1
|
Fernandes J, Veldhoen M, Ferreira C. Tissue-resident memory T cells: Harnessing their properties against infection for cancer treatment. Bioessays 2024; 46:e2400119. [PMID: 39258352 DOI: 10.1002/bies.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
We have rapidly gained insights into the presence and function of T lymphocytes in non-lymphoid tissues, the tissue-resident memory T (TRM) cells. The central pillar of adaptive immunity has been expanded from classic central memory T cells giving rise to progeny upon reinfection and effector memory cells circulating through the blood and patrolling the tissues to include TRM cells that reside and migrate inside solid organs and tissues. Their development and maintenance have been studied in detail, providing exciting clues on how their unique properties used to fight infections may benefit therapies against solid tumors. We provide an overview of CD8 TRM cells and the properties that make them of interest for vaccination and cancer therapies.
Collapse
Affiliation(s)
- João Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Cheng L, Becattini S. Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine. Mucosal Immunol 2024; 17:810-824. [PMID: 38782240 DOI: 10.1016/j.mucimm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Upon infection, CD8+ T cells that have been primed in the draining lymph nodes migrate to the invaded tissue, where they receive cues prompting their differentiation into tissue-resident memory cells (Trm), which display niche-specific transcriptional features. Despite the importance of these cells, our understanding of their molecular landscape and the signals that dictate their development remains limited, particularly in specific anatomical niches such as the large intestine (LI). Here, we report that LI Trm-generated following oral infection exhibits a distinct transcriptional profile compared to Trm in other tissues. Notably, we observe that local cues play a crucial role in the preferential establishment of LI Trm, favoring precursors that migrate to the tissue early during infection. Our investigations identify cognate antigen recognition as a major driver of Trm differentiation at this anatomical site. Local antigen presentation not only promotes the proliferation of effector cells and memory precursors but also facilitates the acquisition of transcriptional features characteristic of gut Trm. Thus, antigen recognition in the LI favors the establishment of Trm by impacting T cell expansion and gene expression.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Greenman M, Chang YE, McNamara B, Mutlu L, Santin AD. Unmet needs in cervical cancer - can biological therapies plug the gap? Expert Opin Biol Ther 2024; 24:995-1003. [PMID: 39311611 DOI: 10.1080/14712598.2024.2408754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Cervical cancer remains one of the most common gynecologic malignancies worldwide. A disproportionate burden of cases occurs in developing countries due to inadequate screening and treatment. Even among patients adequately treated, in the presence of locally advanced or recurrent disease, outcomes tend to be poor. The introduction of biologic therapy into treatment has increased overall survival; however, a considerable opportunity still exists to improve current standards in treatment. Biologics have shown antitumor activity in multiple tumor types and are actively being pursued for the management of cervical cancer. AREAS COVERED In this article, we will discuss the historical evolution of biologic therapy in cervical cancer including use of angiogenesis inhibitors, immune checkpoint inhibitors, antibody-drug conjugates, and vaccines. We will review how these therapies have been integrated into current treatment recommendations and discuss ongoing investigations intended to improve clinical outcomes. We also postulate on persistent gaps in care. EXPERT OPINION Biologic therapies have had a tremendous impact on our current approach to managing cervical cancer. We anticipate that significant more research and development will be committed to the continued investigation of biologics in cervical cancer in an effort to improve a historically difficult to treat malignancy.
Collapse
Affiliation(s)
- Michelle Greenman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yifan Emily Chang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
6
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
7
|
He J, Wang C, Fang X, Li J, Shen X, Zhang J, Peng C, Li H, Li S, Karp JM, Kuai R. Tuning the fluidity and protein corona of ultrasound-responsive liposomal nanovaccines to program T cell immunity in mice. Nat Commun 2024; 15:8121. [PMID: 39284814 PMCID: PMC11405680 DOI: 10.1038/s41467-024-52104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Inducing high levels of antigen-specific CD8α+ T cells in the tumor is beneficial for cancer immunotherapy, but achieving this in a safe and effective manner remains challenging. Here, we have developed a designer liposomal nanovaccine containing a sonosensitizer (LNVS) to efficiently program T cell immunity in mice. Following intravenous injection, LNVS accumulates in the spleen in a protein corona and fluidity-dependent manner, leading to greater frequencies of antigen-specific CD8α+ T cells than soluble vaccines (the mixture of antigens and adjuvants). Meanwhile, some LNVS passively accumulates in the tumor, where it responds to ultrasound (US) to increase the levels of chemokines and adhesion molecules that are beneficial for recruiting CD8α+ T cells to the tumor. LNVS + US induces higher levels of intratumoral antitumor T cells than traditional sonodynamic therapy, regresses established mouse MC38 tumors and orthotopic cervical cancer, and protects cured mice from relapse. Our platform sheds light on the importance of tuning the fluidity and protein corona of naovaccines to program T cell immunity in mice and may inspire new strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiao Fang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xueying Shen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Junxia Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, China
| | - Cheng Peng
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, China
| | - Hongjian Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Sai Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, China
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
8
|
Singer M, Husseiny MI. Immunological Considerations for the Development of an Effective Herpes Vaccine. Microorganisms 2024; 12:1846. [PMID: 39338520 PMCID: PMC11434158 DOI: 10.3390/microorganisms12091846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Research is underway to develop a vaccine to prevent and cure infection from herpes simplex virus (HSV). It emphasizes the critical need for immunization to address public health issues and the shortcomings of existing treatment options. Furthermore, studies on the HSV vaccine advance the field of immunology and vaccine creation, which may help in the battle against other viral illnesses. The current lack of such a vaccine is, in part, due to herpes viral latency in sensory ganglions. Current vaccines rely on tissue-resident memory CD8+ T cells, which are known to provide protection against subsequent HSV reinfection and reactivation without correlating with other immune subsets. For that reason, there is no effective vaccine that can provide protection against latent or recurrent herpes infection. This review focuses on conventional methods for evaluating the efficacy of a herpes vaccine using differential CD8+ T cells and important unaccounted immune aspects for designing an effective vaccine against herpes.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Seefeld ML, Templeton EL, Lehtinen JM, Sinclair N, Yadav D, Hartwell BL. Harnessing the potential of the NALT and BALT as targets for immunomodulation using engineering strategies to enhance mucosal uptake. Front Immunol 2024; 15:1419527. [PMID: 39286244 PMCID: PMC11403286 DOI: 10.3389/fimmu.2024.1419527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Mucosal barrier tissues and their mucosal associated lymphoid tissues (MALT) are attractive targets for vaccines and immunotherapies due to their roles in both priming and regulating adaptive immune responses. The upper and lower respiratory mucosae, in particular, possess unique properties: a vast surface area responsible for frontline protection against inhaled pathogens but also simultaneous tight regulation of homeostasis against a continuous backdrop of non-pathogenic antigen exposure. Within the upper and lower respiratory tract, the nasal and bronchial associated lymphoid tissues (NALT and BALT, respectively) are key sites where antigen-specific immune responses are orchestrated against inhaled antigens, serving as critical training grounds for adaptive immunity. Many infectious diseases are transmitted via respiratory mucosal sites, highlighting the need for vaccines that can activate resident frontline immune protection in these tissues to block infection. While traditional parenteral vaccines that are injected tend to elicit weak immunity in mucosal tissues, mucosal vaccines (i.e., that are administered intranasally) are capable of eliciting both systemic and mucosal immunity in tandem by initiating immune responses in the MALT. In contrast, administering antigen to mucosal tissues in the absence of adjuvant or costimulatory signals can instead induce antigen-specific tolerance by exploiting regulatory mechanisms inherent to MALT, holding potential for mucosal immunotherapies to treat autoimmunity. Yet despite being well motivated by mucosal biology, development of both mucosal subunit vaccines and immunotherapies has historically been plagued by poor drug delivery across mucosal barriers, resulting in weak efficacy, short-lived responses, and to-date a lack of clinical translation. Development of engineering strategies that can overcome barriers to mucosal delivery are thus critical for translation of mucosal subunit vaccines and immunotherapies. This review covers engineering strategies to enhance mucosal uptake via active targeting and passive transport mechanisms, with a parallel focus on mechanisms of immune activation and regulation in the respiratory mucosa. By combining engineering strategies for enhanced mucosal delivery with a better understanding of immune mechanisms in the NALT and BALT, we hope to illustrate the potential of these mucosal sites as targets for immunomodulation.
Collapse
Affiliation(s)
- Madison L Seefeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Erin L Templeton
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Justin M Lehtinen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Noah Sinclair
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Daman Yadav
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Brittany L Hartwell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
11
|
Yount KS, Darville T. Immunity to Sexually Transmitted Bacterial Infections of the Female Genital Tract: Toward Effective Vaccines. Vaccines (Basel) 2024; 12:863. [PMID: 39203989 PMCID: PMC11359697 DOI: 10.3390/vaccines12080863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Sexually transmitted infections (STIs) caused by bacterial pathogens Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum present significant public health challenges. These infections profoundly impact reproductive health, leading to pelvic inflammatory disease, infertility, and increased susceptibility to other infections. Prevention measures, including antibiotic treatments, are limited by the often-asymptomatic nature of these infections, the need for repetitive and continual screening of sexually active persons, antibiotic resistance for gonorrhea, and shortages of penicillin for syphilis. While vaccines exist for viral STIs like human papillomavirus (HPV) and hepatitis B virus (HBV), there are no vaccines available for bacterial STIs. This review examines the immune responses in the female genital tract to these bacterial pathogens and the implications for developing effective vaccines against bacterial STIs.
Collapse
Affiliation(s)
| | - Toni Darville
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
12
|
Johnston C, Scheele S, Bachmann L, Boily MC, Chaiyakunapruk N, Deal C, Delany-Moretlwe S, Lee S, Looker K, Marshall C, Mello MB, Ndowa F, Gottlieb S. Vaccine value profile for herpes simplex virus. Vaccine 2024; 42:S82-S100. [PMID: 39003018 DOI: 10.1016/j.vaccine.2024.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 07/15/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are chronic, highly prevalent viral infections that cause significant morbidity around the world. HSV-2 is sexually transmitted and is the leading cause of genital ulcer disease (GUD). It also increases the risk of HIV acquisition, fueling the HIV epidemic. HSV-1 is typically acquired in childhood through nonsexual contact and contributes to oral and ocular disease, but it can also be sexually transmitted to cause GUD. Both HSV-1 and HSV-2 cause neonatal herpes and neurologic disease. Given the ubiquitous nature of HSV-1 and HSV-2 infections and the limited existing prevention and control measures, vaccination would be the most efficient strategy to reduce the global burden of morbidity related to HSV infection. Vaccine strategies include prophylactic vaccination, which would prevent infection among susceptible persons and would likely be given to adolescents, and therapeutic vaccinations, which would be given to people with symptomatic genital HSV-2 infection. This document discusses the vaccine value profile of both types of vaccines. This 'Vaccine Value Profile' (VVP) for HSV is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by subject matter experts from academia, non-profit organizations, government agencies and multi-lateral organizations. All contributors have extensive expertise on various elements of the HSV VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Christine Johnston
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA.
| | - Suzanne Scheele
- Center for Vaccine Introduction and Access, PATH, Washington, DC, USA
| | - Laura Bachmann
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marie-Claude Boily
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA
| | - Carolyn Deal
- Enteric and Sexually Transmitted Diseases Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | - Shaun Lee
- Monash University Malaysia, Subang, Malaysia
| | - Katharine Looker
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Caroline Marshall
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Maeve B Mello
- Global HIV, Hepatitis and STI Programmes, World Health Organization, Geneva, Switzerland
| | | | - Sami Gottlieb
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
13
|
Burton OT, Bricard O, Tareen S, Gergelits V, Andrews S, Biggins L, Roca CP, Whyte C, Junius S, Brajic A, Pasciuto E, Ali M, Lemaitre P, Schlenner SM, Ishigame H, Brown BD, Dooley J, Liston A. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Immunity 2024; 57:1586-1602.e10. [PMID: 38897202 DOI: 10.1016/j.immuni.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.
Collapse
Affiliation(s)
- Oliver T Burton
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Orian Bricard
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Samar Tareen
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Vaclav Gergelits
- Department of Pathology, University of Cambridge, Cambridge, UK; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Simon Andrews
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Laura Biggins
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carlos P Roca
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carly Whyte
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Steffie Junius
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Aleksandra Brajic
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Emanuela Pasciuto
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; University of Antwerp, Center of Molecular Neurology, Antwerp, Belgium
| | - Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Pierre Lemaitre
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Susan M Schlenner
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
14
|
Nelson CE, Foreman TW, Fukutani ER, Kauffman KD, Sakai S, Fleegle JD, Gomez F, Gould ST, Le Nouën C, Liu X, Burdette TL, Garza NL, Lafont BAP, Brooks K, Lindestam Arlehamn CS, Weiskopf D, Sette A, Hickman HD, Buchholz UJ, Johnson RF, Brenchley JM, Oberman JP, Quieroz ATL, Andrade BB, Via LE, Barber DL. IL-10 suppresses T cell expansion while promoting tissue-resident memory cell formation during SARS-CoV-2 infection in rhesus macaques. PLoS Pathog 2024; 20:e1012339. [PMID: 38950078 PMCID: PMC11244803 DOI: 10.1371/journal.ppat.1012339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/12/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.
Collapse
Affiliation(s)
- Christine E. Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Taylor W. Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eduardo R. Fukutani
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Keith D. Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joel D. Fleegle
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Felipe Gomez
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - NIAID/DIR Tuberculosis Imaging Program
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sydnee T. Gould
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tracey L. Burdette
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, United States of America
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James P. Oberman
- Holy Cross Germantown Hospital, Affiliate of National Breathe Free Sinus and ENT Center, Frederick Breathe Free Sinus and ENT Center, Frederick, Maryland, United States of America
| | - Artur T. L. Quieroz
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Bruno B. Andrade
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura E. Via
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Daniel L. Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Zhu J, Miner MD. Local Power: The Role of Tissue-Resident Immunity in Human Genital Herpes Simplex Virus Reactivation. Viruses 2024; 16:1019. [PMID: 39066181 PMCID: PMC11281577 DOI: 10.3390/v16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
From established latency, human herpes virus type 2 (HSV-2) frequently reactivates into the genital tract, resulting in symptomatic ulcers or subclinical shedding. Tissue-resident memory (TRM) CD8+ T cells that accumulate and persist in the genital skin at the local site of recrudescence are the "first responders" to viral reactivation, performing immunosurveillance and containment and aborting the ability of the virus to induce clinical lesions. This review describes the unique spatiotemporal characteristics, transcriptional signatures, and noncatalytic effector functions of TRM CD8+ T cells in the tissue context of human HSV-2 infection. We highlight recent insights into the intricate overlaps between intrinsic resistance, innate defense, and adaptive immunity in the tissue microenvironment and discuss how rapid virus-host dynamics at the skin and mucosal level influence clinical outcomes of genital herpes diseases.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Maurine D. Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
16
|
Ford ES, Li AZ, Laing KJ, Dong L, Diem K, Jing L, Mayer-Blackwell K, Basu K, Ott M, Tartaglia J, Gurunathan S, Reid JL, Ecsedi M, Chapuis AG, Huang ML, Magaret AS, Johnston C, Zhu J, Koelle DM, Corey L. Expansion of the HSV-2-specific T cell repertoire in skin after immunotherapeutic HSV-2 vaccine. JCI Insight 2024; 9:e179010. [PMID: 39133650 PMCID: PMC11383358 DOI: 10.1172/jci.insight.179010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 09/11/2024] Open
Abstract
The skin at the site of HSV-2 reactivation is enriched for HSV-2-specific T cells. To evaluate whether an immunotherapeutic vaccine could elicit skin-based memory T cells, we studied skin biopsies and HSV-2-reactive CD4+ T cells from PBMCs by T cell receptor (TCR) β chain (TRB) sequencing before and after vaccination with a replication-incompetent whole-virus HSV-2 vaccine candidate (HSV529). The representation of HSV-2-reactive CD4+ TRB sequences from PBMCs in the skin TRB repertoire increased after the first vaccine dose. We found sustained expansion after vaccination of unique, skin-based T cell clonotypes that were not detected in HSV-2-reactive CD4+ T cells isolated from PBMCs. In one participant, a switch in immunodominance occurred with the emergence of a TCR αβ pair after vaccination that was not detected in blood. This TCRαβ was shown to be HSV-2 reactive by expression of a synthetic TCR in a Jurkat-based NR4A1 reporter system. The skin in areas of HSV-2 reactivation possessed an oligoclonal TRB repertoire that was distinct from the circulation. Defining the influence of therapeutic vaccination on the HSV-2-specific TRB repertoire requires tissue-based evaluation.
Collapse
Affiliation(s)
- Emily S Ford
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | - Alvason Z Li
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Kerry J Laing
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | - Lichun Dong
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | - Kurt Diem
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lichen Jing
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | | | - Krithi Basu
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | - Mariliis Ott
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | | | | | - Jack L Reid
- Translational Sciences and Therapeutics Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Matyas Ecsedi
- Translational Sciences and Therapeutics Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Aude G Chapuis
- Translational Sciences and Therapeutics Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Amalia S Magaret
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine and
| | - David M Koelle
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
18
|
Maurice NJ, Erickson JR, DeJong CS, Mair F, Taber AK, Frutoso M, Islas LV, Vigil ALB, Lawler RL, McElrath MJ, Newell EW, Sullivan LB, Shree R, McCartney SA. Converging cytokine and metabolite networks shape asymmetric T cell fate at the term human maternal-fetal interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598377. [PMID: 38915597 PMCID: PMC11195144 DOI: 10.1101/2024.06.10.598377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-β1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jami R Erickson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caitlin S DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Laura V Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Richard L Lawler
- Immune Monitoring Core, Fred Hutchinson Cancer Center, Seattle, WA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Raj Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Stephen A McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Sheth SS, Oh JE, Bellone S, Siegel ER, Greenman M, Mutlu L, McNamara B, Pathy S, Clark M, Azodi M, Altwerger G, Andikyan V, Huang G, Ratner E, Kim DJ, Iwasaki A, Levi AW, Buza N, Hui P, Flaherty S, Schwartz PE, Santin AD. Randomized Phase II Trial of Imiquimod with or without 9-Valent HPV Vaccine versus Observation in Patients with High-grade Pre-neoplastic Cervical Lesions (NCT02864147). Clin Cancer Res 2024; 30:1768-1777. [PMID: 38592381 DOI: 10.1158/1078-0432.ccr-23-3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE We report the results of a randomized phase II trial of imiquimod, a topical immune-response modulator versus imiquimod plus a 9-valent human papillomavirus (HPV) vaccine (9vHPV) versus clinical surveillance in cervical intraepithelial neoplasia (CIN2/3) patients. PATIENTS AND METHODS We randomly allocated 133 patients with untreated CIN2/3 in equal proportions to a 4-month treatment with self-applied vaginal suppositories containing imiquimod (Arm B) or imiquimod plus a 9vHPV (Arm C) versus clinical surveillance (Arm A). The main outcome was efficacy, defined as histologic regression to CIN1 or less. Secondary outcomes were HPV clearance and tolerability. Exploratory objectives included the comparison of cervical CD4/CD8 T-cell infiltration at baseline, mid-study, and posttreatment by flow cytometry among study arms. RESULTS Of the 114 evaluable patients 77% and 23% harbored CIN2 and CIN3, respectively. Regression to CIN1 or less was observed in 95% of patients in the imiquimod group (Arm B) compared with 79% in the control/surveillance (Arm A); P = 0.043 and 84% in the imiquimod+9vHPV group (Arm C; P = 0.384 vs. Arm A). Neither of the treatment-arm differences from Arm A reached the prespecified α = 0.025 significance level. No significant differences were noted in the secondary outcome of rate of HPV clearance. The number of tissue-resident memory CD4/CD8 T cells in cytobrush samples demonstrated a >5-fold increase in Arm B/imiquimod when compared with Arm A/surveillance (P < 0.01). In contrast, there was no significant difference in T-cell responses among participants in Arm C when compared with Arm A. Imiquimod treatment was well tolerated. CONCLUSIONS Although imiquimod induced a higher regression to CIN1 or less and significant increases in CD4/CD8 T cells infiltrating the cervix, it did not meet its prespecified statistical outcome for efficacy. A higher regression rate than expected was observed in the surveillance arm of this prospective trial. Future clinical trials with imiquimod targeting CIN3 patients are warranted.
Collapse
Affiliation(s)
- Sangini S Sheth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Specialties and Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Ji Eun Oh
- Laboratory of Skin and Mucosal Immunology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of South Korea
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Michelle Greenman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Shefali Pathy
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Specialties and Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Mitchell Clark
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Vaagn Andikyan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Gloria Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel J Kim
- Department of Immunobiology, Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Angelique W Levi
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Sean Flaherty
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Specialties and Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Peter E Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Cohen JI. Therapeutic vaccines for herpesviruses. J Clin Invest 2024; 134:e179483. [PMID: 38690731 PMCID: PMC11060731 DOI: 10.1172/jci179483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Herpesviruses establish latent infections, and most reactivate frequently, resulting in symptoms and virus shedding in healthy individuals. In immunocompromised patients, reactivating virus can cause severe disease. Persistent EBV has been associated with several malignancies in both immunocompromised and nonimmunocompromised persons. Reactivation and shedding occur with most herpesviruses, despite potent virus-specific antibodies and T cell immunity as measured in the blood. The licensure of therapeutic vaccines to reduce zoster indicates that effective therapeutic vaccines for other herpesviruses should be feasible. However, varicella-zoster virus is different from other human herpesviruses in that it is generally only shed during varicella and zoster. Unlike prophylactic vaccines, in which the correlate of immunity is antibody function, T cell immunity is the correlate of immunity for the only effective therapeutic herpesvirus vaccine-zoster vaccine. While most studies of therapeutic vaccines have measured immunity in the blood, cellular immunity at the site of reactivation is likely critical for an effective therapeutic vaccine for certain viruses. This Review summarizes the status of therapeutic vaccines for herpes simplex virus, cytomegalovirus, and Epstein-Barr virus and proposes approaches for future development.
Collapse
|
22
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
23
|
Macedo BG, Masuda MY, Borges da Silva H. Location versus ID: what matters to lung-resident memory T cells? Front Immunol 2024; 15:1355910. [PMID: 38375476 PMCID: PMC10875077 DOI: 10.3389/fimmu.2024.1355910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) are vital for the promotion of barrier immunity. The lung, a tissue constantly exposed to foreign pathogenic or non-pathogenic antigens, is not devoid of these cells. Lung TRM cells have been considered major players in either the protection against respiratory viral infections or the pathogenesis of lung allergies. Establishment of lung TRM cells rely on intrinsic and extrinsic factors. Among the extrinsic regulators of lung TRM cells, the magnitude of the impact of factors such as the route of antigen entry or the antigen natural tropism for the lung is not entirely clear. In this perspective, we provide a summary of the literature covering this subject and present some preliminary results on this potential dichotomy between antigen location versus antigen type. Finally, we propose a hypothesis to synthesize the potential contributions of these two variables for lung TRM cell development.
Collapse
|
24
|
Gordy JT, Hui Y, Schill C, Wang T, Chen F, Fessler K, Meza J, Li Y, Taylor AD, Bates RE, Karakousis PC, Pekosz A, Sachithanandham J, Li M, Karanika S, Markham RB. A SARS-CoV-2 RBD vaccine fused to the chemokine MIP-3α elicits sustained murine antibody responses over 12 months and enhanced lung T-cell responses. Front Immunol 2024; 15:1292059. [PMID: 38370404 PMCID: PMC10870766 DOI: 10.3389/fimmu.2024.1292059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background Previous studies have demonstrated enhanced efficacy of vaccine formulations that incorporate the chemokine macrophage inflammatory protein 3α (MIP-3α) to direct vaccine antigens to immature dendritic cells. To address the reduction in vaccine efficacy associated with a mutation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we have examined the ability of receptor-binding domain vaccines incorporating MIP-3α to sustain higher concentrations of antibody when administered intramuscularly (IM) and to more effectively elicit lung T-cell responses when administered intranasally (IN). Methods BALB/c mice aged 6-8 weeks were immunized intramuscularly or intranasally with DNA vaccine constructs consisting of the SARS-CoV-2 receptor-binding domain alone or fused to the chemokine MIP-3α. In a small-scale (n = 3/group) experiment, mice immunized IM with electroporation were followed up for serum antibody concentrations over a period of 1 year and for bronchoalveolar antibody levels at the termination of the study. Following IN immunization with unencapsulated plasmid DNA (n = 6/group), mice were evaluated at 11 weeks for serum antibody concentrations, quantities of T cells in the lungs, and IFN-γ- and TNF-α-expressing antigen-specific T cells in the lungs and spleen. Results At 12 months postprimary vaccination, recipients of the IM vaccine incorporating MIP-3α had significantly, approximately threefold, higher serum antibody concentrations than recipients of the vaccine not incorporating MIP-3α. The area-under-the-curve analyses of the 12-month observation interval demonstrated significantly greater antibody concentrations over time in recipients of the MIP-3α vaccine formulation. At 12 months postprimary immunization, only recipients of the fusion vaccine had concentrations of serum-neutralizing activity deemed to be effective. After intranasal immunization, only recipients of the MIP-3α vaccine formulations developed T-cell responses in the lungs significantly above those of PBS controls. Low levels of serum antibody responses were obtained following IN immunization. Conclusion Although requiring separate IM and IN immunizations for optimal immunization, incorporating MIP-3α in a SARS-CoV-2 vaccine construct demonstrated the potential of a stable and easily produced vaccine formulation to provide the extended antibody and T-cell responses that may be required for protection in the setting of emerging SARS-CoV-2 variants. Without electroporation, simple, uncoated plasmid DNA incorporating MIP-3α administered intranasally elicited lung T-cell responses.
Collapse
Affiliation(s)
- James Tristan Gordy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Yinan Hui
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Courtney Schill
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Tianyin Wang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Fengyixin Chen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Kaitlyn Fessler
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jacob Meza
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Yangchen Li
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alannah D. Taylor
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Rowan E. Bates
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Petros C. Karakousis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Maggie Li
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Styliani Karanika
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Richard B. Markham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
25
|
Park JH, Lee SW, Choi D, Lee C, Sung YC. Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies. Immune Netw 2024; 24:e9. [PMID: 38455462 PMCID: PMC10917577 DOI: 10.4110/in.2024.24.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Donghoon Choi
- Research Institute of NeoImmune Tech., Co, Ltd., Bio Open Innovation Center, Pohang 37666, Korea
| | - Changhyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Young Chul Sung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
26
|
Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ Tissue-Resident Memory T Cells: Versatile Guardians of the Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:361-368. [PMID: 38227907 PMCID: PMC10794029 DOI: 10.4049/jimmunol.2300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 01/18/2024]
Abstract
Tissue-resident memory T (Trm) cells are a subset of T cells maintained throughout life within nonlymphoid tissues without significant contribution from circulating memory T cells. CD8+ Trm cells contribute to both tissue surveillance and direct elimination of pathogens through a variety of mechanisms. Reactivation of these Trm cells during infection drives systematic changes within the tissue, including altering the state of the epithelium, activating local immune cells, and contributing to the permissiveness of the tissue for circulating immune cell entry. Trm cells can be further classified by their functional outputs, which can be either subset- or tissue-specific, and include proliferation, tissue egress, and modulation of tissue physiology. These functional outputs of Trm cells are linked to the heterogeneity and plasticity of this population, and uncovering the unique responses of different Trm cell subsets and their role in immunity will allow us to modulate Trm cell responses for optimal control of disease.
Collapse
Affiliation(s)
- Giuseppina Marchesini Tovar
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Corey Gallen
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
27
|
Ford ES, Li A, Laing KJ, Dong L, Diem K, Jing L, Basu K, Ott M, Tartaglia J, Gurunathan S, Reid JL, Ecsedi M, Chapuis AG, Huang ML, Magaret AS, Johnston C, Zhu J, Koelle DM, Corey L. Expansion of the HSV-2-specific T cell repertoire in skin after immunotherapeutic HSV-2 vaccine. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2022.02.04.22270210. [PMID: 38352384 PMCID: PMC10863019 DOI: 10.1101/2022.02.04.22270210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The skin at the site of HSV-2 reactivation is enriched for HSV-2-specific T cells. To evaluate whether an immunotherapeutic vaccine could elicit skin-based memory T cells, we studied skin biopsies and HSV-2-reactive CD4+ T cells from peripheral blood mononuclear cells (PBMCs) by T cell receptor β (TRB) sequencing before and after vaccination with a replication-incompetent whole virus HSV-2 vaccine candidate (HSV529). The representation of HSV-2-reactive CD4+ TRB sequences from PBMCs in the skin TRB repertoire increased after the first vaccine dose. We found sustained expansion after vaccination of unique, skin-based T-cell clonotypes that were not detected in HSV-2-reactive CD4+ T cells isolated from PBMCs. In one participant a switch in immunodominance occurred with the emergence of a T cell receptor (TCR) αβ pair after vaccination that was not detected in blood. This TCRαβ was shown to be HSV-2-reactive by expression of a synthetic TCR in a Jurkat-based NR4A1 reporter system. The skin in areas of HSV-2 reactivation possesses an oligoclonal TRB repertoire that is distinct from the circulation. Defining the influence of therapeutic vaccination on the HSV-2-specific TRB repertoire requires tissue-based evaluation.
Collapse
Affiliation(s)
- Emily S Ford
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Alvason Li
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
| | - Kerry J Laing
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Lichun Dong
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Kurt Diem
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Lichen Jing
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Krithi Basu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Mariliis Ott
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | | | | | - Jack L Reid
- Clinical Research Division, Fred Hutch Cancer Center, Seattle WA
| | - Matyas Ecsedi
- Clinical Research Division, Fred Hutch Cancer Center, Seattle WA
| | - Aude G Chapuis
- Clinical Research Division, Fred Hutch Cancer Center, Seattle WA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Amalia S Magaret
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Christine Johnston
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Jia Zhu
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - David M Koelle
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
- Department of Global Health, University of Washington, Seattle WA
- Benaroya Research Institute, Seattle WA
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| |
Collapse
|
28
|
Elliott Williams M, Hardnett FP, Sheth AN, Wein AN, Li ZRT, Radzio-Basu J, Dinh C, Haddad LB, Collins EMB, Ofotokun I, Antia R, Scharer CD, Garcia-Lerma JG, Kohlmeier JE, Swaims-Kohlmeier A. The menstrual cycle regulates migratory CD4 T-cell surveillance in the female reproductive tract via CCR5 signaling. Mucosal Immunol 2024; 17:41-53. [PMID: 37866719 PMCID: PMC10990418 DOI: 10.1016/j.mucimm.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Despite their importance for immunity against sexually transmitted infections, the composition of female reproductive tract (FRT) memory T-cell populations in response to changes within the local tissue environment under the regulation of the menstrual cycle remains poorly defined. Here, we show that in humans and pig-tailed macaques, the cycle determines distinct clusters of differentiation 4 T-cell surveillance behaviors by subsets corresponding to migratory memory (TMM) and resident memory T cells. TMM displays tissue-itinerant trafficking characteristics, restricted distribution within the FRT microenvironment, and distinct effector responses to infection. Gene pathway analysis by RNA sequencing identified TMM-specific enrichment of genes involved in hormonal regulation and inflammatory responses. FRT T-cell subset fluctuations were discovered that synchronized to cycle-driven CCR5 signaling. Notably, oral administration of a CCR5 antagonist drug blocked TMM trafficking. Taken together, this study provides novel insights into the dynamic nature of FRT memory CD4 T cells and identifies the menstrual cycle as a key regulator of immune surveillance at the site of STI pathogen exposure.
Collapse
Affiliation(s)
- M Elliott Williams
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Felica P Hardnett
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anandi N Sheth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Alexander N Wein
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zheng-Rong Tiger Li
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica Radzio-Basu
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chuong Dinh
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa B Haddad
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth M B Collins
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Igho Ofotokun
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Gerardo Garcia-Lerma
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alison Swaims-Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA; Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
29
|
Heine A, Lemmermann NAW, Flores C, Becker-Gotot J, Garbi N, Brossart P, Kurts C. Rapid protection against viral infections by chemokine-accelerated post-exposure vaccination. Front Immunol 2024; 15:1338499. [PMID: 38348028 PMCID: PMC10860197 DOI: 10.3389/fimmu.2024.1338499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Prophylactic vaccines generate strong and durable immunity to avoid future infections, whereas post-exposure vaccinations are intended to establish rapid protection against already ongoing infections. Antiviral cytotoxic CD8+ T cells (CTL) are activated by dendritic cells (DCs), which themselves must be activated by adjuvants to express costimulatory molecules and so-called signal 0-chemokines that attract naive CTL to the DCs. Hypothesis Here we asked whether a vaccination protocol that combines two adjuvants, a toll-like receptor ligand (TLR) and a natural killer T cell activator, to induce two signal 0 chemokines, synergistically accelerates CTL activation. Methods We used a well-characterized vaccination model based on the model antigen ovalbumin, the TLR9 ligand CpG and the NKT cell ligand α-galactosylceramide to induce signal 0-chemokines. Exploiting this vaccination model, we studied detailed T cell kinetics and T cell profiling in different in vivo mouse models of viral infection. Results We found that CTL induced by both adjuvants obtained a head-start that allowed them to functionally differentiate further and generate higher numbers of protective CTL 1-2 days earlier. Such signal 0-optimized post-exposure vaccination hastened clearance of experimental adenovirus and cytomegalovirus infections. Conclusion Our findings show that signal 0 chemokine-inducing adjuvant combinations gain time in the race against rapidly replicating microbes, which may be especially useful in post-exposure vaccination settings during viral epi/pandemics.
Collapse
Affiliation(s)
- Annkristin Heine
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
- Medical Clinic III, University of Bonn, Bonn, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute for Virology, University of Bonn, Bonn, Germany
| | - Chrystel Flores
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
- Medical Clinic III, University of Bonn, Bonn, Germany
| | | | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | | | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
- Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Zayou L, Prakash S, Dhanushkodi NR, Quadiri A, Ibraim IC, Singer M, Salem A, Shaik AM, Suzer B, Chilukuri A, Tran J, Nguyen PC, Sun M, Hormi-Carver KK, Belmouden A, Vahed H, Gil D, Ulmer JB, BenMohamed L. A multi-epitope/CXCL11 prime/pull coronavirus mucosal vaccine boosts the frequency and the function of lung-resident memory CD4 + and CD8 + T cells and enhanced protection against COVID-19-like symptoms and death caused by SARS-CoV-2 infection. J Virol 2023; 97:e0109623. [PMID: 38038432 PMCID: PMC10734477 DOI: 10.1128/jvi.01096-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Although the current rate of SARS-CoV-2 infections has decreased significantly, COVID-19 still ranks very high as a cause of death worldwide. As of October 2023, the weekly mortality rate is still at 600 deaths in the United States alone, which surpasses even the worst mortality rates recorded for influenza. Thus, the long-term outlook of COVID-19 is still a serious concern outlining the need for the next-generation vaccine. This study found that a prime/pull coronavirus vaccine strategy increased the frequency of functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells in the lungs of SARS-CoV-2-infected triple transgenic HLA-DR*0101/HLA-A*0201/hACE2 mouse model, thereby resulting in low viral titer and reduced COVID-19-like symptoms.
Collapse
Affiliation(s)
- Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Izabela Coimbra Ibraim
- High containment facility, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amirah Salem
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Jennifer Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Pauline Chau Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Ahmed Belmouden
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
31
|
Xu H, Zhou R, Chen Z. Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation. Clin Exp Immunol 2023; 214:249-259. [PMID: 37586053 PMCID: PMC10719502 DOI: 10.1093/cei/uxad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
Mounting evidence has indicated the essential role of tissue-resident memory T (TRM) cells for frontline protection against viral infection and for cancer immune surveillance (Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defense. Nat Rev Immunol 2016, 16, 79-89. doi:10.1038/nri.2015.3.). TRM cells are transcriptionally, phenotypically, and functionally distinct from circulating memory T (Tcirm) cells. It is necessary to understand the unique ontogenetic mechanism, migratory regulation, and biological function of TRM cells. In this review, we discuss recent insights into cellular mechanisms and discrete responsiveness in different tissue microenvironments underlying TRM cell development. We also emphasize the translational potential of TRM cells by focusing on their establishment in association with improved protection in mucosal tissues against various types of diseases and effective strategies for eliciting TRM cells in both pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
32
|
Wang Z, He Y, Wang W, Tian Y, Ge C, Jia F, Zhang T, Zhang G, Wang M, Gong J, Huang H, Wang J, Shi C, Yang W, Cao X, Zeng Y, Wang N, Qian A, Jiang Y, Yang G, Wang C. A novel "prime and pull" strategy mediated by the combination of two dendritic cell-targeting designs induced protective lung tissue-resident memory T cells against H1N1 influenza virus challenge. J Nanobiotechnology 2023; 21:479. [PMID: 38093320 PMCID: PMC10717309 DOI: 10.1186/s12951-023-02229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Vaccination is still the most promising strategy for combating influenza virus pandemics. However, the highly variable characteristics of influenza virus make it difficult to develop antibody-based universal vaccines, until now. Lung tissue-resident memory T cells (TRM), which actively survey tissues for signs of infection and react rapidly to eliminate infected cells without the need for a systemic immune reaction, have recently drawn increasing attention towards the development of a universal influenza vaccine. We previously designed a sequential immunization strategy based on orally administered Salmonella vectored vaccine candidates. To further improve our vaccine design, in this study, we used two different dendritic cell (DC)-targeting strategies, including a single chain variable fragment (scFv) targeting the surface marker DC-CD11c and DC targeting peptide 3 (DCpep3). Oral immunization with Salmonella harboring plasmid pYL230 (S230), which displayed scFv-CD11c on the bacterial surface, induced dramatic production of spleen effector memory T cells (TEM). On the other hand, intranasal boost immunization using purified DCpep3-decorated 3M2e-ferritin nanoparticles in mice orally immunized twice with S230 (S230inDC) significantly stimulated the differentiation of lung CD11b+ DCs, increased intracellular IL-17 production in lung CD4+ T cells and elevated chemokine production in lung sections, such as CXCL13 and CXCL15, as determined by RNAseq and qRT‒PCR assays, resulting in significantly increased percentages of lung TRMs, which could provide efficient protection against influenza virus challenge. The dual DC targeting strategy, together with the sequential immunization approach described in this study, provides us with a novel "prime and pull" strategy for addressing the production of protective TRM cells in vaccine design.
Collapse
Affiliation(s)
- Zhannan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yingkai He
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wenfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yawen Tian
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chongbo Ge
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Futing Jia
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tongyu Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gerui Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingyue Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jinshuo Gong
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
33
|
Schenkel JM, Pauken KE. Localization, tissue biology and T cell state - implications for cancer immunotherapy. Nat Rev Immunol 2023; 23:807-823. [PMID: 37253877 PMCID: PMC11448857 DOI: 10.1038/s41577-023-00884-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Tissue localization is a critical determinant of T cell immunity. CD8+ T cells are contact-dependent killers, which requires them to physically be within the tissue of interest to kill peptide-MHC class I-bearing target cells. Following their migration and extravasation into tissues, T cells receive many extrinsic cues from the local microenvironment, and these signals shape T cell differentiation, fate and function. Because major organ systems are variable in their functions and compositions, they apply disparate pressures on T cells to adapt to the local microenvironment. Additional complexity arises in the context of malignant lesions (either primary or metastatic), and this has made understanding the factors that dictate T cell function and longevity in tumours challenging. Moreover, T cell differentiation state influences how cues from the microenvironment are interpreted by tissue-infiltrating T cells, highlighting the importance of T cell state in the context of tissue biology. Here, we review the intertwined nature of T cell differentiation state, location, survival and function, and explain how dysfunctional T cell populations can adopt features of tissue-resident memory T cells to persist in tumours. Finally, we discuss how these factors have shaped responses to cancer immunotherapy.
Collapse
Affiliation(s)
- Jason M Schenkel
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
34
|
Osman M, Park SL, Mackay LK. Tissue-resident memory T (T RM ) cells: Front-line workers of the immune system. Eur J Immunol 2023; 53:e2250060. [PMID: 36597841 DOI: 10.1002/eji.202250060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Tissue-resident memory T (TRM ) cells play a vital role in local immune protection against infection and cancer. The location of TRM cells within peripheral tissues at sites of pathogen invasion allows for the rapid detection and elimination of microbes, making their generation an attractive goal for the development of next-generation vaccines. Here, we discuss differential requirements for CD8+ TRM cell development across tissues with implications for establishing local prophylactic immunity, emphasizing the role of tissue-derived factors, local antigen, and adjuvants on TRM cell generation in the context of vaccination.
Collapse
Affiliation(s)
- Maleika Osman
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Rainey MA, Allen CT, Craveiro M. Egress of resident memory T cells from tissue with neoadjuvant immunotherapy: Implications for systemic anti-tumor immunity. Oral Oncol 2023; 146:106570. [PMID: 37738775 PMCID: PMC10591905 DOI: 10.1016/j.oraloncology.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Resident memory T (TRM) cells are embedded in peripheral tissue and capable of acting as sentinels that can respond quickly to repeat pathogen exposure as part of an endogenous anti-microbial immune response. Recent evidence suggests that chronic antigen exposure and other microenvironment cues may promote the development of TRM cells within solid tumors as well, and that this TRM phenotype can sequester tumor-specific T cells into tumors and out of circulation resulting in limited systemic antitumor immunity. Here, we perform a review of the published English literature and describe tissue-specific mediators of TRM cell differentiation in states of infection and malignancy with special focus on the role of TGF-β and how targeting TGF-β signaling could be used as a therapeutical approach to promote tumor systemic immunity. DISCUSSION The presence of TRM cells with antigen specificity to neoepitopes in tumors associates with positive clinical prognosis and greater responsiveness to immunotherapy. Recent evidence indicates that solid tumors may act as reservoirs for tumor specific TRM cells and limit their circulation - possibly resulting in impaired systemic antitumor immunity. TRM cells utilize specific mechanisms to egress from peripheral tissues into circulation and other peripheral sites, and emerging evidence indicates that immunotherapeutic approaches may initiate these processes and increase systemic antitumor immunity. CONCLUSIONS Reversing tumor sequestration of tumor-specific T cells prior to surgical removal or radiation of tumor may increase systemic antitumor immunity. This finding may underlie the improved recurrence free survival observed with neoadjuvant immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Magdalena A Rainey
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institutes of Health, 9000 Rockville Pike, Building 10, Room 7N240C, Bethesda, MD 20892, USA.
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Xing M, Wang Y, Wang X, Liu J, Dai W, Hu G, He F, Zhao Q, Li Y, Sun L, Wang Y, Du S, Dong Z, Pang C, Hu Z, Zhang X, Xu J, Cai Q, Zhou D. Broad-spectrum vaccine via combined immunization routes triggers potent immunity to SARS-CoV-2 and its variants. J Virol 2023; 97:e0072423. [PMID: 37706688 PMCID: PMC10617383 DOI: 10.1128/jvi.00724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE The development of broad-spectrum SARS-CoV-2 vaccines will reduce the global economic and public health stress from the COVID-19 pandemic. The use of conserved T-cell epitopes in combination with spike antigen that induce humoral and cellular immune responses simultaneously may be a promising strategy to further enhance the broad spectrum of COVID-19 vaccine candidates. Moreover, this research suggests that the combined vaccination strategies have the ability to induce both effective systemic and mucosal immunity, which may represent promising strategies for maximizing the protective efficacy of respiratory virus vaccines.
Collapse
Affiliation(s)
- Man Xing
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaowei Hu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Zhao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
Adam A, Kalveram B, Chen JYC, Yeung J, Rodriguez L, Singh A, Shi PY, Xie X, Wang T. A single-dose of intranasal vaccination with a live-attenuated SARS-CoV-2 vaccine candidate promotes protective mucosal and systemic immunity. NPJ Vaccines 2023; 8:160. [PMID: 37863935 PMCID: PMC10589337 DOI: 10.1038/s41541-023-00753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
An attenuated SARS-CoV-2 virus with modified viral transcriptional regulatory sequences and deletion of open-reading frames 3, 6, 7 and 8 (∆3678) was previously reported to protect hamsters from SARS-CoV-2 infection and transmission. Here we report that a single-dose intranasal vaccination of ∆3678 protects K18-hACE2 mice from wild-type or variant SARS-CoV-2 challenge. Compared with wild-type virus infection, the ∆3678 vaccination induces equivalent or higher levels of lung and systemic T cell, B cell, IgA, and IgG responses. The results suggest ∆3678 as an attractive mucosal vaccine candidate to boost pulmonary immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Birte Kalveram
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - John Yun-Chung Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leslie Rodriguez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ankita Singh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
38
|
Depew CE, McSorley SJ. The role of tissue resident memory CD4 T cells in Salmonella infection: Implications for future vaccines. Vaccine 2023; 41:6426-6433. [PMID: 37739887 DOI: 10.1016/j.vaccine.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Salmonella infections cause a wide range of intestinal and systemic disease that affects global human health. While some vaccines are available, they do not mitigate the impact of Salmonella on endemic areas. Research using Salmonella mouse models has revealed the important role of CD4 T cells and antibody in the development of protective immunity against Salmonella infection. Recent work points to a critical role for hepatic tissue-resident memory lymphocytes in naturally acquired immunity to systemic infection. Thus, understanding the genesis and function of this Salmonella-specific population is an important objective and is the primary focus of this review. Greater understanding of how these memory lymphocytes contribute to bacterial elimination could suggest new approaches to vaccination against an important human pathogen.
Collapse
Affiliation(s)
- Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
39
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
40
|
Yeung J, Wang T, Shi PY. Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine. Curr Opin Virol 2023; 62:101347. [PMID: 37604085 DOI: 10.1016/j.coviro.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.
Collapse
Affiliation(s)
- Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
41
|
Rotrosen E, Kupper TS. Assessing the generation of tissue resident memory T cells by vaccines. Nat Rev Immunol 2023; 23:655-665. [PMID: 37002288 PMCID: PMC10064963 DOI: 10.1038/s41577-023-00853-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Vaccines have been a hugely successful public health intervention, virtually eliminating many once common diseases of childhood. However, they have had less success in controlling endemic pathogens including Mycobacterium tuberculosis, herpesviruses and HIV. A focus on vaccine-mediated generation of neutralizing antibodies, which has been a successful approach for some pathogens, has been complicated by the emergence of escape variants, which has been seen for pathogens such as influenza viruses and SARS-CoV-2, as well as for HIV-1. We discuss how vaccination strategies aimed at generating a broad and robust T cell response may offer superior protection against pathogens, particularly those that have been observed to mutate rapidly. In particular, we consider here how a focus on generating resident memory T cells may be uniquely effective for providing immunity to pathogens that typically infect (or become reactivated in) the skin, respiratory mucosa or other barrier tissues.
Collapse
Affiliation(s)
- Elizabeth Rotrosen
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Yu Y, Wang J, Wu MX. Microneedle-Mediated Immunization Promotes Lung CD8+ T-Cell Immunity. J Invest Dermatol 2023; 143:1983-1992.e3. [PMID: 37044258 PMCID: PMC10524108 DOI: 10.1016/j.jid.2023.03.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Microneedle array has proven more efficient in stimulating humoral immunity than intramuscular vaccination. However, its effectiveness in inducing pulmonary CD8+ T cells remains elusive, which is essential to the frontline defense against pulmonary viral infections such as influenza and COVID-19 viruses. The current investigation reveals that superior CD8+ T-cell responses are elicited by immunization with a microneedle array over intradermal or intramuscular immunization using the model antigen ovalbumin, irrespective of whether or not the antigen is provided in the lung. Mechanistically, microneedle array-mediated immunization targeted the epidermal layer and stimulated predominantly Langerhans cells, resulting in increased expression of α4β1 adhesion molecules on the CD8+ T-cell surface, which may play a role in T-cell homing to the lung, whereas CD8+ T cells induced by intramuscular immunization did not express the adhesion molecule sufficiently. CD8+ T cells with a lung-homing propensity were also seen after intradermal vaccination, yet to a much lesser extent. Accordingly, microneedle array immunization provided stronger protection against influenza viral infection than intradermal or intramuscular immunization. The observations offer insights into a strong cross-talk between epidermal immunization and lung immunity and are valuable for designing and delivering vaccines against respiratory viral infections.
Collapse
Affiliation(s)
- Yang Yu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ji Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA; The first affiliated Hospital, Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
43
|
Bourne N, Keith CA, Miller AL, Pyles RB, Cohen G, Milligan GN. Boosting of vaginal HSV-2-specific B and T cell responses by intravaginal therapeutic immunization results in diminished recurrent HSV-2 disease. J Virol 2023; 97:e0066923. [PMID: 37655939 PMCID: PMC10537585 DOI: 10.1128/jvi.00669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/02/2023] [Indexed: 09/02/2023] Open
Abstract
Boosting herpes simplex virus (HSV)-specific immunity in the genital tissues of HSV-positive individuals to increase control of HSV-2 recurrent disease and virus shedding is an important goal of therapeutic immunization and would impact HSV-2 transmission. Experimental therapeutic HSV-2 vaccines delivered by a parenteral route have resulted in decreased recurrent disease in experimental animals. We used a guinea pig model of HSV-2 infection to test if HSV-specific antibody and cell-mediated responses in the vaginal mucosa would be more effectively increased by intravaginal (Ivag) therapeutic immunization compared to parenteral immunization. Therapeutic immunization with HSV glycoproteins and CpG adjuvant increased glycoprotein-specific IgG titers in vaginal secretions and serum to comparable levels in Ivag- and intramuscular (IM)-immunized animals. However, the mean numbers of HSV glycoprotein-specific antibody secreting cells (ASCs) and IFN-γ SCs were greater in Ivag-immunized animals demonstrating superior boosting of immunity in the vaginal mucosa compared to parenteral immunization. Therapeutic Ivag immunization also resulted in a significant decrease in the cumulative mean lesion days compared to IM immunization. There was no difference in the incidence or magnitude of HSV-2 shedding in either therapeutic immunization group compared to control-treated animals. Collectively, these data demonstrated that Ivag therapeutic immunization was superior compared to parenteral immunization to boost HSV-2 antigen-specific ASC and IFN-γ SC responses in the vagina and control recurrent HSV-2 disease. These results suggest that novel antigen delivery methods providing controlled release of optimized antigen/adjuvant combinations in the vaginal mucosa would be an effective approach for therapeutic HSV vaccines. IMPORTANCE HSV-2 replicates in skin cells before it infects sensory nerve cells where it establishes a lifelong but mostly silent infection. HSV-2 occasionally reactivates, producing new virus which is released back at the skin surface and may be transmitted to new individuals. Some HSV-specific immune cells reside at the skin site of the HSV-2 infection that can quickly activate and clear new virus. Immunizing people already infected with HSV-2 to boost their skin-resident immune cells and rapidly control the new HSV-2 infection is logical, but we do not know the best way to administer the vaccine to achieve this goal. In this study, a therapeutic vaccine given intravaginally resulted in significantly better protection against HSV-2 disease than immunization with the same vaccine by a conventional route. Immunization by the intravaginal route resulted in greater stimulation of vaginal-resident, virus-specific cells that produced antibody and produced immune molecules to rapidly clear virus.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Celeste A. Keith
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aaron L. Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard B. Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gary Cohen
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
44
|
Mittra S, Harding SM, Kaech SM. Memory T Cells in the Immunoprevention of Cancer: A Switch from Therapeutic to Prophylactic Approaches. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:907-916. [PMID: 37669503 PMCID: PMC10491418 DOI: 10.4049/jimmunol.2300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 09/07/2023]
Abstract
Cancer immunoprevention, the engagement of the immune system to prevent cancer, is largely overshadowed by therapeutic approaches to treating cancer after detection. Vaccines or, alternatively, the utilization of genetically engineered memory T cells could be methods of engaging and creating cancer-specific T cells with superb memory, lenient activation requirements, potent antitumor cytotoxicity, tumor surveillance, and resilience against immunosuppressive factors in the tumor microenvironment. In this review we analyze memory T cell subtypes based on their potential utility in cancer immunoprevention with regard to longevity, localization, activation requirements, and efficacy in fighting cancers. A particular focus is on how both tissue-resident memory T cells and stem memory T cells could be promising subtypes for engaging in immunoprevention.
Collapse
Affiliation(s)
- Siddhesh Mittra
- University of Toronto Schools, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shane M. Harding
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Radiation Oncology and Immunology, University of Toronto; Toronto, Canada
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Perera DJ, Domenech P, Babuadze GG, Naghibosadat M, Alvarez F, Koger-Pease C, Labrie L, Stuible M, Durocher Y, Piccirillo CA, Lametti A, Fiset PO, Elahi SM, Kobinger GP, Gilbert R, Olivier M, Kozak R, Reed MB, Ndao M. BCG administration promotes the long-term protection afforded by a single-dose intranasal adenovirus-based SARS-CoV-2 vaccine. iScience 2023; 26:107612. [PMID: 37670783 PMCID: PMC10475483 DOI: 10.1016/j.isci.2023.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Recent publications have explored intranasal (i.n.) adenovirus-based (Ad) vaccines as an effective strategy for SARS-CoV-2 in pre-clinical models. However, the effects of prior immunizations and infections have yet to be considered. Here, we investigate the immunomodulatory effects of Mycobacterium bovis BCG pre-immunization followed by vaccination with an S-protein-expressing i.n. Ad, termed Ad(Spike). While i.n. Ad(Spike) retains some protective effect after 6 months, a single administration of BCG-Danish prior to Ad(Spike) potentiates its ability to control viral replication of the B.1.351 SARS-CoV-2 variant within the respiratory tract. Though BCG-Danish did not affect Ad(Spike)-generated humoral immunity, it promoted the generation of cytotoxic/Th1 responses over suppressive FoxP3+ TREG cells in the lungs of infected mice. Thus, this vaccination strategy may prove useful in limiting future pandemics by potentiating the long-term efficacy of mucosal vaccines within the context of the widely distributed BCG vaccine.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Pilar Domenech
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - George Giorgi Babuadze
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maedeh Naghibosadat
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Fernando Alvarez
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Lydia Labrie
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Matthew Stuible
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - André Lametti
- Department of Pathology, McGill University, Montréal, QC, Canada
| | | | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Gary P. Kobinger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Martin Olivier
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Robert Kozak
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael B. Reed
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- National Reference Centre for Parasitology, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
46
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
47
|
Reina-Campos M, Heeg M, Kennewick K, Mathews IT, Galletti G, Luna V, Nguyen Q, Huang H, Milner JJ, Hu KH, Vichaidit A, Santillano N, Boland BS, Chang JT, Jain M, Sharma S, Krummel MF, Chi H, Bensinger SJ, Goldrath AW. Metabolic programs of T cell tissue residency empower tumour immunity. Nature 2023; 621:179-187. [PMID: 37648857 PMCID: PMC11238873 DOI: 10.1038/s41586-023-06483-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Tissue resident memory CD8+ T (TRM) cells offer rapid and long-term protection at sites of reinfection1. Tumour-infiltrating lymphocytes with characteristics of TRM cells maintain enhanced effector functions, predict responses to immunotherapy and accompany better prognoses2,3. Thus, an improved understanding of the metabolic strategies that enable tissue residency by T cells could inform new approaches to empower immune responses in tissues and solid tumours. Here, to systematically define the basis for the metabolic reprogramming supporting TRM cell differentiation, survival and function, we leveraged in vivo functional genomics, untargeted metabolomics and transcriptomics of virus-specific memory CD8+ T cell populations. We found that memory CD8+ T cells deployed a range of adaptations to tissue residency, including reliance on non-steroidal products of the mevalonate-cholesterol pathway, such as coenzyme Q, driven by increased activity of the transcription factor SREBP2. This metabolic adaptation was most pronounced in the small intestine, where TRM cells interface with dietary cholesterol and maintain a heightened state of activation4, and was shared by functional tumour-infiltrating lymphocytes in diverse tumour types in mice and humans. Enforcing synthesis of coenzyme Q through deletion of Fdft1 or overexpression of PDSS2 promoted mitochondrial respiration, memory T cell formation following viral infection and enhanced antitumour immunity. In sum, through a systematic exploration of TRM cell metabolism, we reveal how these programs can be leveraged to fuel memory CD8+ T cell formation in the context of acute infections and enhance antitumour immunity.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Kelly Kennewick
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ian T Mathews
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Giovanni Galletti
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Vida Luna
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Quynhanh Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Justin Milner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kenneth H Hu
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Vichaidit
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Natalie Santillano
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brigid S Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steven J Bensinger
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
48
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
49
|
Quadiri A, Prakash S, Dhanushkodi NR, Singer M, Zayou L, Shaik AM, Sun M, Suzer B, Lau L, Chilukurri A, Vahed H, Schaefer H, BenMohamed L. Therapeutic Prime/Pull Vaccination of HSV-2 Infected Guinea Pigs with the Ribonucleotide Reductase 2 (RR2) Protein and CXCL11 Chemokine Boosts Antiviral Local Tissue-Resident and Effector Memory CD4 + and CD8 + T Cells and Protects Against Recurrent Genital Herpes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552454. [PMID: 37609157 PMCID: PMC10441333 DOI: 10.1101/2023.08.08.552454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes latency in sensory neurons of the dorsal root ganglia (DRG). Intermittent virus reactivation from latency and shedding in the vaginal mucosa (VM) causes recurrent genital herpes. While T-cells appear to play a role in controlling virus reactivation and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T-cells into DRG and VM tissues remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-1 RR2 protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 (AAV-8) expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus shedding in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ TRM and TEM cells in reducing virus reactivation shedding and the severity of recurrent genital herpes and propose the novel prime/pull vaccine strategy to protect against recurrent genital herpes.
Collapse
Affiliation(s)
- Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Lauren Lau
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Amruth Chilukurri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Hubert Schaefer
- Intracellular Pathogens, Robert Koch-Institute, Berlin 13353, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CaA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
50
|
Kong HJ, Choi Y, Kim EA, Chang J. Vaccine Strategy That Enhances the Protective Efficacy of Systemic Immunization by Establishing Lung-Resident Memory CD8 T Cells Against Influenza Infection. Immune Netw 2023; 23:e32. [PMID: 37670808 PMCID: PMC10475829 DOI: 10.4110/in.2023.23.e32] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Most influenza vaccines currently in use target the highly variable hemagglutinin protein to induce neutralizing antibodies and therefore require yearly reformulation. T cell-based universal influenza vaccines focus on eliciting broadly cross-reactive T-cell responses, especially the tissue-resident memory T cell (TRM) population in the respiratory tract, providing superior protection to circulating memory T cells. This study demonstrated that intramuscular (i.m.) administration of the adenovirus-based vaccine expressing influenza virus nucleoprotein (rAd/NP) elicited weak CD8 TRM responses in the lungs and airways, and yielded poor protection against lethal influenza virus challenge. However, a novel "prime-and-deploy" strategy that combines i.m. vaccination of rAd/NP with subsequent intranasal administration of an empty adenovector induced strong NP-specific CD8+ TRM cells and provided complete protection against influenza virus challenge. Overall, our results demonstrate that this "prime-and-deploy" vaccination strategy is potentially applicable to the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hyun-Jung Kong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Youngwon Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Ah Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|