1
|
Campos FA, Wikberg EC, Orkin JD, Park Y, Snyder-Mackler N, Cheves Hernandez S, Lopez Navarro R, Fedigan LM, Gurven M, Higham JP, Jack KM, Melin AD. Wild capuchin monkeys as a model system for investigating the social and ecological determinants of ageing. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230482. [PMID: 39463253 PMCID: PMC11513648 DOI: 10.1098/rstb.2023.0482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 10/29/2024] Open
Abstract
Studying biological ageing in animal models can circumvent some of the confounds exhibited by studies of human ageing. Ageing research in non-human primates has provided invaluable insights into human lifespan and healthspan. Yet data on patterns of ageing from wild primates remain relatively scarce, centred around a few populations of catarrhine species. Here, we introduce the white-faced capuchin, a long-lived platyrrhine primate, as a promising new model system for ageing research. Like humans, capuchins are highly social, omnivorous generalists, whose healthspan and lifespan relative to body size exceed that of other non-human primate model species. We review recent insights from capuchin ageing biology and outline our expanding, integrative research programme that combines metrics of the social and physical environments with physical, physiological and molecular hallmarks of ageing across the natural life courses of multiple longitudinally tracked individuals. By increasing the taxonomic breadth of well-studied primate ageing models, we generate new insights, increase the comparative value of existing datasets to geroscience and work towards the collective goal of developing accurate, non-invasive and reliable biomarkers with high potential for standardization across field sites and species, enhancing the translatability of primate studies.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Eva C. Wikberg
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Joseph D. Orkin
- Département d’anthropologie, Université de Montréal, Montréal, QuébecH3T 1N8, Canada
- Département de sciences biologiques, Université de Montréal, Montréal, QuébecH2V 0B3, Canada
| | - Yeonjoo Park
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, School of Life Sciences, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287, USA
| | | | | | - Linda M. Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AlbertaT2N 1N4, Canada
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, CA93106, USA
| | - James P. Higham
- Department of Anthropology, New York University, NY10003, USA
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA70118, USA
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AlbertaT2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
| |
Collapse
|
2
|
Patterson SK, Andonov E, Arre AM, Martínez MI, Negron-Del Valle JE, Petersen RM, Phillips D, Rahman A, Ruiz-Lambides A, Villanueva I, Lea AJ, Snyder-Mackler N, Brent LJ, Higham JP. Early life adversity has sex-dependent effects on survival across the lifespan in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220456. [PMID: 39463249 PMCID: PMC11513645 DOI: 10.1098/rstb.2022.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 03/18/2024] [Indexed: 10/29/2024] Open
Abstract
Exposure to early life adversity is linked to detrimental fitness outcomes across taxa. Owing to the challenges of collecting longitudinal data, direct evidence for long-term fitness effects of early life adversity from long-lived species remains relatively scarce. Here, we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) on Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of 10 forms of early life adversity for 6599 macaques. Individuals that experienced more early life adversity died earlier than those that experienced less adversity. Mortality risk was highest during early life, defined as birth to 4 years old, but heightened mortality risk was also present in macaques that survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands and dispersal patterns. Our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Sam K. Patterson
- Department of Anthropology, New York University, New York10003, USA
| | - Ella Andonov
- High School of American Studies at Lehman College, Bronx, New York10468, USA
| | - Alyssa M. Arre
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
| | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
| | - Ahaylee Rahman
- Brooklyn Technical High School, Brooklyn, New York11217, USA
| | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Study, TorontoM5G 1M1, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
- School of Life Sciences and School of Human Evolution and Social Change, Arizona State University, Tempe85281, USA
| | - Lauren J.N. Brent
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, ExeterEX4 4QJ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York10003, USA
| |
Collapse
|
3
|
Oelze VM, Ott K, Lee SM, O'Neal I, Hohmann G, Fruth B. Preliminary isotopic assessment of weaning in bonobos shows evidence for extended nursing, sibling competition and invested first-time mothers. Am J Primatol 2024; 86:e23678. [PMID: 39107976 DOI: 10.1002/ajp.23678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 10/10/2024]
Abstract
Although considered a hallmark in early ontogeny, weaning from breastmilk is difficult to monitor in wild primates and weaning ages remain unknown for wild bonobos (Pan Paniscus). Here, we calculated inter-birth intervals from demographic data and measured the isotopic offsets (Δ15N and Δ13C) between mother (n = 17) and offspring (n = 28) fecal sample pairs (n = 131, total n = 246) in the LuiKotale bonobos to assess nutritional weaning for the first time. We tested the effects of infant age, female parity, and sibling competition on Δ15N and Δ13C values. We found bonobo inter-birth intervals ranging from 2.2 to 7.3 years (x̄ = 4.7 ± 1.3 years) at LuiKotale. The Δ15N and Δ13C values suggested nutritional weaning on average by 6.6 and 7.0 years of age respectively, considerably exceeding weaning ages reported for chimpanzees (P. troglodytes) using the same approach. Our Δ13C data suggested that the number of offspring present affected nursing, with first-time mothers nursing more and possibly longer. The Δ15N and Δ13C values decreased with the arrival of the next sibling, suggesting sibling competition reduces milk access. Nevertheless, offspring may continue nursing 2.5-3 years after the birth of the next sibling, corresponding well with observations on low infant mortality. In conclusion, bonobo mothers provide remarkably enduring materna l support in the form of nursing concurrently to several offspring.
Collapse
Affiliation(s)
- Vicky M Oelze
- Anthropology Department, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kayla Ott
- Anthropology Department, University of California Santa Cruz, Santa Cruz, California, USA
| | - Sean M Lee
- Anthropology Department, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA
| | - Isabella O'Neal
- Anthropology Department, University of California Santa Cruz, Santa Cruz, California, USA
| | - Gottfried Hohmann
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Barbara Fruth
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Watowich MM, Costa CE, Chiou KL, Goldman EA, Petersen RM, Patterson S, Martínez MI, Sterner KN, Horvath JE, Montague MJ, Platt ML, Brent LJN, Higham JP, Lea AJ, Snyder-Mackler N. Immune gene regulation is associated with age and environmental adversity in a nonhuman primate. Mol Ecol 2024; 33:e17445. [PMID: 39032090 PMCID: PMC11521774 DOI: 10.1111/mec.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/27/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
Phenotypic aging is ubiquitous across mammalian species, suggesting shared underlying mechanisms of aging. Aging is linked to molecular changes to DNA methylation and gene expression, and environmental factors, such as severe external challenges or adversities, can moderate these age-related changes. Yet, it remains unclear whether environmental adversities affect gene regulation via the same molecular pathways as chronological, or 'primary', aging. Investigating molecular aging in naturalistic animal populations can fill this gap by providing insight into shared molecular mechanisms of aging and the effects of a greater diversity of environmental adversities - particularly those that can be challenging to study in humans or laboratory organisms. Here, we characterised molecular aging - specifically, CpG methylation - in a sample of free-ranging rhesus macaques living off the coast of Puerto Rico (n samples = 571, n individuals = 499), which endured a major hurricane during our study. Age was associated with methylation at 78,661 sites (31% of all sites tested). Age-associated hypermethylation occurred more frequently in areas of active gene regulation, while hypomethylation was enriched in regions that show less activity in immune cells, suggesting these regions may become de-repressed in older individuals. Age-associated hypomethylation also co-occurred with increased chromatin accessibility while hypermethylation showed the opposite trend, hinting at a coordinated, multi-level loss of epigenetic stability during aging. We detected 32,048 CpG sites significantly associated with exposure to a hurricane, and these sites overlapped age-associated sites, most strongly in regulatory regions and most weakly in quiescent regions. Together, our results suggest that environmental adversity may contribute to aging-related molecular phenotypes in regions of active gene transcription, but that primary aging has specific signatures in non-regulatory regions.
Collapse
Affiliation(s)
- Marina M. Watowich
- Department of Biology, University of Washington, Seattle, Washington, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Christina E. Costa
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Elisabeth A. Goldman
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sam Patterson
- Department of Anthropology, New York University, New York, New York, USA
| | | | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | | | - Julie E. Horvath
- Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - James P. Higham
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
5
|
Weibel CJ, Dasari MR, Jansen DA, Gesquiere LR, Mututua RS, Warutere JK, Siodi LI, Alberts SC, Tung J, Archie EA. Using non-invasive behavioral and physiological data to measure biological age in wild baboons. GeroScience 2024; 46:4059-4074. [PMID: 38693466 PMCID: PMC11336142 DOI: 10.1007/s11357-024-01157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
Biological aging is near-ubiquitous in the animal kingdom, but its timing and pace vary between individuals and over lifespans. Prospective, individual-based studies of wild animals-especially non-human primates-help identify the social and environmental drivers of this variation by indicating the conditions and exposure windows that affect aging processes. However, measuring individual biological age in wild primates is challenging because several of the most promising methods require invasive sampling. Here, we leverage observational data on behavior and physiology, collected non-invasively from 319 wild female baboons across 2402 female-years of study, to develop a composite predictor of age: the non-invasive physiology and behavior (NPB) clock. We found that age predictions from the NPB clock explained 51% of the variation in females' known ages. Further, deviations from the clock's age predictions predicted female survival: females predicted to be older than their known ages had higher adult mortality. Finally, females who experienced harsh early-life conditions were predicted to be about 6 months older than those who grew up in more benign conditions. While the relationship between early adversity and NPB age is noisy, this estimate translates to a predicted 2-3 year reduction in mean adult lifespan in our model. A constraint of our clock is that it is tailored to data collection approaches implemented in our study population. However, many of the clock's components have analogs in other populations, suggesting that non-invasive data can provide broadly applicable insight into heterogeneity in biological age in natural populations.
Collapse
Affiliation(s)
- Chelsea J Weibel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mauna R Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - David A Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Raphael S Mututua
- Amboseli Baboon Research Project, Amboseli National Park, Kajiado, Kenya
| | - J Kinyua Warutere
- Amboseli Baboon Research Project, Amboseli National Park, Kajiado, Kenya
| | - Long'ida I Siodi
- Amboseli Baboon Research Project, Amboseli National Park, Kajiado, Kenya
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, M5G 1M1, Canada
- Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
6
|
Dasari MR, Roche KE, Jansen D, Anderson J, Alberts SC, Tung J, Gilbert JA, Blekhman R, Mukherjee S, Archie EA. Social and environmental predictors of gut microbiome age in wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605707. [PMID: 39131274 PMCID: PMC11312535 DOI: 10.1101/2024.08.02.605707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Understanding why some individuals age faster than others is essential to evolutionary biology and geroscience, but measuring variation in biological age is difficult. One solution may lie in measuring gut microbiome composition because microbiota change with many age-related factors (e.g., immunity and behavior). Here we create a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting "microbiome clock" predicts host chronological age. Deviations from the clock's predictions are linked to demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and high social status (both sexes). However, an individual's "microbiome age" does not predict the attainment of developmental milestones or lifespan. Hence, the microbiome clock accurately reflects age and some social and environmental conditions, but not the pace of development or mortality risk.
Collapse
Affiliation(s)
- Mauna R. Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- California Academy of Sciences, San Francisco, CA, USA
| | - Kimberly E. Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jordan Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Jack A. Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke University, Durham, NC, USA
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig Germany
- Max Planck Institute for Mathematics in the Natural Sciences, Leipzig, Germany
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
7
|
Ortiz-Ross X, Blumstein DT. Cumulative adversity and survival in the wild. Ecol Lett 2024; 27:e14485. [PMID: 39140409 DOI: 10.1111/ele.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Protecting populations contending with co-occurring stressors requires a better understanding of how multiple early-life stressors affect the fitness of natural systems. However, the complexity of such research has limited its advancement and prevented us from answering new questions. In human studies, cumulative risk models predict adult health risk based on early adversity exposure. We apply a similar framework in wild yellow-bellied marmots (Marmota flaviventer). We tested cumulative adversity indices (CAIs) across different adversity types and time windows. All CAIs were associated with decreased pup survival and were well supported. Moderate and acute, but not standardized CAIs were associated with decreased lifespan, supporting the cumulative stress hypothesis and the endurance of early adversity. Multivariate models showed that differences in lifespan were driven by weaning date, precipitation, and maternal loss, but they performed poorly compared with CAI models. We highlight the development, utility, and insights of CAI approaches for ecology and conservation.
Collapse
Affiliation(s)
- Xochitl Ortiz-Ross
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| |
Collapse
|
8
|
Grace J, Duran E, Ann Ottinger M, Maness T. Sublethal effects of early-life exposure to common and emerging contaminants in birds. Curr Res Toxicol 2024; 7:100190. [PMID: 39220619 PMCID: PMC11365322 DOI: 10.1016/j.crtox.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The plight of wild birds is becoming critical due to exposure to environmental contaminants. Although laboratory studies have provided insights into the developmental effects of chemical exposures, less is known about the adverse effects of environmental chemicals in developing wild birds. Early life stages are critical windows during which long-term organization of physiological, behavioral, and neurological systems can occur. Thus, contaminant exposure at early life stages can directly influence survival and reproductive success, with consequences for population stability and resilience in wild species. This review synthesizes existing knowledge regarding both short- and long-term effects of early-life exposure to widespread contaminants in birds. We focus especially on wild birds and on contaminants of concern within the Gulf of Mexico as an example of a habitat under anthropogenic stress from exposure to a complex mixture of chemicals and changing land uses that exacerbate existing vulnerabilities of wildlife in this region. Chemical contaminants for discussion in this review are based on avian mortality records from the Wildlife Health Information Sharing Partnership (WHISPers) database and on additional review of the literature regarding avian contaminants of concern for the northern Gulf of Mexico, and include oil and associated polycyclic aromatic hydrocarbons, dioxin and dioxin-like compounds, flame retardants, pesticides, heavy metals, and plastics. We provide an overview of effects in bird species at both the pre-hatching and post-hatching early life stages, discuss differences in sensitivities by route of exposure, life stage, and life history, and provide recommendations for future research. We find that additional research is needed on altricial species, post-hatching early-life exposure, long-term effects, and on ecologically relevant contaminant concentrations and routes of exposure. Given the increasing frequency and intensity of anthropogenic stressors encountered by wild animals, understanding both lethal and sublethal impacts of contaminants on the health of individuals and populations will be critical to inform restoration, management, and mitigation efforts.
Collapse
Affiliation(s)
- Jacquelyn Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77840-2258, USA
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Elena Duran
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Terri Maness
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
9
|
Diaz AA, Hernández-Pacheco R, Rosati AG. Individual differences in sociocognitive traits in semi-free-ranging rhesus monkeys (Macaca mulatta). Am J Primatol 2024:e23660. [PMID: 38961748 DOI: 10.1002/ajp.23660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Characterizing individual differences in cognition is crucial for understanding the evolution of cognition as well as to test the biological consequences of different cognitive traits. Here, we harnessed the strengths of a uniquely large, naturally-living primate population at the Cayo Santiago Biological Field Station to characterized individual differences in rhesus monkey performance across two social cognitive tasks. A total of n = 204 semi-free-ranging adult rhesus monkeys participated in a data collection procedure, where we aimed to test individuals on both tasks at two time-points that were one year apart. In the socioemotional responses task, we assessed monkeys' attention to conspecific photographs with neutral versus negative emotional expressions. We found that monkeys showed overall declines in interest in conspecific photographs with age, but relative increases in attention to threat stimuli specifically, and further that these responses exhibited long-term stability across repeated testing. In the gaze following task we assessed monkeys' propensity to co-orient with an experimenter. Here, we found no evidence for age-related change in responses, and responses showed only limited repeatability over time. Finally, we found some evidence for common individual variation for performance across the tasks: monkeys that showed greater interest in conspecific photographs were more likely to follow a human's gaze. These results show how studies of comparative cognitive development and aging can provide insights into the evolution of cognition, and identify core primate social cognitive traits that may be related across and within individuals.
Collapse
Affiliation(s)
- Alexis A Diaz
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | | | - Alexandra G Rosati
- Departments of Psychology and Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Delaunay A, Cossu-Doye O, Roura-Torres B, Sauvadet L, Ngoubangoye B, Huchard E, Charpentier MJE. An early-life challenge: becoming an older sibling in wild mandrills. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240597. [PMID: 39050716 PMCID: PMC11265912 DOI: 10.1098/rsos.240597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
In monotocous mammals, most individuals experience the birth of a younger sibling. This period may induce losses in maternal care and can be physiologically, energetically and emotionally challenging for the older sibling, yet has rarely been studied in wild primates. We used behavioural data collected from a natural population of mandrills to investigate changes in maternal care and mother-juvenile relationship throughout the transition to siblinghood (TTS), by comparing juveniles who recently experienced the birth of a younger sibling, to juveniles who did not. We found that the TTS was associated with an abrupt cessation of the weaning process for the juvenile, and to a decrease in maternal affiliation. Juveniles' reactions were sex-specific, as males associated less with their mother, while females tended to groom their mother more often after the birth of their sibling. Despite the substantial loss of maternal care, juveniles did not show an increase in conflict or anxiety-related behaviours. This study contributes to explain why short interbirth intervals often pose a risk to juveniles' survival in monotocous primates. Our results contrast existing studies and further highlight the importance of examining the TTS in species and populations with various life histories and ecologies.
Collapse
Affiliation(s)
- Axelle Delaunay
- Institute of Evolutionary Biology of Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Océane Cossu-Doye
- Institute of Evolutionary Biology of Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Berta Roura-Torres
- Institute of Evolutionary Biology of Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Institute of Zoology and Anthropology, Johann-Friedrich-Blumenback, Georg-August University Göttingen, Göttingen, Germany
| | | | | | - Elise Huchard
- Institute of Evolutionary Biology of Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marie J. E. Charpentier
- Institute of Evolutionary Biology of Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Bücklestrasse 5, Konstanz78467, Germany
| |
Collapse
|
11
|
Bartolomucci A, Tung J, Harris KM. The fortunes and misfortunes of social life across the life course: A new era of research from field, laboratory and comparative studies. Neurosci Biobehav Rev 2024; 162:105655. [PMID: 38583652 DOI: 10.1016/j.neubiorev.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Social gradients in health and aging have been reported in studies across many human populations, and - as the papers included in this special collection highlight - also occur across species. This paper serves as a general introduction to the special collection of Neuroscience and Biobehavioral Reviews entitled "Social dimensions of health and aging: population studies, preclinical research, and comparative research using animal models". Authors of the fourteen reviews are primarily members of a National Institute of Aging-supported High Priority Research Network on "Animal Models for the Social Dimensions of Health and Aging". The collection is introduced by a foreword, commentaries, and opinion pieces by leading experts in related fields. The fourteen reviews are divided into four sections: Section 1: Biodemography and life course studies; Section 2: Social behavior and healthy aging in nonhuman primates; Section 3: Social factors, stress, and hallmarks of aging; Section 4: Neuroscience and social behavior.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham, NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Duke Population Research Institute, Duke University, Durham, NC, USA.
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Cole MF, Barnes P, Monroe IG, Rukundo J, Emery Thompson M, Rosati AG. Age-related physiological dysregulation progresses slowly in semi-free-ranging chimpanzees. Evol Med Public Health 2024; 12:129-142. [PMID: 39239461 PMCID: PMC11375048 DOI: 10.1093/emph/eoae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/24/2024] [Indexed: 09/07/2024] Open
Abstract
Background and objectives Lifestyle has widespread effects on human health and aging. Prior results from chimpanzees (Pan troglodytes), one of humans' closest evolutionary relatives, indicate that these lifestyle effects may also be shared with other species, as semi-free-ranging chimpanzees fed a naturalistic diet show healthier values in several specific health biomarkers, compared with their sedentary, captive counterparts. Here, we examined how lifestyle factors associated with different environments affect rates of physiological aging in closely related chimpanzees. Methodology We compared physiological dysregulation, an index of biological aging, in semi-free-ranging chimpanzees in an African sanctuary versus captive chimpanzees in US laboratories. If the rate of aging is accelerated by high-calorie diet and sedentism, we predicted greater age-related dysregulation in the laboratory populations. Conversely, if costs of a wild lifestyle accelerate aging, then semi-free-ranging chimpanzees at the sanctuary, whose environment better approximates the wild, should show greater age-related dysregulation. We further tested whether dysregulation differed based on sex or body system, as in humans. Results We found that semi-free-ranging chimpanzees showed lower overall dysregulation, as well as lower age-related change in dysregulation, than laboratory chimpanzees. Males experienced lower dysregulation than females in both contexts, and the two populations exhibited distinct aging patterns based on body system. Conclusions and implications Our results support the conclusion that naturalistic living conditions result in healthier aging in chimpanzees. These data provide support for the proposal that lifestyle effects on human health and aging are conserved from deeper into our evolutionary history.
Collapse
Affiliation(s)
- Megan F Cole
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Paige Barnes
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle G Monroe
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Rukundo
- Chimpanzee Sanctuary and Wildlife Conservation Trust, Entebbe, Uganda
| | | | - Alexandra G Rosati
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Zipple MN, Reeve HK, Peniston OJ. Maternal care leads to the evolution of long, slow lives. Proc Natl Acad Sci U S A 2024; 121:e2403491121. [PMID: 38875146 PMCID: PMC11194579 DOI: 10.1073/pnas.2403491121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Animals, and mammals in particular, vary widely in their "pace of life," with some species living long lives and reproducing infrequently (slow life histories) and others living short lives and reproducing often (fast life histories). These species also vary in the importance of maternal care in offspring fitness: In some species, offspring are fully independent of their mothers following a brief period of nutritional input, while others display a long period of continued dependence on mothers well after nutritional dependence. Here, we hypothesize that these two axes of variation are causally related to each other, such that extended dependence of offspring on maternal presence leads to the evolution of longer lives at the expense of reproduction. We use a combination of deterministic modeling and stochastic agent-based modeling to explore how empirically observed links between maternal survival and offspring fitness are likely to shape the evolution of mortality and fertility. Each of our modeling approaches leads to the same conclusion: When maternal survival has a strong impact on the survival of offspring and grandoffspring, populations evolve longer lives with less frequent reproduction. Our results suggest that the slow life histories of humans and other primates as well as other long-lived, highly social animals such as hyenas, whales, and elephants are partially the result of the strong maternal care that these animals display. We have designed our models to be readily parameterized with demographic data that are routinely collected by long-term researchers, which will facilitate more thorough testing of our hypothesis.
Collapse
Affiliation(s)
- Matthew N. Zipple
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853
| | - H. Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853
| | - Orca Jimmy Peniston
- Department of Biology, Kenai Peninsula College, University of Alaska Anchorage, Soldotna, AK99669
| |
Collapse
|
14
|
Minton DM, Ailiani AR, Focht MDK, Kersh ME, Marolf AJ, Santangelo KS, Salmon AB, Konopka AR. The common marmoset as a translational model of age-related osteoarthritis. GeroScience 2024; 46:2827-2847. [PMID: 38466454 PMCID: PMC11009185 DOI: 10.1007/s11357-024-01103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Age-related osteoarthritis (OA) is a degenerative joint disease characterized by pathological changes in nearly every intra- and peri-articular tissue that contributes to disability in older adults. Studying the etiology of age-related OA in humans is difficult due to an unpredictable onset and insidious nature. A barrier in developing OA modifying therapies is the lack of translational models that replicate human joint anatomy and age-related OA progression. The purpose of this study was to determine whether the common marmoset is a faithful model of human age-related knee OA. Semi-quantitative microCT scoring revealed greater radiographic OA in geriatric versus adult marmosets, and the age-related increase in OA prevalence was similar between marmosets and humans. Quantitative assessments indicate greater medial tibial cortical and trabecular bone thickness and heterogeneity in geriatric versus adult marmosets which is consistent with an age-related increase in focal subchondral bone sclerosis. Additionally, marmosets displayed an age-associated increase in synovitis and calcification of the meniscus and patella. Histological OA pathology in the medial tibial plateau was greater in geriatric versus adult marmosets driven by articular cartilage damage, proteoglycan loss, and altered chondrocyte cellularity. The age-associated increase in medial tibial cartilage OA pathology and meniscal calcification was greater in female versus male geriatric marmosets. Overall, marmosets largely replicate human OA as evident by similar 1) cartilage and skeletal morphology, 2) age-related progression in OA pathology, and 3) sex differences in OA pathology with increasing age. Collectively, these data suggest that the common marmoset is a highly translatable model of the naturally occurring, age-related OA seen in humans.
Collapse
Affiliation(s)
- Dennis M Minton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Aditya R Ailiani
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michael D K Focht
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Angela J Marolf
- Department of Veterinary Clinical Sciences, Ohio State University, Columbus, OH, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
15
|
Petrullo L, Delaney D, Boutin S, Lane JE, McAdam AG, Dantzer B. A future food boom rescues the negative effects of early-life adversity on adult lifespan in a small mammal. Proc Biol Sci 2024; 291:20232681. [PMID: 38654643 PMCID: PMC11040256 DOI: 10.1098/rspb.2023.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Early-life adversity, even when transient, can have lasting effects on individual phenotypes and reduce lifespan across species. If these effects can be mitigated by a high-quality later-life environment, then differences in future resources may explain variable resilience to early-life adversity. Using data from over 1000 wild North American red squirrels, we tested the hypothesis that the costs of early-life adversity for adult lifespan could be offset by later-life food abundance. We identified six adversities that reduced juvenile survival in the first year of life, though only one-birth date-had continued independent effects on adult lifespan. We then built a weighted early-life adversity (wELA) index integrating the sum of adversities and their effect sizes. Greater weighted early-life adversity predicted shorter adult lifespans in males and females, but a naturally occurring food boom in the second year of life ameliorated this effect. Experimental food supplementation did not replicate this pattern, despite increasing lifespan, indicating that the buffering effect of a future food boom may hinge on more than an increase in available calories. Our results suggest a non-deterministic role of early-life conditions for later-life phenotype, highlighting the importance of evaluating the consequences of early-life adversity in the context of an animal's entire life course.
Collapse
Affiliation(s)
- Lauren Petrullo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 857192, AZ, USA
| | - David Delaney
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 803023, CO, USA
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, 500114, IA, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R35, Alberta, Canada
| | - Jeffrey E. Lane
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5A26, Saskatchewan, Canada
| | - Andrew G. McAdam
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, 500114, IA, USA
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, 481097, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 481097, MI, USA
| |
Collapse
|
16
|
Zipple MN, Southworth CA, Zipple SP, Archie EA, Tung J, Alberts SC. Infant spatial relationships with adult males in a wild primate: males as mitigators or magnifiers of intergenerational effects of early adversity? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.590770. [PMID: 38712182 PMCID: PMC11071619 DOI: 10.1101/2024.04.25.590770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Adult male mammals can provide infants with protection and enhance their access to resources. They can also pose a risk to infants, either directly through infanticide or other aggression, or indirectly by placing infants at increased risk of conspecific or heterospecific conflict. Both benefits and costs may be especially important for offspring born to mothers in poor condition. Here we present the most detailed analysis to date of the influence of adult non-human primate males on a wide range of infant behaviors, and a description of the predictors of individual infants' proximity to adult males. We show that the number of adult males near an infant predicts many infant behavioral traits, including aspects of the mother-infant relationship, infant activity budgets, and the frequency of social interactions with non-mothers. Infant exposure to adult males is statistically significantly repeatable over time (R = 0.16). This repeatability is partially explained by whether the infant's mother experienced early life adversity: offspring of high-adversity mothers spent time in close proximity to more males during the first months of life. Our results are consistent with the possibility that the effects of maternal early life adversity can be mitigated or magnified by relationships with adult males.
Collapse
Affiliation(s)
- Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Chelsea A Southworth
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Stefanie P Zipple
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jenny Tung
- Department of Biology, Duke University, Durham, North Carolina 27708
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig,Germany
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, North Carolina 27708
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
17
|
Rosenbaum S, Malani A, Lea AJ, Tung J, Alberts SC, Archie EA. Testing frameworks for early life effects: the developmental constraints and adaptive response hypotheses do not explain key fertility outcomes in wild female baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590627. [PMID: 38712305 PMCID: PMC11071398 DOI: 10.1101/2024.04.23.590627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In evolutionary ecology, two classes of explanations are frequently invoked to explain "early life effects" on adult outcomes. Developmental constraints (DC) explanations contend that costs of early adversity arise from limitations adversity places on optimal development. Adaptive response (AR) hypotheses propose that later life outcomes will be worse when early and adult environments are poorly "matched." Here, we use recently proposed mathematical definitions for these hypotheses and a quadratic-regression based approach to test the long-term consequences of variation in developmental environments on fertility in wild baboons. We evaluate whether low rainfall and/or dominance rank during development predict three female fertility measures in adulthood, and whether any observed relationships are consistent with DC and/or AR. Neither rainfall during development nor the difference between rainfall in development and adulthood predicted any fertility measures. Females who were low-ranking during development had an elevated risk of losing infants later in life, and greater change in rank between development and adulthood predicted greater risk of infant loss. However, both effects were statistically marginal and consistent with alternative explanations, including adult environmental quality effects. Consequently, our data do not provide compelling support for either of these common explanations for the evolution of early life effects.
Collapse
Affiliation(s)
| | - Anup Malani
- University of Chicago Law School & National Bureau of Economic Research
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary, Anthropology; Departments of Evolutionary Anthropology & Biology, Duke University
| | - Susan C Alberts
- Departments of Evolutionary Anthropology & Biology, Duke University
| | | |
Collapse
|
18
|
Sapolsky R. Scars and PARs in a close relative. Proc Natl Acad Sci U S A 2024; 121:e2401971121. [PMID: 38466859 PMCID: PMC10962960 DOI: 10.1073/pnas.2401971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Affiliation(s)
- Robert Sapolsky
- Department of Biology, Stanford University, Stanford, CA94305-5020
- Department of Neurology, Stanford University, Stanford, CA94305-5020
- Department of Neurosurgery, Stanford University, Stanford, CA94305-5020
| |
Collapse
|
19
|
Anderson JA, Lin D, Lea AJ, Johnston RA, Voyles T, Akinyi MY, Archie EA, Alberts SC, Tung J. DNA methylation signatures of early-life adversity are exposure-dependent in wild baboons. Proc Natl Acad Sci U S A 2024; 121:e2309469121. [PMID: 38442181 PMCID: PMC10945818 DOI: 10.1073/pnas.2309469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 03/07/2024] Open
Abstract
The early-life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early-life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early-life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early-life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early-life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early-life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early-life effects on fitness-related traits.
Collapse
Affiliation(s)
- Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Dana Lin
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Amanda J. Lea
- Canadian Institute for Advanced Research, Child & Brain Development Program, Toronto, ONM5G 1M1, Canada
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
| | | | - Tawni Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Mercy Y. Akinyi
- Institute of Primate Research, National Museums of Kenya, Nairobi00502, Kenya
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
- Duke Population Research Institute, Duke University, Durham, NC27708
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
- Canadian Institute for Advanced Research, Child & Brain Development Program, Toronto, ONM5G 1M1, Canada
- Department of Biology, Duke University, Durham, NC27708
- Duke Population Research Institute, Duke University, Durham, NC27708
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| |
Collapse
|
20
|
Yuen T, Ruckstuhl KE, Martinig AR, Neuhaus P. Born with an advantage: early life and maternal effects on fitness in female ground squirrels. Behav Ecol 2024; 35:arae013. [PMID: 38486921 PMCID: PMC10939052 DOI: 10.1093/beheco/arae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Lifetime fitness and its determinants are an important topic in the study of behavioral ecology and life-history evolution. Early life conditions comprise some of these determinants, warranting further investigation into their impact. In some mammals, babies born lighter tend to have lower life expectancy than those born heavier, and some of these life-history traits are passed on to offspring, with lighter-born females giving birth to lighter offspring. We investigated how weight at weaning, the relative timing of birth in the season, maternal weight, and maternal age affected the longevity and lifetime reproductive success (LRS) of female Columbian ground squirrels (Urocitellus columbianus). We hypothesized that early life conditions such as offspring weight would not only have lifetime fitness consequences but also intergenerational effects. We found that weight at weaning had a significant impact on longevity, with heavier individuals living longer. The relative timing of an individual's birth did not have a significant association with either longevity or LRS. Individuals born to heavier mothers were found to have significantly higher LRS than those born to lighter mothers. Finally, maternal age was found to be significantly associated with their offspring's LRS, with older mothers having less successful offspring. Our results provide evidence that early life conditions do have lifelong fitness and sometimes intergenerational consequences for Columbian ground squirrels.
Collapse
Affiliation(s)
- Tanner Yuen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4Canada
| | - Kathreen E Ruckstuhl
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4Canada
- Zoology Department, University of Cambridge, Downing Street, Cambridge, CB2 3EJ Cambridgeshire, UK
| | - April R Martinig
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4Canada
- Evolution & Ecology Centre and School of Biological, Earth and Environmental Sciences, 12 UNSW, Sydney, Australia
| | - Peter Neuhaus
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4Canada
- Zoology Department, University of Cambridge, Downing Street, Cambridge, CB2 3EJ Cambridgeshire, UK
| |
Collapse
|
21
|
Lange EC, Griffin M, Fogel AS, Archie EA, Tung J, Alberts SC. Environmental, sex-specific and genetic determinants of infant social behaviour in a wild primate. Proc Biol Sci 2023; 290:20231597. [PMID: 37964524 PMCID: PMC10646456 DOI: 10.1098/rspb.2023.1597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Affiliative social bonds are linked to fitness components in many social mammals. However, despite their importance, little is known about how the tendency to form social bonds develops in young animals, or if the timing of development is heritable and thus can evolve. Using four decades of longitudinal observational data from a wild baboon population, we assessed the environmental determinants of an important social developmental milestone in baboons-the age at which a young animal first grooms a conspecific-and we assessed how the rates at which offspring groom their mothers develops during the juvenile period. We found that grooming development differs between the sexes: female infants groom at an earlier age and reach equal rates of grooming with their mother earlier than males. We also found that age at first grooming for both sexes is weakly heritable (h2 = 0.043, 95% CI: 0.002-0.110). These results show that sex differences in grooming emerge at a young age; that strong, equitable social relationships between mothers and daughters begin very early in life; and that age at first grooming is heritable and therefore can be shaped by natural selection.
Collapse
Affiliation(s)
- Elizabeth C. Lange
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biological Sciences, SUNY Oswego, Oswego, NY, USA
| | | | - Arielle S. Fogel
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
22
|
Bertucci-Richter EM, Parrott BB. The rate of epigenetic drift scales with maximum lifespan across mammals. Nat Commun 2023; 14:7731. [PMID: 38007590 PMCID: PMC10676422 DOI: 10.1038/s41467-023-43417-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
Epigenetic drift or "disorder" increases across the mouse lifespan and is suggested to underlie epigenetic clock signals. While the role of epigenetic drift in determining maximum lifespan across species has been debated, robust tests of this hypothesis are lacking. Here, we test if epigenetic disorder at various levels of genomic resolution explains maximum lifespan across four mammal species. We show that epigenetic disorder increases with age in all species and at all levels of genomic resolution tested. The rate of disorder accumulation occurs faster in shorter lived species and corresponds to species adjusted maximum lifespan. While the density of cytosine-phosphate-guanine dinucleotides ("CpGs") is negatively associated with the rate of age-associated disorder accumulation, it does not fully explain differences across species. Our findings support the hypothesis that the rate of epigenetic drift explains maximum lifespan and provide partial support for the hypothesis that CpG density buffers against epigenetic drift.
Collapse
Affiliation(s)
- Emily M Bertucci-Richter
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA.
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Gonzalez SJ, Sherer AJ, Hernández‐Pacheco R. Differential effects of early life adversity on male and female rhesus macaque lifespan. Ecol Evol 2023; 13:e10689. [PMID: 37937273 PMCID: PMC10626128 DOI: 10.1002/ece3.10689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Early life adversity predicts shorter adult lifespan in several animal taxa. Yet, work on long-lived primate populations suggests the evolution of mechanisms that contribute to resiliency and long lives despite early life insults. Here, we tested associations between individual and cumulative early life adversity and lifespan on rhesus macaques at the Cayo Santiago Biological Field Station using 50 years of demographic data. We performed sex-specific survival analyses at different life stages to contrast short-term effects of adversity (i.e., infant survival) with long-term effects (i.e., adult survival). Female infants showed vulnerability to multiple adversities at birth, but affected females who survived to adulthood experienced a reduced risk later in life. In contrast, male infants showed vulnerability to a lower number of adversities at birth, but those who survived to adulthood were negatively affected by both early life individual and cumulative adversity. Our study shows profound immediate effects of insults on female infant cohorts and suggests that affected female adults are more robust. In contrast, adult males who experienced harsh conditions early in life showed an increased mortality risk at older ages as expected from hypotheses within the life course perspective. Our analysis suggests sex-specific selection pressures on life histories and highlights the need for studies addressing the effects of early life adversity across multiple life stages.
Collapse
Affiliation(s)
- Stephanie J. Gonzalez
- Department of Biological SciencesCalifornia State UniversityLong BeachCaliforniaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Anthony J. Sherer
- Department of Biological SciencesCalifornia State UniversityLong BeachCaliforniaUSA
| | | |
Collapse
|
24
|
Levy EJ, Lee A, Siodi IL, Helmich EC, McLean EM, Malone EJ, Pickard MJ, Ranjithkumar R, Tung J, Archie EA, Alberts SC. Early life drought predicts components of adult body size in wild female baboons. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:357-371. [PMID: 37737520 PMCID: PMC10591920 DOI: 10.1002/ajpa.24849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES In many taxa, adverse early-life environments are associated with reduced growth and smaller body size in adulthood. However, in wild primates, we know very little about whether, where, and to what degree trajectories are influenced by early adversity, or which types of early adversity matter most. Here, we use parallel-laser photogrammetry to assess inter-individual predictors of three measures of body size (leg length, forearm length, and shoulder-rump length) in a population of wild female baboons studied since birth. MATERIALS AND METHODS Using >2000 photogrammetric measurements of 127 females, we present a cross-sectional growth curve of wild female baboons (Papio cynocephalus) from juvenescence through adulthood. We then test whether females exposed to several important sources of early-life adversity-drought, maternal loss, low maternal rank, or a cumulative measure of adversity-were smaller for their age than females who experienced less adversity. Using the "animal model," we also test whether body size is heritable in this study population. RESULTS Prolonged early-life drought predicted shorter limbs but not shorter torsos (i.e., shoulder-rump lengths). Our other measures of early-life adversity did not predict variation in body size. Heritability estimates for body size measures were 36%-67%. Maternal effects accounted for 13%-17% of the variance in leg and forearm length, but no variance in torso length. DISCUSSION Our results suggest that baboon limbs, but not torsos, grow plastically in response to maternal effects and energetic early-life stress. Our results also reveal considerable heritability for all three body size measures in this study population.
Collapse
Affiliation(s)
- Emily J. Levy
- Department of Biology, Indiana University, Bloomington IN 47405, USA
- Department of Biology, Duke University, Durham NC 27708, USA
| | - Anna Lee
- Department of Biology, Duke University, Durham NC 27708, USA
| | | | - Emma C. Helmich
- Department of Biology, Duke University, Durham NC 27708, USA
| | - Emily M. McLean
- Division of Natural Sciences, Oxford College of Emory University, Oxford, GA, 30054, USA
| | - Elise J. Malone
- Department of Biology, Duke University, Durham NC 27708, USA
| | | | - Riddhi Ranjithkumar
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham NC 27708, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, Duke University, Durham NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1, Canada
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame IN, 46556, USA
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham NC 27708, USA
| |
Collapse
|
25
|
Hernández-Pacheco R, Steiner UK, Rosati AG, Tuljapurkar S. Advancing methods for the biodemography of aging within social contexts. Neurosci Biobehav Rev 2023; 153:105400. [PMID: 37739326 PMCID: PMC10591901 DOI: 10.1016/j.neubiorev.2023.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Several social dimensions including social integration, status, early-life adversity, and their interactions across the life course can predict health, reproduction, and mortality in humans. Accordingly, the social environment plays a fundamental role in the emergence of phenotypes driving the evolution of aging. Recent work placing human social gradients on a biological continuum with other species provides a useful evolutionary context for aging questions, but there is still a need for a unified evolutionary framework linking health and aging within social contexts. Here, we summarize current challenges to understand the role of the social environment in human life courses. Next, we review recent advances in comparative biodemography and propose a biodemographic perspective to address socially driven health phenotype distributions and their evolutionary consequences using a nonhuman primate population. This new comparative approach uses evolutionary demography to address the joint dynamics of populations, social dimensions, phenotypes, and life history parameters. The long-term goal is to advance our understanding of the link between individual social environments, population-level outcomes, and the evolution of aging.
Collapse
Affiliation(s)
- Raisa Hernández-Pacheco
- Department of Biological Sciences, California State University, Long Beach, 1250 N Bellflower Blvd, Long Beach, CA 90840-0004, USA.
| | - Ulrich K Steiner
- Freie Universität Berlin, Biological Institute, Königin-Luise Str. 1-3, 14195 Berlin, Germany
| | - Alexandra G Rosati
- Departments of Psychology and Anthropology, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
26
|
Lyons CE, Razzoli M, Bartolomucci A. The impact of life stress on hallmarks of aging and accelerated senescence: Connections in sickness and in health. Neurosci Biobehav Rev 2023; 153:105359. [PMID: 37586578 PMCID: PMC10592082 DOI: 10.1016/j.neubiorev.2023.105359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Chronic stress is a risk factor for numerous aging-related diseases and has been shown to shorten lifespan in humans and other social mammals. Yet how life stress causes such a vast range of diseases is still largely unclear. In recent years, the impact of stress on health and aging has been increasingly associated with the dysregulation of the so-called hallmarks of aging. These are basic biological mechanisms that influence intrinsic cellular functions and whose alteration can lead to accelerated aging. Here, we review correlational and experimental literature (primarily focusing on evidence from humans and murine models) on the contribution of life stress - particularly stress derived from adverse social environments - to trigger hallmarks of aging, including cellular senescence, sterile inflammation, telomere shortening, production of reactive oxygen species, DNA damage, and epigenetic changes. We also evaluate the validity of stress-induced senescence and accelerated aging as an etiopathological proposition. Finally, we highlight current gaps of knowledge and future directions for the field, and discuss perspectives for translational geroscience.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
27
|
Zipple MN, Archie EA, Tung J, Mututua RS, Warutere JK, Siodi IL, Altmann J, Alberts SC. Five Decades of Data Yield No Support for Adaptive Biasing of Offspring Sex Ratio in Wild Baboons ( Papio cynocephalus). Am Nat 2023; 202:383-398. [PMID: 37792922 PMCID: PMC10998069 DOI: 10.1086/725886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractOver the past 50 years, a wealth of testable, often conflicting hypotheses have been generated about the evolution of offspring sex ratio manipulation by mothers. Several of these hypotheses have received support in studies of invertebrates and some vertebrate taxa. However, their success in explaining sex ratios in mammalian taxa-especially in primates-has been mixed. Here, we assess the predictions of four different hypotheses about the evolution of biased offspring sex ratios in the baboons of the Amboseli basin in Kenya: the Trivers-Willard, female rank enhancement, local resource competition, and local resource enhancement hypotheses. Using the largest sample size ever analyzed in a primate population (n = 1,372 offspring), we test the predictions of each hypothesis. Overall, we find no support for adaptive biasing of sex ratios. Offspring sex is not consistently related to maternal dominance rank or biased toward the dispersing sex, nor is it predicted by group size, population growth rates, or their interaction with maternal rank. Because our sample size confers power to detect even subtle biases in sex ratio, including modulation by environmental heterogeneity, these results suggest that adaptive biasing of offspring sex does not occur in this population.
Collapse
Affiliation(s)
- Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University
| | | | - Jenny Tung
- Dept of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology
- Department of Evolutionary Anthropology, Duke University
- Department of Biology, Duke University
| | | | | | | | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke University
- Department of Biology, Duke University
| |
Collapse
|
28
|
Patterson SK, Petersen RM, Brent LJN, Snyder-Mackler N, Lea AJ, Higham JP. Natural Animal Populations as Model Systems for Understanding Early Life Adversity Effects on Aging. Integr Comp Biol 2023; 63:681-692. [PMID: 37279895 PMCID: PMC10503476 DOI: 10.1093/icb/icad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Adverse experiences in early life are associated with aging-related disease risk and mortality across many species. In humans, confounding factors, as well as the difficulty of directly measuring experiences and outcomes from birth till death, make it challenging to identify how early life adversity impacts aging and health. These challenges can be mitigated, in part, through the study of non-human animals, which are exposed to parallel forms of adversity and can age similarly to humans. Furthermore, studying the links between early life adversity and aging in natural populations of non-human animals provides an excellent opportunity to better understand the social and ecological pressures that shaped the evolution of early life sensitivities. Here, we highlight ongoing and future research directions that we believe will most effectively contribute to our understanding of the evolution of early life sensitivities and their repercussions.
Collapse
Affiliation(s)
- Sam K Patterson
- Department of Anthropology, New York University, New York City, 10003, USA
| | - Rachel M Petersen
- Department of Biological Science, Vanderbilt University, Nashville, 37232, USA
| | - Lauren J N Brent
- Department of Psychology, University of Exeter, Exeter, EX4 4QG, United Kingdom
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, and School of Human Evolution and Social Change, Arizona State University, Tempe, 85281, USA
| | - Amanda J Lea
- Department of Biological Science, Vanderbilt University, Nashville, 37232, USA
- Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, M5G 1M1, Canada
| | - James P Higham
- Department of Anthropology, New York University, New York City, 10003, USA
| |
Collapse
|
29
|
Zipple MN, Vogt CC, Sheehan MJ. Re-wilding model organisms: Opportunities to test causal mechanisms in social determinants of health and aging. Neurosci Biobehav Rev 2023; 152:105238. [PMID: 37225063 PMCID: PMC10527394 DOI: 10.1016/j.neubiorev.2023.105238] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Social experiences are strongly associated with individuals' health, aging, and survival in many mammalian taxa, including humans. Despite their role as models of many other physiological and developmental bases of health and aging, biomedical model organisms (particularly lab mice) remain an underutilized tool in resolving outstanding questions regarding social determinants of health and aging, including causality, context-dependence, reversibility, and effective interventions. This status is largely due to the constraints of standard laboratory conditions on animals' social lives. Even when kept in social housing, lab animals rarely experience social and physical environments that approach the richness, variability, and complexity they have evolved to navigate and benefit from. Here we argue that studying biomedical model organisms outside under complex, semi-natural social environments ("re-wilding") allows researchers to capture the methodological benefits of both field studies of wild animals and laboratory studies of model organisms. We review recent efforts to re-wild mice and highlight discoveries that have only been made possible by researchers studying mice under complex, manipulable social environments.
Collapse
Affiliation(s)
- Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Caleb C Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
Dettmer AM, Chusyd DE. Early life adversities and lifelong health outcomes: A review of the literature on large, social, long-lived nonhuman mammals. Neurosci Biobehav Rev 2023; 152:105297. [PMID: 37391110 PMCID: PMC10529948 DOI: 10.1016/j.neubiorev.2023.105297] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Social nonhuman animals are powerful models for studying underlying factors related to lifelong health outcomes following early life adversities (ELAs). ELAs can be linked to lifelong health outcomes depending on the species, system, sensitive developmental periods, and biological pathways. This review focuses on the literature surrounding ELAs and lifelong health outcomes in large, social, relatively long-lived nonhuman mammals including nonhuman primates, canids, hyenas, elephants, ungulates, and cetaceans. These mammals, like humans but unlike the most-studied rodent models, have longer life histories, complex social structures, larger brains, and comparable stress and reproductive physiology. Collectively, these features make them compelling models for comparative aging research. We review studies of caregiver, social, and ecological ELAs, often in tandem, in these mammals. We consider experimental and observational studies and what each has contributed to our knowledge of health across the lifespan. We demonstrate the continued and expanded need for comparative research to inform about the social determinants of health and aging in both humans and nonhuman animals.
Collapse
Affiliation(s)
- Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, 230 S. Frontage Rd., New Haven, CT, USA.
| | - Daniella E Chusyd
- Department of Environmental and Occupational Health, Indiana University Bloomington, 1025 E. 7th St., Bloomington, IN, USA; Department of Health and Wellness Design, Indiana University Bloomington, 1025 E. 7th St., Bloomington, IN, USA
| |
Collapse
|
31
|
Tung J, Lange EC, Alberts SC, Archie EA. Social and early life determinants of survival from cradle to grave: A case study in wild baboons. Neurosci Biobehav Rev 2023; 152:105282. [PMID: 37321362 PMCID: PMC10529797 DOI: 10.1016/j.neubiorev.2023.105282] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Field studies of natural mammal populations present powerful opportunities to investigate the determinants of health and aging using fine-grained observations of known individuals across the life course. Here, we synthesize five decades of findings from one such study: the wild baboons of the Amboseli ecosystem in Kenya. First, we discuss the profound associations between early life adversity, adult social conditions, and key aging outcomes in this population, especially survival. Second, we review potential mediators of the relationship between early life adversity and survival in our population. Notably, our tests of two leading candidate mediators-social isolation and glucocorticoid levels-fail to identify a single, strong mediator of early life effects on adult survival. Instead, early adversity, social isolation, and glucocorticoids are independently linked to adult lifespans, suggesting considerable scope for mitigating the negative consequences of early life adversity. Third, we review our work on the evolutionary rationale for early life effects on mortality, which currently argues against clear predictive adaptive responses. Finally, we end by highlighting major themes emerging from the study of sociality, development, and aging in the Amboseli baboons, as well as important open questions for future work.
Collapse
Affiliation(s)
- Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Duke Population Research Institute, Duke University, Durham, NC, USA.
| | - Elizabeth C Lange
- Department of Biology, Duke University, Durham NC, USA; Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham NC, USA; Duke Population Research Institute, Duke University, Durham, NC, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
32
|
Wolf SE, Shalev I. The shelterin protein expansion of telomere dynamics: Linking early life adversity, life history, and the hallmarks of aging. Neurosci Biobehav Rev 2023; 152:105261. [PMID: 37268182 PMCID: PMC10527177 DOI: 10.1016/j.neubiorev.2023.105261] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Aging is characterized by functional decline occurring alongside changes to several hallmarks of aging. One of the hallmarks includes attrition of repeated DNA sequences found at the ends of chromosomes called telomeres. While telomere attrition is linked to morbidity and mortality, whether and how it causally contributes to lifelong rates of functional decline is unclear. In this review, we propose the shelterin-telomere hypothesis of life history, in which telomere-binding shelterin proteins translate telomere attrition into a range of physiological outcomes, the extent of which may be modulated by currently understudied variation in shelterin protein levels. Shelterin proteins may expand the breadth and timing of consequences of telomere attrition, e.g., by translating early life adversity into acceleration of the aging process. We consider how the pleiotropic roles of shelterin proteins provide novel insights into natural variation in physiology, life history, and lifespan. We highlight key open questions that encourage the integrative, organismal study of shelterin proteins that enhances our understanding of the contribution of the telomere system to aging.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA.
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Patterson SK, Andonov E, Arre AM, Martínez MI, Negron-Del Valle JE, Petersen RM, Phillips D, Rahman A, Ruiz-Lambides A, Villanueva I, Lea AJ, Snyder-Mackler N, Brent LJ, Higham JP. Early life adversity has sex-dependent effects on survival across the lifespan in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555589. [PMID: 37693423 PMCID: PMC10491187 DOI: 10.1101/2023.08.30.555589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Exposure to adversity during early life is linked to lasting detrimental effects on evolutionary fitness across many taxa. However, due to the challenges of collecting longitudinal data, especially in species where one sex disperses, direct evidence from long-lived species remains relatively scarce. Here we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) at Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of ten forms of early life adversity for 6,599 macaques (3,230 male, 3,369 female), with a smaller sample size (N=299) for one form of adversity (maternal social isolation) which required high-resolution behavioral data. We found that individuals who experienced more early life adversity died earlier than those who experienced less adversity. Mortality risk was highest during early life, defined as birth to four years old, suggesting acute survival effects of adversity, but heightened mortality risk was also present in macaques who survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands, female philopatry, and male dispersal. By leveraging data on thousands of macaques collected over decades, our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing, and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities in long-lived species.
Collapse
Affiliation(s)
| | - Ella Andonov
- High School of American Studies at Lehman College, New York City
| | - Alyssa M. Arre
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | | | | | | | | | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | | | - Amanda J. Lea
- Department of Biological Science, Vanderbilt University
- Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University
- School of Life Sciences and School of Human Evolution and Social Change, Arizona State University
| | | | | |
Collapse
|
34
|
Malani A, Archie EA, Rosenbaum S. Conceptual and analytical approaches for modelling the developmental origins of inequality. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220306. [PMID: 37381859 PMCID: PMC10291426 DOI: 10.1098/rstb.2022.0306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 06/30/2023] Open
Abstract
In many species, individuals that experience harsh conditions during development have poor health and fitness outcomes in adulthood, compared with peers that do not. These early-life contributions to inequality are often attributed to two classes of evolutionary hypotheses: Developmental Constraints (DC) models, which focus on the deleterious effects of low-quality early-life environments, and Predictive Adaptive Response (PAR) hypotheses, which emphasize the costs individuals incur when they make incorrect predictions about conditions in adulthood. Testing these hypotheses empirically is difficult for conceptual and analytical reasons. Here, we help resolve some of these difficulties by providing mathematical definitions for DC, PAR (particularly focusing on 'external' PAR) and related concepts. We propose a novel, quadratic regression-based statistical test derived from these definitions. Our simulations show that this approach markedly improves the ability to discriminate between DC and PAR hypotheses relative to the status quo approach, which uses interaction effects. Simulated data indicate that the interaction effects approach often conflates PAR with DC, while the quadratic regression approach yields high sensitivity and specificity for detecting PAR. Our results highlight the value of linking verbal and visual models to a formal mathematical treatment for understanding the developmental origins of inequitable adult outcomes. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Anup Malani
- University of Chicago Law School and National Bureau of Economic Research, Chicago, IL 60637, USA
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stacy Rosenbaum
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Anzà S, Schneider D, Daniel R, Heistermann M, Sangmaneedet S, Ostner J, Schülke O. The long-term gut bacterial signature of a wild primate is associated with a timing effect of pre- and postnatal maternal glucocorticoid levels. MICROBIOME 2023; 11:165. [PMID: 37501202 PMCID: PMC10373267 DOI: 10.1186/s40168-023-01596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/11/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND During development, elevated levels of maternal glucocorticoids (GCs) can have detrimental effects on offspring morphology, cognition, and behavior as well as physiology and metabolism. Depending on the timing of exposure, such effects may vary in strength or even reverse in direction, may alleviate with age, or may concern more stable and long-term programming of phenotypic traits. Maternal effects on gut bacterial diversity, composition, and function, and the persistence of such effects into adulthood of long-lived model species in the natural habitats remain underexplored. RESULTS In a cross-sectional sample of infant, juvenile, and adult Assamese macaques, the timing of exposure to elevated maternal GCs during ontogeny was associated with the gut bacterial community of the offspring. Specifically, naturally varying maternal GC levels during early but not late gestation or lactation were associated with reduced bacterial richness. The overall effect of maternal GCs during early gestation on the gut bacterial composition and function exacerbated with offspring age and was 10 times stronger than the effect associated with exposure during late prenatal or postnatal periods. Instead, variation in maternal GCs during the late prenatal or postnatal period had less pronounced or less stable statistical effects and therefore a weaker effect on the entire bacterial community composition, particularly in adult individuals. Finally, higher early prenatal GCs were associated with an increase in the relative abundance of several potential pro-inflammatory bacteria and a decrease in the abundance of Bifidobacterium and other anti-inflammatory taxa, an effect that exacerbated with age. CONCLUSIONS In primates, the gut microbiota can be shaped by developmental effects with strong timing effects on plasticity and potentially detrimental consequences for adult health. Together with results on other macaque species, this study suggests potential detrimental developmental effects similar to rapid inflammaging, suggesting that prenatal exposure to high maternal GC concentrations is a common cause underlying both phenomena. Our findings await confirmation by metagenomic functional and causal analyses and by longitudinal studies of long-lived, ecologically flexible primates in their natural habitat, including developmental effects that originate before birth. Video Abstract.
Collapse
Affiliation(s)
- Simone Anzà
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany.
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Somboon Sangmaneedet
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Julia Ostner
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Oliver Schülke
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
36
|
Morrison RE, Eckardt W, Stoinski TS, Rosenbaum S. Cumulative early-life adversity does not predict reduced adult longevity in wild gorillas. Curr Biol 2023; 33:2307-2314.e4. [PMID: 37192615 PMCID: PMC10264970 DOI: 10.1016/j.cub.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Extensive research across fields has repeatedly confirmed that early-life adversity (ELA) is a major selective force for many taxa, in part via its ties to adult health and longevity.1,2,3 Negative effects of ELA on adult outcomes have been documented in a wide range of species, from fish to birds to humans.4 We used 55 years of long-term data collected on 253 wild mountain gorillas to examine the effects of six putative sources of ELA on survival, both individually and cumulatively. Although cumulative ELA was associated with high mortality in early life, we found no evidence that it had detrimental consequences for survival later in life. Experiencing three or more forms of ELA was associated with greater longevity, with a 70% reduction in the risk of death across adulthood, driven specifically by greater longevity in males. Although this higher survival in later life is likely a consequence of sex-specific viability selection5 during early life due to the immediate mortality consequences of adverse experiences, patterns in our data also suggest that gorillas have significant resilience to ELA. Our findings demonstrate that the detrimental consequences of ELA on later life survival are not universal, and indeed largely absent in one of humans' closest living relatives. This raises important questions about the biological roots of sensitivity to early experiences and the protective mechanisms that contribute to resiliency in gorillas, which could be critical for understanding how best to encourage similar resiliency to early-life shocks in humans.
Collapse
Affiliation(s)
- Robin E Morrison
- Dian Fossey Gorilla Fund, PO Box 105, Musanze, Rwanda; Centre for Research in Animal Behaviour, Department of Psychology, University of Exeter, Exeter EX4 4QG, UK.
| | | | | | - Stacy Rosenbaum
- Department of Anthropology, University of Michigan-Ann Arbor, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Zeng S, Lange EC, Archie EA, Campos FA, Alberts SC, Li F. A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior. JOURNAL OF AGRICULTURAL, BIOLOGICAL, AND ENVIRONMENTAL STATISTICS 2023; 28:197-218. [PMID: 37415781 PMCID: PMC10321498 DOI: 10.1007/s13253-022-00490-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 07/08/2023]
Abstract
In animal behavior studies, a common goal is to investigate the causal pathways between an exposure and outcome, and a mediator that lies in between. Causal mediation analysis provides a principled approach for such studies. Although many applications involve longitudinal data, the existing causal mediation models are not directly applicable to settings where the mediators are measured on irregular time grids. In this paper, we propose a causal mediation model that accommodates longitudinal mediators on arbitrary time grids and survival outcomes simultaneously. We take a functional data analysis perspective and view longitudinal mediators as realizations of underlying smooth stochastic processes. We define causal estimands of direct and indirect effects accordingly and provide corresponding identification assumptions. We employ a functional principal component analysis approach to estimate the mediator process and propose a Cox hazard model for the survival outcome that flexibly adjusts the mediator process. We then derive a g-computation formula to express the causal estimands using the model coefficients. The proposed method is applied to a longitudinal data set from the Amboseli Baboon Research Project to investigate the causal relationships between early adversity, adult physiological stress responses, and survival among wild female baboons. We find that adversity experienced in early life has a significant direct effect on females' life expectancy and survival probability, but find little evidence that these effects were mediated by markers of the stress response in adulthood. We further developed a sensitivity analysis method to assess the impact of potential violation to the key assumption of sequential ignorability. Supplementary materials accompanying this paper appear on-line.
Collapse
Affiliation(s)
| | | | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Fernando A Campos
- Department of Antropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, USA.; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Fan Li
- Department of Statistical Science, Duke University, 214 Old Chemistry Building, Durham, NC 27708, USA
| |
Collapse
|
38
|
Lange EC, Zeng S, Campos FA, Li F, Tung J, Archie EA, Alberts SC. Early life adversity and adult social relationships have independent effects on survival in a wild primate. SCIENCE ADVANCES 2023; 9:eade7172. [PMID: 37196090 PMCID: PMC10191438 DOI: 10.1126/sciadv.ade7172] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Adverse conditions in early life can have negative consequences for adult health and survival in humans and other animals. What variables mediate the relationship between early adversity and adult survival? Adult social environments represent one candidate: Early life adversity is linked to social adversity in adulthood, and social adversity in adulthood predicts survival outcomes. However, no study has prospectively linked early life adversity, adult social behavior, and adult survival to measure the extent to which adult social behavior mediates this relationship. We do so in a wild baboon population in Amboseli, Kenya. We find weak mediation and largely independent effects of early adversity and adult sociality on survival. Furthermore, strong social bonds and high social status in adulthood can buffer some negative effects of early adversity. These results support the idea that affiliative social behavior is subject to natural selection through its positive relationship with survival, and they highlight possible targets for intervention to improve human health and well-being.
Collapse
Affiliation(s)
- Elizabeth C. Lange
- Department of Biology, Duke University, Durham NC, USA
- Department of Biological Sciences, State University of New York at Oswego, Oswego NY, USA
| | - Shuxi Zeng
- Department of Statistical Science, Duke University, Durham NC, USA
| | - Fernando A. Campos
- Department of Anthropology, The University of Texas at San Antonio, San Antonio TX, USA
| | - Fan Li
- Department of Statistical Science, Duke University, Durham NC, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham NC, USA
- Duke Population Research Institute, Duke University, Durham NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- University of Leipzig, Faculty of Life Science, Leipzig, Germany
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame IN, USA
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham NC, USA
- Duke Population Research Institute, Duke University, Durham NC, USA
| |
Collapse
|
39
|
Delaunay A, Baniel A, Dezeure J, Carter AJ, Cowlishaw G, Charpentier MJ, Huchard E. Transition to siblinghood in a wild chacma baboon population. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
40
|
Razzoli M, Nyuyki-Dufe K, Chen BH, Bartolomucci A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc Natl Acad Sci U S A 2023; 120:e2211755120. [PMID: 37043532 PMCID: PMC10120026 DOI: 10.1073/pnas.2211755120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Sustained life stress and low socioeconomic status are among the major causes of aging-related diseases and decreased life expectancy. Experimental rodent models can help to identify the underlying mechanisms, yet very few studies address the long-term consequences of social stress on aging. We conducted a randomized study involving more than 300 male mice of commonly used laboratory strains (C57BL/6J, CD1, and Sv129Ev) chosen for the spontaneous aggression gradient and stress-vulnerability. Mice were exposed to a lifelong chronic psychosocial stress protocol to model social gradients in aging and disease vulnerability. Low social rank, inferred based on a discretized aggression index, was found to negatively impact lifespan in our study population. However, social rank interacted with genetic background in that low-ranking C57BL/6J, high-ranking Sv129Ev, and middle-ranking CD1 mice had lower survival, respectively, implying a cost of maintaining a given social rank that varies across strains. Machine learning linear discriminant analysis identified baseline fat-free mass as the most important predictor of mouse genetic background and social rank in the present dataset. Finally, strain and social rank differences were significantly associated with epigenetic changes, most significantly in Sv129Ev mice and in high-ranking compared to lower ranking subjects. Overall, we identified genetic background and social rank as critical contextual modifiers of aging and lifespan in an ethologically relevant rodent model of social stress, thereby providing a preclinical experimental paradigm to study the impact of social determinants of health disparities and accelerated aging.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Kewir Nyuyki-Dufe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Brian H. Chen
- FOXO Technologies Inc., Minneapolis, MN55401
- Division of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
41
|
Garaï ME, Boult VL, Zitzer HR. Identifying the Effects of Social Disruption through Translocation on African Elephants ( Loxodonta africana), with Specifics on the Social and Ecological Impacts of Orphaning. Animals (Basel) 2023; 13:483. [PMID: 36766373 PMCID: PMC9913331 DOI: 10.3390/ani13030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
African elephants (Loxodonta africana) exhibit a long developmental period during which they acquire complex social and ecological knowledge through social networks. Central to this is that matriarchs and older individuals play an important role as repositories of information gained through experience. Anthropogenic interventions-including poaching, culling, translocation, and hunting-can disrupt elephants' social networks, with implications for individual fitness and potential long-term population viability. Here, we draw on a unique long-running, individual-based dataset to examine the impacts of translocation on a population of elephants in South Africa, taking into consideration demographic rates, social dynamics, and ecological decision-making. Specifically, we compared two translocated groups: a group of unrelated culling Orphans and a family herd. We found that the Orphan group experienced accelerated reproductive rates when compared with the family herd. The Orphan group also fissioned more frequently and for longer periods of time, suggesting lower cohesiveness, and were less decisive in their large-scale movement decisions. These results add to the growing body of literature on the downstream impacts of social disruption for elephants. Whilst the translocation of culling Orphans is no longer practised in South Africa, we encourage careful consideration of any elephant translocation and the resulting social disruption.
Collapse
Affiliation(s)
- Marion E. Garaï
- Elephant Reintegration Trust, Port Alfred 6170, South Africa
| | - Victoria L. Boult
- Department of Meteorology, University of Reading, Reading RG6 7BE, UK
| | - Heike R. Zitzer
- Elephant Reintegration Trust, Port Alfred 6170, South Africa
| |
Collapse
|
42
|
Chen XY, Wang D, Liu X, Shi X, Scherffius A, Fan F. Cumulative stressful events and mental health in young adults after 10 years of Wenchuan earthquake: the role of social support. Eur J Psychotraumatol 2023; 14:2189399. [PMID: 36942927 PMCID: PMC10035950 DOI: 10.1080/20008066.2023.2189399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
ABSTRACTBackground: After a natural disaster, stressful events often continue to accumulate, affecting individuals in a different manner than the original disaster never occurred. However, few studies have examined these associations, the cumulative impacts of stressful events on mental health outcomes, and the role of social support. This study examined the prospective association between cumulative stressful events and mental health problems and the role of social support in young adults.Methods: 695 participants provided available data on earthquake exposure, childhood maltreatment, other negative life events, and social support at baseline. Depressive symptoms and posttraumatic stress disorder were assessed at baseline and 10 years after the earthquake (T10y). A cumulative stressful events index was used to evaluate the levels of cumulative stressful events. Linear regressions were used to explore the predictive effects.Results: Of 695 participants, 41.3%, 28.5%, and 7.9% reported one, two, and three stressful events, respectively. The associations between cumulative stressful events and mental health problems at T10y presented a dose-response pattern: those who experienced three events had the highest risk of mental health problems, followed by those who experienced two events and those who reported one event. Additionally, higher social support partially reduced the negative impact of cumulative stressful events on mental health.Conclusions: Cumulative stressful events are associated with mental health problems 10 years later in young earthquake survivors. Social support could reduce the negative impact, but its protective role disappears when stressful events accumulate at the highest level. These findings highlight the importance of assessing the cumulative impacts of stressful events and social support available to young disaster survivors and intervening to prevent worse mental health outcomes.
Collapse
Affiliation(s)
- Xiao-Yan Chen
- School of Psychology, Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, People's Republic of China
| | - Dongfang Wang
- School of Psychology, Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, People's Republic of China
| | - Xianchen Liu
- Center for Public Health Initiatives, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuliang Shi
- College of Education, Hebei University, Baoding, People's Republic of China
| | - Andrew Scherffius
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Fang Fan
- School of Psychology, Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, People's Republic of China
| |
Collapse
|
43
|
Kivimäki M, Bartolomucci A, Kawachi I. The multiple roles of life stress in metabolic disorders. Nat Rev Endocrinol 2023; 19:10-27. [PMID: 36224493 PMCID: PMC10817208 DOI: 10.1038/s41574-022-00746-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
The activation of stress-related neuroendocrine systems helps to maintain homeostasis, but excessive stress can damage body functions. We review current evidence from basic sciences and epidemiology linking stress to the development and progression of metabolic disorders throughout life. Findings from rodents demonstrate that stress can affect features of metabolic dysfunction, such as insulin resistance, glucose and lipid homeostasis, as well as ageing processes such as cellular senescence and telomere length shortening. In human studies, stressors in the home, workplace and neighbourhood are associated with accelerated ageing and metabolic and immune alterations, both directly and indirectly via behavioural risks. The likelihood of developing clinical conditions, such as diabetes mellitus and hepatic steatosis is increased in individuals with adverse childhood experiences or long-term (years) or severe stress at work or in private life. The increased risk of metabolic disorders is often associated with other stress-related conditions, such as mental health disorders, cardiovascular disease and increased susceptibility to infections. Equally, stress can worsen prognosis in metabolic diseases. As favourable modifications in stressors are associated with reductions in incidence of metabolic disorders, further investigation of the therapeutic value of targeting stress in personalized medicine is warranted.
Collapse
Affiliation(s)
- Mika Kivimäki
- Department of Mental Health of Older People, Faculty of Brain Sciences, University College London, London, UK.
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine, University of Parma, Parma, Italy.
| | - Ichiro Kawachi
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
44
|
Carboni S, Dezeure J, Cowlishaw G, Huchard E, Marshall HH. Stable isotopes reveal the effects of maternal rank and infant age on weaning dynamics in wild chacma baboons. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Sen S, Carrera SC, Heistermann M, Potter CB, Baniel A, DeLacey PM, Petrullo L, Lu A, Beehner JC. Social correlates of androgen levels and dispersal age in juvenile male geladas. Horm Behav 2022; 146:105264. [PMID: 36155910 DOI: 10.1016/j.yhbeh.2022.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
Androgens offer a window into the timing of important male life history events such as maturation. However, when males are the dispersing sex, piecing together normative androgen profiles across development is challenging because dispersing males are difficult to track. Here, we examined the conditions that may be associated with male androgen status (via fecal androgen metabolites, fAMs) and age at dispersal in wild male geladas (Theropithecus gelada). Gelada male life histories are highly variable - dispersal may occur before sexual maturation, dispersal itself can be immediate or drawn out, and, due to their multi-leveled society, social conditions affecting dispersal can vary for juveniles living in different reproductive units within the same band. Using longitudinal data from known natal males, we examined how androgen levels and age at dispersal were associated with: (1) access to maternal resources (i.e., maternal rank, birth of a younger sibling, experiencing maternal loss), and (2) access to male peers (i.e., number of similar-aged males in their unit). We found that androgens were significantly lower in males with high-ranking mothers (in males >2.5 years of age; infant androgens were unrelated) and that having more male peers in their social group and larger groups overall predicted an earlier age at dispersal. Moreover, dispersal in geladas was not preceded or followed by a surge in androgen levels. Taken together, results suggest that social environments can cause individual variation in androgens and dispersal age. Whether this variation leads to differences in male fitness in later life remains to be determined.
Collapse
Affiliation(s)
- Sharmi Sen
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109-1107, USA.
| | - Sofia C Carrera
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Caitlin Barale Potter
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, St. Paul, MN 55108, USA
| | - Alice Baniel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Patricia M DeLacey
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Lauren Petrullo
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Jacinta C Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109-1107, USA; Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| |
Collapse
|
46
|
Bründl AC, Girard-Buttoz C, Bortolato T, Samuni L, Grampp M, Löhrich T, Tkaczynski P, Wittig RM, Crockford C. Maternal effects on the development of vocal communication in wild chimpanzees. iScience 2022; 25:105152. [PMID: 36238895 PMCID: PMC9550609 DOI: 10.1016/j.isci.2022.105152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Early-life experiences, such as maternal care received, influence adult social integration and survival. We examine what changes to social behavior through ontogeny lead to these lifelong effects, particularly whether early-life maternal environment impacts the development of social communication. Chimpanzees experience prolonged social communication development. Focusing on a central communicative trait, the "pant-hoot" contact call used to solicit social engagement, we collected cross-sectional data on wild chimpanzees (52 immatures and 36 mothers). We assessed early-life socioecological impacts on pant-hoot rates across development, specifically: mothers' gregariousness, age, pant-hoot rates and dominance rank, maternal loss, and food availability, controlling for current maternal effects. We found that early-life maternal gregariousness correlated positively with offspring pant-hoot rates, while maternal loss led to reduced pant-hoot rates across development. Males had steeper developmental trajectories in pant-hoot rates than females. We demonstrate the impact of maternal effects on developmental trajectories of a rarely investigated social trait, vocal production.
Collapse
Affiliation(s)
- Aisha C. Bründl
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
| | - Cédric Girard-Buttoz
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Tatiana Bortolato
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Liran Samuni
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mathilde Grampp
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Therese Löhrich
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Seestraße 10, Berlin 13353, Germany
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, Bangui BP 1053, Central African Republic
- Veterinary Group Practice Heeslingen, Stader Straße 5, 27404 Heeslingen, Germany
| | - Patrick Tkaczynski
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L33AF, UK
| | - Roman M. Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| |
Collapse
|
47
|
Behringer V, Berghänel A, Deschner T, Lee SM, Fruth B, Hohmann G. Transition to siblinghood causes a substantial and long-lasting increase in urinary cortisol levels in wild bonobos. eLife 2022; 11:77227. [PMID: 36040310 PMCID: PMC9489214 DOI: 10.7554/elife.77227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
In animals with slow ontogeny and long-term maternal investment, immatures are likely to experience the birth of a younger sibling before reaching maturity. In these species, the birth of a sibling marks a major event in an offspring’s early life as the older siblings experience a decrease in maternal support. The transition to siblinghood (TTS) is often considered to be stressful for the older offspring, but physiological evidence is lacking. To explore the TTS in wild bonobos, we investigated physiological changes in urinary cortisol (stress response), neopterin (cell-mediated immunity), and total triiodothyronine (T3, metabolic rate), as well as changes in behaviors that reflect the mother–offspring relationship. Following a sibling’s birth, urinary cortisol levels of the older offspring increased fivefold, independent of their age, and remained elevated for 7 months. The cortisol level increase was associated with declining neopterin levels; however, T3 levels and behavioral measures did not change. Our results indicate that the TTS is accompanied by elevated cortisol levels and that this change does not coincide with nutritional weaning and attainment of physical independence. Our results suggest that bonobos and humans experience TTS in similar ways and that this developmental event may have emerged in the last common ancestor.
Collapse
Affiliation(s)
- Verena Behringer
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Andreas Berghänel
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Germany
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Sean M Lee
- Department of Anthropology, George Washington University, Washington, United States
| | - Barbara Fruth
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
48
|
Gicquel M, East ML, Hofer H, Benhaiem S. Early-life adversity predicts performance and fitness in a wild social carnivore. J Anim Ecol 2022; 91:2074-2086. [PMID: 35971285 DOI: 10.1111/1365-2656.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Studies on humans indicate that encountering multiple sources of adversity in childhood increases the risk of poor long-term health and premature death. Far less is known about cumulative effects of adversity during early life in wildlife. Focusing on the spotted hyena Crocuta crocuta, a social mammal with small litters, extensive maternal care, slow development and access to resources determined by social rank, we determined the contribution of ecological, maternal, social and demographic factors during early life on performance and fitness, and tested whether the impact of early-life adversity is cumulative. Using longitudinal data from 666 female hyenas in the Serengeti National Park, we determined the early growth rate, survival to adulthood, age at first reproduction (AFR), lifetime reproductive success (LRS) and longevity. We fitted multivariate models in which we tested the effects of environmental factors on these performance measures. We then constructed a cumulative adversity index and fitted models to test the effect of this index on each performance measure. Finally, the value of cumulative adversity models was tested by comparing them to multivariate and single-effect models in which the effect of each environmental factor was considered separately. High maternal rank decreased the AFR of daughters. Singleton and dominant cubs had higher growth rate than subordinate cubs, and singletons also had a higher survival chance to adulthood than subordinates. Daughters of prime age mothers had a higher growth rate, longevity and LRS. Little and heavy rainfall decreased survival to adulthood. Increasing numbers of lactating female clan members decreased growth rate, survival to adulthood and LRS. Cumulative adversity negatively affected short-term performance and LRS. Multivariate models outperformed cumulative adversity and single-effect models for all measures except for AFR and longevity, for which single-effect models performed better. Our results suggest that in some wildlife populations the combination of specific conditions in early life may matter more than the accumulation of adverse conditions as such.
Collapse
Affiliation(s)
- Morgane Gicquel
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Heribert Hofer
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
49
|
Laubach ZM, Holekamp KE, Aris IM, Slopen N, Perng W. Applications of conceptual models from lifecourse epidemiology in ecology and evolutionary biology. Biol Lett 2022; 18:20220194. [PMID: 35855609 PMCID: PMC9297019 DOI: 10.1098/rsbl.2022.0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
In ecology and evolutionary biology (EEB), the study of developmental plasticity seeks to understand ontogenetic processes underlying the phenotypes upon which natural selection acts. A central challenge to this inquiry is ascertaining a causal effect of the exposure on the manifestation of later-life phenotype due to the time elapsed between the two events. The exposure is a potential cause of the outcome-i.e. an environmental stimulus or experience. The later phenotype might be a behaviour, physiological condition, morphology or life-history trait. The latency period between the exposure and outcome complicates causal inference due to the inevitable occurrence of additional events that may affect the relationship of interest. Here, we describe six distinct but non-mutually exclusive conceptual models from the field of lifecourse epidemiology and discuss their applications to EEB research. The models include Critical Period with No Later Modifiers, Critical Period with Later Modifiers, Accumulation of Risk with Independent Risk Exposures, Accumulation of Risk with Risk Clustering, Accumulation of Risk with Chains of Risk and Accumulation of Risk with Trigger Effect. These models, which have been widely used to test causal hypotheses regarding the early origins of adult-onset disease in humans, are directly relevant to research on developmental plasticity in EEB.
Collapse
Affiliation(s)
- Zachary M. Laubach
- Department of Ecology and Evolutionary Biology (EEB), University of Colorado Boulder, Boulder, CO, USA
- Mara Hyena Project, Karen, Nairobi, Kenya
| | - Kay E. Holekamp
- Mara Hyena Project, Karen, Nairobi, Kenya
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Izzuddin M. Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Natalie Slopen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
50
|
Azar B. Profile of Susan C. Alberts. Proc Natl Acad Sci U S A 2022; 119:e2204770119. [PMID: 35537052 PMCID: PMC9171906 DOI: 10.1073/pnas.2204770119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|