1
|
Hovah ME, Holzgrabe U. Bivalent and bitopic ligands of the opioid receptors: The prospects of a dual approach. Med Res Rev 2024; 44:2545-2599. [PMID: 38751227 DOI: 10.1002/med.22050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 10/05/2024]
Abstract
Opioid receptors belonging to the class A G-protein coupled receptors (GPCRs) are the targets of choice in the treatment of acute and chronic pain. However, their on-target side effects such as respiratory depression, tolerance and addiction have led to the advent of the 'opioid crisis'. In the search for safer analgesics, bivalent and more recently, bitopic ligands have emerged as valuable tool compounds to probe these receptors. The activity of bivalent and bitopic ligands rely greatly on the allosteric nature of the GPCRs. Bivalent ligands consist of two pharmacophores, each binding to the individual orthosteric binding site (OBS) of the monomers within a dimer. Bitopic or dualsteric ligands bridge the gap between the OBS and the spatially distinct, less conserved allosteric binding site (ABS) through the simultaneous occupation of these two sites. Bivalent and bitopic ligands stabilize distinct conformations of the receptors which ultimately translates into unique signalling and pharmacological profiles. Some of the interesting properties shown by these ligands include improved affinity and/or efficacy, subtype and/or functional selectivity and reduced side effects. This review aims at providing an overview of some of the bivalent and bitopic ligands of the opioid receptors and, their pharmacology in the hope of inspiring the design and discovery of the next generation of opioid analgesics.
Collapse
Affiliation(s)
- Marie Emilie Hovah
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| |
Collapse
|
2
|
Korona B, Itzhaki LS. How to target membrane proteins for degradation: Bringing GPCRs into the TPD fold. J Biol Chem 2024; 300:107926. [PMID: 39454955 PMCID: PMC11626814 DOI: 10.1016/j.jbc.2024.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
We are now in the middle of a so-called "fourth wave" of drug innovation: multispecific medicines aimed at diseases and targets previously thought to be "undruggable"; by inducing proximity between two or more proteins, for example, a target and an effector that do not naturally interact, such modalities have potential far beyond the scope of conventional drugs. In particular, targeted protein degradation (TPD) strategies to destroy disease-associated proteins have emerged as an exciting pipeline in drug discovery. Most efforts are focused on intracellular proteins, whereas membrane proteins have been less thoroughly explored despite the fact that they comprise roughly a quarter of the human proteome with G-protein coupled receptors (GPCRs) notably dysregulated in many diseases. Here, we discuss the opportunities and challenges of developing degraders for membrane proteins with a focus on GPCRs. We provide an overview of different TPD platforms in the context of membrane-tethered targets, and we present recent degradation technologies highlighting their potential application to GPCRs.
Collapse
Affiliation(s)
- Boguslawa Korona
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Drakopoulos A, Koszegi Z, Seier K, Hübner H, Maurel D, Sounier R, Granier S, Gmeiner P, Calebiro D, Decker M. Design, Synthesis, and Characterization of New δ Opioid Receptor-Selective Fluorescent Probes and Applications in Single-Molecule Microscopy of Wild-Type Receptors. J Med Chem 2024; 67:12618-12631. [PMID: 39044606 PMCID: PMC11386433 DOI: 10.1021/acs.jmedchem.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The delta opioid receptor (δOR or DOR) is a G protein-coupled receptor (GPCR) showing a promising profile as a drug target for nociception and analgesia. Herein, we design and synthesize new fluorescent antagonist probes with high δOR selectivity that are ideally suited for single-molecule microscopy (SMM) applications in unmodified, untagged receptors. Using our new probes, we investigated wild-type δOR localization and mobility at low physiological receptor densities for the first time. Furthermore, we investigate the potential formation of δOR homodimers, as such a receptor organization might exhibit distinct pharmacological activity, potentially paving the way for innovative pharmacological therapies. Our findings indicate that the majority of δORs labeled with these probes exist as freely diffusing monomers on the cell surface in a simple cell model. This discovery advances our understanding of OR behavior and offers potential implications for future therapeutic research.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Kerstin Seier
- Institute of Pharmacology and Toxicology, Julius-Maximilians University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Harald Hübner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Peter Gmeiner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Ortiz AJ, Martín V, Romero D, Guillamon A, Giraldo J. Time-dependent ligand-receptor binding kinetics and functionality in a heterodimeric receptor model. Biochem Pharmacol 2024; 225:116299. [PMID: 38763260 DOI: 10.1016/j.bcp.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
GPCRs heteromerize both in CNS and non-CNS regions. The cell uses receptor heteromerization to modulate receptor functionality and to provide fine tuning of receptor signaling. In order for pharmacologists to explore these mechanisms for therapeutic purposes, quantitative receptor models are needed. We have developed a time-dependent model of the binding kinetics and functionality of a preformed heterodimeric receptor involving two drugs. Two cases were considered: both or only one of the drugs are in excess with respect to the total concentration of the receptor. The latter case can be applied to those situations in which a drug causes unwanted side effects that need to be reduced by decreasing its concentration. The required efficacy can be maintained by the allosteric effects mutually exerted by the two drugs in the two-drug combination system. We discuss this concept assuming that the drug causing unwanted side effects is an opioid and that analgesia is the therapeutic effect. As additional points, allosteric modulation by endogenous compounds and synthetic bivalent ligands was included in the study. Receptor heteromerization offers a mechanistic understanding and quantification of the pharmacological effects elicited by combinations of two drugs at different doses and with different efficacies and cooperativity effects, thus providing a conceptual framework for drug combination therapy.
Collapse
Affiliation(s)
- Antonio J Ortiz
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Spain.
| | - Víctor Martín
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Matemàtiques, EPSEB, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain.
| | - David Romero
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Antoni Guillamon
- Departament de Matemàtiques, EPSEB, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain; IMTech, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain; Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
5
|
Sink A, Gerwe H, Hübner H, Boivin-Jahns V, Fender J, Lorenz K, Gmeiner P, Decker M. "Photo-Adrenalines": Photoswitchable β 2 -Adrenergic Receptor Agonists as Molecular Probes for the Study of Spatiotemporal Adrenergic Signaling. Chemistry 2024; 30:e202303506. [PMID: 38212242 DOI: 10.1002/chem.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 01/13/2024]
Abstract
β2 -adrenergic receptor (β2 -AR) agonists are used for the treatment of asthma and chronic obstructive pulmonary disease, but also play a role in other complex disorders including cancer, diabetes and heart diseases. As the cellular and molecular mechanisms in various cells and tissues of the β2 -AR remain vastly elusive, we developed tools for this investigation with high temporal and spatial resolution. Several photoswitchable β2 -AR agonists with nanomolar activity were synthesized. The most potent agonist for β2 -AR with reasonable switching is a one-digit nanomolar active, trans-on arylazopyrazole-based adrenaline derivative and comprises valuable photopharmacological properties for further biological studies with high structural accordance to the native ligand adrenaline.
Collapse
Affiliation(s)
- Alexandra Sink
- Pharmaceutical and Medicinal Chemistry Institute for Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Hubert Gerwe
- Pharmaceutical and Medicinal Chemistry Institute for Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Harald Hübner
- Medicinal Chemistry Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Valerie Boivin-Jahns
- Institute for Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Julia Fender
- Institute for Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Kristina Lorenz
- Institute for Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139, Dortmund, Germany
| | - Peter Gmeiner
- Medicinal Chemistry Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry Institute for Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Qian M, Sun Z, Chen X, Van Calenbergh S. Study of G protein-coupled receptors dimerization: From bivalent ligands to drug-like small molecules. Bioorg Chem 2023; 140:106809. [PMID: 37651896 DOI: 10.1016/j.bioorg.2023.106809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
In the past decades an increasing number of studies revealed that G protein-coupled receptors (GPCRs) are capable of forming dimers or even higher-ordered oligomers, which may modulate receptor function and act as potential drug targets. In this review, we briefly summarized the design strategy of bivalent GPCR ligands and mainly focused on how to use them to study and/or detect GPCP dimerization in vitro and in vivo. Bivalent ligands show specific properties relative to their corresponding monomeric ligands because they are able to bind to GPCR homodimers or heterodimers simultaneously. For example, bivalent ligands with optimal length of spacers often exhibited higher binding affinities for dimers compared to that of monomers. Furthermore, bivalent ligands displayed specific signal transduction compared to monovalent ligands. Finally, we give our perspective on targeting GPCR dimers from traditional bivalent ligands to more drug-like small molecules.
Collapse
Affiliation(s)
- Mingcheng Qian
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Zhengyang Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
7
|
Graßl F, Bock L, Huete-Huerta González Á, Schiller M, Gmeiner P, König J, Fromm MF, Hübner H, Heinrich MR. Exploring Structural Determinants of Bias among D4 Subtype-Selective Dopamine Receptor Agonists. J Med Chem 2023. [PMID: 37450764 DOI: 10.1021/acs.jmedchem.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The high affinity dopamine D4 receptor ligand APH199 and derivatives thereof exhibit bias toward the Gi signaling pathway over β-arrestin recruitment compared to quinpirole. Based on APH199, two novel groups of D4 subtype selective ligands were designed and evaluated, in which the original benzyl phenylsemicarbazide substructure was replaced by either a biphenylmethyl urea or a biphenyl urea moiety. Functional assays revealed a range of different bias profiles among the newly synthesized compounds, namely, with regard to efficacy, potency, and GRK2 dependency, in which bias factors range from 1 to over 300 and activation from 15% to over 98% compared to quinpirole. These observations demonstrate that within bias, an even more precise tuning toward a particular profile is possible, which─in a general sense─could become an important aspect in future drug development. Docking studies enabled further insight into the role of the ECL2 and the EPB in the emergence of bias, thereby taking advantage of the diversity of functionally selective D4 agonists now available.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Leonard Bock
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Álvaro Huete-Huerta González
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Martin Schiller
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Saha S, González-Maeso J. The crosstalk between 5-HT 2AR and mGluR2 in schizophrenia. Neuropharmacology 2023; 230:109489. [PMID: 36889432 PMCID: PMC10103009 DOI: 10.1016/j.neuropharm.2023.109489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Somdatta Saha
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
9
|
Xu X, Shonberg J, Kaindl J, Clark MJ, Stößel A, Maul L, Mayer D, Hübner H, Hirata K, Venkatakrishnan AJ, Dror RO, Kobilka BK, Sunahara RK, Liu X, Gmeiner P. Constrained catecholamines gain β 2AR selectivity through allosteric effects on pocket dynamics. Nat Commun 2023; 14:2138. [PMID: 37059717 PMCID: PMC10104803 DOI: 10.1038/s41467-023-37808-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) within the same subfamily often share high homology in their orthosteric pocket and therefore pose challenges to drug development. The amino acids that form the orthosteric binding pocket for epinephrine and norepinephrine in the β1 and β2 adrenergic receptors (β1AR and β2AR) are identical. Here, to examine the effect of conformational restriction on ligand binding kinetics, we synthesized a constrained form of epinephrine. Surprisingly, the constrained epinephrine exhibits over 100-fold selectivity for the β2AR over the β1AR. We provide evidence that the selectivity may be due to reduced ligand flexibility that enhances the association rate for the β2AR, as well as a less stable binding pocket for constrained epinephrine in the β1AR. The differences in the amino acid sequence of the extracellular vestibule of the β1AR allosterically alter the shape and stability of the binding pocket, resulting in a marked difference in affinity compared to the β2AR. These studies suggest that for receptors containing identical binding pocket residues, the binding selectivity may be influenced in an allosteric manner by surrounding residues, like those of the extracellular loops (ECLs) that form the vestibule. Exploiting these allosteric influences may facilitate the development of more subtype-selective ligands for GPCRs.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Jeremy Shonberg
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nurnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nurnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Mary J Clark
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Anne Stößel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nurnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Luis Maul
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nurnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Daniel Mayer
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nurnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Kunio Hirata
- Advanced Photon Technology Division, Research Infrastructure Group, SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo, 679-5148, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - A J Venkatakrishnan
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, USA.
| | - Xiangyu Liu
- State Key laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China.
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nurnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany.
| |
Collapse
|
10
|
Xu J, Wang Q, Hübner H, Hu Y, Niu X, Wang H, Maeda S, Inoue A, Tao Y, Gmeiner P, Du Y, Jin C, Kobilka BK. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat Commun 2023; 14:376. [PMID: 36690613 PMCID: PMC9870890 DOI: 10.1038/s41467-022-35726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.
Collapse
Affiliation(s)
- Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qinggong Wang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
- Innovation Academy for Precision Measurement Science and Technology, CAS, 430071, Wuhan, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pharmacology, Medical School, University of Michigan 1150 Medical Center Dr., 1315 Medical Science Research Bldg III, Ann Arbor, MI, 48109, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuyong Tao
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China.
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Zhao N, Wu W, Wang Y, Song K, Chen G, Chen Y, Wang R, Xu J, Cui K, Chen H, Tan W, Zhang J, Xiao Z. DNA-modularized construction of bivalent ligands precisely regulates receptor binding and activation. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
14
|
Ma H, Li M, Pagare PP, Wang H, Nassehi N, Santos EJ, Negus SS, Selley DE, Zhang Y. Novel bivalent ligands carrying potential antinociceptive effects by targeting putative mu opioid receptor and chemokine receptor CXCR4 heterodimers. Bioorg Chem 2022; 120:105641. [PMID: 35093692 PMCID: PMC9187593 DOI: 10.1016/j.bioorg.2022.105641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 01/26/2023]
Abstract
The functional interactions between opioid and chemokine receptors have been implicated in the pathological process of chronic pain. Mounting studies have indicated the possibility that a MOR-CXCR4 heterodimer may be involved in nociception and related pharmacologic effects. Herein we have synthesized a series of bivalent ligands containing both MOR agonist and CXCR4 antagonist pharmacophores with an aim to investigate the functional interactions between these two receptors. In vitro studies demonstrated reasonable recognition of designed ligands at both respective receptors. Further antinociceptive testing in mice revealed compound 1a to be the most promising member of this series. Additional molecular modeling studies corroborated the findings observed. Taken together, we identified the first bivalent ligand 1a showing promising antinociceptive effect by targeting putative MOR-CXCR4 heterodimers, which may serve as a novel chemical probe to further develop more potent bivalent ligands with potential application in analgesic therapies for chronic pain management.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Piyusha P. Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Nima Nassehi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Edna J. Santos
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States.
| |
Collapse
|
15
|
Mansoor S, Kayık G, Durdagi S, Sensoy O. Mechanistic insight into the impact of a bivalent ligand on the structure and dynamics of a GPCR oligomer. Comput Struct Biotechnol J 2022; 20:925-936. [PMID: 35242285 PMCID: PMC8861583 DOI: 10.1016/j.csbj.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/25/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Development of effective bivalent ligands has become the focus of intensive research toward modulation of G protein-coupled receptor (GPCR) oligomers, particularly in the field of GPCR pharmacology. Experimental studies have shown that they increased binding affinity and signaling potency compared to their monovalent counterparts, yet underlying molecular mechanism remains elusive. To address this, we performed accelerated molecular dynamics simulations on bivalent-ligand bound Adenosine 2A receptor (A2AR) dimer in the context of a modeled tetramer, which consists of A2AR and dopamine 2 receptor (D2R) homodimers and their cognate G proteins. Our results demonstrate that bivalent ligand impacted interactions between pharmacophore groups and ligand binding residues, thus modulating allosteric communication network and water channel formed within the receptor. Moreover, it also strengthens contacts between receptor and G protein, by modulating the volume of ligand binding pocket and intracellular domain of the receptor. Importantly, we showed that impact evoked by the bivalent ligand on A2AR dimer was also transmitted to apo D2R, which is part of the neighboring D2R dimer. To the best of our knowledge, this is the first study that provides a mechanistic insight into the impact of a bivalent ligand on dynamics of a GPCR oligomer. Consequently, this will pave the way for development of effective ligands for modulation of GPCR oligomers and hence treatment of crucial diseases such as Parkinson's disease and cancer.
Collapse
Affiliation(s)
- Samman Mansoor
- School of Engineering and Natural Sciences, Department of Biomedical Engineering and Bioinformatics, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Gülru Kayık
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ozge Sensoy
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciencesand Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- School of Engineering and Natural Sciences, Department of Computer Engineering, Istanbul Medipol University, Turkey
| |
Collapse
|
16
|
Prediction of molecular interactions and physicochemical properties relevant for vasopressin V2 receptor antagonism. J Mol Model 2022; 28:31. [PMID: 34997307 DOI: 10.1007/s00894-021-05022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
We have developed two ligand- and receptor-based computational approaches to study the physicochemical properties relevant to the biological activity of vasopressin V2 receptor (V2R) antagonist and eventually to predict the expected binding mode to V2R. The obtained quantitative structure activity relationship (QSAR) model showed a correlation of the antagonist activity with the hydration energy (EH2O), the polarizability (P), and the calculated partial charge on atom N7 (q6) of the common substructure. The first two descriptors showed a positive contribution to antagonist activity, while the third one had a negative contribution. V2R was modeled and further relaxed on a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) membrane by molecular dynamics simulations. The receptor antagonist complexes were guessed by molecular docking, and the stability of the most relevant structures was also evaluated by molecular dynamics simulations. As a result, amino acid residues Q96, W99, F105, K116, F178, A194, F307, and M311 were identified with the probably most relevant antagonist-receptor interactions on the studied complexes. The proposed QSAR model could explain the molecular properties relevant to the antagonist activity. The contributions to the antagonist-receptor interaction appeared also in agreement with the binding mode of the complexes obtained by molecular docking and molecular dynamics. These models will be used in further studies to look for new V2R potential antagonist molecules.
Collapse
|
17
|
Dale NC, Johnstone EKM, Pfleger KDG. GPCR heteromers: An overview of their classification, function and physiological relevance. Front Endocrinol (Lausanne) 2022; 13:931573. [PMID: 36111299 PMCID: PMC9468249 DOI: 10.3389/fendo.2022.931573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are capable of interacting to form higher order structures such as homomers and heteromers. Heteromerisation in particular has implications for receptor function, with research showing receptors can attain unique expression, ligand binding, signalling and intracellular trafficking upon heteromerisation. As such, GPCR heteromers represent novel drug targets with extensive therapeutic potential. Changes to ligand affinity, efficacy and G protein coupling have all been described, with alterations to these pharmacological aspects now well accepted as common traits for heteromeric complexes. Changes in internalisation and trafficking kinetics, as well as β-arrestin interactions are also becoming more apparent, however, few studies to date have explicitly looked at the implications these factors have upon the signalling profile of a heteromer. Development of ligands to target GPCR heteromers both experimentally and therapeutically has been mostly concentrated on bivalent ligands due to difficulties in identifying and developing heteromer-specific ligands. Improving our understanding of the pharmacology and physiology of GPCR heteromers will enable further development of heteromer-specific ligands with potential to provide therapeutics with increased efficacy and decreased side effects.
Collapse
Affiliation(s)
- Natasha C. Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| |
Collapse
|
18
|
Mantas I, Saarinen M, Xu ZQD, Svenningsson P. Update on GPCR-based targets for the development of novel antidepressants. Mol Psychiatry 2022; 27:534-558. [PMID: 33589739 PMCID: PMC8960420 DOI: 10.1038/s41380-021-01040-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Traditional antidepressants largely interfere with monoaminergic transport or degradation systems, taking several weeks to have their therapeutic actions. Moreover, a large proportion of depressed patients are resistant to these therapies. Several atypical antidepressants have been developed which interact with G protein coupled receptors (GPCRs) instead, as direct targeting of receptors may achieve more efficacious and faster antidepressant actions. The focus of this review is to provide an update on how distinct GPCRs mediate antidepressant actions and discuss recent insights into how GPCRs regulate the pathophysiology of Major Depressive Disorder (MDD). We also discuss the therapeutic potential of novel GPCR targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles. Finally, we highlight recent advances in understanding GPCR pharmacology and structure, and how they may provide new avenues for drug development.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
19
|
Leveraging nonstructural data to predict structures and affinities of protein-ligand complexes. Proc Natl Acad Sci U S A 2021; 118:2112621118. [PMID: 34921117 PMCID: PMC8713799 DOI: 10.1073/pnas.2112621118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 01/02/2023] Open
Abstract
Structure-based drug design depends on the ability to predict both the three-dimensional structures of candidate molecules bound to their targets and the associated binding affinities. We demonstrate that one can substantially improve the accuracy of these predictions using easily obtained data about completely different molecules that bind to the same target without requiring any target-bound structures of these molecules. The approach we developed to integrate physical and data-driven modeling may find a variety of applications in the rapidly growing field of artificial intelligence for drug discovery. Over the past five decades, tremendous effort has been devoted to computational methods for predicting properties of ligands—i.e., molecules that bind macromolecular targets. Such methods, which are critical to rational drug design, fall into two categories: physics-based methods, which directly model ligand interactions with the target given the target’s three-dimensional (3D) structure, and ligand-based methods, which predict ligand properties given experimental measurements for similar ligands. Here, we present a rigorous statistical framework to combine these two sources of information. We develop a method to predict a ligand’s pose—the 3D structure of the ligand bound to its target—that leverages a widely available source of information: a list of other ligands that are known to bind the same target but for which no 3D structure is available. This combination of physics-based and ligand-based modeling improves pose prediction accuracy across all major families of drug targets. Using the same framework, we develop a method for virtual screening of drug candidates, which outperforms standard physics-based and ligand-based virtual screening methods. Our results suggest broad opportunities to improve prediction of various ligand properties by combining diverse sources of information through customized machine-learning approaches.
Collapse
|
20
|
Qian M, Zhou K, Wu Y, Luo Z, Xiao Z, Sun J, Zeng S, Yao Y, Zhao S, Chen X. Synthesis of Bitopic Ligands as Potent Dopamine D 2 Receptor Agonists. ChemMedChem 2021; 17:e202100681. [PMID: 34855308 DOI: 10.1002/cmdc.202100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/12/2022]
Abstract
In this study, we designed and synthesized twelve bitopic ligands as dopamine D2 receptor (D2 R) agonists. The forskolin-induced cAMP accumulation assay revealed that all the finial compounds are able to activate D2 R. Furthermore, bitopic ligand N-((trans)-4-(((2,3-dihydro-1H-inden-2-yl)(propyl)amino)methyl)cyclo-hexyl)-1H-pyrrolo[2,3-b]pyridine-2-carboxamide (11 b) showed 21-fold higher potency than lead compound propyl aminoindane (2) and 17-fold higher subtype selectivity for D2 R over D4 R, indicating that the optimal length of spacer affects the D2 R functionality. Molecular modeling study exhibited that 11 b formed an electrostatic interaction and two H-bonds with amino acid Asp114, which contributes significantly to the D2 R functional activity. Taken together, we discovered a bitopic ligand 11 b as potent D2 R agonist, which may be used as a tool compound for further study.
Collapse
Affiliation(s)
- Mingcheng Qian
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Kuo Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Yi Wu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhijie Luo
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhekai Xiao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Jingjing Sun
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Siyu Zeng
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Yi Yao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Shuai Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
21
|
Yang Y. Functional Selectivity of Dopamine D 1 Receptor Signaling: Retrospect and Prospect. Int J Mol Sci 2021; 22:ijms222111914. [PMID: 34769344 PMCID: PMC8584964 DOI: 10.3390/ijms222111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Research progress on dopamine D1 receptors indicates that signaling no longer is limited to G protein-dependent cyclic adenosine monophosphate phosphorylation but also includes G protein-independent β-arrestin-related mitogen-activated protein kinase activation, regulation of ion channels, phospholipase C activation, and possibly more. This review summarizes recent studies revealing the complexity of D1 signaling and its clinical implications, and suggests functional selectivity as a promising strategy for drug discovery to magnify the merit of D1 signaling. Functional selectivity/biased receptor signaling has become a major research front because of its potential to improve therapeutics through precise targeting. Retrospective pharmacological review indicated that many D1 ligands have some degree of mild functional selectivity, and novel compounds with extreme bias at D1 signaling were reported recently. Behavioral and neurophysiological studies inspired new methods to investigate functional selectivity and gave insight into the biased signaling of several drugs. Results from recent clinical trials also supported D1 functional selectivity signaling as a promising strategy for discovery and development of better therapeutics.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
22
|
Bernasconi R, Thriene K, Romero‐Fernández E, Gretzmeier C, Kühl T, Maler M, Nauroy P, Kleiser S, Rühl‐Muth A, Stumpe M, Kiritsi D, Martin SF, Hinz B, Bruckner‐Tuderman L, Dengjel J, Nyström A. Pro-inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: intervention with Ang-(1-7). EMBO Mol Med 2021; 13:e14392. [PMID: 34459121 PMCID: PMC8495454 DOI: 10.15252/emmm.202114392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB), a genetic skin blistering disease, is a paradigmatic condition of tissue fragility-driven multi-organ fibrosis. Here, longitudinal analyses of the tissue proteome through the course of naturally developing disease in RDEB mice revealed that increased pro-inflammatory immunity associates with fibrosis evolution. Mechanistically, this fibrosis is a consequence of altered extracellular matrix organization rather than that of increased abundance of major structural proteins. In a humanized system of disease progression, we targeted inflammatory cell fibroblast communication with Ang-(1-7)-an anti-inflammatory heptapeptide of the renin-angiotensin system, which reduced the fibrosis-evoking aptitude of RDEB cells. In vivo, systemic administration of Ang-(1-7) efficiently attenuated progression of multi-organ fibrosis and increased survival of RDEB mice. Collectively, our study shows that selective down-modulation of pro-inflammatory immunity may mitigate injury-induced fibrosis. Furthermore, together with published data, our data highlight molecular diversity among fibrotic conditions. Both findings have direct implications for the design of therapies addressing skin fragility and fibrosis.
Collapse
Affiliation(s)
- Rocco Bernasconi
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Kerstin Thriene
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Elena Romero‐Fernández
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Christine Gretzmeier
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Tobias Kühl
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Essen University HospitalEssenGermany
| | - Mareike Maler
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Pauline Nauroy
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Svenja Kleiser
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Anne‐Catherine Rühl‐Muth
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Michael Stumpe
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Dimitra Kiritsi
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Stefan F Martin
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Boris Hinz
- Laboratory of Tissue Repair and RegenerationFaculty of DentistryUniversity of TorontoTorontoONCanada
| | - Leena Bruckner‐Tuderman
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Jörn Dengjel
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Alexander Nyström
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
| |
Collapse
|
23
|
Budzinski J, Maschauer S, Kobayashi H, Couvineau P, Vogt H, Gmeiner P, Roggenhofer A, Prante O, Bouvier M, Weikert D. Bivalent ligands promote endosomal trafficking of the dopamine D3 receptor-neurotensin receptor 1 heterodimer. Commun Biol 2021; 4:1062. [PMID: 34508168 PMCID: PMC8433439 DOI: 10.1038/s42003-021-02574-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Bivalent ligands are composed of two pharmacophores connected by a spacer of variable size. These ligands are able to simultaneously recognize two binding sites, for example in a G protein-coupled receptor heterodimer, resulting in enhanced binding affinity. Taking advantage of previously described heterobivalent dopamine-neurotensin receptor ligands, we demonstrate specific interactions between dopamine D3 (D3R) and neurotensin receptor 1 (NTSR1), two receptors with expression in overlapping brain areas that are associated with neuropsychiatric diseases and addiction. Bivalent ligand binding to D3R-NTSR1 dimers results in picomolar binding affinity and high selectivity compared to the binding to monomeric receptors. Specificity of the ligands for the D3R-NTSR1 receptor pair over D2R-NTSR1 dimers can be achieved by a careful choice of the linker length. Bivalent ligands enhance and stabilize the receptor-receptor interaction leading to NTSR1-controlled internalization of D3R into endosomes via recruitment of β-arrestin, highlighting a potential mechanism for dimer-specific receptor trafficking and signalling.
Collapse
Affiliation(s)
- Julian Budzinski
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Maschauer
- grid.5330.50000 0001 2107 3311Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hiroyuki Kobayashi
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Pierre Couvineau
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Hannah Vogt
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Roggenhofer
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olaf Prante
- grid.5330.50000 0001 2107 3311Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michel Bouvier
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Dorothee Weikert
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Optimizing the Expression of Human Dopamine Receptors in Escherichia coli. Int J Mol Sci 2021; 22:ijms22168647. [PMID: 34445358 PMCID: PMC8395450 DOI: 10.3390/ijms22168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
The human dopamine receptors D2S and D3 belong to the group of G protein-coupled receptors (GPCRs) and are important drug targets. Structural analyses and development of new receptor subtype specific drugs have been impeded by low expression yields or receptor instability. Fusing the T4 lysozyme into the intracellular loop 3 improves crystallization but complicates conformational studies. To circumvent these problems, we expressed the human D2S and D3 receptors in Escherichia coli using different N- and C-terminal fusion proteins and thermostabilizing mutations. We optimized expression times and used radioligand binding assays with whole cells and membrane homogenates to evaluate KD-values and the number of receptors in the cell membrane. We show that the presence but not the type of a C-terminal fusion protein is important. Bacteria expressing receptors capable of ligand binding can be selected using FACS analysis and a fluorescently labeled ligand. Improved receptor variants can thus be generated using error-prone PCR. Subsequent analysis of clones showed the distribution of mutations over the whole gene. Repeated cycles of PCR and FACS can be applied for selecting highly expressing receptor variants with high affinity ligand binding, which in the future can be used for analytical studies.
Collapse
|
25
|
Kampen S, Duy Vo D, Zhang X, Panel N, Yang Y, Jaiteh M, Matricon P, Svenningsson P, Brea J, Loza MI, Kihlberg J, Carlsson J. Structure‐Guided Design of G‐Protein‐Coupled Receptor Polypharmacology. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefanie Kampen
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Duc Duy Vo
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience Karolinska Institute 17177 Stockholm Sweden
| | - Nicolas Panel
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Yunting Yang
- Department of Clinical Neuroscience Karolinska Institute 17177 Stockholm Sweden
| | - Mariama Jaiteh
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Pierre Matricon
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience Karolinska Institute 17177 Stockholm Sweden
| | - Jose Brea
- USEF Screening Platform-BioFarma Research Group Centre for Research in Molecular Medicine and Chronic Diseases University of Santiago de Compostela 15706 Santiago de Compostela Spain
| | - Maria Isabel Loza
- USEF Screening Platform-BioFarma Research Group Centre for Research in Molecular Medicine and Chronic Diseases University of Santiago de Compostela 15706 Santiago de Compostela Spain
| | - Jan Kihlberg
- Department of Chemistry-BMC Uppsala University 75123 Uppsala Sweden
| | - Jens Carlsson
- Science for Life Laboratory Department of Cell and Molecular Biology Uppsala University 75124 Uppsala Sweden
| |
Collapse
|
26
|
Kampen S, Duy Vo D, Zhang X, Panel N, Yang Y, Jaiteh M, Matricon P, Svenningsson P, Brea J, Loza MI, Kihlberg J, Carlsson J. Structure-Guided Design of G-Protein-Coupled Receptor Polypharmacology. Angew Chem Int Ed Engl 2021; 60:18022-18030. [PMID: 33904641 PMCID: PMC8456950 DOI: 10.1002/anie.202101478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 12/29/2022]
Abstract
Many diseases are polygenic and can only be treated efficiently with drugs that modulate multiple targets. However, rational design of compounds with multi-target profiles is rarely pursued because it is considered too difficult, in particular if the drug must enter the central nervous system. Here, a structure-based strategy to identify dual-target ligands of G-protein-coupled receptors is presented. We use this approach to design compounds that both antagonize the A2A adenosine receptor and activate the D2 dopamine receptor, which have excellent potential as antiparkinson drugs. Atomic resolution models of the receptors guided generation of a chemical library with compounds designed to occupy orthosteric and secondary binding pockets in both targets. Structure-based virtual screens identified ten compounds, of which three had affinity for both targets. One of these scaffolds was optimized to nanomolar dual-target activity and showed the predicted pharmacodynamic effect in a rat model of Parkinsonism.
Collapse
Affiliation(s)
- Stefanie Kampen
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Duc Duy Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Nicolas Panel
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Yunting Yang
- Department of Clinical Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Mariama Jaiteh
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Pierre Matricon
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Jose Brea
- USEF Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, 15706, Santiago, de Compostela, Spain
| | - Maria Isabel Loza
- USEF Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, 15706, Santiago, de Compostela, Spain
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, 75123, Uppsala, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| |
Collapse
|
27
|
Sachdev S, Cabalteja CC, Cheloha RW. Strategies for targeting cell surface proteins using multivalent conjugates and chemical biology. Methods Cell Biol 2021; 166:205-222. [PMID: 34752333 PMCID: PMC8895325 DOI: 10.1016/bs.mcb.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Proper function of receptors on the cell surface is essential for homeostasis. Compounds that target cell surface receptors to address dysregulation have proven exceptionally successful as therapeutic agents; however, the development of compounds with the desired specificity for receptors, cells, and tissues of choice has proven difficult in some cases. The use of compounds that can engage more than one binding site at the cell surface offers a path toward improving biological specificity or pharmacological properties. In this chapter we summarize historical context for the development of such bivalent compounds. We focus on developments in chemical methods and biological engineering to provide bivalent compounds in which the high affinity and specificity of antibodies are leveraged to create multifunctional conjugates with new and useful properties. The development of methods to meld biological macromolecules with synthetic compounds will facilitate modulation of receptor biology in ways not previously possible.
Collapse
Affiliation(s)
- Shivani Sachdev
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States
| | - Chino C Cabalteja
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States
| | - Ross W Cheloha
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States.
| |
Collapse
|
28
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Zlotos DP, Abdelmalek CM, Botros LS, Banoub MM, Mandour YM, Breitinger U, El Nady A, Breitinger HG, Sotriffer C, Villmann C, Jensen AA, Holzgrabe U. C-2-Linked Dimeric Strychnine Analogues as Bivalent Ligands Targeting Glycine Receptors. JOURNAL OF NATURAL PRODUCTS 2021; 84:382-394. [PMID: 33596384 DOI: 10.1021/acs.jnatprod.0c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Strychnine is the prototypic antagonist of glycine receptors, a family of pentameric ligand-gated ion channels. Recent high-resolution structures of homomeric glycine receptors have confirmed the presence of five orthosteric binding sites located in the extracellular subunit interfaces of the receptor complex that are targeted by strychnine. Here, we report the synthesis and extensive pharmacological evaluation of bivalent ligands composed of two strychnine pharmacophores connected by appropriate spacers optimized toward simultaneous binding to two adjacent orthosteric sites of homomeric α1 glycine receptors. In all bivalent ligands, the two strychnine units were linked through C-2 by amide spacers of various lengths ranging from 6 to 69 atoms. Characterization of the compounds in two functional assays and in a radioligand binding assay indicated that compound 11a, with a spacer consisting of 57 atoms, may be capable of bridging the homomeric α1 GlyRs by simultaneous occupation of two adjacent strychnine-binding sites. The findings are supported by docking experiments to the crystal structure of the homomeric glycine receptor. Based on its unique binding mode, its relatively high binding affinity and antagonist potency, and its slow binding kinetics, the bivalent strychnine analogue 11a could be a valuable tool to study the functional properties of glycine receptors.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Carine M Abdelmalek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Liza S Botros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Maha M Banoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Yasmine M Mandour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capitol, 11865 Cairo, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Ahmed El Nady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Hans-Georg Breitinger
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078 Würzburg, Germany
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
30
|
Ullmann T, Gienger M, Budzinski J, Hellmann J, Hübner H, Gmeiner P, Weikert D. Homobivalent Dopamine D 2 Receptor Ligands Modulate the Dynamic Equilibrium of D 2 Monomers and Homo- and Heterodimers. ACS Chem Biol 2021; 16:371-379. [PMID: 33435665 DOI: 10.1021/acschembio.0c00895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dopamine D2 receptors (D2Rs) are major targets in the treatment of psychiatric and neurodegenerative diseases. As with many other G protein-coupled receptors (GPCRs), D2Rs interact within the cellular membrane, leading to a transient receptor homo- or heterodimerization. These interactions are known to alter ligand binding, signaling, and receptor trafficking. Bivalent ligands are ideally suited to target GPCR dimers and are composed of two pharmacophores connected by a spacer element. If properly designed, bivalent ligands are able to engange the two orthosteric binding sites of a GPCR dimer simultaneously. Taking advantage of previously developed ligands for heterodimers of D2R and the neurotensin receptor 1 (NTSR1), we synthesized homobivalent ligands targeting D2R. Employing bioluminescence resonance energy transfer, we found that the bivalent ligands 3b and 4b comprising a 92-atom spacer are able to foster D2R-homodimerization while simultaneously reducing interactions of D2R with NTSR1. Both receptors are coexpressed in the central nervous system and involved in important physiological processes. The newly developed bivalent ligands are excellent tools to further understand the pharmacological consequences of D2R homo- and heterodimerization. Not limited to the dopaminergic system, modifying class A GPCRs' dynamic equilibrium between monomers, homomers, and heteromers with bivalent ligands may represent a novel pharmacological concept paving the way toward innovative drugs.
Collapse
Affiliation(s)
- Tamara Ullmann
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Marie Gienger
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Julian Budzinski
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jan Hellmann
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
31
|
Qian M, Ricarte A, Wouters E, Dalton JAR, Risseeuw MDP, Giraldo J, Van Calenbergh S. Discovery of a true bivalent dopamine D 2 receptor agonist. Eur J Med Chem 2021; 212:113151. [PMID: 33450620 DOI: 10.1016/j.ejmech.2020.113151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Employing two different alkyne-modified dopamine agonists to construct bivalent compounds via click chemistry resulted in the identification of a bivalent ligand (11c) for dopamine D2 receptor homodimer, which, compared to its parent monomeric alkyne, showed a 16-fold higher binding affinity for the dopamine D2 receptor and a 5-fold higher potency in a cAMP assay in HEK 293T cells stably expressing D2R. Molecular modeling revealed that 11c can indeed bridge the orthosteric binding sites of a D2R homodimer in a relaxed conformation via the TM5-TM6 interface and allows to largely rationalize the results of the receptor assays.
Collapse
Affiliation(s)
- Mingcheng Qian
- Department of Medicinal Chemistry, School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Adrián Ricarte
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elise Wouters
- Laboratory of Toxicology, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| |
Collapse
|
32
|
Uzuneser TC, Weiss EM, Dahlmanns J, Kalinichenko LS, Amato D, Kornhuber J, Alzheimer C, Hellmann J, Kaindl J, Hübner H, Löber S, Gmeiner P, Grömer TW, Müller CP. Presynaptic vesicular accumulation is required for antipsychotic efficacy in psychotic-like rats. J Psychopharmacol 2021; 35:65-77. [PMID: 33274688 PMCID: PMC7770212 DOI: 10.1177/0269881120965908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The therapeutic effects of antipsychotic drugs (APDs) are mainly attributed to their postsynaptic inhibitory functions on the dopamine D2 receptor, which, however, cannot explain the delayed onset of full therapeutic efficacy. It was previously shown that APDs accumulate in presynaptic vesicles during chronic treatment and are released like neurotransmitters in an activity-dependent manner triggering an auto-inhibitory feedback mechanism. Although closely mirroring therapeutic action onset, the functional consequence of the APD accumulation process remained unclear. AIMS Here we tested whether the accumulation of the APD haloperidol (HAL) is required for full therapeutic action in psychotic-like rats. METHODS We designed a HAL analog compound (HAL-F), which lacks the accumulation property of HAL, but retains its postsynaptic inhibitory action on dopamine D2 receptors. RESULTS/OUTCOMES By perfusing LysoTracker fluorophore-stained cultured hippocampal neurons, we confirmed the accumulation of HAL and the non-accumulation of HAL-F. In an amphetamine hypersensitization psychosis-like model in rats, we found that subchronic intracerebroventricularly delivered HAL (0.1 mg/kg/day), but not HAL-F (0.3-1.5 mg/kg/day), attenuates psychotic-like behavior in rats. CONCLUSIONS/INTERPRETATION These findings suggest the presynaptic accumulation of HAL may serve as an essential prerequisite for its full antipsychotic action and may explain the time course of APD action. Targeting accumulation properties of APDs may, thus, become a new strategy to improve APD action.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jana Dahlmanns
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Davide Amato
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany,Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Hellmann
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Teja W Grömer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany,Christian P Müller, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany.
| |
Collapse
|
33
|
Ma H, Wang H, Li M, Barreto-de-Souza V, Reinecke BA, Gunta R, Zheng Y, Kang G, Nassehi N, Zhang H, An J, Selley DE, Hauser KF, Zhang Y. Bivalent Ligand Aiming Putative Mu Opioid Receptor and Chemokine Receptor CXCR4 Dimers in Opioid Enhanced HIV-1 Entry. ACS Med Chem Lett 2020; 11:2318-2324. [PMID: 33214847 PMCID: PMC7667867 DOI: 10.1021/acsmedchemlett.0c00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
A bivalent compound 1a featuring both a mu opioid receptor (MOR) and a CXCR4 antagonist pharmacophore (naltrexone and IT1t) was designed and synthesized. Further binding and functional studies demonstrated 1a acting as a MOR and a CXCR4 dual antagonist with reasonable binding affinities at both receptors. Furthermore, compound 1a seemed more effective than a combination of IT1t and naltrexone in inhibiting HIV entry at the presence of morphine. Additional molecular modeling results suggested that 1a may bind with the putative MOR-CXCR4 heterodimer to induce its anti-HIV activity. Collectively, bivalent ligand 1a may serve as a promising lead to develop chemical probes targeting the putative MOR-CXCR4 heterodimer in comprehending opioid exacerbated HIV-1 invasion.
Collapse
Affiliation(s)
- Hongguang Ma
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Victor Barreto-de-Souza
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United
States
| | - Bethany A. Reinecke
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Rama Gunta
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Guifeng Kang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Nima Nassehi
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United
States
| | - Huijun Zhang
- Department
of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, 9500 Gilman Drive, Stein Clinical
Research Building, Suite 410, La Jolla, California 92093, United States
| | - Jing An
- Department
of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, 9500 Gilman Drive, Stein Clinical
Research Building, Suite 410, La Jolla, California 92093, United States
| | - Dana E. Selley
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United
States
| | - Kurt F. Hauser
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United
States
| | - Yan Zhang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
34
|
Soluble dimeric prion protein ligand activates Adgrg6 receptor but does not rescue early signs of demyelination in PrP-deficient mice. PLoS One 2020; 15:e0242137. [PMID: 33180885 PMCID: PMC7660510 DOI: 10.1371/journal.pone.0242137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The adhesion G-protein coupled receptor Adgrg6 (formerly Gpr126) is instrumental in the development, maintenance and repair of peripheral nervous system myelin. The prion protein (PrP) is a potent activator of Adgrg6 and could be used as a potential therapeutic agent in treating peripheral demyelinating and dysmyelinating diseases. We designed a dimeric Fc-fusion protein comprising the myelinotrophic domain of PrP (FT2Fc), which activated Adgrg6 in vitro and exhibited favorable pharmacokinetic properties for in vivo treatment of peripheral neuropathies. While chronic FT2Fc treatment elicited specific transcriptomic changes in the sciatic nerves of PrP knockout mice, no amelioration of the early molecular signs demyelination was detected. Instead, RNA sequencing of sciatic nerves revealed downregulation of cytoskeletal and sarcomere genes, akin to the gene expression changes seen in myopathic skeletal muscle of PrP overexpressing mice. These results call for caution when devising myelinotrophic therapies based on PrP-derived Adgrg6 ligands. While our treatment approach was not successful, Adgrg6 remains an attractive therapeutic target to be addressed in other disease models or by using different biologically active Adgrg6 ligands.
Collapse
|
35
|
Huang B, St Onge CM, Ma H, Zhang Y. Design of bivalent ligands targeting putative GPCR dimers. Drug Discov Today 2020; 26:189-199. [PMID: 33075471 DOI: 10.1016/j.drudis.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) have been exploited as primary targets for drug discovery, and GPCR dimerization offers opportunities for drug design and disease treatment. An important strategy for targeting putative GPCR dimers is the use of bivalent ligands, which are single molecules that contain two pharmacophores connected through a spacer. Here, we discuss the selection of pharmacophores, the optimal length and chemical composition of the spacer, and the choice of spacer attachment points to the pharmacophores. Furthermore, we review the most recent advances (from 2018 to the present) in the design, discovery and development of bivalent ligands. We aim to reveal the state-of-the-art design strategy for bivalent ligands and provide insights into future opportunities in this promising field of drug discovery.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
36
|
Speltz R, Lunzer MM, Shueb SS, Akgün E, Reed R, Kalyuzhny A, Portoghese PS, Simone DA. The bivalent ligand, MMG22, reduces neuropathic pain after nerve injury without the side effects of traditional opioids. Pain 2020; 161:2041-2057. [PMID: 32345918 PMCID: PMC7606301 DOI: 10.1097/j.pain.0000000000001902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/21/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Functional interactions between the mu opioid receptor (MOR) and the metabotropic glutamate receptor 5 (mGluR5) in pain and analgesia have been well established. MMG22 is a bivalent ligand containing MOR agonist (oxymorphamine) and mGluR5 antagonist (MPEP) pharmacophores tethered by a 22-atom linker. MMG22 has been shown to produce potent analgesia in several models of chronic inflammatory and neuropathic pain (NP). This study assessed the efficacy of systemic administration of MMG22 at reducing pain behavior in the spared nerve injury (SNI) model of NP in mice, as well as its side-effect profile and abuse potential. MMG22 reduced mechanical hyperalgesia and spontaneous ongoing pain after SNI, with greater potency early (10 days) as compared to late (30 days) after injury. Systemic administration of MMG22 did not induce place preference in naive animals, suggesting absence of abuse liability when compared to traditional opioids. MMG22 also lacked the central locomotor, respiratory, and anxiolytic side effects of its monomeric pharmacophores. Evaluation of mRNA expression showed the transcripts for both receptors were colocalized in cells in the dorsal horn of the lumbar spinal cord and dorsal root ganglia. Thus, MMG22 reduces hyperalgesia after injury in the SNI model of NP without the typical centrally mediated side effects associated with traditional opioids.
Collapse
Affiliation(s)
- Rebecca Speltz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Mary M Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Sarah S Shueb
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | | | - Alex Kalyuzhny
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Bio-Techne, Minneapolis, MN, United States
| | - Philip S Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
37
|
Majewski MW, Gandhi DM, Holyst T, Wang Z, Hernandez I, Rosas R, Zhu J, Weiler H, Dockendorff C. Synthesis and initial pharmacology of dual-targeting ligands for putative complexes of integrin αVβ3 and PAR2. RSC Med Chem 2020; 11:940-949. [PMID: 33479689 PMCID: PMC7496306 DOI: 10.1039/d0md00098a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Unpublished data from our labs led us to hypothesize that activated protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and protease-activated receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized dual-targeting ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these ligands are effective binders of αVβ3 and potent agonists of PAR2. These were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins, though concurrent binding to αVβ3 and PAR2 has not yet been demonstrated.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Disha M Gandhi
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Trudy Holyst
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Zhengli Wang
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Irene Hernandez
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Ricardo Rosas
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Jieqing Zhu
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Hartmut Weiler
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Physiology , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Chris Dockendorff
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| |
Collapse
|
38
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|
39
|
Krüll J, Fehler SK, Hofmann L, Nebel N, Maschauer S, Prante O, Gmeiner P, Lanig H, Hübner H, Heinrich MR. Synthesis, Radiosynthesis and Biological Evaluation of Buprenorphine-Derived Phenylazocarboxamides as Novel μ-Opioid Receptor Ligands. ChemMedChem 2020; 15:1175-1186. [PMID: 32378310 PMCID: PMC7383964 DOI: 10.1002/cmdc.202000180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Targeted structural modifications have led to a novel type of buprenorphine-derived opioid receptor ligand displaying an improved selectivity profile for the μ-OR subtype. On this basis, it is shown that phenylazocarboxamides may serve as useful bioisosteric replacements for the widely occurring cinnamide units, without loss of OR binding affinity or subtype selectivity. This study further includes functional experiments pointing to weak partial agonist properties of the novel μ-OR ligands, as well as docking and metabolism experiments. Finally, the unique bifunctional character of phenylazocarboxylates, herein serving as precursors for the azocarboxamide subunit, was exploited to demonstrate the accessibility of an 18 F-fluorinated analogue.
Collapse
Affiliation(s)
- Jasmin Krüll
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Stefanie K. Fehler
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Laura Hofmann
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Natascha Nebel
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Simone Maschauer
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Olaf Prante
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Peter Gmeiner
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstr. 5a91058ErlangenGermany
| | - Harald Hübner
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Markus R. Heinrich
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
40
|
Liu X, Kaindl J, Korczynska M, Stößel A, Dengler D, Stanek M, Hübner H, Clark MJ, Mahoney J, Matt RA, Xu X, Hirata K, Shoichet BK, Sunahara RK, Kobilka BK, Gmeiner P. An allosteric modulator binds to a conformational hub in the β 2 adrenergic receptor. Nat Chem Biol 2020; 16:749-755. [PMID: 32483378 PMCID: PMC7816728 DOI: 10.1038/s41589-020-0549-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/11/2020] [Indexed: 01/15/2023]
Abstract
Most drugs acting on G-protein-coupled receptors target the orthosteric binding pocket where the native hormone or neurotransmitter binds. There is much interest in finding allosteric ligands for these targets because they modulate physiologic signaling and promise to be more selective than orthosteric ligands. Here we describe a newly developed allosteric modulator of the β2-adrenergic receptor (β2AR), AS408, that binds to the membrane-facing surface of transmembrane segments 3 and 5, as revealed by X-ray crystallography. AS408 disrupts a water-mediated polar network involving E1223.41 and the backbone carbonyls of V2065.45 and S2075.46. The AS408 binding site is adjacent to a previously identified molecular switch for β2AR activation formed by I3.40, P5.50 and F6.44. The structure reveals how AS408 stabilizes the inactive conformation of this switch, thereby acting as a negative allosteric modulator for agonists and positive allosteric modulator for inverse agonists.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Magdalena Korczynska
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Anne Stößel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Dengler
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Stanek
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mary J Clark
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jake Mahoney
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Rachel Ann Matt
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinyu Xu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Kunio Hirata
- Advanced Photon Technology Division, Research Infrastructure Group, SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center Sayo-gun, Hyogo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Brian K Kobilka
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- School of Medicine, Tsinghua University, Beijing, China.
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
41
|
Richardson RR, Groenen M, Liu M, Mountford SJ, Briddon SJ, Holliday ND, Thompson PE. Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R. J Med Chem 2020; 63:5274-5286. [PMID: 32364733 DOI: 10.1021/acs.jmedchem.0c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cyclic dimeric peptide 1229U91 (GR231118) has an unusual structure and displays potent, insurmountable antagonism of the Y1 receptor. To probe the structural basis for this activity, we have prepared ring size variants and heterodimeric compounds, identifying the specific residues underpinning the mechanism of 1229U91 binding. The homodimeric structure was shown to be dispensible, with analogues lacking key pharmacophoric residues in one dimer arm retaining high antagonist affinity. Compounds 11d-h also showed enhanced Y1R selectivity over Y4R compared to 1229U91.
Collapse
Affiliation(s)
- Rachel R Richardson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Marleen Groenen
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Mengjie Liu
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Stephen J Briddon
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Nicholas D Holliday
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
42
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
43
|
Drakopoulos A, Koszegi Z, Lanoiselée Y, Hübner H, Gmeiner P, Calebiro D, Decker M. Investigation of Inactive-State κ Opioid Receptor Homodimerization via Single-Molecule Microscopy Using New Antagonistic Fluorescent Probes. J Med Chem 2020; 63:3596-3609. [DOI: 10.1021/acs.jmedchem.9b02011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
44
|
Miyano K, Ohshima K, Suzuki N, Furuya S, Yoshida Y, Nonaka M, Higami Y, Yoshizawa K, Fujii H, Uezono Y. Japanese Herbal Medicine Ninjinyoeito Mediates Its Orexigenic Properties Partially by Activating Orexin 1 Receptors. Front Nutr 2020; 7:5. [PMID: 32175325 PMCID: PMC7056666 DOI: 10.3389/fnut.2020.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is highly prevalent in patients with progressive cancer and is characterized by decreased food consumption, and body weight. Japanese herbal medicine Ninjinyoeito (NYT), composed of 12 herbal crude drugs, is prescribed in Asian countries to improve several symptoms such as anorexia and fatigue, which are commonly observed in patients with cancer cachexia. However, the action mechanisms of NYT in improving anorexia or fatigue in patients with cancer are not clear. Therefore, in the present study, we examined the effects of NYT on the activities of several G-protein-coupled receptors (GPCRs), which activate hyperphagia signaling in the central nervous system, using an in vitro assay with the CellKey™ system, which detects the activation of GPCRs as a change in intracellular impedance (ΔZ). NYT increased the ΔZ of human embryonic kidney 293 (HEK293) cells expressing orexin 1 receptor (OX1R) and those expressing neuropeptide Y1 receptor (NPY1R) in a dose-dependent manner. On the contrary, NYT did not significantly increase the ΔZ of HEK293A cells expressing growth hormone secretagogue receptor (GHSR) and those expressing NPY5R. The selective OX1R antagonist SB674042 significantly decreased the NYT-induced increase in ΔZ in OX1R-expressing cells. Contrarily, the selective NPY1R antagonist BIBO3340 failed to inhibit the NPY-induced increase in ΔZ in NPY1R-expressing cells. Additionally, we prepared modified NYT excluding each one of the 12 herbal crude drugs in NYT and investigated the effects on the activity of OX1R. Among the 12 modified NYT formulations, the one without citrus unshiu peel failed to activate OX1R. A screening of each of the 12 herbal crude drugs showed that citrus unshiu peel significantly activated OX1R, which was significantly suppressed by SB674042. These finding suggest that NYT and citrus unshiu peel could increase food intake via activation of orexigenic OX1R-expressing neurons in the hypothalamus. This study provides scientific evidence to support the potential of NYT for cancer patients with anorexia.
Collapse
Affiliation(s)
- Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kaori Ohshima
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nozomi Suzuki
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Saho Furuya
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yuki Yoshida
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miki Nonaka
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hideaki Fujii
- Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Supportive Care Research, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, Tokyo, Japan.,Innovation Center for Supportive, Palliative and Psychosocial Care, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
45
|
Di Pizio A, Waterloo LAW, Brox R, Löber S, Weikert D, Behrens M, Gmeiner P, Niv MY. Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cell Mol Life Sci 2020; 77:531-542. [PMID: 31236627 PMCID: PMC11104859 DOI: 10.1007/s00018-019-03194-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
Human bitter taste receptors (TAS2Rs) are a subfamily of 25 G protein-coupled receptors that mediate bitter taste perception. TAS2R14 is the most broadly tuned bitter taste receptor, recognizing a range of chemically diverse agonists with micromolar-range potency. The receptor is expressed in several extra-oral tissues and is suggested to have physiological roles related to innate immune responses, male fertility, and cancer. Higher potency ligands are needed to investigate TAS2R14 function and to modulate it for future clinical applications. Here, a structure-based modeling approach is described for the design of TAS2R14 agonists beginning from flufenamic acid, an approved non-steroidal anti-inflammatory analgesic that activates TAS2R14 at sub-micromolar concentrations. Structure-based molecular modeling was integrated with experimental data to design new TAS2R14 agonists. Subsequent chemical synthesis and in vitro profiling resulted in new TAS2R14 agonists with improved potency compared to the lead. The integrated approach provides a validated and refined structural model of ligand-TAS2R14 interactions and a general framework for structure-based discovery in the absence of closely related experimental structures.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel
- Section In Silico Biology & Machine Learning, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany
| | - Lukas A W Waterloo
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Regine Brox
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Transfusion Medicine and Haemostaseology, University Hospital, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Maik Behrens
- Section Chemoreception and Biosignals, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany.
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Masha Y Niv
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
46
|
Gienger M, Hübner H, Löber S, König B, Gmeiner P. Structure-based development of caged dopamine D 2/D 3 receptor antagonists. Sci Rep 2020; 10:829. [PMID: 31965029 PMCID: PMC6972920 DOI: 10.1038/s41598-020-57770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Dopamine is a neurotransmitter of great physiological relevance. Disorders in dopaminergic signal transduction are associated with psychiatric and neurological pathologies such as Parkinson’s disease, schizophrenia and substance abuse. Therefore, a detailed understanding of dopaminergic neurotransmission may provide access to novel therapeutic strategies for the treatment of these diseases. Caged compounds with photoremovable groups represent molecular tools to investigate a biological target with high spatiotemporal resolution. Based on the crystal structure of the D3 receptor in complex with eticlopride, we have developed caged D2/D3 receptor ligands by rational design. We initially found that eticlopride, a widely used D2/D3 receptor antagonist, was photolabile and therefore is not suitable for caging. Subtle structural modification of the pharmacophore led us to the photostable antagonist dechloroeticlopride, which was chemically transformed into caged ligands. Among those, the 2-nitrobenzyl derivative 4 (MG307) showed excellent photochemical stability, pharmacological behavior and decaging properties when interacting with dopamine receptor-expressing cells.
Collapse
Affiliation(s)
- Marie Gienger
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany.
| |
Collapse
|
47
|
Botta J, Appelhans J, McCormick PJ. Continuing challenges in targeting oligomeric GPCR-based drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:213-245. [DOI: 10.1016/bs.pmbts.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Song F, Chen L, Lin R, Salter R. Synthesis of carboxy-polyethylene glycol-amine (CA (PEG) n ) and [1- 14 C]-CA (PEG) n via oxa-Michael addition of amino-polyethylene glycols to propiolates vs to acrylates. J Labelled Comp Radiopharm 2020; 63:15-24. [PMID: 31736118 DOI: 10.1002/jlcr.3816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 11/06/2022]
Abstract
Synthesis of carboxy-polyethylene glycol-amine (CA (PEG)n ) via oxa-Michael addition of amino-polyethylene glycols to either acrylates or propiolates was investigated. Compared with the oxa-Michael addition to acrylates, the corresponding addition to propiolates was found to proceed under mild reaction conditions and afford the adducts in high yields from a broad scope of substrates. A two-step efficient and convenient synthesis of benzyl [1-14 C]-propiolate from 14 CO2 was therefore developed and utilized as a common synthon to afford practical and high yielding access to [1-14 C]-CA (PEG)n .
Collapse
Affiliation(s)
- Fengbin Song
- Janssen Research & Development LLC, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Lu Chen
- Janssen Research & Development LLC, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Ronghui Lin
- Janssen Research & Development LLC, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Rhys Salter
- Janssen Research & Development LLC, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| |
Collapse
|
49
|
Bada Juarez JF, Muñoz-García JC, Inácio Dos Reis R, Henry A, McMillan D, Kriek M, Wood M, Vandenplas C, Sands Z, Castro L, Taylor R, Watts A. Detergent-free extraction of a functional low-expressing GPCR from a human cell line. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183152. [PMID: 31843475 DOI: 10.1016/j.bbamem.2019.183152] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023]
Abstract
Dopamine receptors (DRs) are class A G-Protein Coupled Receptors (GPCRs) prevalent in the central nervous system (CNS). These receptors mediate physiological functions ranging from voluntary movement and reward recognition to hormonal regulation and hypertension. Drugs targeting dopaminergic neurotransmission have been employed to treat several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, Huntington's disease, attention deficit hyperactivity disorder (ADHD), and Tourette's syndrome. In vivo, incorporation of GPCRs into lipid membranes is known to be key to their biological function and, by inference, maintenance of their tertiary structure. A further significant challenge in the structural and biochemical characterization of human DRs is their low levels of expression in mammalian cells. Thus, the purification and enrichment of DRs whilst retaining their structural integrity and function is highly desirable for biophysical studies. A promising new approach is the use of styrene-maleic acid (SMA) copolymer to solubilize GPCRs directly in their native environment, to produce polymer-assembled Lipodisqs (LQs). We have developed a novel methodology to yield detergent-free D1-containing Lipodisqs directly from HEK293f cells expressing wild-type human dopamine receptor 1 (D1). We demonstrate that D1 in the Lipodisq retains activity comparable to that in the native environment and report, for the first time, the affinity constant for the interaction of the peptide neurotransmitter neurotensin (NT) with D1, in the native state.
Collapse
Affiliation(s)
| | - Juan C Muñoz-García
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, UK; School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | - Marco Kriek
- UCB Celltech, 216 Bath Road, Slough SL1 3WE, UK
| | - Martyn Wood
- UCB BioPharma SPRL, Braine-l'Alleud, Belgium
| | | | - Zara Sands
- UCB Celltech, 216 Bath Road, Slough SL1 3WE, UK
| | - Luis Castro
- UCB Celltech, 216 Bath Road, Slough SL1 3WE, UK
| | | | - Anthony Watts
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
50
|
Plach M, Schäfer T, Borroto-Escuela DO, Weikert D, Gmeiner P, Fuxe K, Friedland K. Differential allosteric modulation within dopamine D 2R - neurotensin NTS1R and D 2R - serotonin 5-HT 2AR receptor complexes gives bias to intracellular calcium signalling. Sci Rep 2019; 9:16312. [PMID: 31704949 PMCID: PMC6841725 DOI: 10.1038/s41598-019-52540-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Proceeding investigations of G protein-coupled receptor (GPCR) heterocomplexes have demonstrated that the dopamine D2 receptor (D2R), one of the hub receptors in the physiology of schizophrenia, interacts with both the neurotensin NTS1 (NTS1R) and the serotonin 5-HT2A receptor (5-HT2AR) in cell lines and rodent brain tissue. In situ proximity ligation assay and BRET-based saturation experiments confirmed interacting receptor assemblies in HEK293T and neuronal HT22 cells. The NTS1R agonist NT(8-13) reduces the Gαq-mediated calcium signal in the NTS1R-D2R complex compared to the NTS1R monomer which could be reversed by D2R antagonists. The bivalent ligand CS148 (NTS1R-agonistic, D2R-antagonistic) increased the calcium response addressing the dimer, consistent with the effect of the monovalent ligands suggesting an allosteric D2R-mediated modulation. In contrast, the 5-HT2AR-D2R heteromer did not show a calcium-altering receptor-receptor interaction. Despite their common coupling-preference for Gαq, 5-HT2AR and NTS1R supposedly interact with D2R each in a unique mode. This remarkably diverse ligand-mediated signalling in two different D2R heteroreceptor complexes illustrates the complexity of receptor-receptor interactions and their potential of modifying cell responses to external stimuli. Therefore, GPCR heteromers may provide a very promising novel target for the therapy of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael Plach
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thorsten Schäfer
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Dorothée Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Friedland
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Pharmacology and Toxicology, Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität, Mainz, Germany.
| |
Collapse
|