1
|
Trelford CB, Shepherd TG. LKB1 biology: assessing the therapeutic relevancy of LKB1 inhibitors. Cell Commun Signal 2024; 22:310. [PMID: 38844908 PMCID: PMC11155146 DOI: 10.1186/s12964-024-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.
Collapse
Affiliation(s)
- Charles B Trelford
- The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Trevor G Shepherd
- The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
2
|
Cronin NM, Dawson LW, DeMali KA. Mechanical activation of VE-cadherin stimulates AMPK to increase endothelial cell metabolism and vasodilation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593171. [PMID: 38798670 PMCID: PMC11118335 DOI: 10.1101/2024.05.09.593171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Endothelia cells respond to mechanical force by stimulating cellular signaling, but how these pathways are linked to elevations in cell metabolism and whether metabolism supports the mechanical response remains poorly understood. Here, we show that application of force to VE-cadherin stimulates liver kinase B1 (LKB1) to activate AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis. VE-cadherin stimulated AMPK increases eNOS activity and localization to the plasma membrane as well as reinforcement of the actin cytoskeleton and cadherin adhesion complex, and glucose uptake. We present evidence for the increase in metabolism being necessary to fortify the adhesion complex, actin cytoskeleton, and cellular alignment. Together these data extend the paradigm for how mechanotransduction and metabolism are linked to include a connection to vasodilation, thereby providing new insight into how diseases involving contractile, metabolic, and vasodilatory disturbances arise.
Collapse
Affiliation(s)
- Nicholas M Cronin
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton RD, Iowa City, IA 52242
| | - Logan W Dawson
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton RD, Iowa City, IA 52242
| | - Kris A DeMali
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton RD, Iowa City, IA 52242
| |
Collapse
|
3
|
Li XL, Tei R, Uematsu M, Baskin JM. Ultralow Background Membrane Editors for Spatiotemporal Control of Phosphatidic Acid Metabolism and Signaling. ACS CENTRAL SCIENCE 2024; 10:543-554. [PMID: 38559292 PMCID: PMC10979500 DOI: 10.1021/acscentsci.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 04/04/2024]
Abstract
Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a light-oxygen-voltage (LOV) domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and nonperturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Xiang-Ling Li
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Reika Tei
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Masaaki Uematsu
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Jeremy M. Baskin
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Alavizargar A, Gass M, Krahn MP, Heuer A. Elucidating the Membrane Binding Process of a Disordered Protein: Dynamic Interplay of Anionic Lipids and the Polybasic Region. ACS PHYSICAL CHEMISTRY AU 2024; 4:167-179. [PMID: 38560754 PMCID: PMC10979486 DOI: 10.1021/acsphyschemau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 04/04/2024]
Abstract
Intrinsically disordered regions of proteins are responsible for many biological processes such as in the case of liver kinase B1 (LKB1)-a serine/threonine kinase relevant for cell proliferation and cell polarity. LKB1 becomes fully activated upon recruitment to the plasma membrane by binding of its disordered C-terminal polybasic motif consisting of eight lysines/arginines to phospholipids. Here, we present extensive molecular dynamics (MD) simulations of the polybasic motif interacting with a model membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleyl phosphatidic acid (PA) and cell culture experiments. Protein-membrane binding effects are due to the electrostatic interactions between the polybasic amino acids and PAs. For significant binding, the first three lysines turn out to be dispensable, which was also recapitulated in cell culture using transfected GFP-LKB1 variants. LKB1-membrane binding results in nonmonotonous changes in the structure of the protein as well as the membrane, in particular, accumulation of PAs and reduced thickness at the protein-membrane contact area. The protein-lipid binding turns out to be highly dynamic due to an interplay of PA-PA repulsion and protein-PA attraction. The thermodynamics of this interplay is captured by a statistical fluctuation model, which allows the estimation of both energies. Quantification of the significance of each polar amino acid in the polybasic provides detailed insights into the molecular mechanism of protein-membrane binding of LKB1. These results can likely be transferred to other proteins, which interact by intrinsically disordered polybasic regions with anionic membranes.
Collapse
Affiliation(s)
- Azadeh Alavizargar
- Institute
of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Maximilian Gass
- Medical
Cell Biology, Medical Clinic D, University
Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Michael P. Krahn
- Medical
Cell Biology, Medical Clinic D, University
Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Andreas Heuer
- Institute
of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
5
|
Niedziółka SM, Datta S, Uśpieński T, Baran B, Skarżyńska W, Humke EW, Rohatgi R, Niewiadomski P. The exocyst complex and intracellular vesicles mediate soluble protein trafficking to the primary cilium. Commun Biol 2024; 7:213. [PMID: 38378792 PMCID: PMC10879184 DOI: 10.1038/s42003-024-05817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
The efficient transport of proteins into the primary cilium is a crucial step for many signaling pathways. Dysfunction of this process can lead to the disruption of signaling cascades or cilium assembly, resulting in developmental disorders and cancer. Previous studies on the protein delivery to the cilium were mostly focused on the membrane-embedded receptors. In contrast, how soluble proteins are delivered into the cilium is poorly understood. In our work, we identify the exocyst complex as a key player in the ciliary trafficking of soluble Gli transcription factors. In line with the known function of the exocyst in intracellular vesicle transport, we demonstrate that soluble proteins, including Gli2/3 and Lkb1, can use the endosome recycling machinery for their delivery to the primary cilium. Finally, we identify GTPases: Rab14, Rab18, Rab23, and Arf4 that are involved in vesicle-mediated Gli protein ciliary trafficking. Our data pave the way for a better understanding of ciliary transport and uncover transport mechanisms inside the cell.
Collapse
Affiliation(s)
- S M Niedziółka
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - S Datta
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - T Uśpieński
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - B Baran
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - W Skarżyńska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - E W Humke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- IGM Biosciences, Inc, Mountain View, CA, USA
| | - R Rohatgi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - P Niewiadomski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Chen M, Shin M, Ware TB, Donvito G, Muchhala KH, Mischel R, Mustafa MA, Serbulea V, Upchurch CM, Leitinger N, Akbarali HI, Lichtman AH, Hsu KL. Endocannabinoid biosynthetic enzymes regulate pain response via LKB1-AMPK signaling. Proc Natl Acad Sci U S A 2023; 120:e2304900120. [PMID: 38109529 PMCID: PMC10756258 DOI: 10.1073/pnas.2304900120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Diacylglycerol lipase-beta (DAGLβ) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLβ ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLβ in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLβ blockade, thereby directly supporting DAGLβ-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Myungsun Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Timothy B. Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Karan H. Muchhala
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Ryan Mischel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Mohammed A. Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA23298
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22908
- University of Virginia Cancer Center, Cancer Biology Program, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
7
|
Proteau S, Krossa I, Husser C, Guéguinou M, Sella F, Bille K, Irondelle M, Dalmasso M, Barouillet T, Cheli Y, Pisibon C, Arrighi N, Nahon‐Estève S, Martel A, Gastaud L, Lassalle S, Mignen O, Brest P, Mazure NM, Bost F, Baillif S, Landreville S, Turcotte S, Hasson D, Carcamo S, Vandier C, Bernstein E, Yvan‐Charvet L, Levesque MP, Ballotti R, Bertolotto C, Strub T. LKB1-SIK2 loss drives uveal melanoma proliferation and hypersensitivity to SLC8A1 and ROS inhibition. EMBO Mol Med 2023; 15:e17719. [PMID: 37966164 PMCID: PMC10701601 DOI: 10.15252/emmm.202317719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na+ /Ca2+ ) exchanger SLC8A1. This signaling cascade promotes increased levels of intracellular calcium and mitochondrial reactive oxygen species, two hallmarks of cancer. We further demonstrate that combination of an SLC8A1 inhibitor and a mitochondria-targeted antioxidant promotes enhanced cell death efficacy in LKB1- and SIK2-negative uveal melanoma cells compared to control cells. Our study also identified an LKB1-loss gene signature for the survival prognostic of patients with uveal melanoma that may be also predictive of response to the therapy combination. Our data thus identify not only metabolic vulnerabilities but also new prognostic markers, thereby providing a therapeutic strategy for particular subtypes of metastatic uveal melanoma.
Collapse
Affiliation(s)
- Sarah Proteau
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Imène Krossa
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Chrystel Husser
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | | | - Federica Sella
- Department of Dermatology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Karine Bille
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | | | - Mélanie Dalmasso
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Thibault Barouillet
- Inserm, Hematometabolism and metainflammation, team 13, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Yann Cheli
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Céline Pisibon
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Nicole Arrighi
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Sacha Nahon‐Estève
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | - Arnaud Martel
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | | | - Sandra Lassalle
- University Côte d'AzurNiceFrance
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB‐0033‐00025, IRCAN team 4, OncoAge FHUNiceFrance
| | | | - Patrick Brest
- University Côte d'AzurNiceFrance
- IRCAN team 4, Inserm, CNRS, FHU‐oncoAge, IHU‐RESPIRera NiceNiceFrance
| | - Nathalie M Mazure
- University Côte d'AzurNiceFrance
- Inserm, Cancer, Metabolism and environment, team, Equipe labellisée Ligue 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Frédéric Bost
- University Côte d'AzurNiceFrance
- Inserm, Cancer, Metabolism and environment, team, Equipe labellisée Ligue 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Stéphanie Baillif
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | - Solange Landreville
- Département d'ophtalmologie et d'ORL‐CCF, Faculté de médecineUniversité LavalQuebec CityQCCanada
- CUO‐Recherche and Axe médecine régénératriceCentre de recherche du CHU de Québec‐Université LavalQuebec CityQCCanada
- Centre de recherche sur le cancer de l'Université LavalQuebec CityQCCanada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEXQuebec CityQCCanada
| | - Simon Turcotte
- Cancer AxisCentre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de MontréalMontréalQCCanada
- Hepato‐Pancreato‐Biliary Surgery and Liver Transplantation ServiceCentre hospitalier de l'Université de MontréalMontréalQCCanada
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) FacilityIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Saul Carcamo
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) FacilityIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Laurent Yvan‐Charvet
- University Côte d'AzurNiceFrance
- Inserm, Hematometabolism and metainflammation, team 13, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Robert Ballotti
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Corine Bertolotto
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Thomas Strub
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| |
Collapse
|
8
|
Tei R, Bagde SR, Fromme JC, Baskin JM. Activity-based directed evolution of a membrane editor in mammalian cells. Nat Chem 2023; 15:1030-1039. [PMID: 37217787 PMCID: PMC10525039 DOI: 10.1038/s41557-023-01214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Cellular membranes contain numerous lipid species, and efforts to understand the biological functions of individual lipids have been stymied by a lack of approaches for controlled modulation of membrane composition in situ. Here we present a strategy for editing phospholipids, the most abundant lipids in biological membranes. Our membrane editor is based on a bacterial phospholipase D (PLD), which exchanges phospholipid head groups through hydrolysis or transphosphatidylation of phosphatidylcholine with water or exogenous alcohols. Exploiting activity-dependent directed enzyme evolution in mammalian cells, we have developed and structurally characterized a family of 'superPLDs' with up to a 100-fold enhancement in intracellular activity. We demonstrate the utility of superPLDs for both optogenetics-enabled editing of phospholipids within specific organelle membranes in live cells and biocatalytic synthesis of natural and unnatural designer phospholipids in vitro. Beyond the superPLDs, activity-based directed enzyme evolution in mammalian cells is a generalizable approach to engineer additional chemoenzymatic biomolecule editors.
Collapse
Affiliation(s)
- Reika Tei
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Saket R Bagde
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - J Christopher Fromme
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Borkowsky S, Gass M, Alavizargar A, Hanewinkel J, Hallstein I, Nedvetsky P, Heuer A, Krahn MP. Phosphorylation of LKB1 by PDK1 Inhibits Cell Proliferation and Organ Growth by Decreased Activation of AMPK. Cells 2023; 12:cells12050812. [PMID: 36899949 PMCID: PMC10000615 DOI: 10.3390/cells12050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The master kinase LKB1 is a key regulator of se veral cellular processes, including cell proliferation, cell polarity and cellular metabolism. It phosphorylates and activates several downstream kinases, including AMP-dependent kinase, AMPK. Activation of AMPK by low energy supply and phosphorylation of LKB1 results in an inhibition of mTOR, thus decreasing energy-consuming processes, in particular translation and, thus, cell growth. LKB1 itself is a constitutively active kinase, which is regulated by posttranslational modifications and direct binding to phospholipids of the plasma membrane. Here, we report that LKB1 binds to Phosphoinositide-dependent kinase (PDK1) by a conserved binding motif. Furthermore, a PDK1-consensus motif is located within the kinase domain of LKB1 and LKB1 gets phosphorylated by PDK1 in vitro. In Drosophila, knockin of phosphorylation-deficient LKB1 results in normal survival of the flies, but an increased activation of LKB1, whereas a phospho-mimetic LKB1 variant displays decreased AMPK activation. As a functional consequence, cell growth as well as organism size is decreased in phosphorylation-deficient LKB1. Molecular dynamics simulations of PDK1-mediated LKB1 phosphorylation revealed changes in the ATP binding pocket, suggesting a conformational change upon phosphorylation, which in turn can alter LKB1's kinase activity. Thus, phosphorylation of LKB1 by PDK1 results in an inhibition of LKB1, decreased activation of AMPK and enhanced cell growth.
Collapse
Affiliation(s)
- Sarah Borkowsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Maximilian Gass
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Azadeh Alavizargar
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Johannes Hanewinkel
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Ina Hallstein
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Pavel Nedvetsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Michael P. Krahn
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8357052
| |
Collapse
|
10
|
Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. Posttranslational regulation of liver kinase B1 (LKB1) in human cancer. J Biol Chem 2023; 299:104570. [PMID: 36870679 PMCID: PMC10068580 DOI: 10.1016/j.jbc.2023.104570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
11
|
Lazcano P, Schmidtke MW, Onu C, Greenberg ML. Phosphatidic acid inhibits inositol synthesis by inducing nuclear translocation of kinase IP6K1 and repression of myo-inositol-3-P synthase. J Biol Chem 2022; 298:102363. [PMID: 35963434 PMCID: PMC9478396 DOI: 10.1016/j.jbc.2022.102363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Inositol is an essential metabolite that serves as a precursor for structural and signaling molecules. Although perturbation of inositol homeostasis has been implicated in numerous human disorders, surprisingly little is known about how inositol levels are regulated in mammalian cells. A recent study in mouse embryonic fibroblasts demonstrated that nuclear translocation of inositol hexakisphosphate kinase 1 (IP6K1) mediates repression of myo-inositol-3-P synthase (MIPS), the rate-limiting inositol biosynthetic enzyme. Binding of IP6K1 to phosphatidic acid (PA) is required for this repression. Here, we elucidate the role of PA in IP6K1 repression. Our results indicate that increasing PA levels through pharmacological stimulation of phospholipase D (PLD) or direct supplementation of 18:1 PA induces nuclear translocation of IP6K1 and represses expression of the MIPS protein. We found that this effect was specific to PA synthesized in the plasma membrane, as endoplasmic reticulum–derived PA did not induce IP6K1 translocation. Furthermore, we determined that PLD-mediated PA synthesis can be stimulated by the master metabolic regulator 5′ AMP-activated protein kinase (AMPK). We show that activation of AMPK by glucose deprivation or by treatment with the mood-stabilizing drugs valproate or lithium recapitulated IP6K1 nuclear translocation and decreased MIPS expression. This study demonstrates for the first time that modulation of PA levels through the AMPK-PLD pathway regulates IP6K1-mediated repression of MIPS.
Collapse
Affiliation(s)
- Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Chisom Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
12
|
Perez-Valle A, Ochoa B, Shah KN, Barreda-Gomez G, Astigarraga E, Boyano MD, Asumendi A. Upregulated phospholipase D2 expression and activity is related to the metastatic properties of melanoma. Oncol Lett 2022; 23:140. [PMID: 35340556 PMCID: PMC8931840 DOI: 10.3892/ol.2022.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 11/05/2022] Open
Abstract
The incidence rates of melanoma have increased steadily in recent decades and nearly 25% of the patients diagnosed with early-stage melanoma will eventually develop metastasis, for which there is currently no fully effective treatment. The link between phospholipases and tumors has been studied extensively, particularly in breast and colon cancers. With the aim of finding new biomarkers and therapeutic options for melanoma, the expression of different phospholipases was assessed in 17 distinct cell lines in the present study, demonstrating that phospholipase D2 (PLD2) is upregulated in metastatic melanoma as compared to normal skin melanocytes. These results were corroborated by immunofluorescence and lipase activity assays. Upregulation of PLD2 expression and increased lipase activity were observed in metastatic melanoma relative to normal skin melanocytes. So far, the implication of PLD2 activity in melanoma malignancies has remained elusive. To the best of our knowledge, the present study was the first to demonstrate that the overexpression of PLD2 enhances lipase activity, and its effect to increase the proliferation, migration and invasion capacity of melanoma cells was assessed with XTT and Transwell assays. In addition, silencing of PLD2 in melanoma cells reduced the metastatic potential of these cells. The present study provided evidence that PLD2 is involved in melanoma malignancy and in particular, in its metastatic potential, and established a basis for future studies evaluating PLD2 blockade as a therapeutic strategy to manage this condition.
Collapse
Affiliation(s)
- Arantza Perez-Valle
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
| | - Begoña Ochoa
- Department of Physiology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
| | - Krushangi N. Shah
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | | - Egoitz Astigarraga
- IMG Pharma Biotech S.L., Bizkaia Technological Park, Zamudio, 48160 Bizkaia, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| |
Collapse
|
13
|
Mung KL, Eccleshall WB, Santio NM, Rivero-Müller A, Koskinen PJ. PIM kinases inhibit AMPK activation and promote tumorigenicity by phosphorylating LKB1. Cell Commun Signal 2021; 19:68. [PMID: 34193159 PMCID: PMC8247201 DOI: 10.1186/s12964-021-00749-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The oncogenic PIM kinases and the tumor-suppressive LKB1 kinase have both been implicated in the regulation of cell growth and metabolism, albeit in opposite directions. Here we investigated whether these kinases interact with each other to influence AMPK activation and tumorigenic growth of prostate and breast cancer cells. METHODS We first determined how PIM and LKB1 kinases affect AMPK phosphorylation levels. We then used in vitro kinase assays to demonstrate that LKB1 is phosphorylated by PIM kinases, and site-directed mutagenesis to identify the PIM target sites in LKB1. The cellular functions of PIM and LKB1 kinases were evaluated using either pan-PIM inhibitors or CRISPR/Cas9 genomic editing, with which all three PIM family members and/or LKB1 were knocked out from PC3 prostate and MCF7 breast cancer cell lines. In addition to cell proliferation assays, we examined the effects of PIM and/or LKB1 loss on tumor growth using the chick embryo chorioallantoic membrane (CAM) xenograft model. RESULTS We provide both genetic and pharmacological evidence to demonstrate that inhibition of PIM expression or activity increases phosphorylation of AMPK at Thr172 in both PC3 and MCF7 cells, but not in their derivatives lacking LKB1. This is explained by our observation that all three PIM family kinases can phosphorylate LKB1 at Ser334. Wild-type LKB1, but not its phosphodeficient derivative, can restore PIM inhibitor-induced AMPK phosphorylation in LKB1 knock-out cells. In the CAM model, loss of LKB1 enhances tumorigenicity of PC3 xenografts, while cells lacking both LKB1 and PIMs exhibit slower proliferation rates and form smaller tumors. CONCLUSION PIM kinases are novel negative regulators of LKB1 that affect AMPK activity in an LKB1-dependent fashion. The impairment of cell proliferation and tumor growth in cells lacking both LKB1 and PIMs indicates that these kinases possess a shared signaling role in the context of cancer. These data also suggest that PIM inhibitors may be a rational therapeutic option for LKB1-deficient tumors. Video Abstract.
Collapse
Affiliation(s)
- Kwan Long Mung
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| | - William B Eccleshall
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland.,Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland
| | - Niina M Santio
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| | - Adolfo Rivero-Müller
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland.,Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Päivi J Koskinen
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland.
| |
Collapse
|
14
|
Heiden S, Siwek R, Lotz ML, Borkowsky S, Schröter R, Nedvetsky P, Rohlmann A, Missler M, Krahn MP. Apical-basal polarity regulators are essential for slit diaphragm assembly and endocytosis in Drosophila nephrocytes. Cell Mol Life Sci 2021; 78:3657-3672. [PMID: 33651172 PMCID: PMC8038974 DOI: 10.1007/s00018-021-03769-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/02/2022]
Abstract
Apical-basal polarity is a key feature of most epithelial cells and it is regulated by highly conserved protein complexes. In mammalian podocytes, which emerge from columnar epithelial cells, this polarity is preserved and the tight junctions are converted to the slit diaphragms, establishing the filtration barrier. In Drosophila, nephrocytes show several structural and functional similarities with mammalian podocytes and proximal tubular cells. However, in contrast to podocytes, little is known about the role of apical-basal polarity regulators in these cells. In this study, we used expansion microscopy and found the apical polarity determinants of the PAR/aPKC and Crb-complexes to be predominantly targeted to the cell cortex in proximity to the nephrocyte diaphragm, whereas basolateral regulators also accumulate intracellularly. Knockdown of PAR-complex proteins results in severe endocytosis and nephrocyte diaphragm defects, which is due to impaired aPKC recruitment to the plasma membrane. Similar, downregulation of most basolateral polarity regulators disrupts Nephrin localization but had surprisingly divergent effects on endocytosis. Our findings suggest that morphology and slit diaphragm assembly/maintenance of nephrocytes is regulated by classical apical-basal polarity regulators, which have distinct functions in endocytosis.
Collapse
Affiliation(s)
- Stefanie Heiden
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Rebecca Siwek
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Marie-Luise Lotz
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Sarah Borkowsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Pavel Nedvetsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Michael P Krahn
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
15
|
Bi L, Ren Y, Feng M, Meng P, Wang Q, Chen W, Jiao Q, Wang Y, Du L, Zhou F, Jiang Y, Chen F, Wang C, Tang B, Wang Y. HDAC11 Regulates Glycolysis through the LKB1/AMPK Signaling Pathway to Maintain Hepatocellular Carcinoma Stemness. Cancer Res 2021; 81:2015-2028. [PMID: 33602787 DOI: 10.1158/0008-5472.can-20-3044] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/30/2020] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) contains a subset of cancer stem cells (CSC) that cause tumor recurrence, metastasis, and chemical resistance. Histone deacetylase 11 (HDAC11) mediates diverse immune functions and metabolism, yet little is known about its role in HCC CSCs. In this study, we report that HDAC11 is highly expressed in HCC and is closely related to disease prognosis. Depletion of HDAC11 in a conditional knockout mouse model reduced hepatocellular tumorigenesis and prolonged survival. Loss of HDAC11 increased transcription of LKB1 by promoting histone acetylation in its promoter region, thereby activating the AMPK signaling pathway and inhibiting the glycolysis pathway, which in turn leads to the suppression of cancer stemness and HCC progression. Furthermore, HDAC11 overexpression reduced HCC sensitivity to sorafenib. Collectively, these data propose HDAC11 as a new target for combination therapy in patients with kinase-resistant HCC. SIGNIFICANCE: This study finds that HDAC11 suppresses LKB1 expression in HCC to promote cancer stemness, progression, and sorafenib resistance, suggesting the potential of targeting HDAC11 to treat HCC and overcome kinase inhibitor resistance.
Collapse
Affiliation(s)
- Lei Bi
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peng Meng
- Burning Rock Biotech, International Biotech Island, Guangzhou, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiping Chen
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinlian Jiao
- Shandong Quality Inspection Center for Medical Devices, Jinan, Shandong, China
| | - Yuli Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fuqiong Zhou
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yucui Jiang
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feiyan Chen
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China. .,Department of Health Sciences, Hiroshima Shudo University, Hiroshima, Japan
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
16
|
Friedman B, Corciulo C, Castro CM, Cronstein BN. Adenosine A2A receptor signaling promotes FoxO associated autophagy in chondrocytes. Sci Rep 2021; 11:968. [PMID: 33441836 PMCID: PMC7806643 DOI: 10.1038/s41598-020-80244-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023] Open
Abstract
Autophagy, a homeostatic pathway upregulated during cellular stress, is decreased in osteoarthritic chondrocytes and this reduction in autophagy is thought to contribute to the development and progression of osteoarthritis (OA). The adenosine A2A receptor (A2AR) is a potent anti-inflammatory receptor and deficiency of this receptor leads to the development of OA in mice. Moreover, treatment using liposomally conjugated adenosine or a specific A2AR agonist improved joint scores significantly in both rats with post-traumatic OA (PTOA) and mice subjected to a high fat diet obesity induced OA. Importantly, A2AR ligation is beneficial for mitochondrial health and metabolism in vitro in primary and the TC28a2 human cell line. An additional set of metabolic, stress-responsive, and homeostatic mediators include the Forkhead box O transcription factors (FoxOs). Data has shown that mouse FoxO knockouts develop early OA with reduced cartilage autophagy, indicating that FoxO-induced homeostasis is important for articular cartilage. Given the apparent similarities between A2AR and FoxO signaling, we tested the hypothesis that A2AR stimulation improves cartilage function through activation of the FoxO proteins leading to increased autophagy in chondrocytes. We analyzed the signaling pathway in the human TC28a2 cell line and corroborated these findings in vivo in a metabolically relevant obesity-induced OA mouse model. We found that A2AR stimulation increases activation and nuclear localization of FoxO1 and FoxO3, promotes an increase in autophagic flux, improves metabolic function in chondrocytes, and reduces markers of apoptosis in vitro and reduced apoptosis by TUNEL assay in vivo. A2AR ligation additionally enhances in vivo activation of FoxO1 and FoxO3 with evidence of enhanced autophagic flux upon injection of the liposome-associated A2AR agonist in a mouse obesity-induced OA model. These findings offer further evidence that A2AR may be an excellent target for promoting chondrocyte and cartilage homeostasis.
Collapse
Affiliation(s)
- Benjamin Friedman
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Carmen Corciulo
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Cristina M Castro
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Bruce N Cronstein
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
17
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
LSR promotes epithelial ovarian cancer cell survival under energy stress through the LKB1-AMPK pathway. Biochem Biophys Res Commun 2020; 537:93-99. [PMID: 33388415 DOI: 10.1016/j.bbrc.2020.12.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR), also known as a component of tricellular tight junctions, is highly expressing in epithelial ovarian cancer (EOC). However, the biological role of LSR in EOC cells remains unclear. In this study, we evaluated liver kinase B1 (LKB1) mediated AMP-activated protein kinase (AMPK) activity and investigated the effect of LSR on EOC cell survival under energy stress. LSR increased the levels of phospho-AMPKα at Thr172 and phospho-acetyl-CoA carboxylase (ACC) at Ser79 via LKB1-AMPK pathway in glucose deprivation in vitro. The increase of P-AMPKα (Thr172) and P-ACC (Ser79) was also detected in tumor microenvironment in vivo. Meanwhile, LSR promoted LKB1 localization at the cell membrane of EOC cells. By cell survival analysis, LSR attenuated glucose deprivation-induced cell death in EOC cells in vitro. Our results suggest that LSR promotes EOC cell survival and tumor growth through the LKB1-AMPK pathway.
Collapse
|
19
|
Wang Z, Wang Q, Xu G, Meng N, Huang X, Jiang Z, Chen C, Zhang Y, Chen J, Li A, Li N, Zou X, Zhou J, Ding Q, Wang S. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol 2020; 17:1576-1589. [PMID: 31885317 PMCID: PMC7567514 DOI: 10.1080/15476286.2019.1709296] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence has suggested that long noncoding RNAs (lncRNAs) play an essential role in the tumorigenesis of multiple types of cancer including gastric cancer (GC). However, the potential biological roles and regulatory mechanisms of lncRNA in response to cisplatin, which may be involved in cisplatin resistance, have not been fully elucidated. In this study, we identified a novel lncRNA, cisplatin resistance-associated lncRNA (CRAL), that was downregulated in cisplatin-resistant GC cells, impaired cisplatin-induced DNA damage and cell apoptosis and thus contributed to cisplatin resistance in GC cells. Furthermore, the results indicated that CRAL mainly resided in the cytoplasm and could sponge endogenous miR-505 to upregulate cylindromatosis (CYLD) expression, which further suppressed AKT activation and led to an increase in the sensitivity of gastric cancer cells to cisplatin in vitro and in preclinical models. Moreover, a specific small molecule inhibitor of AKT activation, MK2206, effectively reversed the cisplatin resistance in GC caused by CRAL deficiency. In conclusion, we provide the first evidence that a novel lncRNA, CRAL, could function as a competing endogenous RNA (ceRNA) to reverse GC cisplatin resistance via the miR-505/CYLD/AKT axis, which suggests that CRAL could be considered a potential predictive biomarker and therapeutic target for cisplatin resistance in gastric cancer.
Collapse
Affiliation(s)
- Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Guifang Xu
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Na Meng
- Department of Medical Records and Statistics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xinli Huang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Zerun Jiang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Chen Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Yan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Junjie Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Aiping Li
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Nan Li
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Qingqing Ding
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
20
|
Li M, Knapp SK, Iden S. Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? Curr Opin Cell Biol 2020; 67:99-108. [PMID: 33099084 DOI: 10.1016/j.ceb.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/16/2023]
Abstract
Melanocytes are neuroectoderm-derived pigment-producing cells with highly polarized dendritic morphology. They protect the skin against ultraviolet radiation by providing melanin to neighbouring keratinocytes. However, the mechanisms underlying melanocyte polarization and its relevance for diseases remain mostly elusive. Numerous studies have instead revealed roles for polarity regulators in other neuroectoderm-derived lineages including different neuronal cell types. Considering the shared ontogeny and morphological similarities, these lineages may be used as reference models for the exploration of melanocyte polarity, for example, regarding dendrite formation, spine morphogenesis and polarized organelle transport. In this review, we summarize and compare the latest progress in understanding polarity regulation in neuronal cells and melanocytes and project key open questions for future work.
Collapse
Affiliation(s)
- Mengnan Li
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Sina K Knapp
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Sandra Iden
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
21
|
Chen Y, Lei Y, Lin J, Huang Y, Zhang J, Chen K, Sun S, Lin X. The LINC01260 Functions as a Tumor Suppressor via the miR-562/CYLD/NF-κB Pathway in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:10707-10719. [PMID: 33116647 PMCID: PMC7585791 DOI: 10.2147/ott.s253730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Recently, long noncoding RNAs (lncRNAs) have been identified as novel and potential therapeutic targets in various cancer types. Nonetheless, the levels and biological effects of lncRNAs in non-small cell lung cancer (NSCLC) remain largely unknown. In this study, we aimed to identify the effects of lncRNA-LINC01260 throughout the progression of NSCLC and explore the underlying mechanism. METHODS Quantitative real-time PCR (qRT-PCR) and Western blot were performed to measure LINC01260, miR-562, and CYLD expression and protein levels. Luciferase reporter assay was employed to investigate the relationship between LINC01260 and miR-562, and miR-562 and CYLD, respectively. The viability and migration of cells were evaluated using CCK-8, colony formation, and transwell assays. The effects of LINC01260 were identified through tumorigenesis in vivo. ELISA was performed to detect the activity of NF-κB and p65 expression. RESULTS In NSCLC tissues and cell lines, LINC01260 expression was downregulated, which corresponded to a lower survival rate of patients with NSCLC. Knockdown of LINC01260 accelerated the proliferation, colony formation, and migration of NSCLC cells. Moreover, downregulation of LINC01260 inhibited apoptosis of NSCLC cells by regulating the expression of Bcl-2 and Bax proteins in vitro. In vivo, the downregulation of LINC01260 promoted tumor growth. miR-562 was identified as the target gene of LINC01260, which was upregulated in NSCLC tumors. Furthermore, CYLD was identified as the target gene of miR-562. The effects of LINC01260 were exerted by regulating CYLD via sponging miR-562. ELISA confirmed that the upregulation of CYLD inhibited NF-κB activity; however, the co-transfection of sh-LINC01260 partly reversed the inhibition. Additionally, CYLD reduced p65 expression; however, downregulation of LINC01260 slightly increased the expression level. CONCLUSION This study revealed a novel LINC01260/miR-562/CYLD/NF-κB pathway in the pathogenesis of NSCLC and suggested a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yangming Chen
- Department of Thoracic Surgery, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian350001, People’s Republic of China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, Yunnan650106, People’s Republic of China
| | - Jianbin Lin
- Department of Thoracic Surgery, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian350001, People’s Republic of China
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, Yunnan650106, People’s Republic of China
| | - Jiguang Zhang
- Department of Thoracic Surgery, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian350001, People’s Republic of China
| | - Kai Chen
- Department of Thoracic Surgery, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian350001, People’s Republic of China
| | - Shihui Sun
- Department of Thoracic Surgery, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian350001, People’s Republic of China
| | - Xing Lin
- Department of Thoracic Surgery, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian350001, People’s Republic of China
| |
Collapse
|
22
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
23
|
Phosphatidic acid: an emerging versatile class of cellular mediators. Essays Biochem 2020; 64:533-546. [DOI: 10.1042/ebc20190089] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Abstract
Lipids function not only as the major structural components of cell membranes, but also as molecular messengers that transduce signals to trigger downstream signaling events in the cell. Phosphatidic acid (PA), the simplest and a minor class of glycerophospholipids, is a key intermediate for the synthesis of membrane and storage lipids, and also plays important roles in mediating diverse cellular and physiological processes in eukaryotes ranging from microbes to mammals and higher plants. PA comprises different molecular species that can act differently, and is found in virtually all organisms, tissues, and organellar membranes, with variations in total content and molecular species composition. The cellular levels of PA are highly dynamic in response to stimuli and multiple enzymatic reactions can mediate its production and degradation. Moreover, its unique physicochemical properties compared with other glycerophospholipids allow PA to influence membrane structure and dynamics, and interact with various proteins. PA has emerged as a class of new lipid mediators modulating various signaling and cellular processes via its versatile effects, such as membrane tethering, conformational changes, and enzymatic activities of target proteins, and vesicular trafficking.
Collapse
|
24
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
25
|
Kim SD, Baik JS, Lee JH, Mun SW, Yi JM, Park MT. The malignancy of liver cancer cells is increased by IL-4/ERK/AKT signaling axis activity triggered by irradiated endothelial cells. JOURNAL OF RADIATION RESEARCH 2020; 61:376-387. [PMID: 32100006 PMCID: PMC7299255 DOI: 10.1093/jrr/rraa002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 05/08/2023]
Abstract
The malignant traits involved in tumor relapse, metastasis and the expansion of cancer stem-like cells are acquired via the epithelial-mesenchymal transition (EMT) process in the tumor microenvironment. In addition, the tumor microenvironment strongly supports the survival and growth of malignant tumor cells and further contributes to the reduced efficacy of anticancer therapy. Ionizing radiation can influence the tumor microenvironment, because it alters the biological functions of endothelial cells composing tumor vascular systems. However, to date, studies on the pivotal role of these endothelial cells in mediating the malignancy of cancer cells in the irradiated tumor microenvironment are rare. We previously evaluated the effects of irradiated endothelial cells on the malignant traits of human liver cancer cells and reported that endothelial cells irradiated with 2 Gy reinforce the malignant properties of these cancer cells. In this study, we investigated the signaling mechanisms underlying these events. We revealed that the increased expression level of IL-4 in endothelial cells irradiated with 2 Gy eventually led to enhanced migration and invasion of cancer cells and further expansion of cancer stem-like cells. In addition, this increased level of IL-4 activated the ERK and AKT signaling pathways to reinforce these events in cancer cells. Taken together, our data indicate that ionizing radiation may indirectly modulate malignancy by affecting endothelial cells in the tumor microenvironment. Importantly, these indirect effects on malignancy are thought to offer valuable clues or targets for overcoming the tumor recurrence after radiotherapy.
Collapse
Affiliation(s)
- Sung Dae Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Ji Sue Baik
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Jae-Hye Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Seo-Won Mun
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Moon-Taek Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
- Corresponding author. Dongnam Institute of Radiological & Medical Sciences (DIRAMS), 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan 46033, Republic of Korea. Tel: +82-51-720-5141; Fax: +82-51-720-5929;
| |
Collapse
|
26
|
Silva CL, Perestrelo R, Sousa-Ferreira I, Capelinha F, Câmara JS, Petković M. Lipid biosignature of breast cancer tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Breast Cancer Res Treat 2020; 182:9-19. [DOI: 10.1007/s10549-020-05672-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022]
|
27
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
28
|
Jiang Q, Gu S. Sevoflurane Postconditioning Reduces Hypoxia-Reoxygenation Injury in H9C2 Embryonic Rat Cardiomyocytes and Targets the STRADA Gene by Upregulating microRNA-107. Med Sci Monit 2020; 26:e920849. [PMID: 32332694 PMCID: PMC7197225 DOI: 10.12659/msm.920849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sevoflurane as a widely used inhalational general anesthetic that also has a cardioprotective role in hypoxia-reoxygenation (H/R) injury. This study aimed to investigate the effects of microRNA-107 (miR-107) on sevoflurane postconditioning (SpostC) in H9C2 embryonic rat cardiomyocytes and to use bioinformatics analysis to identify the molecular basis of cardioprotection from sevoflurane in human cardiac tissue. MATERIAL AND METHODS The STRADA gene was identified from the Gene Expression Omnibus (GEO) database. H9C2 embryonic rat cardiomyocytes were cultured with sevoflurane. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to measure the mRNA expression and protein expression of STRADA and miR-107 in H9C2 cells. TargetScanHuman version 7.2 was used to identify the target gene of miR-107 and to predict the STRADA 3'-UTR binding site of miR-107. The dual-luciferase reporter assay measured the relative luciferase activity. The cell proliferation rate and cell apoptosis were measured using the MTT assay and flow cytometry, respectively. RESULTS H/R injury in H9C2 cells following SpostC resulted in increased expression of miR-107 and reduced expression of STRADA. Specific binding of miR-107 was identified to STRADA 3'-UTR. Upregulation of the miR-107 in SpostC H/R injured H9C2 cells promoted cell proliferation, reduced cell apoptosis, and downregulating the protein expression of caspase-3. STRADA overexpression reduced the effects of a miR-107 mimic on SpostC. CONCLUSIONS SpostC reduced H/R injury in H9C2 embryonic rat cardiomyocytes by targeting the STRADA gene and by upregulating the expression of microRNA-107.
Collapse
Affiliation(s)
- Qun Jiang
- Department of Pain Medicine, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China (mainland)
| | - Shan Gu
- Department of Anesthesiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China (mainland).,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, China (mainland)
| |
Collapse
|
29
|
Yao Y, Wang X, Li H, Fan J, Qian X, Li H, Xu Y. Phospholipase D as a key modulator of cancer progression. Biol Rev Camb Philos Soc 2020; 95:911-935. [PMID: 32073216 DOI: 10.1111/brv.12592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The phospholipase D (PLD) family has a ubiquitous expression in cells. PLD isoforms (PLDs) and their hydrolysate phosphatidic acid (PA) have been demonstrated to engage in multiple stages of cancer progression. Aberrant expression of PLDs, especially PLD1 and PLD2, has been detected in various cancers. Inhibition or elimination of PLDs activity has been shown to reduce tumour growth and metastasis. PLDs and PA also serve as downstream effectors of various cell-surface receptors, to trigger and regulate propagation of intracellular signals in the process of tumourigenesis and metastasis. Here, we discuss recent advances in understanding the functions of PLDs and PA in discrete stages of cancer progression, including cancer cell growth, invasion and migration, and angiogenesis, with special emphasis on the tumour-associated signalling pathways mediated by PLDs and PA and the functional importance of PLDs and PA in cancer therapy.
Collapse
Affiliation(s)
- Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Clinical Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiannan Fan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Respiratory Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Hu Y, Xu W, Hu S, Lian L, Zhu J, Ren A, Shi L, Zhao MW. Glsnf1-mediated metabolic rearrangement participates in coping with heat stress and influencing secondary metabolism in Ganoderma lucidum. Free Radic Biol Med 2020; 147:220-230. [PMID: 31883976 DOI: 10.1016/j.freeradbiomed.2019.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023]
Abstract
The AMP-activated protein kinase (AMPK)/Sucrose-nonfermenting serine-threonine protein kinase 1 (Snf1) plays an important role in metabolic remodelling in response to energy stress. However, the role of AMPK/Snf1 in responding to other environmental stresses and metabolic remodelling in microorganisms was unclear. Heat stress (HS), which is one important environmental factor, could induce the production of reactive oxygen species and the accumulation of ganoderic acids (GAs) in Ganoderma lucidum. Here, the functions of AMPK/Snf1 were analysed under HS condition in G. lucidum. We observed that Glsnf1 was rapidly and strongly activated when G. lucidum was exposed to HS. HS significantly increased intracellular H2O2 levels (by approximately 1.6-fold) and decreased the dry weight of G. lucidum (by approximately 45.6%). The exogenous addition of N-acetyl-l-cysteine (NAC) and ascorbic acid (VC), which function as ROS scavengers, partially inhibited the HS-mediated reduction in biomass. Adding the AMPK/Snf1 inhibitor compound C (20 μM) under HS conditions increased the H2O2 content (by approximately 2.3-fold of that found in the strain without HS treatment and 1.5-fold of that found in the strain under HS treatment without compound C) and decreased the dry weight of G. lucidum (an approximately 28.5% decrease compared with that of the strain under HS conditions without compound C). Similar results were obtained by silencing the Glsnf1 gene. Further study found that Glsnf1 meditated metabolite distribution from respiration to glycolysis, which is considered a protective mechanism against oxidative stress. In addition, Glsnf1 negatively regulated the biosynthesis of GA by removing ROS. In conclusion, our results suggest that Glsnf1-mediated metabolic remodelling is involved in heat stress adaptability and the biosynthesis of secondary metabolites in G. lucidum.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Wenzhao Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Shishan Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Ming Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
31
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
32
|
Emptage RP, Lemmon MA, Ferguson KM, Marmorstein R. Structural Basis for MARK1 Kinase Autoinhibition by Its KA1 Domain. Structure 2018; 26:1137-1143.e3. [PMID: 30099988 DOI: 10.1016/j.str.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 10/28/2022]
Abstract
The kinase associated-1 (KA1) domain is found at the C-terminus of multiple Ser/Thr protein kinases from yeast to humans, and has been assigned autoinhibitory, membrane-binding, and substrate-targeting roles. Here, we report the crystal structure of the MARK1 kinase/UBA domain bound to its autoinhibitory KA1 domain, revealing an unexpected interface at the αD helix and contacts with both the N- and C-lobes of the kinase domain. We confirm the binding interface location in kinetic studies of variants mutated on the kinase domain surface. Together with other MARK kinase structures, the data implicate that the KA1 domain blocks peptide substrate binding. The structure highlights the kinase-specific autoinhibitory binding modes of different KA1 domains, and provides potential new avenues by which to intervene therapeutically in Alzheimer's disease and cancers in which MARK1 or related kinases are implicated.
Collapse
Affiliation(s)
- Ryan P Emptage
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mark A Lemmon
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathryn M Ferguson
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Abstract
The tumor suppressor LKB1 is an essential serine/threonine kinase, which regulates various cellular processes such as cell metabolism, cell proliferation, cell polarity, and cell migration. Germline mutations in the STK11 gene (encoding LKB1) are the cause of the Peutz-Jeghers syndrome, which is characterized by benign polyps in the intestine and a higher risk for the patients to develop intestinal and extraintestinal tumors. Moreover, mutations and misregulation of LKB1 have been reported to occur in most types of tumors and are among the most common aberrations in lung cancer. LKB1 activates several downstream kinases of the AMPK family by direct phosphorylation in the T-loop. In particular the activation of AMPK upon energetic stress has been intensively analyzed in various diseases, including cancer to induce a metabolic switch from anabolism towards catabolism to regulate energy homeostasis and cell survival. In contrast, the regulation of LKB1 itself has long been only poorly understood. Only in the last years, several proteins and posttranslational modifications of LKB1 have been analyzed to control its localization, activity and recognition of substrates. Here, we summarize the current knowledge about the upstream regulation of LKB1, which is important for the understanding of the pathogenesis of many types of tumors.
Collapse
|
34
|
Abstract
Orthologues of AMP-activated protein kinase (AMPK) occur in essentially all eukaryotes as heterotrimeric complexes comprising catalytic α subunits and regulatory β and γ subunits. The canonical role of AMPK is as an energy sensor, monitoring levels of the nucleotides AMP, ADP, and ATP that bind competitively to the γ subunit. Once activated, AMPK acts to restore energy homeostasis by switching on alternate ATP-generating catabolic pathways while switching off ATP-consuming anabolic pathways. However, its ancestral role in unicellular eukaryotes may have been in sensing of glucose rather than energy. In this article, we discuss a few interesting recent developments in the AMPK field. Firstly, we review recent findings on the canonical pathway by which AMPK is regulated by adenine nucleotides. Secondly, AMPK is now known to be activated in mammalian cells by glucose starvation by a mechanism that occurs in the absence of changes in adenine nucleotides, involving the formation of complexes with Axin and LKB1 on the surface of the lysosome. Thirdly, in addition to containing the nucleotide-binding sites on the γ subunits, AMPK heterotrimers contain a site for binding of allosteric activators termed the allosteric drug and metabolite (ADaM) site. A large number of synthetic activators, some of which show promise as hypoglycaemic agents in pre-clinical studies, have now been shown to bind there. Fourthly, some kinase inhibitors paradoxically activate AMPK, including one (SU6656) that binds in the catalytic site. Finally, although downstream targets originally identified for AMPK were mainly concerned with metabolism, recently identified targets have roles in such diverse areas as mitochondrial fission, integrity of epithelial cell layers, and angiogenesis.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang’an Campus, Xiamen, China
| |
Collapse
|