1
|
Sementino E, Hassan D, Bellacosa A, Testa JR. AKT and the Hallmarks of Cancer. Cancer Res 2024; 84:4126-4139. [PMID: 39437156 DOI: 10.1158/0008-5472.can-24-1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development-cancer hallmarks-would evolve to 14 tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and PI3K activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor-intrinsic dysregulation of AKT can have numerous adverse cellular and pathologic ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
3
|
Frohn S, Haas FB, Chavez BG, Dreyer BH, Reiss EV, Ziplys A, Weichert H, Hiltemann S, Ugalde JM, Meyer AJ, D'Auria JC, Rensing SA, Schippers JHM. Evolutionary Conserved and Divergent Responses to Copper Zinc Superoxide Dismutase Inhibition in Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39400938 DOI: 10.1111/pce.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
After an initial evolution in a reducing environment, life got successively challenged by reactive oxygen species (ROS), especially during the great oxidation event (GOE) that followed the development of photosynthesis. Therefore, ROS are deeply intertwined into the physiological, morphological and transcriptional responses of most present-day organisms. Copper-zinc superoxide dismutases (CuZnSODs) evolved during the GOE and are present in charophytes and extant land plants, but nearly absent from chlorophytes. The chemical inhibitor of CuZnSOD, lung cancer screen 1 (LCS-1), could greatly facilitate the study of SODs in diverse plants. Here, we determined the impact of chemical inhibition of plant CuZnSOD activity, on plant growth, transcription and metabolism. We followed a comparative approach by using different plant species, including Marchantia Polymorpha and Physcomitrium patens, representing bryophytes, the sister lineage to vascular plants, and Arabidopsis thaliana. We show that LCS-1 causes oxidative stress in plants and that the inhibition of CuZnSODs provoked a similar core response that mainly impacted glutathione homoeostasis in all plant species analysed. That said, Physcomitrium and Arabidopsis, which contain multiple CuZnSOD isoforms showed a more complex and exacerbated response. In addition, an untargeted metabolomics approach revealed a specific metabolic signature for each plant species. Our comparative analysis exposes a conserved core response at the physiological and transcriptional level towards LCS-1, while the metabolic response largely varies. These differences correlate with the number and localization of the CuZnSOD isoforms present in each species.
Collapse
Affiliation(s)
- Stephanie Frohn
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Bernd H Dreyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Erik V Reiss
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Ziplys
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heiko Weichert
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Saskia Hiltemann
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - José M Ugalde
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
4
|
Manning BD, Dibble CC. Growth Signaling Networks Orchestrate Cancer Metabolic Networks. Cold Spring Harb Perspect Med 2024; 14:a041543. [PMID: 38438221 PMCID: PMC11444256 DOI: 10.1101/cshperspect.a041543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Normal cells grow and divide only when instructed to by signaling pathways stimulated by exogenous growth factors. A nearly ubiquitous feature of cancer cells is their capacity to grow independent of such signals, in an uncontrolled, cell-intrinsic manner. This property arises due to the frequent oncogenic activation of core growth factor signaling pathway components, including receptor tyrosine kinases, PI3K-AKT, RAS-RAF, mTORC1, and MYC, leading to the aberrant propagation of pro-growth signals independent of exogenous growth factors. The growth of both normal and cancer cells requires the acquisition of nutrients and their anabolic conversion to the primary macromolecules underlying biomass production (protein, nucleic acids, and lipids). The core growth factor signaling pathways exert tight regulation of these metabolic processes and the oncogenic activation of these pathways drive the key metabolic properties of cancer cells and tumors. Here, we review the molecular mechanisms through which these growth signaling pathways control and coordinate cancer metabolism.
Collapse
Affiliation(s)
- Brendan D Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Li J, Wu Y, Li Y, Zhu H, Zhang Z, Li Y. Glutathione-Disrupting Nanotherapeutics Potentiate Ferroptosis for Treating Luminal Androgen Receptor-Positive Triple-Negative Breast Cancer. ACS NANO 2024; 18:26585-26599. [PMID: 39287044 DOI: 10.1021/acsnano.4c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The refractory luminal androgen receptor (LAR) subtype of triple-negative breast cancer (TNBC) patients is challenged by significant resistance to neoadjuvant chemotherapy and increased immunosuppression. Regarding the distinct upregulation of glutathione (GSH) and glutathione peroxidase 4 (GPX4) in LAR TNBC tumors, we herein designed a GSH-depleting phospholipid derivative (BPP) and propose a BPP-based nanotherapeutics of RSL-3 (GDNS), aiming to deplete intracellular GSH and repress GPX4 activity, thereby potentiating ferroptosis for treating LAR-subtype TNBC. GDNS treatment drastically downregulated the expression of GSH and GPX4, resulting in a 33.88-fold enhancement of lipid peroxidation and significant relief of immunosuppression in the 4T1 TNBC model. Moreover, GDNS and its combination with antibody against programed cell death protein 1 (antiPD-1) retarded tumor growth and produced 2.83-fold prolongation of survival in the LAR-positive TNBC model. Therefore, the GSH-disrupting GDNS represents an encouraging strategy to potentiate ferroptosis for treating refractory LAR-subtype TNBC.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yao Wu
- School of Pharmacy & Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| | - Yongping Li
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Hongbo Zhu
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Zhiwen Zhang
- School of Pharmacy & Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| |
Collapse
|
6
|
Swain S, Lin TY, Chou IH, Liu SC, Mallick BC, Lin HY, Huang CH. Photoactive nanocatalysts as DTT-assisted BSA-AuNCs with enhanced oxidase-mimicking ability for sensitive fluorometric detection of antioxidants. J Nanobiotechnology 2024; 22:585. [PMID: 39342215 PMCID: PMC11438146 DOI: 10.1186/s12951-024-02850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Redox imbalance and oxidative stress are increasingly recognized as significant factors in health disorders such as neurodegenerative disorders, premature aging and cancer. However, detecting antioxidant levels that is crucial for managing oxidative stress, can be challenging due to existing assays' limitations, such as insensitivity to thiol-containing antioxidants. This study presents a simple fluorescence-based assay for antioxidant detection employing the enhanced photocatalytic oxidase-like activity of dithiothreitol (DTT)-assisted bovine serum albumin (BSA)-stabilized gold nanoclusters (DTT@BSA-AuNCs). The reported nanozyme exhibits remarkable stability, versatility, and catalytic activity. Under LED irradiation, DTT@BSA-AuNCs generate singlet oxygen, which converts non-fluorescent thiamine to fluorescent thiochrome, utilizing dissolved oxygen for catalysis. Antioxidants inhibit thiochrome formation, leading to fluorescence quenching. This method enables sensitive detection of antioxidants such as ascorbic acid and glutathione with limits of detection of 0.08 µM and 0.32 µM, respectively, under neutral pH, outperforming previous studies. The assay successfully detects antioxidants in human saliva and cancer cell models. The DTT@BSA-AuNCs-based assay offers a cost-effective, sensitive, and straightforward approach for detecting antioxidants in biological samples, facilitating improved monitoring of oxidative stress in various diseases.
Collapse
Affiliation(s)
- Sanskruti Swain
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ting-Yi Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - I-Hsuan Chou
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Bikash C Mallick
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Ying Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Bagherpour S, Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J Mater Chem B 2024; 12:8285-8309. [PMID: 39081041 DOI: 10.1039/d4tb01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
8
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
9
|
Wang S, Zhang Y, Zhang D, Meng J, Che N, Zhao X, Liu T. PTGER3 knockdown inhibits the vulnerability of triple-negative breast cancer to ferroptosis. Cancer Sci 2024; 115:2067-2081. [PMID: 38566528 PMCID: PMC11145128 DOI: 10.1111/cas.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Prostaglandin E receptor 3 (PTGER3) is involved in a variety of biological processes in the human body and is closely associated with the development and progression of a variety of cancer types. However, the role of PTGER3 in triple-negative breast cancer (TNBC) remains unclear. In the present study, low PTGER3 expression was found to be associated with poor prognosis in TNBC patients. PTGER3 plays a crucial role in regulating TNBC cell invasion, migration, and proliferation. Upregulation of PTGER3 weakens the epithelial-mesenchymal phenotype in TNBC and promotes ferroptosis both in vitro and in vivo by repressing glutathione peroxidase 4 (GPX4) expression. On the other hand, downregulation of PTGER3 inhibits ferroptosis by increasing GPX4 expression and activating the PI3K-AKT pathway. Upregulation of PTGER3 also enhances the sensitivity of TNBC cells to paclitaxel. Overall, this study has elucidated critical pathways in which low PTGER3 expression protects TNBC cells from undergoing ferroptosis, thereby promoting its progression. PTGER3 may thus serve as a novel and promising biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Song Wang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Yueyao Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Dan Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Jie Meng
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Na Che
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| | - Xiulan Zhao
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| | - Tieju Liu
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
10
|
Jebanesan DZP, Illangeswaran RSS, Rajamani BM, Vidhyadharan RT, Das S, Bijukumar NK, Balakrishnan B, Mathews V, Velayudhan SR, Balasubramanian P. Inhibition of NRF2 signaling overcomes acquired resistance to arsenic trioxide in FLT3-mutated Acute Myeloid Leukemia. Ann Hematol 2024; 103:1919-1929. [PMID: 38630133 DOI: 10.1007/s00277-024-05742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/01/2024] [Indexed: 05/14/2024]
Abstract
De novo acute myeloid leukemia (AML) patients with FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD) have worse treatment outcomes. Arsenic trioxide (ATO) used in the treatment of acute promyelocytic leukemia (APL) has been reported to be effective in degrading the FLT3 protein in AML cell lines and sensitizing non-APL AML patient samples in-vitro. We have previously reported that primary cells from FLT3-ITD mutated AML patients were sensitive to ATO in-vitro compared to other non-M3 AML and molecular/pharmacological inhibition of NF-E2 related factor 2 (NRF2), a master regulator of antioxidant response improved the chemosensitivity to ATO and daunorubicin even in non FLT3-ITD mutated cell lines and primary samples. We examined the effects of molecular/pharmacological suppression of NRF2 on acquired ATO resistance in the FLT3-ITD mutant AML cell line (MV4-11-ATO-R). ATO-R cells showed increased NRF2 expression, nuclear localization, and upregulation of bonafide NRF2 targets. Molecular inhibition of NRF2 in this resistant cell line improved ATO sensitivity in vitro. Digoxin treatment lowered p-AKT expression, abrogating nuclear NRF2 localization and sensitizing cells to ATO. However, digoxin and ATO did not sensitize non-ITD AML cell line THP1 with high NRF2 expression. Digoxin decreased leukemic burden and prolonged survival in MV4-11 ATO-R xenograft mice. We establish that altering NRF2 expression may reverse acquired ATO resistance in FLT3-ITD AML.
Collapse
Affiliation(s)
- Daniel Zechariah Paul Jebanesan
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
- Manipal Academy of Higher Education, Manipal, India
| | | | - Bharathi M Rajamani
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
| | | | - Saswati Das
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
| | - Nayanthara K Bijukumar
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
| | - Balaji Balakrishnan
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vikram Mathews
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
| | - Shaji R Velayudhan
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
- Adjunct Scientist, Centre for Stem Cell Research, A Unit of InStem Bengaluru, CMC Campus, Vellore, India
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India.
| |
Collapse
|
11
|
Zhao X, Su H, Chen H, Tang X, Li W, Huang A, Fang G, Chen Q, Luo Y, Pang Y. Integrated serum pharmacochemistry and network pharmacology to explore the mechanism of Yi-Shan-Hong formula in alleviating chronic liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155439. [PMID: 38537438 DOI: 10.1016/j.phymed.2024.155439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Chronic liver injury (CLI) is a complex condition that requires effective therapeutic interventions. The Yi-Shan-Hong (YSH) formula is an empirically derived remedy that has shown effectiveness and safety in the management of chronic liver damage. However, the bioactive components and multifaceted mechanisms of YSH remain inadequately understood. PURPOSE To examine the bioactive compounds and functional processes that contribute to the therapeutic benefits of YSH against CLI. METHODS Serum pharmacochemistry and network pharmacology were employed to identify active compounds and possible targets of YSH in CLI. In addition, YSH was also given in three doses to d-(+)-galactosamine hydrochloride (D-GalN) -induced CLI rats to test its therapeutic efficacy. RESULTS The analysis of serum samples successfully detected 25 compounds from YSH. Searches on the databases resulted in 277 genes as being correlated with chemicals in YSH, and 397 genes associated with CLI. In vivo experiments revealed that YSH displayed a notable therapeutic impact on liver injury caused by d-GalN. This was evidenced by enhanced liver function and histopathological improvements, reduced oxidative stress response, proinflammatory factors, and fibrosis levels. Importantly, no discernible adverse effects were observed. Furthermore, the administration of YSH treatment reversed the activation of AKT phosphorylation caused by d-GalN, aligning with the findings of the network pharmacology study. CONCLUSION These findings provide preclinical evidence of YSH's therapeutic value in CLI and highlight its hepatoprotective action via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xinyi Zhao
- College of Zhuang Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hua Su
- Institute of Chinese Materia Medica, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, China
| | - Haiyan Chen
- College of Zhuang Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiusong Tang
- College of Zhuang Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Wenling Li
- College of Zhuang Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - An Huang
- College of Zhuang Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Gang Fang
- College of Zhuang Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qing Chen
- College of Zhuang Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yudong Luo
- Guangxi University of Chinese Medicine Bainianle Pharmaceutical Co. Ltd., Nanning 530023, China.
| | - Yuzhou Pang
- College of Zhuang Medicine, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
12
|
Chen Z, Zhang X. The role of metabolic reprogramming in kidney cancer. Front Oncol 2024; 14:1402351. [PMID: 38884097 PMCID: PMC11176489 DOI: 10.3389/fonc.2024.1402351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Metabolic reprogramming is a cellular process in which cells modify their metabolic patterns to meet energy requirements, promote proliferation, and enhance resistance to external stressors. This process also introduces new functionalities to the cells. The 'Warburg effect' is a well-studied example of metabolic reprogramming observed during tumorigenesis. Recent studies have shown that kidney cells undergo various forms of metabolic reprogramming following injury. Moreover, metabolic reprogramming plays a crucial role in the progression, prognosis, and treatment of kidney cancer. This review offers a comprehensive examination of renal cancer, metabolic reprogramming, and its implications in kidney cancer. It also discusses recent advancements in the diagnosis and treatment of renal cancer.
Collapse
Affiliation(s)
- Ziyi Chen
- The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Xiaohong Zhang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Deng Z, Luo J, Ma J, Jin YN, Yu YV. Glutathione metabolism-related gene signature predicts prognosis and treatment response in low-grade glioma. Aging (Albany NY) 2024; 16:9518-9546. [PMID: 38819225 PMCID: PMC11210255 DOI: 10.18632/aging.205881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Cancer cells can induce molecular changes that reshape cellular metabolism, creating specific vulnerabilities for targeted therapeutic interventions. Given the importance of reactive oxygen species (ROS) in tumor development and drug resistance, and the abundance of reduced glutathione (GSH) as the primary cellular antioxidant, we examined an integrated panel of 56 glutathione metabolism-related genes (GMRGs) across diverse cancer types. This analysis revealed a remarkable association between GMRGs and low-grade glioma (LGG) survival. Unsupervised clustering and a GMRGs-based risk score (GS) categorized LGG patients into two groups, linking elevated glutathione metabolism to poorer prognosis and treatment outcomes. Our GS model outperformed established clinical prognostic factors, acting as an independent prognostic factor. GS also exhibited correlations with pro-tumor M2 macrophage infiltration, upregulated immunosuppressive genes, and diminished responses to various cancer therapies. Experimental validation in glioma cell lines confirmed the critical role of glutathione metabolism in glioma cell proliferation and chemoresistance. Our findings highlight the presence of a unique metabolic susceptibility in LGG and introduce a novel GS system as a highly effective tool for predicting the prognosis of LGG.
Collapse
Affiliation(s)
- Zaidong Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jing Luo
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jing Ma
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youngnam N. Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Liu D, Zhao Q, Tu Z, Zhang S, Deng S, Xiong Z, Zeng J, Wu F, Zhang X, Xing B. Inhibitory effects of black phosphorus nanosheets on tumor cell proliferation through downregulation of ADIPOQ and downstream signaling pathways. Chem Biol Interact 2024; 395:110994. [PMID: 38582339 DOI: 10.1016/j.cbi.2024.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.
Collapse
Affiliation(s)
- Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhaoxu Tu
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Xiong
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 0100, USA
| |
Collapse
|
15
|
He S, Jin Y, Nazaret A, Shi L, Chen X, Rampersaud S, Dhillon BS, Valdez I, Friend LE, Fan JL, Park CY, Mintz RL, Lao YH, Carrera D, Fang KW, Mehdi K, Rohde M, McFaline-Figueroa JL, Blei D, Leong KW, Rudensky AY, Plitas G, Azizi E. Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor-immune hubs. Nat Biotechnol 2024:10.1038/s41587-024-02173-8. [PMID: 38514799 PMCID: PMC11415552 DOI: 10.1038/s41587-024-02173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Spatially resolved gene expression profiling provides insight into tissue organization and cell-cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC.
Collapse
Affiliation(s)
- Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Yinuo Jin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Achille Nazaret
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Lingting Shi
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Xueer Chen
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Sham Rampersaud
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bahawar S Dhillon
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Izabella Valdez
- The Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E Friend
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Joy Linyue Fan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Cameron Y Park
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - David Carrera
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Kaylee W Fang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Kaleem Mehdi
- Department of Computer Science, Fordham University, New York, NY, USA
| | | | - José L McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - David Blei
- Department of Computer Science, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander Y Rudensky
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - George Plitas
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Surgery, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA.
- Department of Computer Science, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Data Science Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Zhu Y, Hu Z, Liu Y, Yan T, Liu L, Wang Y, Bai B. AChE activity self-breathing control mechanisms regulated by H 2S n and GSH: Persulfidation and glutathionylation on sulfhydryl after disulfide bonds cleavage. Int J Biol Macromol 2024; 259:129117. [PMID: 38211930 DOI: 10.1016/j.ijbiomac.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Hydrogen sulfide (H2S), or dihydrogen sulfane (H2Sn), acts as a signal molecule through the beneficial mechanism of persulfidation, known as the post-translational transformation of cysteine residues to persulfides. We previously reported that Glutathione (GSH) could regulate enzyme activity through S-desulfurization or glutathionylation of residues to generate protein-SG or protein-SSG, releasing H2S. However, little is known about the mechanisms by which H2Sn and GSH affect the disulfide bonds. In this study, we provide direct evidences that H2Sn and GSH modify the sulfhydryl group on Cys272, which forms disulfide bonds in acetylcholinesterase (AChE), to generate Cys-SSH and Cys-SSG, respectively. Glutathionylation of disulfide is a two-step reaction based on nucleophilic substitution, in which the first CS bond is broken, then the SS bond is broken to release H2S. H2Sn and GSH controlled self-breathing motion in enzyme catalysis by disconnecting specific disulfide bonds and modifying cysteine residues, thereby regulating AChE activity. Here, we elucidated H2Sn and GSH mechanisms on disulfide in the AChE system and proposed a self-breathing control theory induced by H2Sn and GSH. These theoretical findings shed light on the biological functions of H2Sn and GSH on sulfhydryl and disulfide bonds and enrich the theory of enzyme activity regulation.
Collapse
Affiliation(s)
- Yanwen Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaoliang Hu
- Department of Surgical Oncology, First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Yunen Liu
- Shenyang Medical College, Shenyang 110034, China
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanqun Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
17
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
18
|
Hecht F, Zocchi M, Alimohammadi F, Harris IS. Regulation of antioxidants in cancer. Mol Cell 2024; 84:23-33. [PMID: 38029751 PMCID: PMC10843710 DOI: 10.1016/j.molcel.2023.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Scientists in this field often joke, "If you don't have a mechanism, say it's ROS." Seemingly connected to every biological process ever described, reactive oxygen species (ROS) have numerous pleiotropic roles in physiology and disease. In some contexts, ROS act as secondary messengers, controlling a variety of signaling cascades. In other scenarios, they initiate damage to macromolecules. Finally, in their worst form, ROS are deadly to cells and surrounding tissues. A set of molecules with detoxifying abilities, termed antioxidants, is the direct counterpart to ROS. Notably, antioxidants exist in the public domain, touted as a "cure-all" for diseases. Research has disproved many of these claims and, in some cases, shown the opposite. Of all the diseases, cancer stands out in its paradoxical relationship with antioxidants. Although the field has made numerous strides in understanding the roles of antioxidants in cancer, many questions remain.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fatemeh Alimohammadi
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
19
|
Ray SK, Mukherjee S. Emerging Role of Ferroptosis in Breast Cancer: Characteristics, Therapy, and Translational Implications for the Present and Future. Curr Mol Med 2024; 24:1470-1482. [PMID: 37711099 DOI: 10.2174/1566524023666230913105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Ferroptosis is a nonapoptotic, iron-dependent form of cell death that can be actuated in disease cells by expected improvements and manufactured specialists. Different studies have recently resurrected the role of this newly discovered cell death pathway and demonstrated its efficacy in treating breast cancer. Breast cancer is the most well-known type of cancer among women worldwide. Despite many years of research focusing on cell death in breast cancer, counting apoptosis, clinical treatment leftovers are difficult due to the high likelihood of recurrence. Ferroptosis is defined by a lack of lipid peroxide repair capacity by phospholipid hydroperoxides GPX4, accessibility of redox-active iron, and followed oxidation of polyunsaturated fatty acids acid-containing phospholipids signalling, amino acid and iron metabolism, ferritinophagy, epithelial-tomesenchymal transition, cell adhesion, and mevalonate and phospholipid biosynthesis can all be factors that influence ferroptosis susceptibility. Ferroptosis, an iron-dependent controlled cell death caused by excessive lipid peroxidation, has been entwined in breast cancer development and therapeutic response for the past decade. Advances in enhancing clinical drugs targeting ferroptosis are developing silver linings to treat breast cancer. Ferroptosis is influenced by metabolism and the expression of certain genes, making it a prospective therapeutic target for monitoring malignant growth and an appealing target for precision cancer medication disclosure. In the coming years, research into biomarkers to follow ferroptosis in patients with breast cancer and the course of events and the subsequent use of novel ferroptosis-based treatments will be captious. We present a fundamental analysis of the actual understanding of molecular mechanisms along with regulatory networks associated with ferroptosis, expected physiological functions in growth concealment, ferroptosis-associated differentially expressed genes, treatment targeting potential, and recent advances in the development of therapeutic strategies in this review.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|
20
|
Guan XY, Guan XL, Zhu JR. Mechanisms and applications of ferroptosis-associated regulators in cancer therapy and drug resistance. J Chemother 2023; 35:671-688. [PMID: 36764828 DOI: 10.1080/1120009x.2023.2177808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Iron is an essential element for almost all living things. Both iron excess and iron deficiency can damage the body's health, but the body has developed complex mechanisms to regulate iron balance. The imbalance of iron homeostasis and lipid peroxidation are important features of ferroptosis. In this review, we summarize the latest regulatory mechanisms of ferroptosis, the roles of relevant regulators that target ferroptosis for cancer therapy, and their relationship to drug resistance. In conclusion, targeting ferroptosis is an important strategy for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Ying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiao-Li Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jia-Rui Zhu
- Cuiying Biomedical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
22
|
Aboushousha R, van der Velden J, Hamilton N, Peng Z, MacPherson M, Erickson C, White S, Wouters EFM, Reynaert NL, Seward DJ, Li J, Janssen-Heininger YMW. Glutaredoxin attenuates glutathione levels via deglutathionylation of Otub1 and subsequent destabilization of system x C. SCIENCE ADVANCES 2023; 9:eadi5192. [PMID: 37703360 PMCID: PMC10499329 DOI: 10.1126/sciadv.adi5192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Glutathione (GSH) is a critical component of the cellular redox system that combats oxidative stress. The glutamate-cystine antiporter, system xC-, is a key player in GSH synthesis that allows for the uptake of cystine, the rate-limiting building block of GSH. It is unclear whether GSH or GSH-dependent protein oxidation [protein S-glutathionylation (PSSG)] regulates the activity of system xC-. We demonstrate that an environment of enhanced PSSG promotes GSH increases via a system xC--dependent mechanism. Absence of the deglutathionylase, glutaredoxin (GLRX), augmented SLC7A11 protein and led to significant increases of GSH content. S-glutathionylation of C23 or C204 of the deubiquitinase OTUB1 promoted interaction with the E2-conjugating enzyme UBCH5A, leading to diminished ubiquitination and proteasomal degradation of SLC7A11 and augmentation of GSH, effects that were reversed by GLRX. These findings demonstrate an intricate link between GLRX and GSH via S-glutathionylation of OTUB1 and system xC- and illuminate a previously unknown feed-forward regulatory mechanism whereby enhanced GSH protein oxidation augments cellular GSH.
Collapse
Affiliation(s)
- Reem Aboushousha
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Nicholas Hamilton
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Zhihua Peng
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Maximilian MacPherson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Cuixia Erickson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sheryl White
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Emiel F. M. Wouters
- Department of Respiratory Medicine, NUTRIM School of nutrition and translational research in metabolism, Maastricht University Medical Center, Maastricht, Netherlands
- Ludwig Boltzmann Institute for Lung Research, Vienna, Austria
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of nutrition and translational research in metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - David J. Seward
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jianing Li
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
23
|
Nguyen V, Kravitz J, Gao C, Hochman ML, Meng D, Chen D, Wang Y, Jegga AG, Nelson JS, Tan W. Perturbations of Glutathione and Sphingosine Metabolites in Port Wine Birthmark Patient-Derived Induced Pluripotent Stem Cells. Metabolites 2023; 13:983. [PMID: 37755263 PMCID: PMC10537749 DOI: 10.3390/metabo13090983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Port Wine Birthmarks (PWBs) are a congenital vascular malformation on the skin, occurring in 1-3 per 1000 live births. We have recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, and so we aim to explore them in this study. Metabolites were separated by ultra-performance liquid chromatography and screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant, multivariate, and univariate analyses were used to identify differential metabolites (DMs). KEGG analysis was used to determine the enrichment of metabolic pathways. A total of 339 metabolites was identified. There were 22 DMs, among which nine were downregulated-including sphingosine-and 13 were upregulated, including glutathione in PWB iPSCs, as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and the downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key molecules associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skin. Other significantly affected metabolic pathways in PWB iPSCs included pentose and glucuronate interconversions; amino sugar and nucleotide sugars; alanine, aspartate, and glutamate; arginine, purine, D-glutamine, and D-glutamate; arachidonic acid, glyoxylate, and dicarboxylate; nitrogen, aminoacyl-tRNA biosynthesis, pyrimidine, galactose, ascorbate, and aldarate; and starch and sucrose. Our data demonstrated that there were perturbations in sphingolipid and cellular redox homeostasis in PWB vasculatures, which could facilitate cell survival and pathological progression. Our data implied that the upregulation of glutathione could contribute to laser-resistant phenotypes in some PWB vasculatures.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; (V.N.); (J.K.); (C.G.)
| | - Jacob Kravitz
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; (V.N.); (J.K.); (C.G.)
| | - Chao Gao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; (V.N.); (J.K.); (C.G.)
| | - Marcelo L. Hochman
- The Facial Surgery Center and the Hemangioma & Malformation Treatment Center, Charleston, SC 29425, USA;
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA;
| | - Dongbao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, CA 92617, USA;
| | - Yunguan Wang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (Y.W.); (A.G.J.)
- Division of Gastroenterology, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Human Genetics, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anil G. Jegga
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (Y.W.); (A.G.J.)
- Division of Biomedical Informatics, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229, USA
| | - J Stuart Nelson
- Departments of Surgery and Biomedical Engineering, Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92617, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; (V.N.); (J.K.); (C.G.)
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
24
|
Xia L, Chen Y, Li J, Wang J, Shen K, Zhao A, Jin H, Zhang G, Xi Q, Xia S, Shi T, Li R. B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway. Chin Med J (Engl) 2023; 136:1977-1989. [PMID: 37488673 PMCID: PMC10431251 DOI: 10.1097/cm9.0000000000002772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism. METHODS GC stemness influenced by B7-H3 was detected both in vitro and in vivo . The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t -test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis. RESULTS B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo . Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis ( P = 0.02). CONCLUSIONS B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC.
Collapse
Affiliation(s)
- Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Naval Military Medical University, Shanghai 200433, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Suhua Xia
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
25
|
Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M, Venketaraman V. The Role of Obesity in Breast Cancer Pathogenesis. Cells 2023; 12:2061. [PMID: 37626871 PMCID: PMC10453206 DOI: 10.3390/cells12162061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Nghia Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Aamna Asif
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Anabel Goulding
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Cheldon Ann Alcantara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Annie Vu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Mercedeh Mirhosseini
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Manpreet Singh
- Corona Regional Medical Center, Department of Emergency Medicine, Corona, CA 92882, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| |
Collapse
|
26
|
Peng S, Wang Z, Tang P, Wang S, Huang Y, Xie Q, Wang Y, Tan X, Tang T, Yan X, Xu J, Lan W, Wang L, Zhang D, Wang B, Pan T, Qin J, Jiang J, Liu Q. PHF8-GLUL axis in lipid deposition and tumor growth of clear cell renal cell carcinoma. SCIENCE ADVANCES 2023; 9:eadf3566. [PMID: 37531433 PMCID: PMC10396305 DOI: 10.1126/sciadv.adf3566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
For clear cell renal cell carcinoma (ccRCC), lipid deposition plays important roles in the development, metastasis, and drug resistance. However, the molecular mechanisms underlying lipid deposition in ccRCC remain largely unknown. By conducting an unbiased CRISPR-Cas9 screening, we identified the epigenetic regulator plant homeodomain finger protein 8 (PHF8) as an important regulator in ccRCC lipid deposition. Moreover, PHF8 is regulated by von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) axis and essential for VHL deficiency-induced lipid deposition. PHF8 transcriptionally up-regulates glutamate-ammonia ligase (GLUL), which promotes the lipid deposition and ccRCC progression. Mechanistically, by forming a complex with c-MYC, PHF8 up-regulates TEA domain transcription factor 1 (TEAD1) in a histone demethylation-dependent manner. Subsequently, TEAD1 up-regulates GLUL transcriptionally. Pharmacological inhibition of GLUL by l-methionine sulfoximine not only repressed ccRCC lipid deposition and tumor growth but also enhanced the anticancer effects of everolimus. Thus, the PHF8-GLUL axis represents a potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Shuo Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Qiubo Xie
- Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, Hubei, P.R. China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tang Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xuzhi Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tiejun Pan
- Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, Hubei, P.R. China
| | - Jun Qin
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
27
|
Nguyen V, Kravitz J, Gao C, Hochman ML, Meng D, Chen D, Wang Y, Jegga AG, Nelson JS, Tan W. Perturbations of glutathione and sphingosine metabolites in Port Wine Birthmark patient-derived induced pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549581. [PMID: 37503303 PMCID: PMC10370126 DOI: 10.1101/2023.07.18.549581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Port Wine Birthmark (PWB) is a congenital vascular malformation in the skin, occurring in 1-3 per 1,000 live births. We recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, which we aimed to explore in this study. Metabolites were separated by ultra-performance liquid chromatography and were screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant analysis, multivariate and univariate analysis were used to identify differential metabolites (DMs). KEGG analysis was used for the enrichment of metabolic pathways. A total of 339 metabolites were identified. There were 22 DMs confirmed with 9 downregulated DMs including sphingosine and 13 upregulated DMs including glutathione in PWB iPSCs as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key factors associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skins. Our data demonstrate that there are perturbations in sphingolipid and cellular redox homeostasis in the PWB vasculature, which may facilitate cell survival and pathological progression. Our data imply that upregulation of glutathione may contribute to laser-resistant phenotypes in the PWB vasculature.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, USA
| | - Jacob Kravitz
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, USA
| | - Chao Gao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, USA
| | - Marcelo L. Hochman
- The Facial Surgery Center and the Hemangioma & Malformation Treatment Center, Charleston, South Carolina 29425, USA
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425 USA
| | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, California 92096 USA
| | - Dongbao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, Irvine, California, 92617, USA
| | - Yunguan Wang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
- Division of Gastroenterology, Cincinnati Children Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Human Genetics, Cincinnati Children Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Anil G. Jegga
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
- Division of Biomedical Informatics, Cincinnati Children Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - J Stuart Nelson
- Departments of Surgery and Biomedical Engineering, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, California 92617, USA
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
28
|
Villa-Morales M, Pérez-Gómez L, Pérez-Gómez E, López-Nieva P, Fernández-Navarro P, Santos J. Identification of NRF2 Activation as a Prognostic Biomarker in T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2023; 24:10350. [PMID: 37373496 DOI: 10.3390/ijms241210350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The standard-of-care treatment of T-cell acute lymphoblastic leukaemia (T-ALL) with chemotherapy usually achieves reasonable rates of initial complete response. However, patients who relapse or do not respond to conventional therapy show dismal outcomes, with cure rates below 10% and limited therapeutic options. To ameliorate the clinical management of these patients, it is urgent to identify biomarkers able to predict their outcomes. In this work, we investigate whether NRF2 activation constitutes a biomarker with prognostic value in T-ALL. Using transcriptomic, genomic, and clinical data, we found that T-ALL patients with high NFE2L2 levels had shorter overall survival. Our results demonstrate that the PI3K-AKT-mTOR pathway is involved in the oncogenic signalling induced by NRF2 in T-ALL. Furthermore, T-ALL patients with high NFE2L2 levels displayed genetic programs of drug resistance that may be provided by NRF2-induced biosynthesis of glutathione. Altogether, our results indicate that high levels of NFE2L2 may be a predictive biomarker of poor treatment response in T-ALL patients, which would explain the poor prognosis associated with these patients. This enhanced understanding of NRF2 biology in T-ALL may allow a more refined stratification of patients and the proposal of targeted therapies, with the ultimate goal of improving the outcome of relapsed/refractory T-ALL patients.
Collapse
Affiliation(s)
- María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Pérez-Gómez
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Eduardo Pérez-Gómez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Pilar López-Nieva
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Fernández-Navarro
- Unit of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Networking Biomedical Research Centre of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
29
|
Cahuzac KM, Lubin A, Bosch K, Stokes N, Shoenfeld SM, Zhou R, Lemon H, Asara J, Parsons RE. AKT activation because of PTEN loss upregulates xCT via GSK3β/NRF2, leading to inhibition of ferroptosis in PTEN-mutant tumor cells. Cell Rep 2023; 42:112536. [PMID: 37210723 PMCID: PMC10558134 DOI: 10.1016/j.celrep.2023.112536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Here, we show that the tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) sensitizes cells to ferroptosis, an iron-dependent form of cell death, by restraining the expression and activity of the cystine/glutamate antiporter system Xc- (xCT). Loss of PTEN activates AKT kinase to inhibit GSK3β, increasing NF-E2 p45-related factor 2 (NRF2) along with transcription of one of its known target genes encoding xCT. Elevated xCT in Pten-null mouse embryonic fibroblasts increases the flux of cystine transport and synthesis of glutathione, which enhances the steady-state levels of these metabolites. A pan-cancer analysis finds that loss of PTEN shows evidence of increased xCT, and PTEN-mutant cells are resistant to ferroptosis as a consequence of elevated xCT. These findings suggest that selection of PTEN mutation during tumor development may be due to its ability to confer resistance to ferroptosis in the setting of metabolic and oxidative stress that occurs during tumor initiation and progression.
Collapse
Affiliation(s)
- Kaitlyn M Cahuzac
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abigail Lubin
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn Bosch
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Stokes
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Royce Zhou
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haddy Lemon
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ramon E Parsons
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
30
|
Jiao Z, Pan Y, Chen F. The Metabolic Landscape of Breast Cancer and Its Therapeutic Implications. Mol Diagn Ther 2023; 27:349-369. [PMID: 36991275 DOI: 10.1007/s40291-023-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/31/2023]
Abstract
Breast cancer is the most common malignant tumor globally as of 2020 and remains the second leading cause of cancer-related death among female individuals worldwide. Metabolic reprogramming is well recognized as a hallmark of malignancy owing to the rewiring of multiple biological processes, notably, glycolysis, oxidative phosphorylation, pentose phosphate pathway, as well as lipid metabolism, which support the demands for the relentless growth of tumor cells and allows distant metastasis of cancer cells. Breast cancer cells are well documented to reprogram their metabolism via mutations or inactivation of intrinsic factors such as c-Myc, TP53, hypoxia-inducible factor, and the PI3K/AKT/mTOR pathway or crosstalk with the surrounding tumor microenvironments, including hypoxia, extracellular acidification and interaction with immune cells, cancer-associated fibroblasts, and adipocytes. Furthermore, altered metabolism contributes to acquired or inherent therapeutic resistance. Therefore, there is an urgent need to understand the metabolic plasticity underlying breast cancer progression as well as to dictate metabolic reprogramming that accounts for the resistance to standard of care. This review aims to illustrate the altered metabolism in breast cancer and its underlying mechanisms, as well as metabolic interventions in breast cancer treatment, with the intention to provide strategies for developing novel therapeutic treatments for breast cancer.
Collapse
Affiliation(s)
- Zhuoya Jiao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China
| | - Yunxia Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China
| | - Fengyuan Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.
| |
Collapse
|
31
|
Adinolfi S, Patinen T, Jawahar Deen A, Pitkänen S, Härkönen J, Kansanen E, Küblbeck J, Levonen AL. The KEAP1-NRF2 pathway: Targets for therapy and role in cancer. Redox Biol 2023; 63:102726. [PMID: 37146513 DOI: 10.1016/j.redox.2023.102726] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
The KEAP1-NRF2 pathway is the key regulator of cellular defense against both extrinsic and intrinsic oxidative and electrophilic stimuli. Since its discovery in the 1990s, its seminal role in various disease pathologies has become well appreciated, motivating research to elucidate the intricacies of NRF2 signaling and its downstream effects to identify novel targets for therapy. In this graphical review, we present an updated overview of the KEAP1-NRF2 signaling, focusing on the progress made within the past ten years. Specifically, we highlight the advances made in understanding the mechanism of activation of NRF2, resulting in novel discoveries in its therapeutic targeting. Furthermore, we will summarize new findings in the rapidly expanding field of NRF2 in cancer, with important implications for its diagnostics and treatment.
Collapse
Affiliation(s)
- Simone Adinolfi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Tommi Patinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Sini Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Jouni Härkönen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland; Department of Pathology, Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Emilia Kansanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland; Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland.
| |
Collapse
|
32
|
Metabolic reprogramming of glutamine involved in tumorigenesis, multidrug resistance and tumor immunity. Eur J Pharmacol 2023; 940:175323. [PMID: 36535492 DOI: 10.1016/j.ejphar.2022.175323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 12/23/2022]
Abstract
Glutamine, as the most abundant amino acid in the body, participates in the biological synthesis of nucleotides and other non-essential amino acids in the process of cell metabolism. Recent studies showed that glutamine metabolic reprogramming is an important signal during cancer development and progression. This metabolic signature in cancer cells can promote the development of cancer by activating multiple signaling pathways and oncogenes. It can also be involved in tumor immune regulation and promote the development of drug resistance to tumors. In this review, we mainly summarize the role of glutamine metabolic reprogramming in tumors, including the regulation of multiple signaling pathways. We further discussed the promising tumor treatment strategy by targeting glutamine metabolism alone or in combination with chemotherapeutics.
Collapse
|
33
|
Xie Z, Xu J, Xiao D, Lei J, Yu J. Dual regulation of Akt and glutathione caused by isoalantolactone effectively triggers human ovarian cancer cell apoptosis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:62-71. [PMID: 36727416 PMCID: PMC10157634 DOI: 10.3724/abbs.2023003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
<p indent="0mm">Ovarian cancer is one of leading causes of cancer death in gynecological tumor. Isoalantolactone (IL), present in several medicinal plants, exhibits various biological activities, and its mechanism underlying anti-ovarian cancer activity needs to be further investigated. Here, we find that IL inhibits the proliferation of SKOV-3 and OVCAR-3 cells by causing G2/M phase arrest and inducing apoptosis. Moreover, IL decreases intracellular glutathione (GSH) level, and induces reactive oxygen species (ROS) generation in SKOV-3 cells. Furthermore, IL induces inactivation of Akt which is required for the cytotoxicity of IL. In addition, overexpression of Akt attenuates the IL-induced growth inhibition and ROS generation. GSH supplementation moderately increases the expression of phospho-Akt. Further investigation reveals that pretreatment with L-buthionine-sulfoximine (a GSH biosynthesis inhibitor) restores the Akt-mediated attenuation of growth inhibition induced by IL. Moreover, co-treatment with IL and wortmannin (an Akt pathway inhibitor) increases the growth inhibition attenuated by pretreatment with N-acetyl-L-cysteine (a precursor for GSH biosynthesis). These results indicate that inactivation of Akt and downregulation of GSH level induced by IL are related to each other. In conclusion, combined targeting Akt and GSH is an effective strategy for cancer therapy and IL can be a promising anticancer agent for further exploration.</p>.
Collapse
Affiliation(s)
- Zhoufan Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou 510515, China
| | - Jie Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Di Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jiachuan Lei
- Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Jianqing Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
34
|
Yu D, Zhou L, Liu X, Xu G. Stable isotope-resolved metabolomics based on mass spectrometry: Methods and their applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
35
|
Wang S, Liu Z, Wang Y, Shi B, Jin Y, Wang Y, Jiang X, Song M, Yu W. Grape seed extract proanthocyanidin antagonizes aristolochic acid I-induced liver injury in rats by activating PI3K-AKT pathway. Toxicol Mech Methods 2023; 33:131-140. [PMID: 35850572 DOI: 10.1080/15376516.2022.2103479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aristolochic acid is internationally recognized as a carcinogen. It has been shown that the main toxic mechanism of aristolochic acid on the liver and kidney is the induction of ROS-induced oxidative stress damage. To investigate whether proanthocyanidins (GSPE), a natural antioxidant product from grape seed extract, could antagonize AA-I-induced liver injury. Thirty-two SD rats were selected and divided into aristolochic acid exposure group (AA-I), normal control group, GSPE group and GSPE intervention group. The protective effects of GSPE on AA-I liver injury were evaluated by examining the body weight, liver index, liver function and liver pathological sections of rats. The results of body weight, liver index, liver function and liver pathological sections of rats showed that GSPE had antagonistic effects on AA-I-induced liver injury. antioxidant enzyme activity in the GSPE intervention group was significantly higher than that in the aristolochic acid group, apoptotic cells were significantly lower than that in the aristolochic acid group, protein and mRNA expression of PI3K-AKT and BCL-2 were significantly higher than that in the aristolochic acid group, BAX, The protein and mRNA expression of BAX, CASPAES-3, CASPAES-9 were significantly lower than those of the aristolochic acid group. GSPE can antagonize aristolochic acid-induced hepatotoxicity, and its mechanism of action is to antagonize aristolochic acid I-induced liver injury by inhibiting PI3K-AKT pathway-mediated hepatocyte apoptosis.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhihui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yinzhu Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Animal Disease Prevention and Control, Harbin, China.,Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
36
|
Qian X, Wang Y, Xie H, Wang C, Li J, Lei Y, Liu H, Wu Y, Li Y, Zhang Z. Bioinspired nanovehicle of furoxans-oxaliplatin improves tumoral distribution for chemo-radiotherapy. J Control Release 2023; 353:447-461. [PMID: 36470332 DOI: 10.1016/j.jconrel.2022.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
The spatiotemporal distribution of therapeutic agents in tumors remains an essential challenge of radiation-mediated therapy. Herein, we rationally designed a macrophage microvesicle-inspired nanovehicle of nitric oxide donor-oxaliplatin (FO) conjugate (M-PFO), aiming to promote intratumor permeation and distribution profiles for chemo-radiotherapy. FO was responsively released from M-PFO in intracellular acidic environments, and then be activated by glutathione (GSH) into active oxaliplatin and NO molecules in a programmed manner. M-PFO exhibited notable accumulation, permeation and cancer cell accessibility in tumor tissues. Upon radiation, the reactive peroxynitrite species (ONOO-) were largely produced, which could diffuse into regions over 400 μm away from the tumor vessels and be detectable after 24 h of radiation, thereby exhibiting superior efficacy in improving the spatiotemporal distribution in tumors versus common reactive oxygen species (ROS). Moreover, M-PFO mediated chemo-radiotherapy caused notable inhibition of tumor growth, with an 89.45% inhibition in HT-29 tumor models and a 92.69% suppression in CT-26 tumor models. Therefore, this bioinspired design provides an encouraging platform to improve intratumor spatiotemporal distribution to synergize chemo-radiotherapy.
Collapse
Affiliation(s)
- Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honglei Xie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Chen Wang
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Lei
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201203, China
| | - Huanzhen Liu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201203, China
| | - Yao Wu
- School of Pharmacy& Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Zhiwen Zhang
- School of Pharmacy& Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China.
| |
Collapse
|
37
|
Wang D, Li X, Gong G, Lu Y, Guo Z, Chen R, Huang H, Li Z, Bian J. An updated patent review of glutaminase inhibitors (2019-2022). Expert Opin Ther Pat 2023; 33:17-28. [PMID: 36698323 DOI: 10.1080/13543776.2023.2173573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Kidney-type glutaminase (GLS1), a key enzyme controlling the hydrolysis of glutamine to glutamate to resolve the 'glutamine addiction' of cancer cells, has been shown to play a central role in supporting cancer growth and proliferation. Therefore, the inhibition of GLS1 as a novel cancer treating strategy is of great interest. AREAS COVERED This review covers recent patents (2019-present) involving GLS1 inhibitors, which are mostly focused on their chemical structures, molecular mechanisms of action, pharmacokinetic properties, and potential clinical applications. EXPERT OPINION Currently, despite significant efforts, the search for potent GLS1 inhibitors has not resulted in the development of compounds for therapeutic applications. Most recent patents and literature focus on GLS1 inhibitors IPN60090 and DRP104, which have entered clinical trials. While other patent disclosures during this period have not generated any drug candidates, the clinical update will inform the potential of these inhibitors as promising therapeutic agents either as single or as combination interventions.
Collapse
Affiliation(s)
- Danni Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaohong Li
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangyue Gong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulong Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziming Guo
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huidan Huang
- Department of Pharmaceutical Engineering, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
38
|
Li Y, Zhang X, Wang Z, Li B, Zhu H. Modulation of redox homeostasis: A strategy to overcome cancer drug resistance. Front Pharmacol 2023; 14:1156538. [PMID: 37033606 PMCID: PMC10073466 DOI: 10.3389/fphar.2023.1156538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer treatment is hampered by resistance to conventional therapeutic strategies, including chemotherapy, immunotherapy, and targeted therapy. Redox homeostasis manipulation is one of the most effective innovative treatment techniques for overcoming drug resistance. Reactive oxygen species (ROS), previously considered intracellular byproducts of aerobic metabolism, are now known to regulate multiple signaling pathways as second messengers. Cancer cells cope with elevated amounts of ROS during therapy by upregulating the antioxidant system, enabling tumor therapeutic resistance via a variety of mechanisms. In this review, we aim to shed light on redox modification and signaling pathways that may contribute to therapeutic resistance. We summarized the molecular mechanisms by which redox signaling-regulated drug resistance, including altered drug efflux, action targets and metabolism, enhanced DNA damage repair, maintained stemness, and reshaped tumor microenvironment. A comprehensive understanding of these interrelationships should improve treatment efficacy from a fundamental and clinical research point of view.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- *Correspondence: Huili Zhu,
| |
Collapse
|
39
|
Antika L, Meilawati L, Dewi R, Tasfiyati A, Septama A. Scopoletin: Anticancer potential and mechanism of action. Asian Pac J Trop Biomed 2023. [DOI: 10.4103/2221-1691.367685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
40
|
Iron-Sulfur Clusters: A Key Factor of Regulated Cell Death in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7449941. [PMID: 36338346 PMCID: PMC9629928 DOI: 10.1155/2022/7449941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022]
Abstract
Iron-sulfur clusters are ancient cofactors that play crucial roles in myriad cellular functions. Recent studies have shown that iron-sulfur clusters are closely related to the mechanisms of multiple cell death modalities. In addition, numerous previous studies have demonstrated that iron-sulfur clusters play an important role in the development and treatment of cancer. This review first summarizes the close association of iron-sulfur clusters with cell death modalities such as ferroptosis, cuprotosis, PANoptosis, and apoptosis and their potential role in cancer activation and drug resistance. This review hopes to generate new cancer therapy ideas and overcome drug resistance by modulating iron-sulfur clusters.
Collapse
|
41
|
Monsalve A, Canals I, Oburoglu L. FOXO1 regulates pentose phosphate pathway-mediated induction of developmental erythropoiesis. Front Cell Dev Biol 2022; 10:1039636. [PMID: 36313554 PMCID: PMC9596918 DOI: 10.3389/fcell.2022.1039636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Primitive, neonatal and adult erythroid cells have been previously shown to have an active pentose phosphate pathway (PPP) that fuels various processes. However, it is unclear whether the PPP plays a role during the emergence of erythroid progenitors from hemogenic endothelium (HE). In this study, we explored PPP and its genetic regulation in developmental erythropoiesis. We induced hematopoietic differentiation of human induced pluripotent stem cells (hiPSCs) to obtain HE cells. These cells were treated with lentiviral vectors harboring shRNAs against FOXO1, or with inhibitors against the PPP, NRF2 or AKT. Erythroid differentiation, proliferation and frequency were evaluated by flow cytometry. Gene expression was assessed by qPCR or by analysis of available RNAseq data. We found that PPP is indispensable for the erythroid differentiation of HE cells and it partially fuels nucleotide biosynthesis. Moreover, we showed that NRF2 and AKT are essential, while FOXO1 is detrimental, for HE-derived erythroid differentiation. In contrast, blocking FOXO1 expression did not affect erythroid differentiation of cord-blood HSPCs. Mechanistically, FOXO1 inhibition in HE cells led to an increase in the non-oxidative branch of the PPP. During developmental erythropoiesis, the gradual decrease in FOXO1 activates the PPP and fuels nucleotide biosynthesis and cell proliferation.
Collapse
Affiliation(s)
- Anuntxi Monsalve
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Isaac Canals
- Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
42
|
The Differential Metabolic Signature of Breast Cancer Cellular Response to Olaparib Treatment. Cancers (Basel) 2022; 14:cancers14153661. [PMID: 35954325 PMCID: PMC9367310 DOI: 10.3390/cancers14153661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Breast cancer remains a leading cause of female cancer related mortality worldwide. Loss of genomic stability and dysregulation of cellular metabolism are well-recognized features of breast cancer, presenting an opportunity to study the drivers of breast cancer progression and resistance to chemotherapy. The overarching goal of this work is to perform combined analysis of DNA damage repair and cellular metabolism in response to olaparib treatment in a panel of breast cancer cell lines. By applying a combined untargeted metabolomics and molecular biology approach, our findings show dysregulation of amino acid metabolism and metabolic reprogramming from glycolysis to amino acid utilization to be a common feature in all breast cancer cell lines examined, some of which are consistent with findings from the analysis of clinical breast cancer tumours. Functional assessment of genetic alterations offers the scope to design new prognostic tools and inform the design of new chemotherapies or drug combinations. Abstract Metabolic reprogramming and genomic instability are key hallmarks of cancer, the combined analysis of which has gained recent popularity. Given the emerging evidence indicating the role of oncometabolites in DNA damage repair and its routine use in breast cancer treatment, it is timely to fingerprint the impact of olaparib treatment in cellular metabolism. Here, we report the biomolecular response of breast cancer cell lines with DNA damage repair defects to olaparib exposure. Following evaluation of olaparib sensitivity in breast cancer cell lines, we immunoprobed DNA double strand break foci and evaluated changes in cellular metabolism at various olaparib treatment doses using untargeted mass spectrometry-based metabolomics analysis. Following identification of altered features, we performed pathway enrichment analysis to measure key metabolic changes occurring in response to olaparib treatment. We show a cell-line-dependent response to olaparib exposure, and an increased susceptibility to DNA damage foci accumulation in triple-negative breast cancer cell lines. Metabolic changes in response to olaparib treatment were cell-line and dose-dependent, where we predominantly observed metabolic reprogramming of glutamine-derived amino acids and lipids metabolism. Our work demonstrates the effectiveness of combining molecular biology and metabolomics studies for the comprehensive characterisation of cell lines with different genetic profiles. Follow-on studies are needed to map the baseline metabolism of breast cancer cells and their unique response to drug treatment. Fused with genomic and transcriptomics data, such readout can be used to identify key oncometabolites and inform the rationale for the design of novel drugs or chemotherapy combinations.
Collapse
|
43
|
Dibble CC, Barritt SA, Perry GE, Lien EC, Geck RC, DuBois-Coyne SE, Bartee D, Zengeya TT, Cohen EB, Yuan M, Hopkins BD, Meier JL, Clohessy JG, Asara JM, Cantley LC, Toker A. PI3K drives the de novo synthesis of coenzyme A from vitamin B5. Nature 2022; 608:192-198. [PMID: 35896750 PMCID: PMC9352595 DOI: 10.1038/s41586-022-04984-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/16/2022] [Indexed: 12/18/2022]
Abstract
In response to hormones and growth factors, the class I phosphoinositide-3-kinase (PI3K) signalling network functions as a major regulator of metabolism and growth, governing cellular nutrient uptake, energy generation, reducing cofactor production and macromolecule biosynthesis1. Many of the driver mutations in cancer with the highest recurrence, including in receptor tyrosine kinases, Ras, PTEN and PI3K, pathologically activate PI3K signalling2,3. However, our understanding of the core metabolic program controlled by PI3K is almost certainly incomplete. Here, using mass-spectrometry-based metabolomics and isotope tracing, we show that PI3K signalling stimulates the de novo synthesis of one of the most pivotal metabolic cofactors: coenzyme A (CoA). CoA is the major carrier of activated acyl groups in cells4,5 and is synthesized from cysteine, ATP and the essential nutrient vitamin B5 (also known as pantothenate)6,7. We identify pantothenate kinase 2 (PANK2) and PANK4 as substrates of the PI3K effector kinase AKT8. Although PANK2 is known to catalyse the rate-determining first step of CoA synthesis, we find that the minimally characterized but highly conserved PANK49 is a rate-limiting suppressor of CoA synthesis through its metabolite phosphatase activity. Phosphorylation of PANK4 by AKT relieves this suppression. Ultimately, the PI3K–PANK4 axis regulates the abundance of acetyl-CoA and other acyl-CoAs, CoA-dependent processes such as lipid metabolism and proliferation. We propose that these regulatory mechanisms coordinate cellular CoA supplies with the demands of hormone/growth-factor-driven or oncogene-driven metabolism and growth. The PI3K–PANK4 axis regulates coenzyme A synthesis, the abundance of acetyl-CoA, and CoA-dependent processes such as lipid metabolism, and these regulatory mechanisms coordinate cellular CoA supplies with the demands of hormone and growth-factor-driven or oncogene-driven metabolism and growth.
Collapse
Affiliation(s)
- Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Grace E Perry
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Evan C Lien
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Renee C Geck
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Bartee
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Thomas T Zengeya
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Emily B Cohen
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Min Yuan
- Mass Spectrometry Core, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - John G Clohessy
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John M Asara
- Mass Spectrometry Core, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lewis C Cantley
- The Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, NY, USA
| | - Alex Toker
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. .,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Goetting I, Larafa S, Eul K, Kunin M, Jakob B, Matschke J, Jendrossek V. Targeting AKT-Dependent Regulation of Antioxidant Defense Sensitizes AKT-E17K Expressing Cancer Cells to Ionizing Radiation. Front Oncol 2022; 12:920017. [PMID: 35875130 PMCID: PMC9304891 DOI: 10.3389/fonc.2022.920017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance.We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation.TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K.We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione de novo synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision.
Collapse
Affiliation(s)
- Isabell Goetting
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Safa Larafa
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Katharina Eul
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Mikhail Kunin
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
- *Correspondence: Verena Jendrossek, ; Johann Matschke,
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
- *Correspondence: Verena Jendrossek, ; Johann Matschke,
| |
Collapse
|
45
|
Wang H, Liu X, Yan X, Fan J, Li D, Ren J, Qu X. A MXene-derived redox homeostasis regulator perturbs the Nrf2 antioxidant program for reinforced sonodynamic therapy. Chem Sci 2022; 13:6704-6714. [PMID: 35756527 PMCID: PMC9172572 DOI: 10.1039/d1sc07073h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a spatiotemporally controllable therapeutic modality in combating cancer because of its high tissue-penetration depth and minimal invasiveness. However, the elevated nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant program in cancer cells can serve as a chief reactive oxygen species (ROS) detoxification system to alleviate oxidative injury and promote tumorigenesis, and thus greatly antagonize the therapeutic efficacy of ROS-mediated anticancer therapies. Herein, we report that vanadium carbide MXene-derived carbon dots (PMQDs) can act as high-efficacy sonosensitizers to efficiently generate ROS upon US irradiation and simultaneously hinder the Nrf2 antioxidant program for enhanced sonodynamic therapy of cancer. These PMQDs show superior US-triggered ROS generating ability because of their efficient migration/separation of electron-hole pairs and narrow bandgap. Importantly, these PMQDs can serve as efficient redox homeostasis regulators to perturb the Nrf2 antioxidant mechanism and thus reduce its effects on ROS neutralization for enhanced SDT efficacy. Overall, the present study will not only provide a new paradigm to augment SDT by perturbing the Nrf2 antioxidant program, but also give valuable insights into developing high-efficacy MXene-derived nanoagents for cancer therapy.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xinchen Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Xiangyu Yan
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Jiawen Fan
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
46
|
Kadkhoda J, Tarighatnia A, Tohidkia MR, Nader ND, Aghanejad A. Photothermal therapy-mediated autophagy in breast cancer treatment: Progress and trends. Life Sci 2022; 298:120499. [DOI: 10.1016/j.lfs.2022.120499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
|
47
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
48
|
Mitra S, Patra T, Saha D, Ghosh P, Mustafi SM, Varghese AC, Murmu N. Sub-chronic cadmium and lead compound exposure induces reproductive toxicity and development of testicular germ cell neoplasia in situ in murine model: Attenuative effects of resveratrol. J Biochem Mol Toxicol 2022; 36:e23058. [PMID: 35362238 DOI: 10.1002/jbt.23058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Cadmium and lead are widespread, nonbiodegradable heavy metals of perpetual environmental concerns. The present study aimed to evaluate whether sub-chronic exposure to cadmium chloride (CdCl2 ) and lead acetate [Pb(CH3 COO)2 ] induces reproductive toxicity and development of testicular germ cell neoplasia in situ (GCNIS) in swiss albino mice. The effects of resveratrol to reverse the metal-induced toxicity were also analyzed. The mice were randomly divided into four groups for metal treatments and two groups received two different doses of each metal, CdCl2 (0.25 and 0.5 mg/kg) and Pb(CH3 COO)2 (3 and 6 mg/kg). The fourth group received oral doses of 20 mg/kg resveratrol in combination with 0.5 mg/kg CdCl2 or 6 mg/kg Pb(CH3 COO)2 for 16 weeks. Toxic effects of both metals were estimated qualitatively and quantitatively by the alterations in sperm parameters, oxidative stress markers, testicular histology, and protein expressions of the treated mice. Pronounced perturbation of sperm parameters, cellular redox balance were observed with severe distortion of testicular histo-architecture in metal exposed mice. Significant overexpression of Akt cascade and testicular GCNIS marker proteins were recorded in tissues treated with CdCl2 . Notable improvements were observed in all the evaluated parameters of resveratrol cotreated mice groups. Taken together, the findings of this study showed that long-term exposure to Cd and Pb compounds, induced acute reproductive toxicity and initiation of GCNIS development in mice. Conversely, resveratrol consumption abrogated metal-induced perturbation of spermatogenesis, testicular morphology, and the upregulation of Akt cascade proteins along with GCNIS markers, which could have induced the development of testicular cancer.
Collapse
Affiliation(s)
- Sreyashi Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapas Patra
- E. Doisy Research Center, Saint Louis University, St. Louis, Missouri, USA
| | - Depanwita Saha
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | - Paramita Ghosh
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
49
|
Gong WY, Xu B, Liu L, Li ST. Dezocine relieves the postoperative hyperalgesia in rats through suppressing the hyper-action of Akt1/GSK-3β pathway. Exp Brain Res 2022; 240:1435-1444. [PMID: 35333956 DOI: 10.1007/s00221-022-06341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
The relieving role of dezocine in pain after surgery was previously reported, while the potential mechanism was not completely clear. Therefore, the current research probed into the regulatory mechanism of dezocine in pain after surgery. A postoperative pain model was established by performing plantar incision surgery on the juvenile Sprague-Dawley rats. After the rats were treated with dezocine or SC79 (Akt1 activator), the paw withdrawal threshold and paw withdrawal latency of rats were detected to evaluate the mechanical allodynia and thermal hyperalgesia. After the plantar tissue, dorsal root ganglions, and spinal cord of rats were collected, the expressions of Akt1, p-Akt1, GSK-3β, and p-GSK-3β in the tissues were determined by western blot to evaluate the activation state of the Akt1/GSK-3β pathway. After surgery, the paw withdrawal threshold and paw withdrawal latency of rats were lessened, whereas the ratios of p-Akt1/Akt1 and p-GSK-3β/GSK-3β were augmented in rat plantar tissue, dorsal root ganglions, and spinal cord. After treatment with dezocine alone, the paw withdrawal threshold and paw withdrawal latency of postoperative rats were elevated, but ratios of p-Akt1/Akt1 and p-GSK-3β/GSK-3β were reduced. After co-treatment with dezocine and SC79, SC79 reversed the effects of dezocine on elevating the paw withdrawal threshold and paw withdrawal latency, and reducing the ratios of p-Akt1/Akt1 and p-GSK-3β/GSK-3β in postoperative rats. Dezocine ameliorated the postoperative hyperalgesia in rats via repressing the hyper-action of Akt1/GSK-3β pathway.
Collapse
Affiliation(s)
- Wen-Yi Gong
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, No.100, Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China.,Department of Anesthesiology, Wusong Hospital, No.101, North Tongtai Road, Baoshan District, Shanghai, 200940, People's Republic of China
| | - Bing Xu
- Department of Anesthesiology, Wusong Hospital, No.101, North Tongtai Road, Baoshan District, Shanghai, 200940, People's Republic of China
| | - Li Liu
- Department of Anesthesiology, Wusong Hospital, No.101, North Tongtai Road, Baoshan District, Shanghai, 200940, People's Republic of China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, No.100, Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
50
|
Lee AH, Mejia Peña C, Dawson MR. Comparing the Secretomes of Chemorefractory and Chemoresistant Ovarian Cancer Cell Populations. Cancers (Basel) 2022; 14:1418. [PMID: 35326569 PMCID: PMC8946241 DOI: 10.3390/cancers14061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) constitutes the majority of all ovarian cancer cases and has staggering rates of both refractory and recurrent disease. While most patients respond to the initial treatment with paclitaxel and platinum-based drugs, up to 25% do not, and of the remaining that do, 75% experience disease recurrence within the subsequent two years. Intrinsic resistance in refractory cases is driven by environmental stressors like tumor hypoxia which alter the tumor microenvironment to promote cancer progression and resistance to anticancer drugs. Recurrent disease describes the acquisition of chemoresistance whereby cancer cells survive the initial exposure to chemotherapy and develop adaptations to enhance their chances of surviving subsequent treatments. Of the environmental stressors cancer cells endure, exposure to hypoxia has been identified as a potent trigger and priming agent for the development of chemoresistance. Both in the presence of the stress of hypoxia or the therapeutic stress of chemotherapy, cancer cells manage to cope and develop adaptations which prime populations to survive in future stress. One adaptation is the modification in the secretome. Chemoresistance is associated with translational reprogramming for increased protein synthesis, ribosome biogenesis, and vesicle trafficking. This leads to increased production of soluble proteins and extracellular vesicles (EVs) involved in autocrine and paracrine signaling processes. Numerous studies have demonstrated that these factors are largely altered between the secretomes of chemosensitive and chemoresistant patients. Such factors include cytokines, growth factors, EVs, and EV-encapsulated microRNAs (miRNAs), which serve to induce invasive molecular, biophysical, and chemoresistant phenotypes in neighboring normal and cancer cells. This review examines the modifications in the secretome of distinct chemoresistant ovarian cancer cell populations and specific secreted factors, which may serve as candidate biomarkers for aggressive and chemoresistant cancers.
Collapse
Affiliation(s)
- Amy H. Lee
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| | - Michelle R. Dawson
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| |
Collapse
|