1
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
2
|
Manghi P, Filosi M, Zolfo M, Casten LG, Garcia-Valiente A, Mattevi S, Heidrich V, Golzato D, Perini S, Thomas AM, Montalbano S, Cancellieri S, Waldron L, Hall JB, Xu S, Volfovsky N, Green Snyder L, Feliciano P, Asnicar F, Valles-Colomer M, Michaelson JJ, Segata N, Domenici E. Large-scale metagenomic analysis of oral microbiomes reveals markers for autism spectrum disorders. Nat Commun 2024; 15:9743. [PMID: 39528484 PMCID: PMC11555315 DOI: 10.1038/s41467-024-53934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The link between the oral microbiome and neurodevelopmental disorders remains a compelling hypothesis, still requiring confirmation in large-scale datasets. Leveraging over 7000 whole-genome sequenced salivary samples from 2025 US families with children diagnosed with autism spectrum disorders (ASD), our cross-sectional study shows that the oral microbiome composition can discriminate ASD subjects from neurotypical siblings (NTs, AUC = 0.66), with 108 differentiating species (q < 0.005). The relative abundance of these species is highly correlated with cognitive impairment as measured by Full-Scale Intelligence Quotient (IQ). ASD children with IQ < 70 also exhibit lower microbiome strain sharing with parents (p < 10-6) with respect to NTs. A two-pronged functional enrichment analysis suggests the contribution of enzymes from the serotonin, GABA, and dopamine degradation pathways to the distinct microbial community compositions observed between ASD and NT samples. Although measures of restrictive eating diet and proxies of oral hygiene show relatively minor effects on the microbiome composition, the observed associations with ASD and IQ may still represent unaccounted-for underlying differences in lifestyle among groups. While causal relationships could not be established, our study provides substantial support to the investigation of oral microbiome biomarkers in ASD.
Collapse
Affiliation(s)
- Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy.
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098, San Michele all'Adige, Italy.
| | - Michele Filosi
- Department CIBIO, University of Trento, Trento, Italy
- EURAC Research Institute for Biomedicine BIO, Bolzano, Italy
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
- Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| | - Lucas G Casten
- Department of Psychiatry, University of Iowa, Iowa city, IA, USA
| | | | - Stefania Mattevi
- Department CIBIO, University of Trento, Trento, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Samuel Perini
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Simone Montalbano
- Department CIBIO, University of Trento, Trento, Italy
- Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Samuele Cancellieri
- Department CIBIO, University of Trento, Trento, Italy
- Norwegian Center of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Levi Waldron
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | | | - Simon Xu
- Simons Foundation, New York, NY, USA
| | | | - LeeAnne Green Snyder
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Pamela Feliciano
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | | |
Collapse
|
3
|
Croom K, Rumschlag JA, Molinaro G, Erickson MA, Binder DK, Huber KM, Razak KA. Developmental trajectory and sex differences in auditory processing in a PTEN-deletion model of autism spectrum disorders. Neurobiol Dis 2024; 200:106628. [PMID: 39111703 DOI: 10.1016/j.nbd.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, including severe sensory deficits and abnormal language development. Sensory deficits early in development may lead to broader symptomatology in adolescents and adults. The mechanistic links between ASD risk genes, sensory processing and language impairment are unclear. There is also a sex bias in ASD diagnosis and symptomatology. The current study aims to identify the developmental trajectory and genotype- and sex-dependent differences in auditory sensitivity and temporal processing in a Pten-deletion (phosphatase and tensin homolog missing on chromosome 10) mouse model of ASD. Auditory temporal processing is crucial for speech recognition and language development and deficits will cause language impairments. However, very little is known about the development of temporal processing in ASD animal models, and if there are sex differences. To address this major gap, we recorded epidural electroencephalography (EEG) signals from the frontal (FC) and auditory (AC) cortex in developing and adult Nse-cre PTEN mice, in which Pten is deleted in specific cortical layers (layers III-V) (PTEN conditional knock-out (cKO). We quantified resting EEG spectral power distribution, auditory event related potentials (ERP) and temporal processing from awake and freely moving male and female mice. Temporal processing is measured using a gap-in-noise-ASSR (auditory steady state response) stimulus paradigm. The experimental manipulation of gap duration and modulation depth allows us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was quantified using inter-trial phase clustering (ITPC) values that account for phase consistency across trials. The results show genotype differences in resting power distribution in PTEN cKO mice throughout development. Male and female cKO mice have significantly increased beta power but decreased high frequency oscillations in the AC and FC. Both male and female PTEN cKO mice show diminished ITPC in their gap-ASSR responses in the AC and FC compared to control mice. Overall, deficits become more prominent in adult (p60) mice, with cKO mice having significantly increased sound evoked power and decreased ITPC compared to controls. While both male and female cKO mice demonstrated severe temporal processing deficits across development, female cKO mice showed increased hypersensitivity compared to males, reflected as increased N1 and P2 amplitudes. These data identify a number of novel sensory processing deficits in a PTEN-ASD mouse model that are present from an early age. Abnormal temporal processing and hypersensitive responses may contribute to abnormal development of language function in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, United States of America
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Michael A Erickson
- Psychology Department, University of California, Riverside, United States of America
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Biomedical Sciences, School of Medicine, University of California, Riverside, United States of America
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Psychology Department, University of California, Riverside, United States of America.
| |
Collapse
|
4
|
Montani C, Balasco L, Pagani M, Alvino FG, Barsotti N, de Guzman AE, Galbusera A, de Felice A, Nickl-Jockschat TK, Migliarini S, Casarosa S, Lau P, Mattioni L, Pasqualetti M, Provenzano G, Bozzi Y, Lombardo MV, Gozzi A. Sex-biasing influence of autism-associated Ube3a gene overdosage at connectomic, behavioral, and transcriptomic levels. SCIENCE ADVANCES 2024; 10:eadg1421. [PMID: 38996019 PMCID: PMC11244557 DOI: 10.1126/sciadv.adg1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.
Collapse
Affiliation(s)
- Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Luigi Balasco
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - A. Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessia de Felice
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Thomas K. Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, Center for Human Technologies, Genova, Italy
| | - Lorenzo Mattioni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| |
Collapse
|
5
|
DeCasien AR, Chiou KL, Testard C, Mercer A, Negrón-Del Valle JE, Bauman Surratt SE, González O, Stock MK, Ruiz-Lambides AV, Martínez MI, Antón SC, Walker CS, Sallet J, Wilson MA, Brent LJN, Montague MJ, Sherwood CC, Platt ML, Higham JP, Snyder-Mackler N. Evolutionary and biomedical implications of sex differences in the primate brain transcriptome. CELL GENOMICS 2024; 4:100589. [PMID: 38942023 PMCID: PMC11293591 DOI: 10.1016/j.xgen.2024.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Humans exhibit sex differences in the prevalence of many neurodevelopmental disorders and neurodegenerative diseases. Here, we generated one of the largest multi-brain-region bulk transcriptional datasets for the rhesus macaque and characterized sex-biased gene expression patterns to investigate the translatability of this species for sex-biased neurological conditions. We identify patterns similar to those in humans, which are associated with overlapping regulatory mechanisms, biological processes, and genes implicated in sex-biased human disorders, including autism. We also show that sex-biased genes exhibit greater genetic variance for expression and more tissue-specific expression patterns, which may facilitate rapid evolution of sex-biased genes. Our findings provide insights into the biological mechanisms underlying sex-biased disease and support the rhesus macaque model for the translational study of these conditions.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA; Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA.
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Psychology, University of Washington, Seattle, WA, USA; Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA.
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | | | | | - Olga González
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | | | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Susan C Antón
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, Université Lyon, Lyon, France
| | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behavior, University of Exeter, Exeter, UK
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Department of Marketing, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Psychology, University of Washington, Seattle, WA, USA; Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA; ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Jenabi E, Salehi AM, Ayubi E, Seyedi M, Khazaei S, Jourmand H. Pre and perinatal predictors on autism spectrum disorders: a case-control study in the west of Iran. Matern Health Neonatol Perinatol 2024; 10:13. [PMID: 38956743 PMCID: PMC11220983 DOI: 10.1186/s40748-024-00183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/12/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION The constellation of pre and perinatal predictors are introduced as predictor for autism spectrum disorders (ASD), however, the information about the direction and strength of these predictors are lacking in Western, Iran. The current study aimed to determine the pre and perinatal predictors of ASD among children in this region. METHODS This case-control study was conducted in Hamadan, Western Iran during January to March 2022. The study included 100 children with ASD who referred to the autism center as case group. Hundred children without ASD from registration system of health service centers were selected as control group and were matched (1:1) to cases by age and place of residency. A structured questionnaire about pre and perinatal predictors of ASD was developed by an expert panel. The questionnaire was administered by interviewing the mothers of children. RESULTS Boy gender (OR: 3.51, 95% CI: 1.74-7.10, p-value < 0.001), small for gestational age (SGA) (3.92, 1.64-9.39, 0.002), maternal diabetes (3.51, 1.03-24.95, 0.04) and family history of mental disorders (3.64, 1.18-11.27, 0.04) were identified as significant predictors in a multivariable analysis. CONCLUSION Our study emphasizes on the importance of screening and monitoring for ASD in the boys, those with history of SGA, from mothers with history of diabetes and with family history of mental disorders. Proposing the replication of findings emphasizes the necessity of conducting studies with larger sample sizes.
Collapse
Affiliation(s)
- Ensiyeh Jenabi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Mother and Child Care Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Mohammad Salehi
- Student Research Committee, Hamadan University of Medical Sciences School of Medicine, Hamadan, Iran.
| | - Erfan Ayubi
- Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdieh Seyedi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanieh Jourmand
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Kissel LT, Pochareddy S, An JY, Sestan N, Sanders SJ, Wang X, Werling DM. Sex-Differential Gene Expression in Developing Human Cortex and Its Intersection With Autism Risk Pathways. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100321. [PMID: 38957312 PMCID: PMC11217612 DOI: 10.1016/j.bpsgos.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Sex-differential biology may contribute to the consistently male-biased prevalence of autism spectrum disorder (ASD). Gene expression differences between males and females in the brain can indicate possible molecular and cellular mechanisms involved, although transcriptomic sex differences during human prenatal cortical development have been incompletely characterized, primarily due to small sample sizes. Methods We performed a meta-analysis of sex-differential expression and co-expression network analysis in 2 independent bulk RNA sequencing datasets generated from cortex of 273 prenatal donors without known neuropsychiatric disorders. To assess the intersection between neurotypical sex differences and neuropsychiatric disorder biology, we tested for enrichment of ASD-associated risk genes and expression changes, neuropsychiatric disorder risk genes, and cell type markers within identified sex-differentially expressed genes (sex-DEGs) and sex-differential co-expression modules. Results We identified 101 significant sex-DEGs, including Y-chromosome genes, genes impacted by X-chromosome inactivation, and autosomal genes. Known ASD risk genes, implicated by either common or rare variants, did not preferentially overlap with sex-DEGs. We identified 1 male-specific co-expression module enriched for immune signaling that is unique to 1 input dataset. Conclusions Sex-differential gene expression is limited in prenatal human cortex tissue, although meta-analysis of large datasets allows for the identification of sex-DEGs, including autosomal genes that encode proteins involved in neural development. Lack of sex-DEG overlap with ASD risk genes in the prenatal cortex suggests that sex-differential modulation of ASD symptoms may occur in other brain regions, at other developmental stages, or in specific cell types, or may involve mechanisms that act downstream from mutation-carrying genes.
Collapse
Affiliation(s)
- Lee T. Kissel
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sirisha Pochareddy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Xuran Wang
- Seaver Autism Center for Research and Treatment, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donna M. Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
8
|
Dar W. Aspartame-induced cognitive dysfunction: Unveiling role of microglia-mediated neuroinflammation and molecular remediation. Int Immunopharmacol 2024; 135:112295. [PMID: 38776852 DOI: 10.1016/j.intimp.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Aspartame, an artificial sweetener, is consumed by millions of people globally. There are multiple reports of aspartame and its metabolites affecting cognitive functions in animal models and humans, which include learning problems, headaches, seizures, migraines, irritable moods, anxiety, depression, and insomnia. These cognitive deficits and associated symptoms are partly attributed to dysregulated excitatory and inhibitory neurotransmitter balance due to aspartate released from aspartame, resulting in an excitotoxic effect in neurons, leading to neuronal damage. However, microglia, a central immunocompetent cell type in brain tissue and a significant player in inflammation can contribute to the impact. Microglia rapidly respond to changes in CNS homeostasis. Aspartame consumption might affect the microglia phenotype directly via methanol-induced toxic effects and indirectly via aspartic acid-mediated excitotoxicity, exacerbating symptoms of cognitive decline. Long-term oral consumption of aspartame thus might change microglia's phenotype from ramified to activated, resulting in chronic or sustained activation, releasing excess pro-inflammatory molecules. This pro-inflammatory surge might lead to the degeneration of healthy neurons and other glial cells, impairing cognition. This review will deliberate on possible links and research gaps that need to be explored concerning aspartame consumption, ecotoxicity and microglia-mediated inflammatory cognitive impairment. The study covers a comprehensive analysis of the impact of aspartame consumption on cognitive function, considering both direct and indirect effects, including the involvement of microglia-mediated neuroinflammation. We also propose a novel intervention strategy involving tryptophan supplementation to mitigate cognitive decline symptoms in individuals with prolonged aspartame consumption, providing a potential solution to address the adverse effects of aspartame on cognitive function.
Collapse
Affiliation(s)
- Waseem Dar
- Translational Neurobiology and Disease Modelling Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, 201314, India.
| |
Collapse
|
9
|
Fass SB, Mulvey B, Chase R, Yang W, Selmanovic D, Chaturvedi SM, Tycksen E, Weiss LA, Dougherty JD. Relationship between sex biases in gene expression and sex biases in autism and Alzheimer's disease. Biol Sex Differ 2024; 15:47. [PMID: 38844994 PMCID: PMC11157820 DOI: 10.1186/s13293-024-00622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. METHODS In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-Seq datasets using both within-region and pan-regional frameworks. RESULTS We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-nucleus data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. CONCLUSION Overall, these analyses highlight mechanisms by which sex differences may interact with sex-biased conditions in the brain. Furthermore, we provide region-specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.
Collapse
Affiliation(s)
- Stuart B Fass
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Lieber Institute for Brain Development, 855 North Wolfe St. Ste 300, Baltimore, MD, 21205, USA
| | - Rebecca Chase
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Sneha M Chaturvedi
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lauren A Weiss
- Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA, 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA, 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA, 94143, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA.
- Department of Genetics, 4566 Scott Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
10
|
Tseng CEJ, Canales C, Marcus RE, Parmar AJ, Hightower BG, Mullett JE, Makary MM, Tassone AU, Saro HK, Townsend PH, Birtwell K, Nowinski L, Thom RP, Palumbo ML, Keary C, Catana C, McDougle CJ, Hooker JM, Zürcher NR. In vivo translocator protein in females with autism spectrum disorder: a pilot study. Neuropsychopharmacology 2024; 49:1193-1201. [PMID: 38615126 PMCID: PMC11109261 DOI: 10.1038/s41386-024-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Sex-based differences in the prevalence of autism spectrum disorder (ASD) are well-documented, with a male-to-female ratio of approximately 4:1. The clinical presentation of the core symptoms of ASD can also vary between sexes. Previously, positron emission tomography (PET) studies have identified alterations in the in vivo levels of translocator protein (TSPO)-a mitochondrial protein-in primarily or only male adults with ASD, with our group reporting lower TSPO relative to whole brain mean in males with ASD. However, whether in vivo TSPO levels are altered in females with ASD, specifically, is unknown. This is the first pilot study to measure in vivo TSPO in the brain in adult females with ASD using [11C]PBR28 PET-magnetic resonance imaging (MRI). Twelve adult females with ASD and 10 age- and TSPO genotype-matched controls (CON) completed one or two [11C]PBR28 PET-MRI scans. Females with ASD exhibited elevated [11C]PBR28 standardized uptake value ratio (SUVR) in the midcingulate cortex and splenium of the corpus callosum compared to CON. No brain area showed lower [11C]PBR28 SUVR in females with ASD compared to CON. Test-retest over several months showed stable [11C]PBR28 SUVR across time in both groups. Elevated regional [11C]PBR28 SUVR in females with ASD stand in stark contrast to our previous findings of lower regional [11C]PBR28 SUVR in males with ASD. Preliminary evidence of regionally elevated mitochondrial protein TSPO relative to whole brain mean in ASD females may reflect neuroimmuno-metabolic alterations specific to females with ASD.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Camila Canales
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Rachel E Marcus
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Anjali J Parmar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Baileigh G Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jennifer E Mullett
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Meena M Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - Alison U Tassone
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Hannah K Saro
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Paige Hickey Townsend
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Kirstin Birtwell
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Lisa Nowinski
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Robyn P Thom
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Michelle L Palumbo
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Christopher Keary
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher J McDougle
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA.
| |
Collapse
|
11
|
Xia Y, Xia C, Jiang Y, Chen Y, Zhou J, Dai R, Han C, Mao Z, Liu C, Chen C. Transcriptomic sex differences in postmortem brain samples from patients with psychiatric disorders. Sci Transl Med 2024; 16:eadh9974. [PMID: 38781321 DOI: 10.1126/scitranslmed.adh9974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Many psychiatric disorders exhibit sex differences, but the underlying mechanisms remain poorly understood. We analyzed transcriptomics data from 2160 postmortem adult prefrontal cortex brain samples from the PsychENCODE consortium in a sex-stratified study design. We compared transcriptomics data of postmortem brain samples from patients with schizophrenia (SCZ), bipolar disorder (BD), and autism spectrum disorder (ASD) with transcriptomics data of postmortem control brains from individuals without a known history of psychiatric disease. We found that brain samples from females with SCZ, BD, and ASD showed a higher burden of transcriptomic dysfunction than did brain samples from males with these disorders. This observation was supported by the larger number of differentially expressed genes (DEGs) and a greater magnitude of gene expression changes observed in female versus male brain specimens. In addition, female patient brain samples showed greater overall connectivity dysfunction, defined by a higher proportion of gene coexpression modules with connectivity changes and higher connectivity burden, indicating a greater degree of gene coexpression variability. We identified several gene coexpression modules enriched in sex-biased DEGs and identified genes from a genome-wide association study that were involved in immune and synaptic functions across different brain cell types. We found a number of genes as hubs within these modules, including those encoding SCN2A, FGF14, and C3. Our results suggest that in the context of psychiatric diseases, males and females exhibit different degrees of transcriptomic dysfunction and implicate immune and synaptic-related pathways in these sex differences.
Collapse
Affiliation(s)
- Yan Xia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Yi Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430064, China
| | - Yu Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jiaqi Zhou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Cong Han
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zhongzheng Mao
- Graduate School of Arts and Sciences, Yale University, New Haven, CT 06510, USA
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
- Furong Laboratory, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410000, China
| |
Collapse
|
12
|
Seiffe A, Kazlauskas N, Campolongo M, Depino AM. Juvenile peripheral LPS exposure overrides female resilience to prenatal VPA effects on adult sociability in mice. Sci Rep 2024; 14:11435. [PMID: 38763939 PMCID: PMC11102908 DOI: 10.1038/s41598-024-62217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024] Open
Abstract
Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Araceli Seiffe
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Nadia Kazlauskas
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Marcos Campolongo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Osman HC, Moreno R, Rose D, Rowland ME, Ciernia AV, Ashwood P. Impact of maternal immune activation and sex on placental and fetal brain cytokine and gene expression profiles in a preclinical model of neurodevelopmental disorders. J Neuroinflammation 2024; 21:118. [PMID: 38715090 PMCID: PMC11077729 DOI: 10.1186/s12974-024-03106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.
Collapse
Affiliation(s)
- Hadley C Osman
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Rachel Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Megan E Rowland
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Annie Vogel Ciernia
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA.
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA.
| |
Collapse
|
14
|
Tian Y, Qiao H, Zhu LQ, Man HY. Sexually dimorphic phenotypes and the role of androgen receptors in UBE3A-dependent autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592248. [PMID: 38746146 PMCID: PMC11092617 DOI: 10.1101/2024.05.02.592248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
15
|
Kang R, Kim K, Jung Y, Choi SH, Lee C, Im GH, Shin M, Ryu K, Choi S, Yang E, Shin W, Lee S, Lee S, Papadopoulos Z, Ahn JH, Koh GY, Kipnis J, Kang H, Kim H, Cho WK, Park S, Kim SG, Kim E. Loss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice. PLoS Biol 2024; 22:e3002596. [PMID: 38718086 PMCID: PMC11104772 DOI: 10.1371/journal.pbio.3002596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/20/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.
Collapse
Affiliation(s)
- Ryeonghwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Kyungdeok Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yewon Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sang-Han Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Kwangmin Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Subin Choi
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Esther Yang
- Department of Anatomy, Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Zachary Papadopoulos
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Jonathan Kipnis
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea
| | - Hyun Kim
- Department of Anatomy, Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| |
Collapse
|
16
|
Ellingford R, Tojo M, Basson MA, Andreae LC. Male-Dominant Effects of Chd8 Haploinsufficiency on Synaptic Phenotypes during Development in Mouse Prefrontal Cortex. ACS Chem Neurosci 2024; 15:1635-1642. [PMID: 38557009 PMCID: PMC11027092 DOI: 10.1021/acschemneuro.3c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
CHD8 is a high penetrance, high confidence risk gene for autism spectrum disorder (ASD), a neurodevelopmental disorder that is substantially more prevalent among males than among females. Recent studies have demonstrated variable sex differences in the behaviors and synaptic phenotypes of mice carrying different heterozygous ASD-associated mutations in Chd8. We examined functional and structural cellular phenotypes linked to synaptic transmission in deep layer pyramidal neurons of the prefrontal cortex in male and female mice carrying a heterozygous, loss-of-function Chd8 mutation in the C57BL/6J strain across development from postnatal day 2 to adulthood. Notably, excitatory neurotransmission was decreased only in Chd8+/- males with no differences in Chd8+/- females, and the majority of alterations in inhibitory transmission were found in males. Similarly, analysis of cellular morphology showed male-specific effects of reduced Chd8 expression. Both functional and structural phenotypes were most prominent at postnatal days 14-20, a stage approximately corresponding to childhood. Our findings suggest that the effects of Chd8 mutation are predominantly seen in males and are maximal during childhood.
Collapse
Affiliation(s)
- Robert
A. Ellingford
- Centre
for Developmental Neurobiology, Institute of Psychiatry, Psychology
& Neuroscience, King’s College
London, London SE1 1UL, U.K.
- Centre
for Craniofacial & Regenerative Biology, King’s College London, London SE1 9RT, U.K.
| | - Mizuki Tojo
- Centre
for Developmental Neurobiology, Institute of Psychiatry, Psychology
& Neuroscience, King’s College
London, London SE1 1UL, U.K.
| | - M. Albert Basson
- Centre
for Craniofacial & Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- MRC
Centre for Neurodevelopmental Disorders, King’s College London, London, U.K.
| | - Laura C. Andreae
- Centre
for Developmental Neurobiology, Institute of Psychiatry, Psychology
& Neuroscience, King’s College
London, London SE1 1UL, U.K.
- MRC
Centre for Neurodevelopmental Disorders, King’s College London, London, U.K.
| |
Collapse
|
17
|
Zhang Q, Wang Y, Tao J, Xia R, Zhang Y, Liu Z, Cheng J. Sex-biased single-cell genetic landscape in mice with autism spectrum disorder. J Genet Genomics 2024; 51:338-351. [PMID: 37703921 DOI: 10.1016/j.jgg.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Autistic spectrum disorder (ASD) is a male-biased, heterogeneous neurodevelopmental disorder that affects approximately 1%-2% of the population. Prenatal exposure to valproic acid (VPA) is a recognized risk factor for ASD, but the cellular and molecular basis of VPA-induced ASD at the single-cell resolution is unclear. Here, we aim to compare the cellular and molecular differences in the hippocampus between male and female prenatal mice with ASD at the single-cell transcriptomic level. The transcriptomes of more than 45,000 cells are assigned to 12 major cell types, including neurons, glial cells, vascular cells, and immune cells. Cell type-specific genes with altered expression after prenatal VPA exposure are analyzed, and the largest number of differentially expressed genes (DEGs) are found in neurons, choroid plexus epithelial cells, and microglia. In microglia, several pathways related to inflammation are found in both males and females, including the tumor necrosis factor (TNF), nuclear factor kappa B (NF-κB), toll-like receptor (TLR), and mitogen-activated protein kinase (MAPK) signaling pathways, which are important for the induction of autistic-like behavior. Additionally, we note that several X-linked genes, including Bex1, Bex3, and Gria3, were among the male-specific DEGs of neurons. This pioneering study describes the landscape of the transcriptome in the hippocampus of autistic mice. The elucidation of sexual differences could provide innovative strategies for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ruixue Xia
- Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475099, China
| | - Yijie Zhang
- Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475099, China
| | - Zhirui Liu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Jiwei Cheng
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
18
|
Bordt EA, Moya HA, Jo YC, Ravichandran CT, Bankowski IM, Ceasrine AM, McDougle CJ, Carlezon WA, Bilbo SD. Gonadal hormones impart male-biased behavioral vulnerabilities to immune activation via microglial mitochondrial function. Brain Behav Immun 2024; 115:680-695. [PMID: 37972878 PMCID: PMC10996880 DOI: 10.1016/j.bbi.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
There is a strong male bias in the prevalence of many neurodevelopmental disorders such as autism spectrum disorder. However, the mechanisms underlying this sex bias remain elusive. Infection during the perinatal period is associated with an increased risk of neurodevelopmental disorder development. Here, we used a mouse model of early-life immune activation that reliably induces deficits in social behaviors only in males. We demonstrate that male-biased alterations in social behavior are dependent upon microglial immune signaling and are coupled to alterations in mitochondrial morphology, gene expression, and function specifically within microglia, the innate immune cells of the brain. Additionally, we show that this behavioral and microglial mitochondrial vulnerability to early-life immune activation is programmed by the male-typical perinatal gonadal hormone surge. These findings demonstrate that social behavior in males over the lifespan are regulated by microglia-specific mechanisms that are shaped by events that occur in early development.
Collapse
Affiliation(s)
- Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
| | - Haley A Moya
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
| | - Young Chan Jo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Caitlin T Ravichandran
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA; McLean Hospital, Belmont, MA 02478, USA
| | - Izabella M Bankowski
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Christopher J McDougle
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | | | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
19
|
Jiang M, Wang Z, Lu T, Li X, Yang K, Zhao L, Zhang D, Li J, Wang L. Integrative analysis of long noncoding RNAs dysregulation and synapse-associated ceRNA regulatory axes in autism. Transl Psychiatry 2023; 13:375. [PMID: 38057311 DOI: 10.1038/s41398-023-02662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex disorder of neurodevelopment, the function of long noncoding RNA (lncRNA) in ASD remains essentially unknown. In the present study, gene networks were used to explore the ASD disease mechanisms integrating multiple data types (for example, RNA expression, whole-exome sequencing signals, weighted gene co-expression network analysis, and protein-protein interaction) and datasets (five human postmortem datasets). A total of 388 lncRNAs and five co-expression modules were found to be altered in ASD. The downregulated co-expression M4 module was significantly correlated with ASD, enriched with autism susceptibility genes and synaptic signaling. Integrating lncRNAs from the M4 module and microRNA (miRNA) dysregulation data from the literature identified competing endogenous RNA (ceRNA) network. We identified the downregulated mRNAs that interact with miRNAs by the miRTarBase, miRDB, and TargetScan databases. Our analysis reveals that MIR600HG was downregulated in multiple brain tissue datasets and was closely associated with 9 autism-susceptible miRNAs in the ceRNA network. MIR600HG and target mRNAs (EPHA4, MOAP1, MAP3K9, STXBP1, PRKCE, and SCAMP5) were downregulated in the peripheral blood by quantitative reverse transcription polymerase chain reaction analysis (false discovery rate <0.05). Subsequently, we assessed the role of lncRNA dysregulation in altered mRNA levels. Experimental verification showed that some synapse-associated mRNAs were downregulated after the MIR600HG knockdown. BrainSpan project showed that the expression patterns of MIR600HG (primate-specific lncRNA) and synapse-associated mRNA were similar in different human brain regions and at different stages of development. A combination of support vector machine and random forest machine learning algorithms retrieved the marker gene for ASD in the ceRNA network, and the area under the curve of the diagnostic nomogram was 0.851. In conclusion, dysregulation of MIR600HG, a novel specific lncRNA associated with ASD, is responsible for the ASD-associated miRNA-mRNA axes, thereby potentially regulating synaptogenesis.
Collapse
Affiliation(s)
- Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Ziqi Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tianlan Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Xianjing Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Kang Yang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Liyang Zhao
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Dai Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
| |
Collapse
|
20
|
Woelfle S, Pedro MT, Wagner J, Schön M, Boeckers TM. Expression profiles of the autism-related SHANK proteins in the human brain. BMC Biol 2023; 21:254. [PMID: 37953224 PMCID: PMC10641957 DOI: 10.1186/s12915-023-01712-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND SHANKs are major scaffolding proteins at postsynaptic densities (PSDs) in the central nervous system. Mutations in all three family members have been associated with neurodevelopmental disorders such as autism spectrum disorders (ASDs). Despite the pathophysiological importance of SHANK2 and SHANK3 mutations in humans, research on the expression of these proteins is mostly based on rodent model organisms. RESULTS In the present study, cellular and neuropil SHANK2 expression was analyzed by immunofluorescence (IF) staining of post mortem human brain tissue from four male individuals (19 brain regions). Mouse brains were analyzed in comparison to evaluate the degree of phylogenetic conservation. Furthermore, SHANK2 and SHANK3 isoform patterns were compared in human and mouse brain lysates. While isoform expression and subcellular distribution were largely conserved, differences in neuropil levels of SHANK2 were found by IF staining: Maximum expression was concordantly measured in the cerebellum; however, higher SHANK2 expression was detected in the human brainstem and thalamus when compared to mice. One of the lowest SHANK2 levels was found in the human amygdala, a moderately expressing region in mouse. Quantification of SHANK3 IF in mouse brains unveiled a distribution comparable to humans. CONCLUSIONS In summary, these data show that the overall expression pattern of SHANK is largely conserved in defined brain regions; however, differences do exist, which need to be considered in the translation of rodent studies. The summarized expression patterns of SHANK2 and SHANK3 should serve as a reference for future studies.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Ulm University, Campus Günzburg, Lindenallee 2, 89312, Günzburg, Germany
| | - Jan Wagner
- Department of Neurology, Ulm University and Universitäts- and Rehabilitationskliniken Ulm, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Deutsches Zentrum Für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany.
| |
Collapse
|
21
|
Fass SB, Mulvey B, Yang W, Selmanovic D, Chaturvedi S, Tycksen E, Weiss LA, Dougherty JD. Relationship between sex biases in gene expression and sex biases in autism and Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.29.23294773. [PMID: 37693465 PMCID: PMC10491382 DOI: 10.1101/2023.08.29.23294773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-seq datasets using both within-region and pan-regional frameworks. We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-cell data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. Finally, we provide region specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.
Collapse
Affiliation(s)
- Stuart B Fass
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
| | - Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Lieber Institute for Brain Development, 855 North Wolfe St. Ste 300, Baltimore, MD 21205, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
| | - Sneha Chaturvedi
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren A Weiss
- Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA 94143
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA 94143
- Weill Institute for Neurosciences, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA 94143
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
| |
Collapse
|
22
|
Wingo AP, Liu Y, Gerasimov ES, Vattathil SM, Liu J, Cutler DJ, Epstein MP, Blokland GAM, Thambisetty M, Troncoso JC, Duong DM, Bennett DA, Levey AI, Seyfried NT, Wingo TS. Sex differences in brain protein expression and disease. Nat Med 2023; 29:2224-2232. [PMID: 37653343 PMCID: PMC10504083 DOI: 10.1038/s41591-023-02509-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Most complex human traits differ by sex, but we have limited insight into the underlying mechanisms. Here, we investigated the influence of biological sex on protein expression and its genetic regulation in 1,277 human brain proteomes. We found that 13.2% (1,354) of brain proteins had sex-differentiated abundance and 1.5% (150) of proteins had sex-biased protein quantitative trait loci (sb-pQTLs). Among genes with sex-biased expression, we found 67% concordance between sex-differentiated protein and transcript levels; however, sex effects on the genetic regulation of expression were more evident at the protein level. Considering 24 psychiatric, neurologic and brain morphologic traits, we found that an average of 25% of their putatively causal genes had sex-differentiated protein abundance and 12 putatively causal proteins had sb-pQTLs. Furthermore, integrating sex-specific pQTLs with sex-stratified genome-wide association studies of six psychiatric and neurologic conditions, we uncovered another 23 proteins contributing to these traits in one sex but not the other. Together, these findings begin to provide insights into mechanisms underlying sex differences in brain protein expression and disease.
Collapse
Affiliation(s)
- Aliza P Wingo
- Veterans Affairs Atlanta Health Care System, Decatur, GA, USA.
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Yue Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Selina M Vattathil
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabriëlla A M Blokland
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Maastricht, the Netherlands
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
23
|
Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, Nawani S, Asgarian Z, Catani M, Fernandes C, Drescher U. Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex. Commun Biol 2023; 6:846. [PMID: 37582968 PMCID: PMC10427688 DOI: 10.1038/s42003-023-05215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.
Collapse
Affiliation(s)
- Matt S Dawson
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kevin Gordon-Fleet
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Lingxin Yan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Vera Tardos
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Huanying He
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kwong Mui
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Smriti Nawani
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
| | - Zeinab Asgarian
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
- Molecular Therapeutics Lab, University College London, Research Department of Targeted Intervention, London, W1W 7TY, UK
| | - Marco Catani
- NatBrainLab, Departments of Neuroimaging Sciences and Forensic and Neurodevelopmental Sciences, IoPPN, King's College London, London, SE1 1UL, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK
| | - Uwe Drescher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK.
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
24
|
Cuppens T, Shatto J, Mangnier L, Kumar AA, Ng ACH, Kaur M, Bui TA, Leclercq M, Droit A, Dunham I, Bolduc FV. Sex difference contributes to phenotypic diversity in individuals with neurodevelopmental disorders. Front Pediatr 2023; 11:1172154. [PMID: 37609366 PMCID: PMC10441218 DOI: 10.3389/fped.2023.1172154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Objective Gain a better understanding of sex-specific differences in individuals with global developmental delay (GDD), with a focus on phenotypes and genotypes. Methods Using the Deciphering Developmental Disorders (DDD) dataset, we extracted phenotypic information from 6,588 individuals with GDD and then identified statistically significant variations in phenotypes and genotypes based on sex. We compared genes with pathogenic variants between sex and then performed gene network and molecular function enrichment analysis and gene expression profiling between sex. Finally, we contrasted individuals with autism as an associated condition. Results We identified significantly differentially expressed phenotypes in males vs. females individuals with GDD. Autism and macrocephaly were significantly more common in males whereas microcephaly and stereotypies were more common in females. Importantly, 66% of GDD genes with pathogenic variants overlapped between both sexes. In the cohort, males presented with only slightly increased X-linked genes (9% vs. 8%, respectively). Individuals from both sexes harbored a similar number of pathogenic variants overall (3) but females presented with a significantly higher load for GDD genes with high intolerance to loss of function. Sex difference in gene expression correlated with genes identified in a sex specific manner. While we identified sex-specific GDD gene mutations, their pathways overlapped. Interestingly, individuals with GDD but also co-morbid autism phenotypes, we observed distinct mutation load, pathways and phenotypic presentation. Conclusion Our study shows for the first time that males and females with GDD present with significantly different phenotypes. Moreover, while most GDD genes overlapped, some genes were found uniquely in each sex. Surprisingly they shared similar molecular functions. Sorting genes by predicted tolerance to loss of function (pLI) led to identifying an increased mutation load in females with GDD, suggesting potentially a tolerance to GDD genes of higher pLI compared to overall GDD genes. Finally, we show that considering associated conditions (for instance autism) may influence the genomic underpinning found in individuals with GDD and highlight the importance of comprehensive phenotyping.
Collapse
Affiliation(s)
- Tania Cuppens
- Centre de Recherche du CHU de Québec-Université Laval, Département de Médecine Moléculaire de L'Université Laval, Québec, QC, Canada
| | - Julie Shatto
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Loïc Mangnier
- Centre de Recherche du CHU de Québec-Université Laval, Département de Médecine Moléculaire de L'Université Laval, Québec, QC, Canada
| | - Ajay A. Kumar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Andy Cheuk-Him Ng
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Manpreet Kaur
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Truong An Bui
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Mickael Leclercq
- Centre de Recherche du CHU de Québec-Université Laval, Département de Médecine Moléculaire de L'Université Laval, Québec, QC, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec-Université Laval, Département de Médecine Moléculaire de L'Université Laval, Québec, QC, Canada
| | - Ian Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Francois V. Bolduc
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Cho H, Yoo T, Moon H, Kang H, Yang Y, Kang M, Yang E, Lee D, Hwang D, Kim H, Kim D, Kim JY, Kim E. Adnp-mutant mice with cognitive inflexibility, CaMKIIα hyperactivity, and synaptic plasticity deficits. Mol Psychiatry 2023; 28:3548-3562. [PMID: 37365244 PMCID: PMC10618100 DOI: 10.1038/s41380-023-02129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
ADNP syndrome, involving the ADNP transcription factor of the SWI/SNF chromatin-remodeling complex, is characterized by developmental delay, intellectual disability, and autism spectrum disorders (ASD). Although Adnp-haploinsufficient (Adnp-HT) mice display various phenotypic deficits, whether these mice display abnormal synaptic functions remain poorly understood. Here, we report synaptic plasticity deficits associated with cognitive inflexibility and CaMKIIα hyperactivity in Adnp-HT mice. These mice show impaired and inflexible contextual learning and memory, additional to social deficits, long after the juvenile-stage decrease of ADNP protein levels to ~10% of the newborn level. The adult Adnp-HT hippocampus shows hyperphosphorylated CaMKIIα and its substrates, including SynGAP1, and excessive long-term potentiation that is normalized by CaMKIIα inhibition. Therefore, Adnp haploinsufficiency in mice leads to cognitive inflexibility involving CaMKIIα hyperphosphorylation and excessive LTP in adults long after its marked expressional decrease in juveniles.
Collapse
Affiliation(s)
- Heejin Cho
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - MinSoung Kang
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Dowoon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
26
|
Reilly OT, Brosnan SF, Benítez ME, Phillips KA, Hecht EE. Sex differences in white matter tracts of capuchin monkey brains. J Comp Neurol 2023; 531:1096-1107. [PMID: 37127839 PMCID: PMC10247455 DOI: 10.1002/cne.25480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Nonhuman primates exhibit sexual dimorphism in behavior, suggesting that there could be underlying differences in brain organization and function. Understanding this neuroanatomical variation is critical for enhancing our understanding of the evolution of sex differences in the human brain. Tufted capuchin monkeys (Sapajus [Cebus] apella) represent a phylogenetically diverse taxa of neotropical primates that converge on several behavioral characteristics with humans relevant to social organization, making them an important point of comparison for studying the evolution of sex differences in primates. While anatomical sex differences in gray matter have previously been found in capuchin monkeys, the current study investigates sex differences in white matter tracts. We carried out tract-based spatial statistical analysis on fractional anisotropy images of tufted capuchin monkeys (15 female, 5 male). We found that females showed significantly higher fractional anisotropy than males in regions of frontal-parietal white matter in the right cerebral hemisphere. Paralleling earlier findings in gray matter, male and female fractional anisotropy values in these regions were nonoverlapping. This complements prior work pointing toward capuchin sex differences in limbic circuitry and higher-order visual regions. We propose that these sex differences are related to the distinct socioecological niches occupied by male and female capuchins. Capuchin neuroanatomical sex differences appear to be more pronounced than in humans, which we suggest may relate to human adaptations for prolonged neurodevelopmental trajectories and increased plasticity.
Collapse
Affiliation(s)
- Olivia T Reilly
- Department of Psychology, Georgia State University, Atlanta, Georgia
- Language Research Center, Georgia State University, Atlanta, Georgia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Sarah F Brosnan
- Department of Psychology, Georgia State University, Atlanta, Georgia
- Language Research Center, Georgia State University, Atlanta, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Marcela E Benítez
- Language Research Center, Georgia State University, Atlanta, Georgia
- Department of Anthropology, Emory University, Atlanta, Georgia
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
27
|
Ferencova N, Visnovcova Z, Ondrejka I, Hrtanek I, Bujnakova I, Kovacova V, Macejova A, Tonhajzerova I. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int J Mol Sci 2023; 24:11710. [PMID: 37511467 PMCID: PMC10380731 DOI: 10.3390/ijms241411710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are associated with immune dysregulation. We aimed to estimate the pro- and anti-inflammatory activity/balance in ASD and ADHD patients at a little-studied adolescent age with respect to sex. We evaluated 20 ASD patients (5 girls, average age: 12.4 ± 1.9 y), 20 ADHD patients (5 girls, average age: 13.4 ± 1.8 y), and 20 age- and gender-matched controls (average age: 13.2 ± 1.9 y). The evaluated parameters included (1) white blood cells (WBCs), neutrophils, monocytes, lymphocytes, platelets, platelet distribution width (PDW), mean platelet volume, and derived ratios, as well as (2) cytokines-interferon-gamma, interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, tumor necrosis factor-alpha (TNF-α), and derived profiles and ratios. ASD adolescents showed higher levels of WBC, monocytes, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, macrophages (M)1 profile, and anti-inflammatory profile than the controls, with ASD males showing higher monocytes, IL-6 and IL-10, anti-inflammatory profile, and a lower T-helper (Th)1/Th2+T-regulatory cell ratio than control males. The ADHD adolescents showed higher levels of PDW, IL-1β and IL-6, TNF-α, M1 profile, proinflammatory profile, and pro-/anti-inflammatory ratio than the controls, with ADHD females showing a higher TNF-α and pro-/anti-inflammatory ratio than the control females and ADHD males showing higher levels of IL-1β and IL-6, TNF-α, and M1 profile than the control males. Immune dysregulation appeared to be different for both neurodevelopmental disorders in adolescence.
Collapse
Affiliation(s)
- Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Iveta Bujnakova
- Society to Help People with Autism (SPOSA-Turiec), 03601 Martin, Slovakia
| | - Veronika Kovacova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Andrea Macejova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
28
|
Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton K, Ashwood P. Characterizing the Neuroimmune Environment of Offspring in a Novel Model of Maternal Allergic Asthma and Particulate Matter Exposure. RESEARCH SQUARE 2023:rs.3.rs-3140415. [PMID: 37503062 PMCID: PMC10371118 DOI: 10.21203/rs.3.rs-3140415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by the presence of decreased social interactions and an increase in stereotyped and repetitive behaviors. Epidemiology studies suggest that cases of ASD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with ASD. Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders including ASD. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were primed for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA or phosphate buffered saline (PBS) for 1 hour. Following the 1-hour exposure, pregnant females were then exposed to UIS or clean air for 4 hours. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1β), IL-2, IL-13, and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely interferon gamma (IFNγ) and IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.
Collapse
|
29
|
Kim DHJ, Iosif AM, Ramirez-Celis A, Ashwood P, Ames JL, Lyall K, Berger K, Croen LA, Van de Water J. Neonatal immune signatures differ by sex regardless of neurodevelopmental disorder status: Macrophage migration inhibitory factor (MIF) alone reveals a sex by diagnosis interaction effect. Brain Behav Immun 2023; 111:328-333. [PMID: 37164311 PMCID: PMC10796272 DOI: 10.1016/j.bbi.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Immune dysregulation, including aberrant peripheral cytokine/chemokine levels, is implicated in neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD). While the diagnosis of ASD is more common in males compared to females, sex effects in immune dysregulation related to neurodevelopment remain understudied. The aim of this exploratory study was to determine whether there are sex-specific effects in neonatal immune dysregulation with respect to an ASD or delayed development (DD) diagnosis. We utilized the data from the Early Markers for Autism study, a population based case-control study of prenatal and neonatal biomarkers of ASD. The immune profile of newborns later diagnosed with ASD (n = 482, 91 females), DD (n = 140, 61 females) and sex-matched general population controls (GP; n = 378, 67 females) were analyzed using neonatal bloodspots (NBS) via 42-plex multiplex assay. Multiple linear regression analysis was performed to identify whether sex was associated with differences in cytokine/chemokine levels of children with ASD, DD, and GP. A sex by diagnosis interaction effect was observed only for the chemokine macrophage migration inhibitory factor (MIF), with males displaying higher levels of NBS MIF than females in the GP control group (p = 0.02), but not in ASD (p = 0.52) or DD (p = 0.29) groups. We found that regardless of child diagnosis, newborn bloodspot eluates from females had a significantly higher concentration than males with the same diagnosis of the chemokines granulocyte chemotactic protein 2 (GCP-2; p < 0.0001), macrophage inflammatory protein 2-alpha (GROβ; p = 0.002), interferon-inducible t-cell alpha chemoattractant (I-TAC; p < 0.0001), stromal cell-derived factor 1 alpha and beta (SDF-1α-β; p = 0.03), innate inflammatory chemokines interferon-gamma induced protein 10 (IP-10; p = 0.02), macrophage inflammatory protein 1-alpha (MIP-1α; p = 0.02), and Th1-related pro-inflammatory cytokine interleukin-12 active heterodimer (IL-12p70; p = 0.002). In contrast, males had a higher concentration than females of secondary lymphoid-tissue chemokine (6CKINE; p = 0.02), monocyte chemotactic protein 1 (MCP-1; p = 0.005) and myeloid progenitor inhibitory factor 1 (MPIF-1; p = 0.03). Results were similar when analyses were restricted to NBS from DD and ASD further classified as ASD with intellectual disability (ID), ASD without ID, and DD (GCP-2, p = 0.007; I-TAC, p = 0.001; IP-10, p = 0.005; IL-12p70, p = 0.03 higher in females; MPIF-1, p = 0.03 higher in male). This study is the first to examine sex differences in neonatal cytokine/chemokine concentrations, and whether these differences are associated with neurodevelopmental outcomes. Results highlight the importance of considering sex as a critical factor in understanding the immune system as it relates to child development.
Collapse
Affiliation(s)
- Danielle H J Kim
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Ana-Maria Iosif
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Alexandra Ramirez-Celis
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Paul Ashwood
- MIND Institute, University of California, Davis, CA, USA
| | | | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | | | - Lisa A Croen
- Kaiser Permanente Northern California-Oakland, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
30
|
Zhang L, Xu Y, Sun S, Liang C, Li W, Li H, Zhang X, Pang D, Li M, Li H, Lang Y, Liu J, Jiang S, Shi X, Li B, Yang Y, Wang Y, Li Z, Song C, Duan G, Leavenworth JW, Wang X, Zhu C. Integrative analysis of γδT cells and dietary factors reveals predictive values for autism spectrum disorder in children. Brain Behav Immun 2023; 111:76-89. [PMID: 37011865 DOI: 10.1016/j.bbi.2023.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent. METHODS A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children. RESULTS Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (β: 0.156; 95% CI: 0.888 ∼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: β: 0.288; 95% CI: 0.420 ∼ 4.899, p = 0.020; age ≥ 48 months: β: 0.458; 95% CI: 0.694 ∼ 9.352, p = 0.024), as well as in boys (β: 0.174; 95% CI: 0.834 ∼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model. CONCLUSIONS Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αβT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.
Collapse
Affiliation(s)
- Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Sun
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cailing Liang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengyue Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huihui Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yongbin Lang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiatian Liu
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuqin Jiang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyi Shi
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingbing Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Yang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yazhe Wang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenghua Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunlan Song
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery and Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 40530, Sweden.
| |
Collapse
|
31
|
Choi JE, Kaang BK. Increased social interaction in Shank2-deficient mice following acute social isolation. Mol Brain 2023; 16:35. [PMID: 37061705 PMCID: PMC10105924 DOI: 10.1186/s13041-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is neuropsychiatric disorder with a gender specific risk. Although social impairment in ASD is one of the well characterized phenotypes, loneliness issue resides in patients with ASD and emerging reports show gender distribution in symptoms. Acute social isolation increases the motivation to socially interact in a gender-dependent manner, as only the male mice show increase in sociability following isolation. However, it remains to be explored whether the effects of loneliness in ASD differ between genders. Here, we used Shank2-deficient (Shank2-/-) mice, one of the animal models of ASD, to examine the sociability changes after acute social isolation. While only the male wild-type (WT) mice display increased sociability following 24-h isolation, both sexes of Shank2-/- mice show an increase in social interaction following isolation. These observations provide evidence that animal models of ASD have the sensitivity to acute social isolation and further show the motivation to socially interact.
Collapse
Affiliation(s)
- Ja Eun Choi
- School of Biological Sciences, Seoul National University, 1 Gwanangno, Gwanak-Gu, Seoul, 08826, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, 1 Gwanangno, Gwanak-Gu, Seoul, 08826, South Korea.
| |
Collapse
|
32
|
Guerra M, Medici V, Weatheritt R, Corvino V, Palacios D, Geloso MC, Farini D, Sette C. Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum. Transl Psychiatry 2023; 13:114. [PMID: 37019889 PMCID: PMC10076313 DOI: 10.1038/s41398-023-02391-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a set of highly heritable neurodevelopmental syndromes characterized by social and communication impairment, repetitive behaviour, and intellectual disability. Although mutations in multiple genes have been associated to ASD, most patients lack detectable genetic alterations. For this reason, environmental factors are commonly thought to also contribute to ASD aetiology. Transcriptome analyses have revealed that autistic brains possess distinct gene expression signatures, whose elucidation can provide insights about the mechanisms underlying the effects of ASD-causing genetic and environmental factors. Herein, we have identified a coordinated and temporally regulated programme of gene expression in the post-natal development of cerebellum, a brain area whose defects are strongly associated with ASD. Notably, this cerebellar developmental programme is significantly enriched in ASD-linked genes. Clustering analyses highlighted six different patterns of gene expression modulated during cerebellar development, with most of them being enriched in functional processes that are frequently dysregulated in ASD. By using the valproic acid mouse model of ASD, we found that ASD-linked genes are dysregulated in the developing cerebellum of ASD-like mice, a defect that correlates with impaired social behaviour and altered cerebellar cortical morphology. Moreover, changes in transcript levels were reflected in aberrant protein expression, indicating the functional relevance of these alterations. Thus, our work uncovers a complex ASD-related transcriptional programme regulated during cerebellar development and highlight genes whose expression is dysregulated in this brain area of an ASD mouse model.
Collapse
Affiliation(s)
- Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
| | - Robert Weatheritt
- Garvan Institute of Medical Research, EMBL Australia, Darlinghurst, NSW, Australia
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
| | - Daniela Palacios
- Department of Life Science and Public Health, Section of Biology, Catholic University of the Sacred Hearth, Rome, Italy
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy.
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
33
|
Perini S, Filosi M, Domenici E. Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs. Transl Psychiatry 2023; 13:109. [PMID: 37012247 PMCID: PMC10070641 DOI: 10.1038/s41398-023-02407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues.
Collapse
Affiliation(s)
- Samuel Perini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
- EURAC Research, Bolzano, Italy
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy.
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy.
| |
Collapse
|
34
|
Navarro-Pardo E, Alonso-Esteban Y, Alcantud-Marin F, Murphy M. Do Savant Syndrome and Autism Spectrum Disorders Share Sex Differences? A Comprehensive Review. Soa Chongsonyon Chongsin Uihak 2023; 34:117-124. [PMID: 37035793 PMCID: PMC10080262 DOI: 10.5765/jkacap.230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Savant syndrome was described before autism. However, they soon became closely associated, as many of their symptoms (intellectual disability, repetitive behaviors, alterations in social communication, and islets of abilities) overlap. Only a few women with autism have been diagnosed with savant syndrome. The theories or hypotheses that attempt to explain savant syndrome, which are common in autism, present differential treatment according to sex. We postulate that savant syndrome associated with autism as well as autism in general is underdiagnosed in women.
Collapse
Affiliation(s)
- Esperanza Navarro-Pardo
- Department of Developmental and Educational Psychology, University of Valencia, Valencia, Spain
| | | | | | - Mike Murphy
- School of Applied Psychology, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Weinschutz Mendes H, Neelakantan U, Liu Y, Fitzpatrick SE, Chen T, Wu W, Pruitt A, Jin DS, Jamadagni P, Carlson M, Lacadie CM, Enriquez KD, Li N, Zhao D, Ijaz S, Sakai C, Szi C, Rooney B, Ghosh M, Nwabudike I, Gorodezky A, Chowdhury S, Zaheer M, McLaughlin S, Fernandez JM, Wu J, Eilbott JA, Vander Wyk B, Rihel J, Papademetris X, Wang Z, Hoffman EJ. High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways. Cell Rep 2023; 42:112243. [PMID: 36933215 PMCID: PMC10277173 DOI: 10.1016/j.celrep.2023.112243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/15/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Advancing from gene discovery in autism spectrum disorders (ASDs) to the identification of biologically relevant mechanisms remains a central challenge. Here, we perform parallel in vivo functional analysis of 10 ASD genes at the behavioral, structural, and circuit levels in zebrafish mutants, revealing both unique and overlapping effects of gene loss of function. Whole-brain mapping identifies the forebrain and cerebellum as the most significant contributors to brain size differences, while regions involved in sensory-motor control, particularly dopaminergic regions, are associated with altered baseline brain activity. Finally, we show a global increase in microglia resulting from ASD gene loss of function in select mutants, implicating neuroimmune dysfunction as a key pathway relevant to ASD biology.
Collapse
Affiliation(s)
| | - Uma Neelakantan
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sarah E Fitzpatrick
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianying Chen
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Weimiao Wu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - April Pruitt
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - David S Jin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Marina Carlson
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Ningshan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sundas Ijaz
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Catalina Sakai
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christina Szi
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brendan Rooney
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marcus Ghosh
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ijeoma Nwabudike
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Andrea Gorodezky
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sumedha Chowdhury
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Meeraal Zaheer
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sarah McLaughlin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jia Wu
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeffrey A Eilbott
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Section of Geriatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
36
|
Sex-Related Changes in the Clinical, Genetic, Electrophysiological, Connectivity, and Molecular Presentations of ASD: A Comparison between Human and Animal Models of ASD with Reference to Our Data. Int J Mol Sci 2023; 24:ijms24043287. [PMID: 36834699 PMCID: PMC9965966 DOI: 10.3390/ijms24043287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The etiology of autism spectrum disorder (ASD) is genetic, environmental, and epigenetic. In addition to sex differences in the prevalence of ASD, which is 3-4 times more common in males, there are also distinct clinical, molecular, electrophysiological, and pathophysiological differences between sexes. In human, males with ASD have more externalizing problems (i.e., attention-deficit hyperactivity disorder), more severe communication and social problems, as well as repetitive movements. Females with ASD generally exhibit fewer severe communication problems, less repetitive and stereotyped behavior, but more internalizing problems, such as depression and anxiety. Females need a higher load of genetic changes related to ASD compared to males. There are also sex differences in brain structure, connectivity, and electrophysiology. Genetic or non-genetic experimental animal models of ASD-like behavior, when studied for sex differences, showed some neurobehavioral and electrophysiological differences between male and female animals depending on the specific model. We previously carried out studies on behavioral and molecular differences between male and female mice treated with valproic acid, either prenatally or early postnatally, that exhibited ASD-like behavior and found distinct differences between the sexes, the female mice performing better on tests measuring social interaction and undergoing changes in the expression of more genes in the brain compared to males. Interestingly, co-administration of S-adenosylmethionine alleviated the ASD-like behavioral symptoms and the gene-expression changes to the same extent in both sexes. The mechanisms underlying the sex differences are not yet fully understood.
Collapse
|
37
|
Xu B, Ho Y, Fasolino M, Medina J, O’Brien WT, Lamonica JM, Nugent E, Brodkin ES, Fuccillo MV, Bucan M, Zhou Z. Allelic contribution of Nrxn1α to autism-relevant behavioral phenotypes in mice. PLoS Genet 2023; 19:e1010659. [PMID: 36848371 PMCID: PMC9997995 DOI: 10.1371/journal.pgen.1010659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Copy number variations (CNVs) in the Neurexin 1 (NRXN1) gene, which encodes a presynaptic protein involved in neurotransmitter release, are some of the most frequently observed single-gene variants associated with autism spectrum disorder (ASD). To address the functional contribution of NRXN1 CNVs to behavioral phenotypes relevant to ASD, we carried out systematic behavioral phenotyping of an allelic series of Nrxn1 mouse models: one carrying promoter and exon 1 deletion abolishing Nrxn1α transcription, one carrying exon 9 deletion disrupting Nrxn1α protein translation, and one carrying an intronic deletion with no observable effect on Nrxn1α expression. We found that homozygous loss of Nrxn1α resulted in enhanced aggression in males, reduced affiliative social behaviors in females, and significantly altered circadian activities in both sexes. Heterozygous or homozygous loss of Nrxn1α affected the preference for social novelty in male mice, and notably, enhanced repetitive motor skills and motor coordination in both sexes. In contrast, mice bearing an intronic deletion of Nrxn1 did not display alterations in any of the behaviors assessed. These findings demonstrate the importance of Nrxn1α gene dosage in regulating social, circadian, and motor functions, and the variables of sex and genomic positioning of CNVs in the expression of autism-related phenotypes. Importantly, mice with heterozygous loss of Nrxn1, as found in numerous autistic individuals, show an elevated propensity to manifest autism-related phenotypes, supporting the use of models with this genomic architecture to study ASD etiology and assess additional genetic variants associated with autism.
Collapse
Affiliation(s)
- Bing Xu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Yugong Ho
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maria Fasolino
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joanna Medina
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - William Timothy O’Brien
- Preclinical Models Core, Intellectual and Developmental Disability Research Center (IDDRC) Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Janine M. Lamonica
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erin Nugent
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Edward S. Brodkin
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marc V. Fuccillo
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maja Bucan
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Preclinical Models Core, Intellectual and Developmental Disability Research Center (IDDRC) Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
38
|
Chen C, Zhou J, Xia Y, Li M, Chen Y, Dai J, Liu C. A Higher Dysregulation Burden of Brain DNA Methylation in Female Patients Implicated in the Sex Bias of Schizophrenia. RESEARCH SQUARE 2023:rs.3.rs-2496133. [PMID: 36778507 PMCID: PMC9915764 DOI: 10.21203/rs.3.rs-2496133/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sex differences are pervasive in schizophrenia (SCZ), but the extent and magnitude of DNA methylation (DNAm) changes underlying these differences remain uncharacterized. In this study, sex-stratified differential DNAm analysis was performed in postmortem brain samples from 117 SCZ and 137 controls, partitioned into discovery and replication datasets. Three differentially methylated positions (DMPs) were identified (adj. p < 0.05) in females and 29 DMPs in males without overlap between them. Over 81% of these sex-stratified DMPs were directionally consistent between sexes but with different effect sizes. Down-sampling analysis revealed more DMPs in females than in males when the sample sizes matched. Females had higher DNAm levels in healthy individuals and larger magnitude of DNAm changes in patients than males. Despite similar proportions of female-related DMPs (fDMPs, 8%) being under genetic control compared with males (10%), significant enrichment of DMP-related SNPs in signals of genome-wide association studies was identified only in fDMPs. One DMP in each sex connected the SNPs and gene expression of CALHM1 in females and CCDC149 in males. PPI subnetworks revealed that both female- and male-related differential DNAm interacted with synapse-related dysregulation. Immune-related pathways were unique for females and neuron-related pathways were associated with males. This study reveals remarkable quantitative differences in DNAm-related sexual dimorphism in SCZ and that females have a higher dysregulation burden of SCZ-associated DNAm than males.
Collapse
|
39
|
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17:1125428. [PMID: 37021129 PMCID: PMC10067592 DOI: 10.3389/fnins.2023.1125428] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with onset in childhood. The mechanisms underlying ASD are unclear. In recent years, the role of microglia and astrocytes in ASD has received increasing attention. Microglia prune the synapses or respond to injury by sequestrating the injury site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in the brain microenvironment through the uptake of ions and neurotransmitters. However, the molecular link between ASD and microglia and, or astrocytes remains unknown. Previous research has shown the significant role of microglia and astrocytes in ASD, with reports of increased numbers of reactive microglia and astrocytes in postmortem tissues and animal models of ASD. Therefore, an enhanced understanding of the roles of microglia and astrocytes in ASD is essential for developing effective therapies. This review aimed to summarize the functions of microglia and astrocytes and their contributions to ASD.
Collapse
|
40
|
Floris DL, Peng H, Warrier V, Lombardo MV, Pretzsch CM, Moreau C, Tsompanidis A, Gong W, Mennes M, Llera A, van Rooij D, Oldehinkel M, Forde NJ, Charman T, Tillmann J, Banaschewski T, Moessnang C, Durston S, Holt RJ, Ecker C, Dell'Acqua F, Loth E, Bourgeron T, Murphy DGM, Marquand AF, Lai MC, Buitelaar JK, Baron-Cohen S, Beckmann CF. The Link Between Autism and Sex-Related Neuroanatomy, and Associated Cognition and Gene Expression. Am J Psychiatry 2023; 180:50-64. [PMID: 36415971 DOI: 10.1176/appi.ajp.20220194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The male preponderance in prevalence of autism is among the most pronounced sex ratios across neurodevelopmental conditions. The authors sought to elucidate the relationship between autism and typical sex-differential neuroanatomy, cognition, and related gene expression. METHODS Using a novel deep learning framework trained to predict biological sex based on T1-weighted structural brain images, the authors compared sex prediction model performance across neurotypical and autistic males and females. Multiple large-scale data sets comprising T1-weighted MRI data were employed at four stages of the analysis pipeline: 1) pretraining, with the UK Biobank sample (>10,000 individuals); 2) transfer learning and validation, with the ABIDE data sets (1,412 individuals, 5-56 years of age); 3) test and discovery, with the EU-AIMS/AIMS-2-TRIALS LEAP data set (681 individuals, 6-30 years of age); and 4) specificity, with the NeuroIMAGE and ADHD200 data sets (887 individuals, 7-26 years of age). RESULTS Across both ABIDE and LEAP, features positively predictive of neurotypical males were on average significantly more predictive of autistic males (ABIDE: Cohen's d=0.48; LEAP: Cohen's d=1.34). Features positively predictive of neurotypical females were on average significantly less predictive of autistic females (ABIDE: Cohen's d=1.25; LEAP: Cohen's d=1.29). These differences in sex prediction accuracy in autism were not observed in individuals with ADHD. In autistic females, the male-shifted neurophenotype was further associated with poorer social sensitivity and emotional face processing while also associated with gene expression patterns of midgestational cell types. CONCLUSIONS The results demonstrate an increased resemblance in both autistic male and female individuals' neuroanatomy with male-characteristic patterns associated with typically sex-differential social cognitive features and related gene expression patterns. The findings hold promise for future research aimed at refining the quest for biological mechanisms underpinning the etiology of autism.
Collapse
Affiliation(s)
- Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Han Peng
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Varun Warrier
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Michael V Lombardo
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Charlotte M Pretzsch
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Clara Moreau
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Alex Tsompanidis
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Weikang Gong
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Maarten Mennes
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Alberto Llera
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Daan van Rooij
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Marianne Oldehinkel
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Natalie J Forde
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Tony Charman
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Julian Tillmann
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Tobias Banaschewski
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Carolin Moessnang
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Sarah Durston
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Rosemary J Holt
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Christine Ecker
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Flavio Dell'Acqua
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Eva Loth
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Thomas Bourgeron
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Declan G M Murphy
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Andre F Marquand
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Meng-Chuan Lai
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Jan K Buitelaar
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Simon Baron-Cohen
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Christian F Beckmann
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | -
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | -
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| |
Collapse
|
41
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
42
|
Estes A, Munson J, St John T, Finlayson R, Pandey J, Gottlieb B, Herrington J, Schultz RT. Sleep problems in autism: Sex differences in the school-age population. Autism Res 2023; 16:164-173. [PMID: 36341856 PMCID: PMC9839593 DOI: 10.1002/aur.2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Clinically significant sleep problems affect up to 86% of the autistic population in school-age. Sleep problems can have negative impacts on child cognition, behavior, and health. However, sex differences in the prevalence and types of sleep problems are not well understood in autism. To evaluate sex differences in sleep problems in the school-age autistic population, we obtained parent-report of sleep problems on the Children's Sleep Habits Questionnaire and conducted direct assessments to establish diagnosis and intellectual ability in 6-12-year-old children (autism n = 250; typical development [TD] n = 114). Almost 85% of autistic females demonstrated sleep problems compared to 65.8% of autistic males, 44.8% of TD females, and 42.4% of TD males; a statistically significant increase for autistic females. Autistic females demonstrated increased bedtime resistance, sleep anxiety, and sleepiness, and decreased sleep duration, but did not differ in sleep onset delay, night wakings, parasomnias, or disordered breathing compared with autistic males. Intellectual ability was not related to increased sleep problems. Higher anxiety scores were associated with more sleep problems for males but not females. In one of the first studies to evaluate sex differences in sleep in the school-age, autistic population, autistic females demonstrated increased sleep problems compared to autistic males, TD females, and TD males. Current autism assessment and intervention practices may benefit from increased attention to sleep problems in autistic school-age females and to anxiety in autistic males to enhance well-being and behavioral and health outcomes.
Collapse
Affiliation(s)
- Annette Estes
- Department of Speech and Hearing Science, Box 357920, UW Autism Center, University of Washington, Seattle, Washington, USA
| | - Jeffrey Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Tanya St John
- Department of Speech and Hearing Science, Box 357920, UW Autism Center, University of Washington, Seattle, Washington, USA
| | - Robin Finlayson
- College of Education, University of Washington, Seattle, Washington, USA
| | - Juhi Pandey
- Department of Psychiatry, Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bridget Gottlieb
- Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John Herrington
- Department of Psychiatry, Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert T Schultz
- Department of Psychiatry, Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Hernandez LM. Sex-Differential Neuroanatomy in Autism: A Shift Toward Male-Characteristic Brain Structure. Am J Psychiatry 2023; 180:8-10. [PMID: 36587268 DOI: 10.1176/appi.ajp.20220939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Leanna M Hernandez
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
44
|
Lee SY, Kweon H, Kang H, Kim E. Age-differential sexual dimorphisms in CHD8-S62X-mutant mouse synapses and transcriptomes. Front Mol Neurosci 2023; 16:1111388. [PMID: 36873104 PMCID: PMC9978779 DOI: 10.3389/fnmol.2023.1111388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Chd8+/N2373K mice with a human C-terminal-truncating mutation (N2373K) display autistic-like behaviors in juvenile and adult males but not in females. In contrast, Chd8+/S62X mice with a human N-terminal-truncating mutation (S62X) display behavioral deficits in juvenile males (not females) and adult males and females, indicative of age-differential sexually dimorphic behaviors. Excitatory synaptic transmission is suppressed and enhanced in male and female Chd8+/S62X juveniles, respectively, but similarly enhanced in adult male and female mutants. ASD-like transcriptomic changes are stronger in newborn and juvenile (but not adult) Chd8+/S62X males but in newborn and adult (not juvenile) Chd8+/S62X females. These results point to age-differential sexual dimorphisms in Chd8+/S62X mice at synaptic and transcriptomic levels, in addition to the behavioral level.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hanseul Kweon
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| |
Collapse
|
45
|
Knudsen LV, Sheldrick AJ, Vafaee MS, Michel TM. Diversifying autism neuroimaging research: An arterial spin labeling review. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022:13623613221137230. [DOI: 10.1177/13623613221137230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cognition and brain homeostasis depends on cerebral blood flow to secure adequate oxygen and nutrient distribution to the brain tissue. Altered cerebral blood flow has previously been reported in individuals diagnosed with autism spectrum condition in comparison to non-autistics. This phenomenon might suggest cerebral blood flow as a potential biomarker for autism spectrum condition. Major technological advancement enables the non-invasive and quantitative measurement of cerebral blood flow via arterial spin labeling magnetic resonance imaging. However, most neuroimaging studies in autistic individuals exploit the indirect blood oxygen level dependent functional magnetic resonance imaging signal instead. Therefore, this review examines the use of arterial spin labeling to further investigate the neurobiology of the autism spectrum condition. Followed by a comparison of results from molecular imaging and arterial spin labeling studies and a discussion concerning the future direction and potential of arterial spin labeling in this context. We found that arterial spin labeling study results are consistent with those of molecular imaging, especially after considering the effect of age and sex. Arterial spin labeling has numerous application possibilities besides the quantification of cerebral blood flow, including assessment of functional connectivity and arterial transit time. Therefore, we encourage researchers to explore and consider the application of arterial spin labeling for future scientific studies in the quest to better understand the neurobiology of autism spectrum condition. Lay abstract Brain function and health depend on cerebral blood flow to secure the necessary delivery of oxygen and nutrients to the brain tissue. However, cerebral blood flow appears to be altered in autistic compared to non-autistic individuals, potentially suggesting this difference to be a cause and potential identification point of autism. Recent technological development enables precise and non-invasive measurement of cerebral blood flow via the magnetic resonance imaging method referred to as arterial spin labeling. However, most neuroimaging studies still prefer using the physiologically indirect measure derived from functional magnetic resonance imaging. Therefore, this review examines the use of arterial spin labeling to further investigate the neurobiology of autism. Furthermore, the review includes a comparison of results from molecular imaging and arterial spin labeling followed by a discussion concerning the future direction and potential of arterial spin labeling. We found that arterial spin labeling study results are consistent with those of molecular imaging, especially after considering the effect of age and sex. In addition, arterial spin labeling has numerous application possibilities besides the quantification of cerebral blood flow. Therefore, we encourage researchers to explore and consider the application of arterial spin labeling for future scientific studies in the quest to better understand the neurobiology of autism.
Collapse
|
46
|
Preterm birth and weight-for-gestational age for risks of autism spectrum disorder and intellectual disability: A nationwide population-based cohort study. J Formos Med Assoc 2022; 122:493-504. [DOI: 10.1016/j.jfma.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
|
47
|
De Gregorio R, Subah G, Chan JC, Speranza L, Zhang X, Ramakrishnan A, Shen L, Maze I, Stanton PK, Sze JY. Sex-biased effects on hippocampal circuit development by perinatal SERT expression in CA3 pyramidal neurons. Development 2022; 149:dev200549. [PMID: 36178075 PMCID: PMC10655925 DOI: 10.1242/dev.200549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Neurodevelopmental disorders ranging from autism to intellectual disability display sex-biased prevalence and phenotypical presentations. Despite increasing knowledge about temporospatial cortical map development and genetic variants linked to neurodevelopmental disorders, when and how sex-biased neural circuit derailment may arise in diseased brain remain unknown. Here, we identify in mice that serotonin uptake transporter (SERT) in non-serotonergic neurons - hippocampal and prefrontal pyramidal neurons - confers sex-biased effects specifically during neural circuit development. A set of gradient-patterned CA3 pyramidal neurons transiently express SERT to clear extracellular serotonin, coinciding with hippocampal synaptic circuit establishment. Ablating pyramidal neuron SERT (SERTPyramidΔ) alters dendritic spine developmental trajectory in the hippocampus, and precipitates sex-biased impairments in long-term activity-dependent hippocampal synaptic plasticity and cognitive behaviors. Transcriptomic analyses identify sex-biased alterations in gene sets associated with autism, dendritic spine structure, synaptic function and male-specific enrichment of dysregulated genes in glial cells in early postnatal SERTPyramidΔ hippocampus. Our data suggest that SERT function in these pyramidal neurons underscores a temporal- and brain region-specific regulation of normal sex-dimorphic circuit development and a source for sex-biased vulnerability to cognitive and behavioral impairments. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Roberto De Gregorio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galadu Subah
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Jennifer C. Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Ji Y. Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
48
|
Rasile M, Lauranzano E, Faggiani E, Ravanelli MM, Colombo FS, Mirabella F, Corradini I, Malosio ML, Borreca A, Focchi E, Pozzi D, Giorgino T, Barajon I, Matteoli M. Maternal immune activation leads to defective brain-blood vessels and intracerebral hemorrhages in male offspring. EMBO J 2022; 41:e111192. [PMID: 36314682 PMCID: PMC9713716 DOI: 10.15252/embj.2022111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Intracerebral hemorrhages are recognized risk factors for neurodevelopmental disorders and represent early biomarkers for cognitive dysfunction and mental disability, but the pathways leading to their occurrence are not well defined. We report that a single intrauterine exposure of the immunostimulant Poly I:C to pregnant mice at gestational day 9, which models a prenatal viral infection and the consequent maternal immune activation, induces the defective formation of brain vessels and causes intracerebral hemorrhagic events, specifically in male offspring. We demonstrate that maternal immune activation promotes the production of the TGF-β1 active form and the consequent enhancement of pSMAD1-5 in males' brain endothelial cells. TGF-β1, in combination with IL-1β, reduces the endothelial expression of CD146 and claudin-5, alters the endothelium-pericyte interplay resulting in low pericyte coverage, and increases hemorrhagic events in the adult offspring. By showing that exposure to Poly I:C at the beginning of fetal cerebral angiogenesis results in sex-specific alterations of brain vessels, we provide a mechanistic framework for the association between intragravidic infections and anomalies of the neural vasculature, which may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | | | - Elisa Faggiani
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Margherita M Ravanelli
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | | | - Filippo Mirabella
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Irene Corradini
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Maria L Malosio
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Antonella Borreca
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Elisa Focchi
- Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Davide Pozzi
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Toni Giorgino
- Institute of Biophysics (IBF‐CNR)National Research Council of ItalyMilanItaly
| | - Isabella Barajon
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Michela Matteoli
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| |
Collapse
|
49
|
Choi JE, Choi DI, Lee J, Kim J, Kim MJ, Hong I, Jung H, Sung Y, Kim JI, Kim T, Yu NK, Lee SH, Choe HK, Koo JW, Kim JH, Kaang BK. Synaptic ensembles between raphe and D 1R-containing accumbens shell neurons underlie postisolation sociability in males. SCIENCE ADVANCES 2022; 8:eabo7527. [PMID: 36223467 PMCID: PMC9555785 DOI: 10.1126/sciadv.abo7527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Social animals expend considerable energy to maintain social bonds throughout their life. Male and female mice show sexually dimorphic behaviors, yet the underlying neural mechanisms of sociability and their dysregulation during social disconnection remain unknown. Dopaminergic neurons in dorsal raphe nucleus (DRNTH) is known to contribute to a loneliness-like state and modulate sociability. We identified that activated subpopulations in DRNTH and nucleus accumbens shell (NAcsh) during 24 hours of social isolation underlie the increase in isolation-induced sociability in male but not in female mice. This effect was reversed by chemogenetically and optogenetically inhibiting the DRNTH-NAcsh circuit. Moreover, synaptic connectivity among the activated neuronal ensembles in this circuit was increased, primarily in D1 receptor-expressing neurons in NAcsh. The increase in synaptic density functionally correlated with elevated dopamine release into NAcsh. Overall, specific synaptic ensembles in DRNTH-NAcsh mediate sex differences in isolation-induced sociability, indicating that sex-dependent circuit dynamics underlie the expression of sexually dimorphic behaviors.
Collapse
Affiliation(s)
- Ja Eun Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dong Il Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jisu Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jooyoung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Min Jung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ilgang Hong
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyunsu Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yongmin Sung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-il Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - TaeHyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Nam-Kyung Yu
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Technojoongang-daero, Dalseong-gun, Daegu 42988, South Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang 37673, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
50
|
Yoo YE, Yoo T, Kang H, Kim E. Brain region and gene dosage-differential transcriptomic changes in Shank2-mutant mice. Front Mol Neurosci 2022; 15:977305. [PMID: 36311025 PMCID: PMC9612946 DOI: 10.3389/fnmol.2022.977305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 12/20/2022] Open
Abstract
Shank2 is an abundant excitatory postsynaptic scaffolding protein that has been implicated in various neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD), intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. Shank2-mutant mice show ASD-like behavioral deficits and altered synaptic and neuronal functions, but little is known about how different brain regions and gene dosages affect the transcriptomic phenotypes of these mice. Here, we performed RNA-Seq-based transcriptomic analyses of the prefrontal cortex, hippocampus, and striatum in adult Shank2 heterozygous (HT)- and homozygous (HM)-mutant mice lacking exons 6–7. The prefrontal cortical, hippocampal, and striatal regions showed distinct transcriptomic patterns associated with synapse, ribosome, mitochondria, spliceosome, and extracellular matrix (ECM). The three brain regions were also distinct in the expression of ASD-related and ASD-risk genes. These differential patterns were stronger in the prefrontal cortex where the HT transcriptome displayed increased synaptic gene expression and reverse-ASD patterns whereas the HM transcriptome showed decreased synaptic gene expression and ASD-like patterns. These results suggest brain region- and gene dosage-differential transcriptomic changes in Shank2-mutant mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Eunjoon Kim,
| |
Collapse
|