, lipopolysaccharide (LPS), anti-CD3), and cytokines compared to unstimulated cells. Right lung histology was performed. Inhalation of BDGs with distinct branching patterns exhibited varying inflammatory potency and immunogenicity. Lichen-derived (1 → 6)-linear pustulan was the most pro-inflammatory BDG, increasing inflammatory infiltrate (BAL), serum IgE and IgG2a, and cytokine production. Primed lung cells responded to secondary LPS stimulation with a T-cell-specific response to pustulan. Glucan source and solubility should be considered in exposure and toxicological studies.
Collapse
Affiliation(s)
- Nervana Metwali
- Department of Occupational and Environmental HealthCollege of Public Health, University of IowaIowa CityIowaUSA
| | - Emma M. Stapleton
- Division of Pulmonary Critical Care and Occupational Medicine, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Suzana Hadina
- Department of Occupational and Environmental HealthCollege of Public Health, University of IowaIowa CityIowaUSA
- Present address:
Department of Microbiology & Infectious Disease with ClinicFaculty of Veterinary Medicine, University of ZagrebZagrebCroatia
| | - Peter S. Thorne
- Department of Occupational and Environmental HealthCollege of Public Health, University of IowaIowa CityIowaUSA
| |
Collapse
|
35
|
Li K, Chatterjee A, Qian C, Lagree K, Wang Y, Becker CA, Freeman MR, Murali R, Yang W, Underhill DM. Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor. Nature 2024; 630:736-743. [PMID: 38839956 DOI: 10.1038/s41586-024-07499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.
Collapse
Affiliation(s)
- Kai Li
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chen Qian
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katherine Lagree
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Courtney A Becker
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Lee HN, Lim HJ, Park JY, Choi JH, Hong SJ, Jang DE, Kim TS, Seong SH, Kim BR, Kim JH, Seo C, Park JH, Jeong JW, Kim YM. Effect of modification methods on the physical properties and immunomodulatory activity of particulate β-glucan. Food Sci Biotechnol 2024; 33:1615-1621. [PMID: 38623421 PMCID: PMC11016045 DOI: 10.1007/s10068-023-01473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 04/17/2024] Open
Abstract
β-Glucan is an immunoenhancing agent whose biological activities are linked to molecular structure. On that basis, the polysaccharide can be physiochemically modified to produce valuable functional materials. This study investigated the physical properties and immunostimulatory activity of modified β-glucan. Alkali-treated β-glucan had a distinct shape and smaller particle size than untreated β-glucan. The reduced particle size was conducive to the stability of the suspension because the β-glucan appeared to be completely dissolved by this treatment, forming an amorphous mass. Furthermore, alkali treatment improved the immunostimulating activity of β-glucan, whereas exposure of macrophages to heat-treated β-glucan decreased their immune activity. β-Glucan with reduced particle size by wet-grinding also displayed immunomodulatory activities. These results suggested that the particle size of β-glucan is a key factor in β-glucan-induced immune responses of macrophages. Thus, the modification of the β-glucan particle size provides new opportunities for developing immunoenhancing nutraceuticals or pharmacological therapies in the future.
Collapse
Affiliation(s)
- Ha-Nul Lee
- Division of Natural Product Research, Honam National Institute of Biological Resources, Mokpo, 58762 Republic of Korea
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Hyeon-Jeong Lim
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ji-Yeon Park
- Laboratory of Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Joo-Hee Choi
- Laboratory of Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061 Republic of Korea
| | - Seong-Jin Hong
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Da Eun Jang
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Tae-Su Kim
- Division of Natural Product Research, Honam National Institute of Biological Resources, Mokpo, 58762 Republic of Korea
| | - Su Hui Seong
- Division of Natural Product Research, Honam National Institute of Biological Resources, Mokpo, 58762 Republic of Korea
| | - Bo-Ram Kim
- Division of Natural Product Research, Honam National Institute of Biological Resources, Mokpo, 58762 Republic of Korea
| | - Jin-Ho Kim
- Division of Natural Product Research, Honam National Institute of Biological Resources, Mokpo, 58762 Republic of Korea
| | - Chan Seo
- Division of Natural Product Research, Honam National Institute of Biological Resources, Mokpo, 58762 Republic of Korea
| | - Jong-Hwan Park
- Laboratory of Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jin-Woo Jeong
- Division of Natural Product Research, Honam National Institute of Biological Resources, Mokpo, 58762 Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
37
|
Chen T, Gao C. Innate immune signal transduction pathways to fungal infection: Components and regulation. CELL INSIGHT 2024; 3:100154. [PMID: 38464417 PMCID: PMC10924179 DOI: 10.1016/j.cellin.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Candida species are significant causes of mucosal and systemic infections in immune compromised populations, including HIV-infected individuals and cancer patients. Drug resistance and toxicity have limited the use of anti-fungal drugs. A good comprehension of the nature of the immune responses to the pathogenic fungi will aid in the developing of new approaches to the treatment of fungal diseases. In recent years, extensive research has been done to understand the host defending systems to fungal infections. In this review, we described how pattern recognition receptors senses the cognate fungal ligands and the cellular and molecular mechanisms of anti-fungal innate immune responses. Furthermore, particular focus is placed on how anti-fungal signal transduction cascades are being activated for host defense and being modulated to better treat the infections in terms of immunotherapy. Understanding the role that these pathways have in mediating host anti-fungal immunity will be crucial for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
38
|
Ding Q, Mo Z, Wang X, Chen M, Zhou F, Liu Z, Long Y, Xia X, Zhao P. The antibacterial and hemostatic curdlan hydrogel-loading epigallocatechin gallate for facilitating the infected wound healing. Int J Biol Macromol 2024; 266:131257. [PMID: 38554908 DOI: 10.1016/j.ijbiomac.2024.131257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
The infected wounds pose one of the major threats to human health today. To address this issue, it is necessary to develop innovative wound dressings with superior antibacterial activity and other properties. Due to its potent antibacterial, antioxidant, and immune-boosting properties, epigallocatechin gallate (EGCG) has been widely utilized. In this study, a multifunctional curdlan hydrogel loading EGCG (Cur-EGCGH3) was designed. Cur-EGCGH3 exhibited excellent physicochemical properties, good biocompatibility, hemostatic, antibacterial, and antioxidant activities. Also, ELISA data showed that Cur-EGCGH3 stimulated macrophages to secrete pro-inflammatory and pro-regenerative cytokines. Cell scratch results indicated that Cur-EGCGH3 promoted the migration of NIH3T3 and HUVECs. In vivo experiments confirmed that Cur-EGCGH3 could inhibit bacterial infection of the infected wounds, accelerate hemostasis, and promote epithelial regeneration and collagen deposition. These results demonstrated that Cur-EGCGH3 holds promise for promoting healing of the infected wounds.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Zhendong Mo
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xinyue Wang
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Meiling Chen
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Fan Zhou
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Zhengquan Liu
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Ying Long
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Xianzhu Xia
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China.
| |
Collapse
|
39
|
Kunanopparat A, Dinh TTH, Ponpakdee P, Padungros P, Kaewduangduen W, Ariya-anandech K, Tummamunkong P, Samaeng A, Sae-ear P, Leelahavanichkul A, Hirankarn N, Ritprajak P. Complement receptor 3-dependent engagement by Candida glabrata β-glucan modulates dendritic cells to induce regulatory T-cell expansion. Open Biol 2024; 14:230315. [PMID: 38806144 PMCID: PMC11293457 DOI: 10.1098/rsob.230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata β-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata β-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata β-glucan to CR3. Our data suggest that C. glabrata β-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.
Collapse
Affiliation(s)
- Areerat Kunanopparat
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Truc Thi Huong Dinh
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Pathophysiology and Immunology, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Pranpariya Ponpakdee
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Kasirapat Ariya-anandech
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Amanee Samaeng
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-ear
- Faculty of Dentistry, Oral Biology Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
40
|
Broquet A, Gourain V, Goronflot T, Le Mabecque V, Sinha D, Ashayeripanah M, Jacqueline C, Martin P, Davieau M, Boutin L, Poulain C, Martin FP, Fourgeux C, Petrier M, Cannevet M, Leclercq T, Guillonneau M, Chaumette T, Laurent T, Harly C, Scotet E, Legentil L, Ferrières V, Corgnac S, Mami-Chouaib F, Mosnier JF, Mauduit N, McWilliam HEG, Villadangos JA, Gourraud PA, Asehnoune K, Poschmann J, Roquilly A. Sepsis-trained macrophages promote antitumoral tissue-resident T cells. Nat Immunol 2024; 25:802-819. [PMID: 38684922 DOI: 10.1038/s41590-024-01819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.
Collapse
Affiliation(s)
- Alexis Broquet
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Victor Gourain
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Thomas Goronflot
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des Données, INSERM, Nantes Université, CIC 1413, Nantes, France
| | - Virginie Le Mabecque
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Debajyoti Sinha
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Pierre Martin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Lea Boutin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Cecile Poulain
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Florian P Martin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Melanie Petrier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Manon Cannevet
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Thomas Leclercq
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Maeva Guillonneau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- Olgram SAS, Bréhan, France
| | - Tanguy Chaumette
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Thomas Laurent
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | | | | | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes, ISCR - UMR CNRS 6226, Rennes, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes, ISCR - UMR CNRS 6226, Rennes, France
| | - Stephanie Corgnac
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | | | | | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Pierre Antoine Gourraud
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des Données, INSERM, Nantes Université, CIC 1413, Nantes, France
| | - Karim Asehnoune
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France.
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France.
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
López-Collazo E, del Fresno C. Endotoxin tolerance and trained immunity: breaking down immunological memory barriers. Front Immunol 2024; 15:1393283. [PMID: 38742111 PMCID: PMC11089161 DOI: 10.3389/fimmu.2024.1393283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER), Respiratory Diseases (CIBRES), Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
42
|
Jesus S, Panão Costa J, Colaço M, Lebre F, Mateus D, Sebastião AI, Cruz MT, Alfaro-Moreno E, Borges O. Exploring the immunomodulatory properties of glucan particles in human primary cells. Int J Pharm 2024; 655:123996. [PMID: 38490404 DOI: 10.1016/j.ijpharm.2024.123996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The immunomodulatory properties of β-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of β-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of β-glucan-based delivery systems as future vaccine adjuvants.
Collapse
Affiliation(s)
- Sandra Jesus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - João Panão Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Mariana Colaço
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Filipa Lebre
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Daniela Mateus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Ana Isabel Sebastião
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Maria T Cruz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | | | - Olga Borges
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
43
|
Reis E Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
44
|
Niemand RR, Stafford JL. Counteracting immunotyrosine-based signaling motifs augment zebrafish leukocyte immune-type receptor-mediated phagocytic activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105121. [PMID: 38135021 DOI: 10.1016/j.dci.2023.105121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Leukocyte immune-type receptors (LITRs) represent a polymorphic and polygenic family of immunoregulatory proteins originally discovered in channel catfish (Ictalurus punctatus; IpLITRs). Belonging to the immunoglobulin superfamily (IgSF), IpLITRs are generally classified as stimulatory or inhibitory types based on their utilization of various intracellular tyrosine-based signaling motifs. While research has shown that IpLITRs can activate as well as abrogate different immune cell effector responses including phagocytosis, recent identification of LITRs within the zebrafish genome (Danio rerio; DrLITRs) revealed the existence of fish LITR-types uniquely containing counteracting stimulatory and inhibitory cytoplasmic tail (CYT) region motifs (i.e., an immunoreceptor tyrosine-based activation motif; ITAM, and immunoreceptor tyrosine-based inhibitory motif; ITIM) within the same receptor. This arrangement is unusual as these motifs typically exist on separate stimulatory (i.e., ITAM-containing) or inhibitory (i.e., ITIM-containing) immunoregulatory receptors that then co-engage to fine-tune cellular signaling and effector responses. Using a flow cytometric-based phagocytosis assay, we show here that engagement of DrLITR 1.2-expressing cells with antibody coated 4.5 μm beads causes a robust ITAM-dependent phagocytic response and reveal that its tandem ITIM motif surprisingly enhances the DrLITR 1.2-induced phagocytic activity while simultaneously decreasing the receptors ability to bind the beads. Confocal microscopy studies also revealed that the ITIM-associated inhibitory signaling molecule SHP-2 is localized to the phagocytic synapse during the phagocytic response. Overall, these results provide the first functional characterization of teleost immune receptors containing a tandem ITAM and ITIM and allow for the proposal of an intracytoplasmic tail signaling model for ITIM-mediated enhancement of ITAM-dependent cellular activation.
Collapse
Affiliation(s)
- Rikus R Niemand
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
45
|
Horneck Johnston CJ, Ledwith AE, Lundahl ML, Charles-Messance H, Hackett EE, O’Shaughnessy SD, Clegg J, Prendeville H, McGrath JP, Walsh AM, Case S, Austen Byrne H, Gautam P, Dempsey E, Corr SC, Sheedy FJ. Recognition of yeast β-glucan particles triggers immunometabolic signaling required for trained immunity. iScience 2024; 27:109030. [PMID: 38361630 PMCID: PMC10865028 DOI: 10.1016/j.isci.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
Fungal β-glucans are major drivers of trained immunity which increases long-term protection against secondary infections. Heterogeneity in β-glucan source, structure, and solubility alters interaction with the phagocytic receptor Dectin-1 and could impact strategies to improve trained immunity in humans. Using a panel of diverse β-glucans, we describe the ability of a specific yeast-derived whole-glucan particle (WGP) to reprogram metabolism and thereby drive trained immunity in human monocyte-derived macrophages in vitro and mice bone marrow in vivo. Presentation of pure, non-soluble, non-aggregated WGPs led to the formation of the Dectin-1 phagocytic synapse with subsequent lysosomal mTOR activation, metabolic reprogramming, and epigenetic rewiring. Intraperitoneal or oral administration of WGP drove bone marrow myelopoiesis and improved mature macrophage responses, pointing to therapeutic and food-based strategies to drive trained immunity. Thus, the investment of a cell in a trained response relies on specific recognition of β-glucans presented on intact microbial particles through stimulation of the Dectin-1 phagocytic response.
Collapse
Affiliation(s)
| | - Anna E. Ledwith
- School of Biochemistry & Immunology, Trinity College, Dublin 2, Ireland
| | | | | | - Emer E. Hackett
- School of Biochemistry & Immunology, Trinity College, Dublin 2, Ireland
| | | | - Jonah Clegg
- School of Biochemistry & Immunology, Trinity College, Dublin 2, Ireland
| | | | - John P. McGrath
- School of Biochemistry & Immunology, Trinity College, Dublin 2, Ireland
| | - Aaron M. Walsh
- School of Biochemistry & Immunology, Trinity College, Dublin 2, Ireland
- School of Medicine, Trinity College, Dublin 2, Ireland
| | - Sarah Case
- School of Biochemistry & Immunology, Trinity College, Dublin 2, Ireland
| | | | - Parth Gautam
- School of Biochemistry & Immunology, Trinity College, Dublin 2, Ireland
| | - Elaine Dempsey
- School of Genetics & Microbiology, Trinity College, Dublin 2, Ireland
| | - Sinead C. Corr
- School of Genetics & Microbiology, Trinity College, Dublin 2, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
46
|
Tang H, Xiao Y, Qian L, Wang Z, Lu M, Yao N, Zhou T, Tian F, Cao L, Zheng P, Dong X. Mechanistic insights into the C-type lectin receptor CLEC12A-mediated immune recognition of monosodium urate crystal. J Biol Chem 2024; 300:105765. [PMID: 38367667 PMCID: PMC10959670 DOI: 10.1016/j.jbc.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.
Collapse
Affiliation(s)
- Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| | - Yuelong Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zibin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ming Lu
- Westlake laboratory, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ting Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Longxing Cao
- Westlake laboratory, Westlake University, Hangzhou, Zhejiang, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Xianchi Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China; Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| |
Collapse
|
47
|
Kuiper JWP, Gregg HL, Schüber M, Klein J, Hauck CR. Controling the cytoskeleton during CEACAM3-mediated phagocytosis. Eur J Cell Biol 2024; 103:151384. [PMID: 38215579 DOI: 10.1016/j.ejcb.2024.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
Collapse
Affiliation(s)
| | - Helena L Gregg
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Meike Schüber
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jule Klein
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
48
|
Wold CW, Christopoulos PF, Arias MA, Dzovor DE, Øynebråten I, Corthay A, Inngjerdingen KT. Fungal polysaccharides from Inonotus obliquus are agonists for Toll-like receptors and induce macrophage anti-cancer activity. Commun Biol 2024; 7:222. [PMID: 38396285 PMCID: PMC10891174 DOI: 10.1038/s42003-024-05853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Fungal polysaccharides can exert immunomodulating activity by triggering pattern recognition receptors (PRRs) on innate immune cells such as macrophages. Here, we evaluate six polysaccharides isolated from the medicinal fungus Inonotus obliquus for their ability to activate mouse and human macrophages. We identify two water-soluble polysaccharides, AcF1 and AcF3, being able to trigger several critical antitumor functions of macrophages. AcF1 and AcF3 activate macrophages to secrete nitric oxide and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Combined with interferon-γ, the fungal polysaccharides trigger high production of IL-12p70, a central cytokine for antitumor immunity, and induce macrophage-mediated inhibition of cancer cell growth in vitro and in vivo. AcF1 and AcF3 are strong agonists of the PRRs Toll-like receptor 2 (TLR2) and TLR4, and weak agonists of Dectin-1. In comparison, two prototypical particulate β-glucans, one isolated from I. obliquus and one from Saccharomyces cerevisiae (zymosan), are agonists for Dectin-1 but not TLR2 or TLR4, and are unable to trigger anti-cancer functions of macrophages. We conclude that the water-soluble polysaccharides AcF1 and AcF3 from I. obliquus have a strong potential for cancer immunotherapy by triggering multiple PRRs and by inducing potent anti-cancer activity of macrophages.
Collapse
Affiliation(s)
- Christian Winther Wold
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | | | - Maykel A Arias
- Centro de Investigación Biomédica de Aragón (CIBA), University of Zaragoza, Zaragoza, Spain
| | - Deborah Elikplim Dzovor
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
49
|
Minute L, Bergón-Gutiérrez M, Mata-Martínez P, Fernández-Pascual J, Terrón V, Bravo-Robles L, Bıçakcıoğlu G, Zapata-Fernández G, Aguiló N, López-Collazo E, del Fresno C. Heat-killed Mycobacterium tuberculosis induces trained immunity in vitro and in vivo administered systemically or intranasally. iScience 2024; 27:108869. [PMID: 38318361 PMCID: PMC10838711 DOI: 10.1016/j.isci.2024.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Trained immunity (TI) represents a memory-like process of innate immune cells. TI can be initiated with various compounds such as fungal β-glucan or the tuberculosis vaccine, Bacillus Calmette-Guérin. Nevertheless, considering the clinical applications of harnessing TI against infections and cancer, there is a growing need for new, simple, and easy-to-use TI inducers. Here, we demonstrate that heat-killed Mycobacterium tuberculosis (HKMtb) induces TI both in vitro and in vivo. In human monocytes, this effect represents a truly trained process, as HKMtb confers boosted inflammatory responses against various heterologous challenges, such as lipopolysaccharide (Toll-like receptor [TLR] 4 ligand) and R848 (TLR7/8 ligand). Mechanistically, HKMtb-induced TI relies on epigenetic mechanisms in a Syk/HIF-1α-dependent manner. In vivo, HKMtb induced TI when administered both systemically and intranasally, with the latter generating a more robust TI response. Summarizing, our research has demonstrated that HKMtb has the potential to act as a mucosal immunotherapy that can successfully induce trained responses.
Collapse
Affiliation(s)
- Luna Minute
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Marta Bergón-Gutiérrez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Pablo Mata-Martínez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Jaime Fernández-Pascual
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Verónica Terrón
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Laura Bravo-Robles
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Gülce Bıçakcıoğlu
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Gabriela Zapata-Fernández
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Nacho Aguiló
- Department of Microbiology, Pediatrics, Radiology, and Public Health, University of Zaragoza/IIS Aragon, Zaragoza, Spain
- CIBERES, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBERES, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
50
|
Case S, O'Brien T, Ledwith AE, Chen S, Horneck Johnston CJH, Hackett EE, O'Sullivan M, Charles-Messance H, Dempsey E, Yadav S, Wilson J, Corr SC, Nagar S, Sheedy FJ. β-glucans from Agaricus bisporus mushroom products drive Trained Immunity. Front Nutr 2024; 11:1346706. [PMID: 38425482 PMCID: PMC10902450 DOI: 10.3389/fnut.2024.1346706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Macrofungi, such as edible mushrooms, have been used as a valuable medical resource for millennia as a result of their antibacterial and immuno-modulatory components. Mushrooms contain dietary fibers known as β-glucans, a class of polysaccharides previously linked to the induction of Trained Immunity. However, little is known about the ability of mushroom-derived β-glucans to induce Trained Immunity. Methods & results Using various powdered forms of the white button mushroom (Agaricus bisporus), we found that mouse macrophages pre-treated with whole mushroom powder (WMP) displayed enhanced responses to restimulation with TLR ligands, being particularly sensitive to Toll-like receptor (TLR)-2 stimulation using synthetic lipopeptides. This trained response was modest compared to training observed with yeast-derived β-glucans and correlated with the amount of available β-glucans in the WMP. Enriching for β-glucans content using either a simulated in-vitro digestion or chemical fractionation retained and boosted the trained response with WMP, respectively. Importantly, both WMP and digested-WMP preparations retained β-glucans as identified by nuclear magnetic resonance analysis and both displayed the capacity to train human monocytes and enhanced responses to restimulation. To determine if dietary incorporation of mushroom products can lead to Trained Immunity in myeloid cells in vivo, mice were given a regimen of WMP by oral gavage prior to sacrifice. Flow cytometric analysis of bone-marrow progenitors indicated alterations in hematopoietic stem and progenitor cells population dynamics, with shift toward myeloid-committed multi-potent progenitor cells. Mature bone marrow-derived macrophages derived from these mice displayed enhanced responses to restimulation, again particularly sensitive to TLR2. Discussion Taken together, these data demonstrate that β-glucans from common macrofungi can train innate immune cells and could point to novel ways of delivering bio-available β-glucans for education of the innate immune system.
Collapse
Affiliation(s)
- Sarah Case
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Tara O'Brien
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Anna E. Ledwith
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Shilong Chen
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | | | - Emer E. Hackett
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | | | | | - Elaine Dempsey
- School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | | | | | - Sinead C. Corr
- School of Genetics and Microbiology, Trinity College, Dublin, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shipra Nagar
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Frederick J. Sheedy
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|