1
|
Kosma DK, Graça J, Molina I. Update on the structure and regulated biosynthesis of the apoplastic polymers cutin and suberin. PLANT PHYSIOLOGY 2025; 197:kiae653. [PMID: 39657911 DOI: 10.1093/plphys/kiae653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The plant lipid polymers cutin and suberin play a critical role in many aspects of plant growth, development, and physiology. The mechanisms of cutin and suberin biosynthesis are relatively well understood thanks to just over 2 decades of work with primarily Arabidopsis (Arabidopsis thaliana) mutants. Recent advances in our understanding of cutin and suberin structure have arisen through the application of novel chemistries targeted at quantitative comprehension of intermolecular linkages, isolating intact suberins and cutins, and the application of advanced analytical techniques. The advent of high-throughput transcription factor binding assays and next-generation sequencing has facilitated the discovery of numerous cutin and suberin-regulating transcription factors and their gene promoter targets. Herein we provide an overview of aspects of cutin and suberin structure, biosynthesis, and transcriptional regulation of their synthesis highlighting recent developments in our understanding of these facets of cutin and suberin biology. We further identify outstanding questions in these respective areas and provide perspectives on how to advance the field to address these questions.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89501, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89501, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada P6A 2G4
| |
Collapse
|
2
|
Wang W, Chi M, Liu S, Zhang Y, Song J, Xia G, Liu S. TaGPAT6 enhances salt tolerance in wheat by synthesizing cutin and suberin monomers to form a diffusion barrier. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:208-225. [PMID: 39601645 DOI: 10.1111/jipb.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
One mechanism plants use to tolerate high salinity is the deposition of cutin and suberin to form apoplastic barriers that limit the influx of ions. However, the mechanism underlying barrier formation under salt stress is unclear. Here, we characterized the glycerol-3-phosphate acyltransferase (GPAT) family gene TaGPAT6, encoding a protein involved in cutin and suberin biosynthesis for apoplastic barrier formation in wheat (Triticum aestivum). TaGPAT6 has both acyltransferase and phosphatase activities, which are responsible for the synthesis of sn-2-monoacylglycerol (sn-2 MAG), the precursor of cutin and suberin. Overexpressing TaGPAT6 promoted the deposition of cutin and suberin in the seed coat and the outside layers of root tip cells and enhanced salt tolerance by reducing sodium ion accumulation within cells. By contrast, TaGPAT6 knockout mutants showed increased sensitivity to salt stress due to reduced cutin and suberin deposition and enhanced sodium ion accumulation. Yeast-one-hybrid and electrophoretic mobility shift assays identified TaABI5 as the upstream regulator of TaGPAT6. TaABI5 knockout mutants showed suppressed expression of TaGPAT6 and decreased barrier formation in the seed coat. These results indicate that TaGPAT6 is involved in cutin and suberin biosynthesis and the resulting formation of an apoplastic barrier that enhances salt tolerance in wheat.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Menghan Chi
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shupeng Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ying Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiawang Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257345, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
3
|
Straube J, Athoo TO, Zeisler-Diehl V, Suresh K, Schreiber L, Knoche M. Naturally russeted and wound russeted skins of mango (cv. 'Apple') show no differences in anatomy, chemical composition or gene expression. Sci Rep 2025; 15:2366. [PMID: 39825029 PMCID: PMC11742678 DOI: 10.1038/s41598-025-86563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
The mango cultivar 'Apple' is commercially important in Kenya but highly susceptible to russeting. Russeting refers to an area of fruit skin where the primary (epidermal) surface has been replaced by a secondary (peridermal) surface. The objective was to establish histologies, gene expressions and chemical compositions of a natural periderm, a wound-induced periderm and of cuticles of an un-russeted skin. Fluorescence microscopy revealed a suberized phellem in natural and wound-induced periderms. Wound-induced periderms had more cell layers and a higher mass than natural periderms. Compared with cuticles, periderms showed decreased expressions of cuticle-related genes (MiSHN1, MiGPAT6, MiCUS1, MiCER1, MiWCB11) and increased expressions of periderm-related genes (MiMYB93, MiNAC058, MiCYP86A1, MiCYP86B1, MiGPAT5, MiABCG20). Natural periderms and wound-induced periderms contained cutin and suberin monomers (C16-C28), including carboxylic, dicarboxylic, and ω-hydroxy acids and primary alcohols. Cuticles of the primary skin contained cutin monomers of similar chemistry but shorter chain lengths (C16-C22). The wax composition in natural and wound-induced periderms was similar to that in cuticles. Lignin monomers in natural and wound-induced periderms contained p-hydroxyphenyl, guaiacyl and syringyl units, but only traces of these occurred in cuticles. In 'Apple' mango, the histologies, gene expressions and compositions of natural and wound-induced periderms are largely the same.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas O Athoo
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Viktoria Zeisler-Diehl
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
4
|
Ao Y, Wu Q, Zheng J, Zhang C, Zhao Y, Xu R, Xue K, Dai C, Yang M. Building the physiological barrier: Suberin plasticity in response to environmental stimuli. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112300. [PMID: 39442632 DOI: 10.1016/j.plantsci.2024.112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In response to environmental changes, plant roots undergo two major differentiations: the formation of the Casparian strip and the suberin lamella, both of them are widely recognized as an apoplastic diffusion barrier for nutrient and water exchange between the soil and the root vascular bundle. Suberin is a complex biopolyester composed of glycerol esters and phenolic compounds deposited in the cell walls of specific tissues such as endodermis, exodermis, periderm, seed coat and other marginal tissues. Recently, significant progress has been made due to the development of biochemical and genetic techniques. In this review, we not only summarize the aspect of suberin biosynthesis, transport and polymerization, but also elucidate the molecular mechanisms regarding its regulatory network, as well as its adaptive role in abiotic or biotic stress. This will provide important theoretical references for improving crop growth by modifying their adaptive root suberin structure when exposed to environmental changes.
Collapse
Affiliation(s)
- Yan Ao
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Qi Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jiqing Zheng
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Chi Zhang
- Shanghai Lixin University of Accounting and Finance, Shanghai 200032, China
| | - Yu Zhao
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kaili Xue
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Miaoyan Yang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Kaplan Y, Wang Y, Manasherova E, Cohen H, Ginzberg I. Metabolic and gene-expression analyses reveal developmental dynamics of cutin deposition in pomegranate fruit grown under different environmental conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108991. [PMID: 39106765 DOI: 10.1016/j.plaphy.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
The chemical and transcriptional changes in the cuticle of pomegranate (Punica granatum L.) fruit grown under different environmental conditions were studied. We collected fruit from three orchards located in different regions in Israel, each with a distinct microclimate. Fruit were collected at six phenological stages, and cutin monomers in the fruit cuticle were profiled by gas chromatography-mass spectrometry (GC-MS), along with qPCR transcript-expression analyses of selected cutin-related genes. While fruit phenotypes were comparable along development in all three orchards, principal component analyses of cutin monomer profiles suggested clear separation between cuticle samples of young green fruit to those of maturing fruit. Moreover, total cutin contents in green fruit were lower in the orchard characterized by a hot and dry climate compared to orchards with moderate temperatures. The variances detected in total cutin contents between orchards corresponded well with the expression patterns of BODYGUARD, a key biosynthetic gene operating in the cutin biosynthetic pathway. Based on our extraction protocols, we found that the cutin polyester that builds the pomegranate fruit cuticle accumulates some levels of gallic acid-the precursor of punicalagin, a well-known potent antioxidant metabolite in pomegranate fruit. The gallic acid was also one of the predominant metabolites contributing to the variability between developmental stages and orchards, and its accumulation levels were opposite to the expression patterns of the UGT73AL1 gene which glycosylates gallic acid to synthesize punicalagin. To the best of our knowledge, this is the first detailed composition of the cutin polyester that forms the pomegranate fruit cuticle.
Collapse
Affiliation(s)
- Yulia Kaplan
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Yuying Wang
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Idit Ginzberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
6
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
7
|
Kumachova TK, Voronkov AS. Cutinsomes of Malus Mill. (Rosaceae) leaf and pericarp: genesis, localization, and transport. Micron 2024; 183:103657. [PMID: 38735105 DOI: 10.1016/j.micron.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
New data were obtained on specific bionanostructures, cutinsomes, which are involved in the formation of cuticles on the surface of leaf blades and pericarp of Malus domestica Borkh (Malus Mill., Rosaceae)introduced to the mountains at the altitudes of 1200 and 1700 m above sea level. Cutinsomes, which are electron-dense structures of spherical shape, have been identified by transmission electron microscopy. It was demonstrated that plastids can be involved in the synthesis of their constituent nanocomponents. The greatest number of nanoparticles was observed in the granal thylakoid lumen of the chloroplasts in palisade mesophyll cells and pericarp hypodermal cells. The transmembrane transport of cutinsomes into the cell wall cuticle proper by exocytosis has been visualized for the first time. The plasma membrane is directly involved in the excretion of nanostructures from the cell. Nanoparticles of cutinsomes in the form of necklace-like formations line up in a chain near cell walls, merge into larger conglomerates and are loaded into plasmalemma invaginations, and then, in membrane packing, they move into the cuticle, which covers both outer and inner cell walls of external tissues. The original materials obtained by us supplement the ideas about the non-enzymatic synthesis of cuticle components available in the literature and expand the cell compartment geography involved in this process.
Collapse
Affiliation(s)
- Tamara Kh Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya 49, Moscow 127550, Russia
| | - Alexander S Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia.
| |
Collapse
|
8
|
Bonarota MS, Kosma D, Barrios-Masias FH. Physiological characterization of the tomato cutin mutant cd1 under salinity and nitrogen stress. PLANTA 2024; 260:64. [PMID: 39073466 DOI: 10.1007/s00425-024-04494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
MAIN CONCLUSION We identified tomato leaf cuticle and root suberin monomers that play a role in the response to nitrogen deficiency and salinity stress and discuss their potential agronomic value for breeding. The plant cuticle plays a key role in plant-water relations, and cuticle's agronomic value in plant breeding programs is currently under investigation. In this study, the tomato cutin mutant cd1, with altered fruit cuticle, was physiologically characterized under two nitrogen treatments and three salinity levels. We evaluated leaf wax and cutin load and composition, root suberin, stomatal conductance, photosynthetic rate, partial factor productivity from applied N, flower and fruit number, fruit size and cuticular transpiration, and shoot and root biomass. Both nitrogen and salinity treatments altered leaf cuticle and root suberin composition, regardless of genotype (cd1 or M82). Compared with M82, the cd1 mutant showed lower shoot biomass and reduced partial factor productivity from applied N under all treatments. Under N depletion, cd1 showed altered leaf wax composition, but was comparable to the WT under sufficient N. Under salt treatment, cd1 showed an increase in leaf wax and cutin monomers. Root suberin content of cd1 was lower than M82 under control conditions but comparable under higher salinity levels. The tomato mutant cd1 had a higher fruit cuticular transpiration rate, and lower fruit surface area compared to M82. These results show that the cd1 mutation has complex effects on plant physiology, and growth and development beyond cutin deficiency, and offer new insights on the potential agronomic value of leaf cuticle and root suberin for tomato breeding.
Collapse
Affiliation(s)
- Maria-Sole Bonarota
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV, USA
| | - Dylan Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV, USA.
| |
Collapse
|
9
|
Holden AC, Cohen H, Berry HM, Rickett DV, Aharoni A, Fraser PD. Carotenoid retention during post-harvest storage of Capsicum annuum: the role of the fruit surface structure. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1997-2012. [PMID: 38064717 PMCID: PMC10967237 DOI: 10.1093/jxb/erad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 12/01/2023] [Indexed: 03/28/2024]
Abstract
In this study, a chilli pepper (Capsicum annuum) panel for post-harvest carotenoid retention was studied to elucidate underlying mechanisms associated with this commercial trait of interest. Following drying and storage, some lines within the panel had an increase in carotenoids approaching 50% compared with the initial content at the fresh fruit stage. Other lines displayed a 25% loss of carotenoids. The quantitative determination of carotenoid pigments with concurrent cellular analysis indicated that in most cases, pepper fruit with thicker (up to 4-fold) lipid exocarp layers and smooth surfaces exhibit improved carotenoid retention properties. Total cutin monomer content increased in medium/high carotenoid retention fruits and subepidermal cutin deposits were responsible for the difference in exocarp thickness. Cutin biosynthesis and cuticle precursor transport genes were differentially expressed between medium/high and low carotenoid retention genotypes, and this supports the hypothesis that the fruit cuticle can contribute to carotenoid retention. Enzymatic degradation of the cuticle and cell wall suggests that in Capsicum the carotenoids (capsanthin and its esters) are embedded in the lipidic exocarp layer. This was not the case in tomato. Collectively, the data suggest that the fruit cuticle could provide an exploitable resource for the enhancement of fruit quality.
Collapse
Affiliation(s)
- Alexandra C Holden
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Hagai Cohen
- Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Harriet M Berry
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Daniel V Rickett
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, UK
| | - Asaph Aharoni
- Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
10
|
Zhang L, Sasaki-Sekimoto Y, Kosetsu K, Aoyama T, Murata T, Kabeya Y, Sato Y, Koshimizu S, Shimojima M, Ohta H, Hasebe M, Ishikawa M. An ABCB transporter regulates anisotropic cell expansion via cuticle deposition in the moss Physcomitrium patens. THE NEW PHYTOLOGIST 2024; 241:665-675. [PMID: 37865886 DOI: 10.1111/nph.19337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Anisotropic cell expansion is crucial for the morphogenesis of land plants, as cell migration is restricted by the rigid cell wall. The anisotropy of cell expansion is regulated by mechanisms acting on the deposition or modification of cell wall polysaccharides. Besides the polysaccharide components in the cell wall, a layer of hydrophobic cuticle covers the outer cell wall and is subjected to tensile stress that mechanically restricts cell expansion. However, the molecular machinery that deposits cuticle materials in the appropriate spatiotemporal manner to accommodate cell and tissue expansion remains elusive. Here, we report that PpABCB14, an ATP-binding cassette transporter in the moss Physcomitrium patens, regulates the anisotropy of cell expansion. PpABCB14 localized to expanding regions of leaf cells. Deletion of PpABCB14 resulted in impaired anisotropic cell expansion. Unexpectedly, the cuticle proper was reduced in the mutants, and the cuticular lipid components decreased. Moreover, induced PpABCB14 expression resulted in deformed leaf cells with increased cuticle lipid accumulation on the cell surface. Taken together, PpABCB14 regulates the anisotropy of cell expansion via cuticle deposition, revealing a regulatory mechanism for cell expansion in addition to the mechanisms acting on cell wall polysaccharides.
Collapse
Affiliation(s)
- Liechi Zhang
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ken Kosetsu
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tsuyoshi Aoyama
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takashi Murata
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yukiko Kabeya
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yoshikatsu Sato
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Masaki Ishikawa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| |
Collapse
|
11
|
Jolliffe JB, Pilati S, Moser C, Lashbrooke JG. Beyond skin-deep: targeting the plant surface for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6468-6486. [PMID: 37589495 PMCID: PMC10662250 DOI: 10.1093/jxb/erad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The above-ground plant surface is a well-adapted tissue layer that acts as an interface between the plant and its surrounding environment. As such, its primary role is to protect against desiccation and maintain the gaseous exchange required for photosynthesis. Further, this surface layer provides a barrier against pathogens and herbivory, while attracting pollinators and agents of seed dispersal. In the context of agriculture, the plant surface is strongly linked to post-harvest crop quality and yield. The epidermal layer contains several unique cell types adapted for these functions, while the non-lignified above-ground plant organs are covered by a hydrophobic cuticular membrane. This review aims to provide an overview of the latest understanding of the molecular mechanisms underlying crop cuticle and epidermal cell formation, with focus placed on genetic elements contributing towards quality, yield, drought tolerance, herbivory defence, pathogen resistance, pollinator attraction, and sterility, while highlighting the inter-relatedness of plant surface development and traits. Potential crop improvement strategies utilizing this knowledge are outlined in the context of the recent development of new breeding techniques.
Collapse
Affiliation(s)
- Jenna Bryanne Jolliffe
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Stefania Pilati
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Claudio Moser
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Justin Graham Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
12
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
13
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023; 411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
Affiliation(s)
- Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China; Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China.
| |
Collapse
|
14
|
Saladin S, D'Aronco S, Ingram G, Giorio C. Direct surface analysis mass spectrometry uncovers the vertical distribution of cuticle-associated metabolites in plants. RSC Adv 2023; 13:8487-8495. [PMID: 36926302 PMCID: PMC10012332 DOI: 10.1039/d2ra07166e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
The plant cuticle covers the plant's entire aerial surface and acts as the outermost protective layer. Despite being crucial for the survival of plants, surprisingly little is known about its biosynthesis. Conventional analytical techniques are limited to the isolation and depolymerization of the polyester cutin, which forms the cuticular scaffold. Although this approach allows the elucidation of incorporated cutin monomers, it neglects unincorporated metabolites participating in cutin polymerization. The feasibility of a novel approach is tested for in situ analysis of unpolymerized cuticular metabolites to enhance the understanding of cuticle biology. Intact cotyledons of Brassica napus and Arabidopsis thaliana seedlings are immersed in organic solvents for 60 seconds. Extracts are analyzed using high-resolution direct infusion mass spectrometry. A variety of different diffusion routes of plant metabolites across the cuticle are discussed. The results reveal different feasibilities depending on the research question and cuticle permeabilities in combination with the analyte's polarity. Especially hydrophilic analytes are expected to be co-located in the cell wall beneath the cuticle causing systematic interferences when comparing plants with different cuticle permeabilities. These interferences limit data interpretation to qualitative rather than quantitative comparison. In contrast, quantitative data evaluation is facilitated when analyzing cuticle-specific metabolites or plants with similar cuticle permeabilities.
Collapse
Affiliation(s)
- Siriel Saladin
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Sara D'Aronco
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL F-69342 Lyon France
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
15
|
Wang J, Shan Q, Yi T, Ma Y, Zhou X, Pan L, Miao W, Zou X, Xiong C, Liu F. Fine mapping and candidate gene analysis of CaFCD1 affecting cuticle biosynthesis in Capsicum annuum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:46. [PMID: 36912954 DOI: 10.1007/s00122-023-04330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
CaFCD1 gene regulates pepper cuticle biosynthesis. Pepper (Capsicum annuum L.) is an economically important vegetable crop that easily loses water after harvesting, which seriously affects the quality of its product. The cuticle is the lipid water-retaining layer on the outside of the fruit epidermis, which regulates the biological properties and reduces the rate of water-loss. However, the key genes involved in pepper fruit cuticle development are poorly understood. In this study, a pepper fruit cuticle development mutant fcd1 (fruit cuticle deficiency 1) was obtained by ethyl methanesulfonate mutagenesis. The mutant has great defects in fruit cuticle development, and the fruit water-loss rate of fcd1is significantly higher than that of the wild-type '8214' line. Genetic analysis suggested that the phenotype of the mutant fcd1 cuticle development defect was controlled by a recessive candidate gene CaFCD1 (Capsicum annuum fruit cuticle deficiency 1) on chromosome 12, which is mainly transcribed during fruit development. In fcd1, a base substitution within the CaFCD1 domain resulted in the premature termination of transcription, which affected cutin and wax biosynthesis in pepper fruit, as revealed by the GC-MS and RNA-seq analysis. Furthermore, the yeast one-hybrid and dual-luciferase reporter assays verified that the cutin synthesis protein CaCD2 was directly bound to the promoter of CaFCD1, suggesting that CaFCD1 may be a hub node in the cutin and wax biosynthetic regulatory network in pepper. This study provides a reference for candidate genes of cuticle synthesis and lays a foundation for breeding excellent pepper varieties.
Collapse
Affiliation(s)
- Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qingyun Shan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Ting Yi
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Yanqing Ma
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaoxun Zhou
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Luzhao Pan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., LTD, Changsha, China
| | - Xuexiao Zou
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Cheng Xiong
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China.
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Branson Y, Söltl S, Buchmann C, Wei R, Schaffert L, Badenhorst CPS, Reisky L, Jäger G, Bornscheuer UT. Urethanases for the Enzymatic Hydrolysis of Low Molecular Weight Carbamates and the Recycling of Polyurethanes. Angew Chem Int Ed Engl 2023; 62:e202216220. [PMID: 36591907 DOI: 10.1002/anie.202216220] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
Abstract
Enzymatic degradation and recycling can reduce the environmental impact of plastics. Despite decades of research, no enzymes for the efficient hydrolysis of polyurethanes have been reported. Whereas the hydrolysis of the ester bonds in polyester-polyurethanes by cutinases is known, the urethane bonds in polyether-polyurethanes have remained inaccessible to biocatalytic hydrolysis. Here we report the discovery of urethanases from a metagenome library constructed from soil that had been exposed to polyurethane waste for many years. We then demonstrate the use of a urethanase in a chemoenzymatic process for polyurethane foam recycling. The urethanase hydrolyses low molecular weight dicarbamates resulting from chemical glycolysis of polyether-polyurethane foam, making this strategy broadly applicable to diverse polyether-polyurethane wastes.
Collapse
Affiliation(s)
- Yannick Branson
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Simone Söltl
- Covestro Deutschland AG, Kaiser-Wilhelm-Allee 60, 51373, Leverkusen, Germany
| | - Carolin Buchmann
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Ren Wei
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Lena Schaffert
- Covestro Deutschland AG, Kaiser-Wilhelm-Allee 60, 51373, Leverkusen, Germany
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Lukas Reisky
- Covestro Deutschland AG, Kaiser-Wilhelm-Allee 60, 51373, Leverkusen, Germany
| | - Gernot Jäger
- Covestro Deutschland AG, Kaiser-Wilhelm-Allee 60, 51373, Leverkusen, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
17
|
Moyroud E, Airoldi CA, Ferria J, Giorio C, Steimer SS, Rudall PJ, Prychid CJ, Halliwell S, Walker JF, Robinson S, Kalberer M, Glover BJ. Cuticle chemistry drives the development of diffraction gratings on the surface of Hibiscus trionum petals. Curr Biol 2022; 32:5323-5334.e6. [PMID: 36423640 DOI: 10.1016/j.cub.2022.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
Plants combine both chemical and structural means to appear colorful. We now have an extensive understanding of the metabolic pathways used by flowering plants to synthesize pigments, but the mechanisms remain obscure whereby cells produce microscopic structures sufficiently regular to interfere with light and create an optical effect. Here, we combine transgenic approaches in a novel model system, Hibiscus trionum, with chemical analyses of the cuticle, both in transgenic lines and in different species of Hibiscus, to investigate the formation of a semi-ordered diffraction grating on the petal surface. We show that regulating both cuticle production and epidermal cell growth is insufficient to determine the type of cuticular pattern produced. Instead, the chemical composition of the cuticle plays a crucial role in restricting the formation of diffraction gratings to the pigmented region of the petal. This suggests that buckling, driven by spatiotemporal regulation of cuticle chemistry, could pattern the petal surface at the nanoscale.
Collapse
Affiliation(s)
- Edwige Moyroud
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | - Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jordan Ferria
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sarah S Steimer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland; Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | - Shannon Halliwell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Sarah Robinson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Markus Kalberer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
18
|
Kim RJ, Lee SB, Pandey G, Suh MC. Functional conservation of an AP2/ERF transcription factor in cuticle formation suggests an important role in the terrestrialization of early land plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7450-7466. [PMID: 36112045 DOI: 10.1093/jxb/erac360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The formation of a hydrophobic cuticle layer on aerial plant parts was a critical innovation for protection from the terrestrial environment during the evolution of land plants. However, little is known about the molecular mechanisms underlying cuticle biogenesis in early terrestrial plants. Here, we report an APETALA2/Ethylene Response Factor (AP2/ERF) transcriptional activator, PpWIN1, involved in cutin and cuticular wax biosynthesis in Physcomitrium patens and Arabidopsis. The transcript levels of PpWIN1 were 2.5-fold higher in gametophores than in the protonema, and increased by approximately 3- to 4.7-fold in the protonema and gametophores under salt and osmotic stresses. PpWIN1 harbouring transcriptional activation activity is localized in the nucleus of tobacco leaf epidermal cells. Δppwin1 knockout mutants displayed a permeable cuticle, increased water loss, and cutin- and wax-deficient phenotypes. In contrast, increased total cutin and wax loads, and decreased water loss rates were observed in PpWIN1-overexpressing Arabidopsis plants. The transcript levels of genes involved in cutin or wax biosynthesis were significantly up-regulated in PpWIN1-overexpressing Arabidopsis lines, indicating that PpWIN1 acts as a transcriptional activator in cuticle biosynthesis. This study suggests that Arabidopsis WIN1/SHN1 orthologs may be functionally conserved from early to vascular land plants.
Collapse
Affiliation(s)
- Ryeo Jin Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Seat Buyl Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu 54874, Republic of Korea
| | - Garima Pandey
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Mi Chung Suh
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
19
|
Yan J, Chen F, Sun P, Liu W, Xie D, Qian Y, Jiang B. Genome-wide association study and genetic mapping of BhWAX conferring mature fruit cuticular wax in wax gourd. BMC PLANT BIOLOGY 2022; 22:539. [PMID: 36401157 PMCID: PMC9675113 DOI: 10.1186/s12870-022-03931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Wax gourd [Benincasa hispida (Thunb) Cogn. (2n = 2x = 24)] is an economically important vegetable crop of genus Benincasa in the Cucurbitaceae family. Fruit is the main consumption organ of wax gourd. The mature fruit cuticular wax (MFCW) is an important trait in breeding programs, which is also of evolutionary significance in wax gourd. However, the genetic architecture of this valuable trait remains unrevealed. RESULTS In this study, genetic analysis revealed that the inheritance of MFCW was controlled by a single gene, with MFCW dominant over non-MFCW, and the gene was primarily named as BhWAX. Genome-wide association study (GWAS) highlighted a 1.1 Mb interval on chromosome 9 associated with MFCW in wax gourd germplasm resources. Traditional fine genetic mapping delimited BhWAX to a 0.5 Mb region containing 12 genes. Based on the gene annotation, expression analysis and co-segregation analysis, Bhi09G001428 that encodes a membrane bound O-acyltransferase (MBOAT) was proposed as the candidate gene for BhWAX. Moreover, it was demonstrated that the efficiency of a cleaved amplified polymorphic sequences (CAPS) marker in the determination of MFCW in wax gourd reached 80%. CONCLUSIONS In closing, the study identified the candidate gene controlling MFCW and provided an efficient molecular marker for the trait in wax gourd for the first time, which will not only be beneficial for functional validation of the gene and marker-assisted breeding of wax gourd, but also lay a foundation for analysis of its evolutionary meaning among cucurbits.
Collapse
Affiliation(s)
- Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Feng Chen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Piaoyun Sun
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Yulei Qian
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
20
|
Ge S, Qin K, Ding S, Yang J, Jiang L, Qin Y, Wang R. Gas Chromatography-Mass Spectrometry Metabolite Analysis Combined with Transcriptomic and Proteomic Provide New Insights into Revealing Cuticle Formation during Pepper Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12383-12397. [PMID: 36148491 DOI: 10.1021/acs.jafc.2c04522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cuticle plays an important role for the quality of pepper fruit. However, the molecular mechanism of cuticle formation in pepper fruit remains unclear. Our results showed that the wax was continuously accumulated during pepper development, while the cutin monomer first increased and then decreased. Hexadecanoic acid and 10,16-hydroxyhexadecanoic acid were the main components of wax and cutin, respectively. Combined with transcriptome and proteome, the formation patterns of wax and cutin polyester network for pepper cuticle was proposed. The 18 pairs of consistent expression genes and proteins involved in cuticle formation were revealed. Meanwhile, 12 key genes were screened from fatty acid biosynthesis, biosynthesis of unsaturated fatty acids, fatty acid elongation, cutin, suberine, and wax biosynthesis, glycerolipid metabolism, and transport pathway. This study would provide important candidate genes and theoretical basis for the molecular mechanism of cuticle formation, which is essential for the breeding of peppers.
Collapse
Affiliation(s)
- Shuai Ge
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Keying Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jianfeng Yang
- Liuyang Hongxiu Agricultural Technology Co., Ltd., Liuyang 410300, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yeyou Qin
- Hunan Tantanxiang Food Biotechnology Co., Ltd., Changsha 410128, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
21
|
Lin M, Qiao P, Matschi S, Vasquez M, Ramstein GP, Bourgault R, Mohammadi M, Scanlon MJ, Molina I, Smith LG, Gore MA. Integrating GWAS and TWAS to elucidate the genetic architecture of maize leaf cuticular conductance. PLANT PHYSIOLOGY 2022; 189:2144-2158. [PMID: 35512195 PMCID: PMC9342973 DOI: 10.1093/plphys/kiac198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/28/2022] [Indexed: 05/11/2023]
Abstract
The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed. Dissecting the genetic architecture of natural variation for maize (Zea mays L.) leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we performed an integrated genome- and transcriptome-wide association studies (GWAS and TWAS) to identify candidate genes putatively regulating variation in leaf gc. Of the 22 plausible candidate genes identified, 4 were predicted to be involved in cuticle precursor biosynthesis and export, 2 in cell wall modification, 9 in intracellular membrane trafficking, and 7 in the regulation of cuticle development. A gene encoding an INCREASED SALT TOLERANCE1-LIKE1 (ISTL1) protein putatively involved in intracellular protein and membrane trafficking was identified in GWAS and TWAS as the strongest candidate causal gene. A set of maize nested near-isogenic lines that harbor the ISTL1 genomic region from eight donor parents were evaluated for gc, confirming the association between gc and ISTL1 in a haplotype-based association analysis. The findings of this study provide insights into the role of regulatory variation in the development of the maize leaf cuticle and will ultimately assist breeders to develop drought-tolerant maize for target environments.
Collapse
Affiliation(s)
- Meng Lin
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Pengfei Qiao
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | | | - Miguel Vasquez
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | | | - Richard Bourgault
- Department of Biology, Algoma University, Sault Ste Marie, ON P6A 2G4, Canada
| | - Marc Mohammadi
- Department of Biology, Algoma University, Sault Ste Marie, ON P6A 2G4, Canada
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste Marie, ON P6A 2G4, Canada
| | - Laurie G Smith
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
22
|
Serra O, Geldner N. The making of suberin. THE NEW PHYTOLOGIST 2022; 235:848-866. [PMID: 35510799 PMCID: PMC9994434 DOI: 10.1111/nph.18202] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.
Collapse
Affiliation(s)
- Olga Serra
- Laboratori del SuroDepartment of BiologyUniversity of GironaCampus MontiliviGirona17003Spain
| | - Niko Geldner
- Department of Plant Molecular BiologyUniversity of LausanneUNIL‐Sorge, Biophore BuildingLausanne1015Switzerland
| |
Collapse
|
23
|
Sabharwal T, Lu Z, Slocum RD, Kang S, Wang H, Jiang HW, Veerappa R, Romanovicz D, Nam JC, Birk S, Clark G, Roux SJ. Constitutive expression of a pea apyrase, psNTP9, increases seed yield in field-grown soybean. Sci Rep 2022; 12:10870. [PMID: 35760854 PMCID: PMC9237067 DOI: 10.1038/s41598-022-14821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
To address the demand for food by a rapidly growing human population, agricultural scientists have carried out both plant breeding and genetic engineering research. Previously, we reported that the constitutive expression of a pea apyrase (Nucleoside triphosphate, diphosphohydrolase) gene, psNTP9, under the control of the CaMV35S promoter, resulted in soybean plants with an expanded root system architecture, enhanced drought resistance and increased seed yield when they are grown in greenhouses under controlled conditions. Here, we report that psNTP9-expressing soybean lines also show significantly enhanced seed yields when grown in multiple different field conditions at multiple field sites, including when the gene is introgressed into elite germplasm. The transgenic lines have higher leaf chlorophyll and soluble protein contents and decreased stomatal density and cuticle permeability, traits that increase water use efficiency and likely contribute to the increased seed yields of field-grown plants. These altered properties are explained, in part, by genome-wide gene expression changes induced by the transgene.
Collapse
Affiliation(s)
- Tanya Sabharwal
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Robert D Slocum
- Program in Biological Sciences, Goucher College, Towson, MD, 21204, USA
| | - Seongjoon Kang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Huan Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Han-Wei Jiang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Roopadarshini Veerappa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dwight Romanovicz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ji Chul Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Simon Birk
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
24
|
Bres C, Petit J, Reynoud N, Brocard L, Marion D, Lahaye M, Bakan B, Rothan C. The SlSHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit. MOLECULAR HORTICULTURE 2022; 2:14. [PMID: 37789465 PMCID: PMC10515250 DOI: 10.1186/s43897-022-00035-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/03/2022] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model for studying plant cuticle because of its thick cuticle covering and embedding the epidermal cells of the fruit. In this study, we screened an EMS mutant collection of the miniature tomato cultivar Micro-Tom for fruit cracking mutants and found a mutant displaying a glossy fruit phenotype. By using an established mapping-by-sequencing strategy, we identified the causal mutation in the SlSHN2 transcription factor that is specifically expressed in outer epidermis of growing fruit. The point mutation in the shn2 mutant introduces a K to N amino acid change in the highly conserved 'mm' domain of SHN proteins. The cuticle from shn2 fruit showed a ~ fivefold reduction in cutin while abundance and composition of waxes were barely affected. In addition to alterations in cuticle thickness and properties, epidermal patterning and polysaccharide composition of the cuticle were changed. RNAseq analysis further highlighted the altered expression of hundreds of genes in the fruit exocarp of shn2, including genes associated with cuticle and cell wall formation, hormone signaling and response, and transcriptional regulation. In conclusion, we showed that a point mutation in the transcriptional regulator SlSHN2 causes major changes in fruit cuticle formation and its coordination with epidermal patterning.
Collapse
Affiliation(s)
- Cécile Bres
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Johann Petit
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000, Bordeaux, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Christophe Rothan
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France.
- INRA, UMR 1332 Biologie du Fruit Et Pathologie, 71 Av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
| |
Collapse
|
25
|
Suh MC, Uk Kim H, Nakamura Y. Plant lipids: trends and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2715-2720. [PMID: 35560206 DOI: 10.1093/jxb/erac125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, South Korea
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
| |
Collapse
|
26
|
Huang H, Wang L, Qiu D, Lu Y. Chemical Composition of Cuticle and Barrier Properties to Transpiration in the Fruit of Clausena lansium (Lour.) Skeels. FRONTIERS IN PLANT SCIENCE 2022; 13:840061. [PMID: 35651771 PMCID: PMC9150773 DOI: 10.3389/fpls.2022.840061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
The plant cuticle, as a lipid membrane covering aerial plant surfaces, functions primarily against uncontrolled water loss. Herein, the cuticle chemical composition and the transpiration of wampee fruit (Clausena lansium (Lour.) Skeels) at the green, turning, and yellow stages in cultivars of "Jixin" and "Tianhuangpi" were comprehensively studied. The coverage of wax and cutin monomers per unit of fruit surface area at the green stage was lower in "Jixin" than in "Tianhuangpi" and increased gradually during development. Cutin monomers accumulated ranging from 22.5 μg cm-2 (green) to 52.5 μg cm-2 (turning) in "Jixin" and from 36.5 μg cm-2 (green) to 81.7 μg cm-2 (yellow) in "Tianhuangpi." The total composition of waxes ranged between 6.0 μg cm-2 (green) and 11.1 μg cm-2 (turning) in "Jixin," while they increased from 7.4 μg cm-2 (green) to 16.7 μg cm-2 (yellow) in "Tianhuangpi." Cutin monomers were dominated by ω-, mid-dihydroxy fatty acids (over 40%), followed by multiple monomers of α,ω-dicarboxylic acids with or without added groups, α-monocarboxylic acids with or without ω- or mid-chain hydroxy or mid-epoxy groups, primary alcohols, and phenolics. The very-long-chain (VLC) aliphatic pattern of cuticular waxes was prominently composed of n-alkanes (ranging from 21.4% to 39.3% of total wax content), fatty acids, primary alcohols, and aldehydes. The cyclic waxes were dominated by triterpenoids (between 23.9 and 51.2%), sterols, and phenolics. Water loss in wampee fruit exhibited linear changes over time, indicating an overall monofunctional barrier to transpiration. Permeance for water in wampee fruit was higher at the green stage than at the yellow stage in both "Jixin" and "Tianhuangpi," which showed a negative correlation with the changes of VLC n-alkanes. The results showed the cuticular chemicals, including cutin monomers and waxes, in wampee fruit and further indicated the potential contributions of the cuticular chemical composition to the physiological functions in fruits.
Collapse
Affiliation(s)
- Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Diyang Qiu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Yusheng Lu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| |
Collapse
|
27
|
Chemical and Molecular Characterization of Wound-Induced Suberization in Poplar (Populus alba × P. tremula) Stem Bark. PLANTS 2022; 11:plants11091143. [PMID: 35567144 PMCID: PMC9102228 DOI: 10.3390/plants11091143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Upon mechanical damage, plants produce wound responses to protect internal tissues from infections and desiccation. Suberin, a heteropolymer found on the inner face of primary cell walls, is deposited in specific tissues under normal development, enhanced under abiotic stress conditions and synthesized by any tissue upon mechanical damage. Wound-healing suberization of tree bark has been investigated at the anatomical level but very little is known about the molecular mechanisms underlying this important stress response. Here, we investigated a time course of wound-induced suberization in poplar bark. Microscopic changes showed that polyphenolics accumulate 3 days post wounding, with aliphatic suberin deposition observed 5 days post wounding. A wound periderm was formed 9 days post wounding. Chemical analyses of the suberin polyester accumulated during the wound-healing response indicated that suberin monomers increased from 0.25 to 7.98 mg/g DW for days 0 to 28, respectively. Monomer proportions varied across the wound-healing process, with an overall ratio of 2:1 (monomers:glycerol) found across the first 14 days post wounding, with this ratio increasing to 7:2 by day 28. The expression of selected candidate genes of poplar suberin metabolism was investigated using qRT-PCR. Genes queried belonging to lipid polyester and phenylpropanoid metabolism appeared to have redundant functions in native and wound-induced suberization. Our data show that, anatomically, the wounding response in poplar bark is similar to that described in periderms of other species. It also provides novel insight into this process at the chemical and molecular levels, which have not been previously studied in trees.
Collapse
|
28
|
Woolfson KN, Esfandiari M, Bernards MA. Suberin Biosynthesis, Assembly, and Regulation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040555. [PMID: 35214889 PMCID: PMC8875741 DOI: 10.3390/plants11040555] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term "suberin" has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels.
Collapse
|
29
|
Shen G, Sun W, Chen Z, Shi L, Hong J, Shi J. Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040468. [PMID: 35214802 PMCID: PMC8880598 DOI: 10.3390/plants11040468] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in research on plant GELPs in several model plants and crops, including Arabidopsis, rice, maize and tomato, while focusing on the roles of GELPs in regulating plant development and plant-environment interactions. In addition, the possible regulatory network and mechanisms of GELPs have been discussed.
Collapse
|
30
|
Yang SL, Tran N, Tsai MY, Ho CMK. Misregulation of MYB16 expression causes stomatal cluster formation by disrupting polarity during asymmetric cell divisions. THE PLANT CELL 2022; 34:455-476. [PMID: 34718767 PMCID: PMC8774054 DOI: 10.1093/plcell/koab260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Stomatal pores and the leaf cuticle regulate evaporation from the plant body and balance the tradeoff between photosynthesis and water loss. MYB16, encoding a transcription factor involved in cutin biosynthesis, is expressed in stomatal lineage ground cells, suggesting a link between cutin biosynthesis and stomatal development. Here, we show that the downregulation of MYB16 in meristemoids is directly mediated by the stomatal master transcription factor SPEECHLESS (SPCH) in Arabidopsis thaliana. The suppression of MYB16 before an asymmetric division is crucial for stomatal patterning, as its overexpression or ectopic expression in meristemoids increased stomatal density and resulted in the formation of stomatal clusters, as well as affecting the outer cell wall structure. Expressing a cutinase gene in plants ectopically expressing MYB16 reduced stomatal clustering, suggesting that cutin affects stomatal signaling or the polarity setup in asymmetrically dividing cells. The clustered stomatal phenotype was rescued by overexpressing EPIDERMAL PATTERNING FACTOR2, suggesting that stomatal signaling was still functional in these plants. Growing seedlings ectopically expressing MYB16 on high-percentage agar plates to modulate tensile strength rescued the polarity and stomatal cluster defects of these seedlings. Therefore, the inhibition of MYB16 expression by SPCH in the early stomatal lineage is required to correctly place the polarity protein needed for stomatal patterning during leaf morphogenesis.
Collapse
Affiliation(s)
- Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Ngan Tran
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Meng-Ying Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | | |
Collapse
|
31
|
Kolkas H, Balliau T, Chourré J, Zivy M, Canut H, Jamet E. The Cell Wall Proteome of Marchantia polymorpha Reveals Specificities Compared to Those of Flowering Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:765846. [PMID: 35095945 PMCID: PMC8792609 DOI: 10.3389/fpls.2021.765846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/16/2021] [Indexed: 05/30/2023]
Abstract
Primary plant cell walls are composite extracellular structures composed of three major classes of polysaccharides (pectins, hemicelluloses, and cellulose) and of proteins. The cell wall proteins (CWPs) play multiple roles during plant development and in response to environmental stresses by remodeling the polysaccharide and protein networks and acting in signaling processes. To date, the cell wall proteome has been mostly described in flowering plants and has revealed the diversity of the CWP families. In this article, we describe the cell wall proteome of an early divergent plant, Marchantia polymorpha, a Bryophyte which belong to one of the first plant species colonizing lands. It has been possible to identify 410 different CWPs from three development stages of the haploid gametophyte and they could be classified in the same functional classes as the CWPs of flowering plants. This result underlied the ability of M. polymorpha to sustain cell wall dynamics. However, some specificities of the M. polymorpha cell wall proteome could be highlighted, in particular the importance of oxido-reductases such as class III peroxidases and polyphenol oxidases, D-mannose binding lectins, and dirigent-like proteins. These proteins families could be related to the presence of specific compounds in the M. polymorpha cell walls, like mannans or phenolics. This work paves the way for functional studies to unravel the role of CWPs during M. polymorpha development and in response to environmental cues.
Collapse
Affiliation(s)
- Hasan Kolkas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| |
Collapse
|
32
|
Philippe G, De Bellis D, Rose JKC, Nawrath C. Trafficking Processes and Secretion Pathways Underlying the Formation of Plant Cuticles. FRONTIERS IN PLANT SCIENCE 2022; 12:786874. [PMID: 35069645 PMCID: PMC8769167 DOI: 10.3389/fpls.2021.786874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 05/10/2023]
Abstract
Cuticles are specialized cell wall structures that form at the surface of terrestrial plant organs. They are largely comprised lipidic compounds and are deposited in the apoplast, external to the polysaccharide-rich primary wall, creating a barrier to diffusion of water and solutes, as well as to environmental factors. The predominant cuticle component is cutin, a polyester that is assembled as a complex matrix, within and on the surface of which aliphatic and aromatic wax molecules accumulate, further modifying its properties. To reach the point of cuticle assembly the different acyl lipid-containing components are first exported from the cell across the plasma membrane and then traffic across the polysaccharide wall. The export of cutin precursors and waxes from the cell is known to involve plasma membrane-localized ATP-binding cassette (ABC) transporters; however, other secretion mechanisms may also contribute. Indeed, extracellular vesiculo-tubular structures have recently been reported in Arabidopsis thaliana (Arabidopsis) to be associated with the deposition of suberin, a polyester that is structurally closely related to cutin. Intriguingly, similar membranous structures have been observed in leaves and petals of Arabidopsis, although in lower numbers, but no close association with cutin formation has been identified. The possibility of multiple export mechanisms for cuticular components acting in parallel will be discussed, together with proposals for how cuticle precursors may traverse the polysaccharide cell wall before their assimilation into the cuticle macromolecular architecture.
Collapse
Affiliation(s)
- Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Shukla V, Barberon M. Building and breaking of a barrier: Suberin plasticity and function in the endodermis. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102153. [PMID: 34861611 DOI: 10.1016/j.pbi.2021.102153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 05/20/2023]
Abstract
Plant cells coated with hydrophobic compounds constitute a protective barrier to control movement of materials through plant tissues. In roots, the endodermis develops two barriers: the Casparian strips establish an apoplastic barrier and suberin lamellae prevent diffusion through the plasma membrane. Suberin is a complex biopolymer and its deposition is highly responsive to the environment. While the enzymatic framework involved in suberin biosynthesis is well characterized, subsequent steps in suberin formation and regulation remained elusive. Recent publications, studying suberin from a cell biological perspective, have enriched our knowledge on suberin transport and polymerization in the cell wall. These studies have also elucidated the molecular mechanisms controlling suberin biosynthesis and regulation as well as its physiological role in plant abiotic and biotic interactions.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
34
|
Müller H, Terholsen H, Godehard SP, Badenhorst CPS, Bornscheuer UT. Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Henrik Müller
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Henrik Terholsen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Simon P. Godehard
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| |
Collapse
|
35
|
Bento A, Moreira CJS, Correia VG, Escórcio R, Rodrigues R, Tomé AS, Geneix N, Petit J, Bakan B, Rothan C, Mykhaylyk OO, Silva Pereira C. Quantification of Structure-Property Relationships for Plant Polyesters Reveals Suberin and Cutin Idiosyncrasies. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:15780-15792. [PMID: 34868742 PMCID: PMC8634382 DOI: 10.1021/acssuschemeng.1c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Indexed: 05/13/2023]
Abstract
Polyesters, as they exist in planta, are promising materials with which to begin the development of "green" replacements. Cutin and suberin, polyesters found ubiquitously in plants, are prime candidates. Samples enriched for plant polyesters, and in which their native backbones were largely preserved, were studied to identify "natural" structural features; features that influence critical physical properties. Quantitative nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and X-ray scattering methods were used to quantify structure-property relationships in these polymeric materials. The degree of esterification, namely, the presence of acylglycerol linkages in suberin and of secondary esters in cutin, and the existence of mid-chain epoxide groups defining the packing of the aliphatic chains were observed. This packing determines polymer crystallinity, the resulting crystal structure, and the melting temperature. To evaluate the strength of this rule, tomato cutin from the same genotype, studying wild-type plants and two well-characterized mutants, was analyzed. The results show that cutin's material properties are influenced by the amount of unbound aliphatic hydroxyl groups and by the length of the aliphatic chain. Collectively, the acquired data can be used as a tool to guide the selection of plant polyesters with precise structural features, and hence physicochemical properties.
Collapse
Affiliation(s)
- Artur Bento
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Carlos J. S. Moreira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Vanessa G. Correia
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Rita Escórcio
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Rúben Rodrigues
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Ana S. Tomé
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | | | - Johann Petit
- UMR
1332 BFP, INRAE, Univ. Bordeaux, F-33140 Villenave d’Ornon, France
| | | | - Christophe Rothan
- UMR
1332 BFP, INRAE, Univ. Bordeaux, F-33140 Villenave d’Ornon, France
| | - Oleksandr O. Mykhaylyk
- Soft
Matter Analytical Laboratory, Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Cristina Silva Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
36
|
Petit J, Bres C, Reynoud N, Lahaye M, Marion D, Bakan B, Rothan C. Unraveling Cuticle Formation, Structure, and Properties by Using Tomato Genetic Diversity. FRONTIERS IN PLANT SCIENCE 2021; 12:778131. [PMID: 34912361 PMCID: PMC8667768 DOI: 10.3389/fpls.2021.778131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 05/29/2023]
Abstract
The tomato (Solanum lycopersicum) fruit has a thick, astomatous cuticle that has become a model for the study of cuticle formation, structure, and properties in plants. Tomato is also a major horticultural crop and a long-standing model for research in genetics, fruit development, and disease resistance. As a result, a wealth of genetic resources and genomic tools have been established, including collections of natural and artificially induced genetic diversity, introgression lines of genome fragments from wild relatives, high-quality genome sequences, phenotype and gene expression databases, and efficient methods for genetic transformation and editing of target genes. This mini-review reports the considerable progresses made in recent years in our understanding of cuticle by using and generating genetic diversity for cuticle-associated traits in tomato. These include the synthesis of the main cuticle components (cutin and waxes), their role in the structure and properties of the cuticle, their interaction with other cell wall polymers as well as the regulation of cuticle formation. It also addresses the opportunities offered by the untapped germplasm diversity available in tomato and the current strategies available to exploit them.
Collapse
Affiliation(s)
- Johann Petit
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Cécile Bres
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | | |
Collapse
|
37
|
Xin A, Herburger K. Precursor biosynthesis regulation of lignin, suberin and cutin. PROTOPLASMA 2021; 258:1171-1178. [PMID: 34120228 DOI: 10.1007/s00709-021-01676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The extracellular matrix of plants can contain the hydrophobic biopolymers lignin, suberin and/or cutin, which provide mechanical strength and limit water loss and pathogen invasion. Due to their remarkable chemical resistance, these polymers have a high potential in various biotechnological applications and can replace petrol-based resources, for example, in the packing industry. However, despite the importance of these polymers, the regulation of their precursor biosynthesis is far from being fully understood. This is particularly true for suberin and cutin, which hinders efforts to engineer their formation in plants and produce customised biopolymers. This review brings attention to knowledge gaps in the current research and highlights some of the most recent findings on transcription factors that regulate lignin, suberin and cutin precursor biosynthesis. Finally, we also briefly discuss how some of the remaining knowledge gaps can be closed.
Collapse
Affiliation(s)
- Anzhou Xin
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Klaus Herburger
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| |
Collapse
|
38
|
Xiao C, Guo H, Tang J, Li J, Yao X, Hu H. Expression Pattern and Functional Analyses of Arabidopsis Guard Cell-Enriched GDSL Lipases. FRONTIERS IN PLANT SCIENCE 2021; 12:748543. [PMID: 34621289 PMCID: PMC8490726 DOI: 10.3389/fpls.2021.748543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
There are more than 100 GDSL lipases in Arabidopsis, but only a few members have been functionally investigated. Moreover, no reports have ever given a comprehensive analysis of GDSLs in stomatal biology. Here, we systematically investigated the expression patterns of 19 putative Guard-cell-enriched GDSL Lipases (GGLs) at various developmental stages and in response to hormone and abiotic stress treatments. Gene expression analyses showed that these GGLs had diverse expression patterns. Fifteen GGLs were highly expressed in guard cells, with seven preferentially in guard cells. Most GGLs were localized in endoplasmic reticulum, and some were also localized in lipid droplets and nucleus. Some closely homologous GGLs exhibited similar expression patterns at various tissues and in response to hormone and abiotic stresses, or similar subcellular localization, suggesting the correlation of expression pattern and biological function, and the functional redundancy of GGLs in plant development and environmental adaptations. Further phenotypic identification of ggl mutants revealed that GGL7, GGL14, GGL22, and GGL26 played unique and redundant roles in stomatal dynamics, stomatal density and morphology, and plant water relation. The present study provides unique resources for functional insights into these GGLs to control stomatal dynamics and development, plant growth, and adaptation to the environment.
Collapse
Affiliation(s)
- Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Tang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Xin A, Fry SC. Cutin:xyloglucan transacylase (CXT) activity covalently links cutin to a plant cell-wall polysaccharide. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153446. [PMID: 34051591 DOI: 10.1016/j.jplph.2021.153446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 05/26/2023]
Abstract
The shoot epidermal cell wall in land-plants is associated with a polyester, cutin, which controls water loss and possibly organ expansion. Covalent bonds between cutin and its neighbouring cell-wall polysaccharides have long been proposed. However, the lack of biochemical evidence makes cutin-polysaccharide linkages largely conjectural. Here we optimised a portfolio of radiochemical assays to look for cutin-polysaccharide ester bonds in the epidermis of pea epicotyls, ice-plant leaves and tomato fruits, based on the hypothesis that a transacylase remodels cutin in a similar fashion to cutin synthase and cutin:cutin transacylase activities. Through in-situ enzyme assays and chemical degradations coupled with chromatographic analysis of the 3H-labelled products, we observed that among several wall-related oligosaccharides tested, only a xyloglucan oligosaccharide ([3H]XXXGol) could acquire ester-bonds from endogenous cutin, suggesting a cutin:xyloglucan transacylase (CXT). CXT activity was heat-labile, time-dependent, and maximal at near-neutral pH values. In-situ CXT activity peaked in nearly fully expanded tomato fruits and ice-plant leaves. CXT activity positively correlated with organ growth rate, suggesting that it contributes to epidermal integrity during rapid expansion. This study uncovers hitherto unappreciated re-structuring processes in the plant epidermis and provides a step towards the identification of CXT and its engineering for biotechnological applications.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
40
|
Arya GC, Sarkar S, Manasherova E, Aharoni A, Cohen H. The Plant Cuticle: An Ancient Guardian Barrier Set Against Long-Standing Rivals. FRONTIERS IN PLANT SCIENCE 2021; 12:663165. [PMID: 34249035 PMCID: PMC8267416 DOI: 10.3389/fpls.2021.663165] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/31/2021] [Indexed: 05/18/2023]
Abstract
The aerial surfaces of plants are covered by a protective barrier formed by the cutin polyester and waxes, collectively referred to as the cuticle. Plant cuticles prevent the loss of water, regulate transpiration, and facilitate the transport of gases and solutes. As the cuticle covers the outermost epidermal cell layer, it also acts as the first line of defense against environmental cues and biotic stresses triggered by a large array of pathogens and pests, such as fungi, bacteria, and insects. Numerous studies highlight the cuticle interface as the site of complex molecular interactions between plants and pathogens. Here, we outline the multidimensional roles of cuticle-derived components, namely, epicuticular waxes and cutin monomers, during plant interactions with pathogenic fungi. We describe how certain wax components affect various pre-penetration and infection processes of fungi with different lifestyles, and then shift our focus to the roles played by the cutin monomers that are released from the cuticle owing to the activity of fungal cutinases during the early stages of infection. We discuss how cutin monomers can activate fungal cutinases and initiate the formation of infection organs, the significant impacts of cuticle defects on the nature of plant-fungal interactions, along with the possible mechanisms raised thus far in the debate on how host plants perceive cutin monomers and/or cuticle defects to elicit defense responses.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Sutanni Sarkar
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
- Plant Pathology and Microbiology Department, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
41
|
Zhang X, Ni Y, Xu D, Busta L, Xiao Y, Jetter R, Guo Y. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:285-295. [PMID: 33887646 DOI: 10.1016/j.plaphy.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Cuticular wax and cutin are directly involved in the mechanisms by which plants acclimate to water-limited environments. However, how the two lipid forms balance their contributions to plant drought-tolerance is still not clear. The present study examined the responses of cutin monomers and cuticular waxes to drought stress in two sorghum (Sorghum bicolor (L.) Moench) cultivars, drought-tolerant cv. Kangsi and drought-sensitive cv. Hongyingzi, by combining lipidomic and transcriptomic analysis. Drought increased total cutin contents by 41.3%, the contents of alkanoic acids by 72.6% and 2-hydroxyacids by 117.8% in Kangsi but unchanged those in Hongyingzi. The abundance of cutin monomers were relatively stable for cv Hongyingzi, excepting for a decrease of ω-hydroxyacids from 35.0% to 27.4% in drought-stressed plants. However, for cv Kangsi, the abundance of ω-hydroxyacids decreased from 36.8% to 21.0% and that of alkanoic acids increased from 30.5% to 37.1% in drought-stressed plants. Drought increased total wax coverage in Hongyingzi but reduced it in Kangsi. However, the abundance of aldehydes decreased from 51.2% to 39.3% in drought-stressed cv Kangsi, but increased from 25.2% to 36.1% in drought-stressed cv Hongyingzi. A decrease of sterols (by 76%) and an increase of primary alcohol (by 443%) was also observed in drought-stressed cv Hongyingzi. Transcriptome analysis also revealed that many genes implicated by homology in cutin monomer and cuticular wax biosynthesis also differed in their responses to drought stress between the two sorghum cultivars. Therefore, sorghum cultivars differed in their mechanisms in adjusting chemical profiles of both cutin and cuticular wax under water deficit condition.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China; College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Daixiang Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Luke Busta
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| | - Yu Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Yanjun Guo
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
42
|
Elejalde-Palmett C, Martinez San Segundo I, Garroum I, Charrier L, De Bellis D, Mucciolo A, Guerault A, Liu J, Zeisler-Diehl V, Aharoni A, Schreiber L, Bakan B, Clausen MH, Geisler M, Nawrath C. ABCG transporters export cutin precursors for the formation of the plant cuticle. Curr Biol 2021; 31:2111-2123.e9. [PMID: 33756108 DOI: 10.1016/j.cub.2021.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
The plant cuticle is deposited on the surface of primary plant organs, such as leaves, fruits, and floral organs, forming a diffusion barrier and protecting the plant against various abiotic and biotic stresses. Cutin, the structural polyester of the plant cuticle, is synthesized in the apoplast. Plasma-membrane-localized ATP-binding cassette (ABC) transporters of the G family have been hypothesized to export cutin precursors. Here, we characterize SlABCG42 of tomato representing an ortholog of AtABCG32 in Arabidopsis. SlABCG42 expression in Arabidopsis complements the cuticular deficiencies of the Arabidopsis pec1/abcg32 mutant. RNAi-dependent downregulation of both tomato genes encoding proteins highly homologous to AtABCG32 (SlABCG36 and SlABCG42) leads to reduced cutin deposition and formation of a thinner cuticle in tomato fruits. By using a tobacco (Nicotiana benthamiana) protoplast system, we show that AtABCG32 and SlABCG42 have an export activity for 10,16-dihydroxy hexadecanoyl-2-glycerol, a cutin precursor in vivo. Interestingly, also free ω-hydroxy hexadecanoic acid as well as hexadecanedioic acid were exported, furthering the research on the identification of cutin precursors in vivo and the respective mechanisms of their integration into the cutin polymer.
Collapse
Affiliation(s)
| | - Ignacio Martinez San Segundo
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Imène Garroum
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurence Charrier
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland; Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aurore Guerault
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
| | - Bénédicte Bakan
- INRAE, Biopolymers Interactions Assemblies UR1268, 44316 Nantes Cedex 3, France
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
Falginella L, Andre CM, Legay S, Lin-Wang K, Dare AP, Deng C, Rebstock R, Plunkett BJ, Guo L, Cipriani G, Espley RV. Differential regulation of triterpene biosynthesis induced by an early failure in cuticle formation in apple. HORTICULTURE RESEARCH 2021; 8:75. [PMID: 33790248 PMCID: PMC8012369 DOI: 10.1038/s41438-021-00511-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 05/06/2023]
Abstract
Waxy apple cuticles predominantly accumulate ursane-type triterpenes, but the profile shifts with the induction of skin russeting towards lupane-type triterpenes. We previously characterised several key enzymes in the ursane-type and lupane-type triterpene pathways, but this switch in triterpene metabolism associated with loss of cuticle integrity is not fully understood. To analyse the relationship between triterpene biosynthesis and russeting, we used microscopy, RNA-sequencing and metabolite profiling during apple fruit development. We compared the skin of three genetically-close clones of 'Golden Delicious' (with waxy, partially russeted and fully russeted skin). We identified a unique molecular profile for the russet clone, including low transcript abundance of multiple cuticle-specific metabolic pathways in the early stages of fruit development. Using correlation analyses between gene transcription and metabolite concentration we found MYB transcription factors strongly associated with lupane-type triterpene biosynthesis. We showed how their transcription changed with the onset of cuticle cracking followed by russeting and that one factor, MYB66, was able to bind the promoter of the oxidosqualene cyclase OSC5, to drive the production of lupeol derivatives. These results provide insights into the breakdown of cuticle integrity leading to russet and how this drives MYB-regulated changes to triterpene biosynthesis.
Collapse
Affiliation(s)
- Luigi Falginella
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
- Research Center, Vivai Cooperativi Rauscedo, Rauscedo, Italy
| | - Christelle M Andre
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
- The Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Sylvain Legay
- The Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Andrew P Dare
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Blue J Plunkett
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Lindy Guo
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Guido Cipriani
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand.
| |
Collapse
|
44
|
Ursache R, De Jesus Vieira Teixeira C, Dénervaud Tendon V, Gully K, De Bellis D, Schmid-Siegert E, Grube Andersen T, Shekhar V, Calderon S, Pradervand S, Nawrath C, Geldner N, Vermeer JEM. GDSL-domain proteins have key roles in suberin polymerization and degradation. NATURE PLANTS 2021; 7:353-364. [PMID: 33686223 PMCID: PMC7610369 DOI: 10.1038/s41477-021-00862-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/25/2021] [Indexed: 05/19/2023]
Abstract
Plant roots acquire nutrients and water while managing interactions with the soil microbiota. The root endodermis provides an extracellular diffusion barrier through a network of lignified cell walls called Casparian strips, supported by subsequent formation of suberin lamellae. Whereas lignification is thought to be irreversible, suberin lamellae display plasticity, which is crucial for root adaptative responses. Although suberin is a major plant polymer, fundamental aspects of its biosynthesis and turnover have remained obscure. Plants shape their root system via lateral root formation, an auxin-induced process requiring local breaking and re-sealing of endodermal lignin and suberin barriers. Here, we show that differentiated endodermal cells have a specific, auxin-mediated transcriptional response dominated by cell wall remodelling genes. We identified two sets of auxin-regulated GDSL lipases. One is required for suberin synthesis, while the other can drive suberin degradation. These enzymes have key roles in suberization, driving root suberin plasticity.
Collapse
Affiliation(s)
- Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| | | | | | - Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Emanuel Schmid-Siegert
- Vital-IT Competence Center, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NGSAI, Epalinges, Switzerland
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Vinay Shekhar
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | - Sandra Calderon
- Vital-IT Competence Center, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Pradervand
- Vital-IT Competence Center, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| | - Joop E M Vermeer
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Xin A, Fei Y, Molnar A, Fry SC. Cutin:cutin-acid endo-transacylase (CCT), a cuticle-remodelling enzyme activity in the plant epidermis. Biochem J 2021; 478:777-798. [PMID: 33511979 PMCID: PMC7925011 DOI: 10.1042/bcj20200835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
Cutin is a polyester matrix mainly composed of hydroxy-fatty acids that occurs in the cuticles of shoots and root-caps. The cuticle, of which cutin is a major component, protects the plant from biotic and abiotic stresses, and cutin has been postulated to constrain organ expansion. We propose that, to allow cutin restructuring, ester bonds in this net-like polymer can be transiently cleaved and then re-formed (transacylation). Here, using pea epicotyl epidermis as the main model, we first detected a cutin:cutin-fatty acid endo-transacylase (CCT) activity. In-situ assays used endogenous cutin as the donor substrate for endogenous enzymes; the exogenous acceptor substrate was a radiolabelled monomeric cutin-acid, 16-hydroxy-[3H]hexadecanoic acid (HHA). High-molecular-weight cutin became ester-bonded to intact [3H]HHA molecules, which thereby became unextractable except by ester-hydrolysing alkalis. In-situ CCT activity correlated with growth rate in Hylotelephium leaves and tomato fruits, suggesting a role in loosening the outer epidermal wall during organ growth. The only well-defined cutin transacylase in the apoplast, CUS1 (a tomato cutin synthase), when produced in transgenic tobacco, lacked CCT activity. This finding provides a reference for future CCT protein identification, which can adopt our sensitive enzyme assay to screen other CUS1-related enzymes.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Yue Fei
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Attila Molnar
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
46
|
Xu B, Taylor L, Pucker B, Feng T, Glover BJ, Brockington SF. The land plant-specific MIXTA-MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land. THE NEW PHYTOLOGIST 2021; 229:2324-2338. [PMID: 33051877 DOI: 10.1111/nph.16997] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The evolution of a lipid-based cuticle on aerial plant surfaces that protects against dehydration is considered a fundamental innovation in the colonization of the land by the green plants. However, key evolutionary steps in the early regulation of cuticle synthesis are still poorly understood, owing to limited studies in early-diverging land plant lineages. Here, we characterize a land plant specific subgroup 9 R2R3 MYB transcription factor MpSBG9, in the early-diverging land plant model Marchantia polymorpha, that is homologous to MIXTA proteins in vascular plants. The MpSBG9 functions as a key regulator of cuticle biosynthesis by preferentially regulating expression of orthologous genes for cutin formation, but not wax biosynthesis genes. The MpSBG9 also promotes the formation of papillate cells on the adaxial surface of M. polymorpha, which is consisitent with its canonical role in vascular plants. Our observations imply conserved MYB transcriptional regulation in the control of the cutin biosynthesis pathway as a core genetic network in the common ancestor of all land plants, implicating the land plant-specific MIXTA MYB lineage in the early origin and evolution of the cuticle.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Lin Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Genetics and Genomics of Plants, Center for Biotechnology & Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße, Bochum, 44801, Germany
| | - Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430047, China
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
47
|
Schink C, Spielvogel S, Imhof W. Synthesis of 13 C-labelled cutin and suberin monomeric dicarboxylic acids of the general formula HO 213 C-(CH 2 ) n - 13 CO 2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28). J Labelled Comp Radiopharm 2021; 64:14-29. [PMID: 33063895 DOI: 10.1002/jlcr.3885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
13 C-labeled dicarboxylic acids HO213 C-(CH2 )n -13 CO2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28) have been synthesized as internal standards for LC-MS and GC-MS analysis of cutin and suberin monomer degradation by soil-based microorganisms. Different synthetic strategies had to be applied depending on the chain length of the respective synthetic target and because of economic considerations. 13 C-labels were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding dicarboxylic acids. All new compounds are characterized by GC/MS, IR, and NMR methods as well as by elemental analysis.
Collapse
Affiliation(s)
- Carina Schink
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
48
|
Tang J, Yang X, Xiao C, Li J, Chen Y, Li R, Li S, Lü S, Hu H. GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. THE NEW PHYTOLOGIST 2020; 228:1880-1896. [PMID: 32542680 DOI: 10.1111/nph.16741] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/28/2020] [Indexed: 05/27/2023]
Abstract
The plant leaf surface is coated with a waterproof cuticle layer. Cuticle facing the stomatal pore surface needs to be sculpted to form outer cuticular ledge (OCL) after stomatal maturation for efficient gas exchange. Here, we characterized the roles of Arabidopsis GDSL lipase, Occlusion of Stomatal Pore 1 (OSP1), in wax biosynthesis and stomatal OCL formation. OSP1 mutation results in significant reduction in leaf wax synthesis and occlusion of stomata, leading to increased epidermal permeability, decreased transpiration rate, and enhanced drought tolerance. We demonstrated that OSP1 activity is critical for its role in wax biosynthesis and stomatal function. In vitro enzymatic assays demonstrated that OSP1 possesses thioesterase activity, particularly on C22:0 and C26:0 acyl-CoAs. Genetic interaction analyses with CER1 (ECERIFERUM 1), CER3 (ECERIFERUM 3) and MAH1 (Mid-chain Alkane Hydroxylase 1) in wax biosynthesis and stomatal OCL formation showed that OSP1 may act upstream of CER3 in wax biosynthesis, and implicate that wax composition percentage changes and keeping ketones in a lower level play roles, at least partially, in forming stomatal ledges. Our findings provided insights into the molecular mechanism mediating wax biosynthesis and highlighted the link between wax biosynthesis and the process of stomatal OCL formation.
Collapse
Affiliation(s)
- Jing Tang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianpeng Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shipeng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 434200, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
49
|
Kong L, Liu Y, Zhi P, Wang X, Xu B, Gong Z, Chang C. Origins and Evolution of Cuticle Biosynthetic Machinery in Land Plants. PLANT PHYSIOLOGY 2020; 184:1998-2010. [PMID: 32934149 PMCID: PMC7723097 DOI: 10.1104/pp.20.00913] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 05/18/2023]
Abstract
The aerial epidermis of land plants is covered with a hydrophobic cuticle that protects the plant against environmental stresses. Although the mechanisms of cuticle biosynthesis have been extensively studied in model plants, particularly in seed plants, the origins and evolution of cuticle biosynthesis are not well understood. In this study, we performed a comparative genomic analysis of core components that mediate cuticle biosynthesis and characterized the chemical compositions and physiological parameters of cuticles from a broad set of embryophytes. Phylogenomic analysis revealed that the cuticle biosynthetic machinery originated in the last common ancestor of embryophytes. Coexpansion and coordinated expression are evident in core genes involved in the biosynthesis of two major cuticle components: the polymer cutin and cuticular waxes. Multispecies analyses of cuticle chemistry and physiology further revealed higher loads of both cutin and cuticular waxes in seed plants than in bryophytes as well as greater proportions of dihydroxy and trihydroxy acids, dicarboxylic acids, very-long-chain alkanes, and >C28 lipophilic compounds. This can be associated with land colonization and the formation of cuticles with enhanced hydrophobicity and moisture retention capacity. These findings provide insights into the evolution of plant cuticle biosynthetic mechanisms.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yanna Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
50
|
Li R, Sun S, Wang H, Wang K, Yu H, Zhou Z, Xin P, Chu J, Zhao T, Wang H, Li J, Cui X. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nat Commun 2020; 11:5844. [PMID: 33203832 PMCID: PMC7673020 DOI: 10.1038/s41467-020-19705-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Fruit firmness is a target trait in tomato breeding because it facilitates transportation and storage. However, it is also a complex trait and uncovering the molecular genetic mechanisms controlling fruit firmness has proven challenging. Here, we report the map-based cloning and functional characterization of qFIRM SKIN 1 (qFIS1), a major quantitative trait locus that partially determines the difference in compression resistance between cultivated and wild tomato accessions. FIS1 encodes a GA2-oxidase, and its mutation leads to increased bioactive gibberellin content, enhanced cutin and wax biosynthesis, and increased fruit firmness and shelf life. Importantly, FIS1 has no unfavorable effect on fruit weight or taste, making it an ideal target for breeders. Our study demonstrates that FIS1 mediates gibberellin catabolism and regulates fruit firmness, and it offers a potential strategy for tomato breeders to produce firmer fruit.
Collapse
Affiliation(s)
- Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tongmin Zhao
- Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|