1
|
Li X, Lekavicius I, Noeckel J, Wang H. Ultracoherent Gigahertz Diamond Spin-Mechanical Lamb Wave Resonators. NANO LETTERS 2024; 24:10995-11001. [PMID: 39171696 DOI: 10.1021/acs.nanolett.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We report the development of an all-optical approach that excites the fundamental compression mode in a diamond Lamb wave resonator with an optical gradient force and detects the induced vibrations via strain coupling to a silicon vacancy center, specifically, via phonon sidebands in the optical excitation spectrum of the silicon vacancy. Sideband optical interferometry has also been used for the detection of in-plane mechanical vibrations, for which conventional optical interferometry is not effective. These experiments demonstrate a gigahertz fundamental compression mode with a Q factor of >107 at temperatures near 7 K, providing a promising platform for reaching the quantum regime of spin mechanics, especially phononic cavity quantum electrodynamics of electron spins.
Collapse
Affiliation(s)
- Xinzhu Li
- Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| | - Ignas Lekavicius
- Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| | - Jens Noeckel
- Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| | - Hailin Wang
- Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
2
|
Ding SW, Haas M, Guo X, Kuruma K, Jin C, Li Z, Awschalom DD, Delegan N, Heremans FJ, High AA, Loncar M. High-Q cavity interface for color centers in thin film diamond. Nat Commun 2024; 15:6358. [PMID: 39069536 PMCID: PMC11284222 DOI: 10.1038/s41467-024-50667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Quantum information technology offers the potential to realize unprecedented computational resources via secure channels distributing entanglement between quantum computers. Diamond, as a host to optically-accessible spin qubits, is a leading platform to realize quantum memory nodes needed to extend such quantum links. Photonic crystal (PhC) cavities enhance light-matter interaction and are essential for an efficient interface between spins and photons that are used to store and communicate quantum information respectively. Here, we demonstrate one- and two-dimensional PhC cavities fabricated in thin-film diamonds, featuring quality factors (Q) of 1.8 × 105 and 1.6 × 105, respectively, the highest Qs for visible PhC cavities realized in any material. Importantly, our fabrication process is simple and high-yield, based on conventional planar fabrication techniques, in contrast to the previous with complex undercut processes. We also demonstrate fiber-coupled 1D PhC cavities with high photon extraction efficiency, and optical coupling between a single SiV center and such a cavity at 4 K achieving a Purcell factor of 18. The demonstrated photonic platform may fundamentally improve the performance and scalability of quantum nodes and expedite the development of related technologies.
Collapse
Grants
- AWS Center for Quantum Networking’s research alliance with the Harvard Quantum Initiative (or HQI), NSF ERC (EEC-1941583), ONR (N00014-20-1-2425), AFOSR (FA9550-20-1-0105 and MURI on Quantum Phononics), ARO MURI (W911NF1810432). The membrane synthesis is funded through Q-NEXT, supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers. The membrane bonding work is supported by NSF award AM-2240399 and made use of the Pritzker Nanofabrication Facility (Soft and Hybrid Nanotechnology Experimental Resource, NSF ECCS-2025633) and the Materials Research Science and Engineering Center (NSF DMR-2011854) at the University of Chicago. Diamond growth related efforts were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division (N.D.)
Collapse
Affiliation(s)
- Sophie W Ding
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | - Michael Haas
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Xinghan Guo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Kazuhiro Kuruma
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Chang Jin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Zixi Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Nazar Delegan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - F Joseph Heremans
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Alexander A High
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Marko Loncar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
3
|
Joe G, Chia C, Pingault B, Haas M, Chalupnik M, Cornell E, Kuruma K, Machielse B, Sinclair N, Meesala S, Lončar M. High Q-Factor Diamond Optomechanical Resonators with Silicon Vacancy Centers at Millikelvin Temperatures. NANO LETTERS 2024; 24:6831-6837. [PMID: 38815209 DOI: 10.1021/acs.nanolett.3c04953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Phonons are envisioned as coherent intermediaries between different types of quantum systems. Engineered nanoscale devices, such as optomechanical crystals (OMCs), provide a platform to utilize phonons as quantum information carriers. Here we demonstrate OMCs in diamond designed for strong for interactions between phonons and a silicon vacancy (SiV) spin. Using optical measurements at millikelvin temperatures, we measure a line width of 13 kHz (Q-factor of ∼4.4 × 105) for a 6 GHz acoustic mode, a record for diamond in the GHz frequency range and within an order of magnitude of state-of-the-art line widths for OMCs in silicon. We investigate SiV optical and spin properties in these devices and outline a path toward a coherent spin-phonon interface.
Collapse
Affiliation(s)
- Graham Joe
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Cleaven Chia
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Benjamin Pingault
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
- QuTech, Delft University of Technology, 2600 GA Delft, The Netherlands
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael Haas
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Michelle Chalupnik
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Eliza Cornell
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Kazuhiro Kuruma
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Bartholomeus Machielse
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Neil Sinclair
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Srujan Meesala
- Institute for Quantum Information and Matter and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Marko Lončar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Chen HJ. Two-color electromagnetically induced transparency generated slow light in double-mechanical-mode coupling carbon nanotube resonators. iScience 2024; 27:109328. [PMID: 38500837 PMCID: PMC10946331 DOI: 10.1016/j.isci.2024.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
We theoretically propose a multiple-mode-coupling hybrid quantum system comprising two-mode-coupling nanomechanical carbon nanotube (CNT) resonators realized by a phase-dependent phonon-exchange interaction interacting with the same nitrogen-vacancy (NV) center in diamond. We investigate the coherent optical responses of the NV center under the condition of resonance and detuning. In particular, two-color electromagnetically induced transparency (EIT) can be achieved by controlling the system parameters and coupling regimes. Combining the spin-phonon interactions and phonon-phonon coupling with the modulation phase, the switching of one and two EIT windows has been demonstrated, which generates a light delay or advance. The slow-to-fast and fast-to-slow light transitions have been studied in different coupling regimes, and the switch between slow and fast light can be controlled periodically by tuning the modulation phase. The study can be applied to phonon-mediated optical information storage or information processing with spin qubits based on multiple-mode hybrid quantum systems.
Collapse
Affiliation(s)
- Hua-Jun Chen
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Center for Fundamental Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
5
|
Paudel HP, Lander GR, Crawford SE, Duan Y. Sensing at the Nanoscale Using Nitrogen-Vacancy Centers in Diamond: A Model for a Quantum Pressure Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:675. [PMID: 38668169 PMCID: PMC11054777 DOI: 10.3390/nano14080675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
The sensing of stress under harsh environmental conditions with high resolution has critical importance for a range of applications including earth's subsurface scanning, geological CO2 storage monitoring, and mineral and resource recovery. Using a first-principles density functional theory (DFT) approach combined with the theoretical modelling of the low-energy Hamiltonian, here, we investigate a novel approach to detect unprecedented levels of pressure by taking advantage of the solid-state electronic spin of nitrogen-vacancy (NV) centers in diamond. We computationally explore the effect of strain on the defect band edges and band gaps by varying the lattice parameters of a diamond supercell hosting a single NV center. A low-energy Hamiltonian is developed that includes the effect of stress on the energy level of a ±1 spin manifold at the ground state. By quantifying the energy level shift and split, we predict pressure sensing of up to 0.3 MPa/Hz using the experimentally measured spin dephasing time. We show the superiority of the quantum sensing approach over traditional optical sensing techniques by discussing our results from DFT and theoretical modelling for the frequency shift per unit pressure. Importantly, we propose a quantum manometer that could be useful to measure earth's subsurface vibrations as well as for pressure detection and monitoring in high-temperature superconductivity studies and in material sciences. Our results open avenues for the development of a sensing technology with high sensitivity and resolution under extreme pressure limits that potentially has a wider applicability than the existing pressure sensing technologies.
Collapse
Affiliation(s)
- Hari P. Paudel
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, USA; (G.R.L.); (S.E.C.)
- NETL Support Contractor, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA
| | - Gary R. Lander
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, USA; (G.R.L.); (S.E.C.)
- NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA
| | - Scott E. Crawford
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, USA; (G.R.L.); (S.E.C.)
| | - Yuhua Duan
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, USA; (G.R.L.); (S.E.C.)
| |
Collapse
|
6
|
Bhattacharyya P, Chen W, Huang X, Chatterjee S, Huang B, Kobrin B, Lyu Y, Smart TJ, Block M, Wang E, Wang Z, Wu W, Hsieh S, Ma H, Mandyam S, Chen B, Davis E, Geballe ZM, Zu C, Struzhkin V, Jeanloz R, Moore JE, Cui T, Galli G, Halperin BI, Laumann CR, Yao NY. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 2024; 627:73-79. [PMID: 38418887 DOI: 10.1038/s41586-024-07026-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
By directly altering microscopic interactions, pressure provides a powerful tuning knob for the exploration of condensed phases and geophysical phenomena1. The megabar regime represents an interesting frontier, in which recent discoveries include high-temperature superconductors, as well as structural and valence phase transitions2-6. However, at such high pressures, many conventional measurement techniques fail. Here we demonstrate the ability to perform local magnetometry inside a diamond anvil cell with sub-micron spatial resolution at megabar pressures. Our approach uses a shallow layer of nitrogen-vacancy colour centres implanted directly within the anvil7-9; crucially, we choose a crystal cut compatible with the intrinsic symmetries of the nitrogen-vacancy centre to enable functionality at megabar pressures. We apply our technique to characterize a recently discovered hydride superconductor, CeH9 (ref. 10). By performing simultaneous magnetometry and electrical transport measurements, we observe the dual signatures of superconductivity: diamagnetism characteristic of the Meissner effect and a sharp drop of the resistance to near zero. By locally mapping both the diamagnetic response and flux trapping, we directly image the geometry of superconducting regions, showing marked inhomogeneities at the micron scale. Our work brings quantum sensing to the megabar frontier and enables the closed-loop optimization of superhydride materials synthesis.
Collapse
Affiliation(s)
- P Bhattacharyya
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - W Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China
| | - X Huang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China
| | - S Chatterjee
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - B Huang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - B Kobrin
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Y Lyu
- Department of Physics, University of California, Berkeley, CA, USA
| | - T J Smart
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - M Block
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - E Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Z Wang
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - W Wu
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - S Hsieh
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - H Ma
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - S Mandyam
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - B Chen
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - E Davis
- Department of Physics, University of California, Berkeley, CA, USA
| | - Z M Geballe
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - C Zu
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| | - V Struzhkin
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - R Jeanloz
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - J E Moore
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China
- School of Physical Science and Technology, Ningbo University, Ningbo, China
| | - G Galli
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - B I Halperin
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - C R Laumann
- Department of Physics, Boston University, Boston, MA, USA
| | - N Y Yao
- Department of Physics, University of California, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Ghaderi Goran Abad M, Mahmoudi M. Microwave optical limiting via an acoustic field in a diamond mechanical resonator. OPTICS EXPRESS 2024; 32:8249-8261. [PMID: 38439486 DOI: 10.1364/oe.511843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/14/2024] [Indexed: 03/06/2024]
Abstract
We investigate the generation and control of the reverse saturable absorption (RSA) and optical limiting (OL) at microwave (mw) range in high-Q single-crystal diamond mechanical resonator (DMR) embedded with many nitrogen-vacancy (NV) centers. The strain-induced acoustic modes enable mechanical manipulation of NV centers. On the basis of strain-coupling mechanism, it is shown that the saturable absorption (SA) switches to the RSA by applying the acoustic field, leading to induce the OL in the diamond through the cross-Kerr effect. We demonstrate that the OL characteristics such as, threshold, efficiency, and dynamic range can be controlled by changing either the intensity or frequency of the acoustic field. Moreover, we show that this optical limiter can amplify noiselessly the low intensity of the mw field input to the sensors and also attenuate any gain-induced noise and increase in the intensity of the mw field if it exceeds the intensity threshold. In addition, it is shown that by increasing either the number of NV centers or length of the diamond, the optical limiter can be more efficient. The physical mechanism of the OL establishment is explained using the analytical expressions, which are in good agreement with the numerical results. Our proposed acoustic-induced optical limiter can be a scheme for protecting different optical and electronic devices in mw range, remote sensing, navigation, communications, microwave heating and thermo/laser therapy.
Collapse
|
8
|
Clark G, Raniwala H, Koppa M, Chen K, Leenheer A, Zimmermann M, Dong M, Li L, Wen YH, Dominguez D, Trusheim M, Gilbert G, Eichenfield M, Englund D. Nanoelectromechanical Control of Spin-Photon Interfaces in a Hybrid Quantum System on Chip. NANO LETTERS 2024; 24:1316-1323. [PMID: 38227973 PMCID: PMC10835722 DOI: 10.1021/acs.nanolett.3c04301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.
Collapse
Affiliation(s)
- Genevieve Clark
- The
MITRE Corporation, 202 Burlington Road, Bedford, Massachusetts 01730, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Hamza Raniwala
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Matthew Koppa
- Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Kevin Chen
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Andrew Leenheer
- Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Matthew Zimmermann
- The
MITRE Corporation, 202 Burlington Road, Bedford, Massachusetts 01730, United States
| | - Mark Dong
- The
MITRE Corporation, 202 Burlington Road, Bedford, Massachusetts 01730, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Linsen Li
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Y. Henry Wen
- The
MITRE Corporation, 202 Burlington Road, Bedford, Massachusetts 01730, United States
| | - Daniel Dominguez
- Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Matthew Trusheim
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- DEVCOM,
Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Gerald Gilbert
- The
MITRE Corporation, 200
Forrestal Road, Princeton, New Jersey 08540, United States
| | - Matt Eichenfield
- College of
Optical Sciences, University of Arizona, Tucson, Arizona 85719, United States
| | - Dirk Englund
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Luo T, Hahl FA, Langer J, Cimalla V, Lindner L, Vidal X, Haertelt M, Blinder R, Onoda S, Ohshima T, Jeske J. Absorption and birefringence study for reduced optical losses in diamond with high nitrogen-vacancy concentration. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20220314. [PMID: 38043573 PMCID: PMC10693980 DOI: 10.1098/rsta.2022.0314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/06/2023] [Indexed: 12/05/2023]
Abstract
The use of diamond colour centres such as the nitrogen-vacancy (NV) centre is increasingly enabling quantum sensing and computing applications. Novel concepts like cavity coupling and readout, laser-threshold magnetometry and multi-pass geometries allow significantly improved sensitivity and performance via increased signals and strong light fields. Enabling material properties for these techniques and their further improvements are low optical material losses via optical absorption of signal light and low birefringence. Here, we study systematically the behaviour of absorption around 700 nm and birefringence with increasing nitrogen- and NV-doping, as well as their behaviour during NV creation via diamond growth, electron beam irradiation and annealing treatments. Absorption correlates with increased nitrogen doping yet substitutional nitrogen does not seem to be the direct absorber. Birefringence reduces with increasing nitrogen doping. We identify multiple crystal defect concentrations via absorption spectroscopy and their changes during the material processing steps and thus identify potential causes of absorption and birefringence as well as strategies to fabricate chemical vapour deposition diamonds with high NV density yet low absorption and low birefringence. This article is part of the Theo Murphy meeting issue 'Diamond for quantum applications'.
Collapse
Affiliation(s)
- Tingpeng Luo
- Fraunhofer Institute for Applied Solid State Physics IAF, 79108 Freiburg, Germany
| | - Felix A. Hahl
- Fraunhofer Institute for Applied Solid State Physics IAF, 79108 Freiburg, Germany
| | - Julia Langer
- Fraunhofer Institute for Applied Solid State Physics IAF, 79108 Freiburg, Germany
| | - Volker Cimalla
- Fraunhofer Institute for Applied Solid State Physics IAF, 79108 Freiburg, Germany
| | - Lukas Lindner
- Fraunhofer Institute for Applied Solid State Physics IAF, 79108 Freiburg, Germany
| | - Xavier Vidal
- Fraunhofer Institute for Applied Solid State Physics IAF, 79108 Freiburg, Germany
| | - Marko Haertelt
- Fraunhofer Institute for Applied Solid State Physics IAF, 79108 Freiburg, Germany
| | - Remi Blinder
- Institut für Quantenoptik, University of Ulm, 89081 Ulm, Germany
| | - Shinobu Onoda
- National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Jan Jeske
- Fraunhofer Institute for Applied Solid State Physics IAF, 79108 Freiburg, Germany
| |
Collapse
|
10
|
Kirkpatrick AR, Chen G, Witkowska H, Brixey J, Green BL, Booth MJ, Salter PS, Smith JM. Ab initio study of defect interactions between the negatively charged nitrogen vacancy centre and the carbon self-interstitial in diamond. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230174. [PMID: 38043580 PMCID: PMC10693978 DOI: 10.1098/rsta.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Fabrication techniques for nitrogen-vacancy centres in diamond require the creation of Frenkel defects (vacancy-interstitial pairs) the components of which can interact with formed NV centres affecting their photophysical properties. Here we use Density Functional Theory simulations of inter-defect electronic and strain interactions to explore how the NV centre and carbon self-interstitial interact in different configurations. We find that hybridization occurs between the NV centre e-orbitals and the carbon self-interstitial when an interstitial is present on the vacancy side of the NV centre. We propose that this phenomenon may explain the fluorescence blinking of NV centres observed during annealing. This article is part of the Theo Murphy meeting issue 'Diamond for quantum applications'.
Collapse
Affiliation(s)
- Andrew R. Kirkpatrick
- Department of Materials, University of Oxford, Oxford OX1 3PJ, UK
- Department of Engineering Sciences, University of Oxford, Oxford OX1 3PJ, UK
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824-126, USA
| | - Guangzhao Chen
- Department of Materials, University of Oxford, Oxford OX1 3PJ, UK
| | - Helen Witkowska
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - James Brixey
- Department of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Ben L. Green
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Martin J. Booth
- Department of Engineering Sciences, University of Oxford, Oxford OX1 3PJ, UK
| | - Patrick S. Salter
- Department of Engineering Sciences, University of Oxford, Oxford OX1 3PJ, UK
| | - Jason M. Smith
- Department of Materials, University of Oxford, Oxford OX1 3PJ, UK
| |
Collapse
|
11
|
Chen IT, Li B, Lee S, Chakravarthi S, Fu KM, Li M. Optomechanical ring resonator for efficient microwave-optical frequency conversion. Nat Commun 2023; 14:7594. [PMID: 37990000 PMCID: PMC10663453 DOI: 10.1038/s41467-023-43393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Phonons traveling in solid-state devices are emerging as a universal excitation for coupling different physical systems. Phonons at microwave frequencies have a similar wavelength to optical photons in solids, enabling optomechanical microwave-optical transduction of classical and quantum signals. It becomes conceivable to build optomechanical integrated circuits (OMIC) that guide both photons and phonons and interconnect photonic and phononic devices. Here, we demonstrate an OMIC including an optomechanical ring resonator (OMR), where co-resonant infrared photons and GHz phonons induce significantly enhanced interconversion. The platform is hybrid, using wide bandgap semiconductor gallium phosphide (GaP) for waveguiding and piezoelectric zinc oxide (ZnO) for phonon generation. The OMR features photonic and phononic quality factors of >1 × 105 and 3.2 × 103, respectively. The optomechanical interconversion between photonic modes achieved an internal conversion efficiency [Formula: see text] and a total device efficiency [Formula: see text] at a low acoustic pump power of 1.6 mW. The efficient conversion in OMICs enables microwave-optical transduction for quantum information and microwave photonics applications.
Collapse
Affiliation(s)
- I-Tung Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Bingzhao Li
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Seokhyeong Lee
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA
| | | | - Kai-Mei Fu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA
- Department of Physics, University of Washington, Seattle, WA, 98115, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Mo Li
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA.
- Department of Physics, University of Washington, Seattle, WA, 98115, USA.
| |
Collapse
|
12
|
Chen G, Wu D, Xue Y, Ma W, He F, Du G, Zhou L. Diamond nitrogen-vacancy color-centered thermometer for integrated circuit application. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:104901. [PMID: 37782216 DOI: 10.1063/5.0146076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
With the advancement of the chip industry, accurate temperature measurement and thermal management have become crucial. Traditional infrared temperature imaging has limitations in terms of resolution and accuracy. ln recent years, quantum diamond nitrogen-vacancy centers have emerged as a promising option for temperature sensing, but separating temperature from magnetic field effects remains a challenge. This paper presents a numerical approach to decouple temperature and magnetic fields using an ensemble Hamiltonian in high-current density Integrated Circuit (IC) applications. The proposed method demonstrates a temperature sensitivity of 22.9 mK/Hz1/2 and the ability to perform scanning temperature imaging with a spatial resolution of 20 µm on a typical IC.
Collapse
Affiliation(s)
- Guobin Chen
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
- School of Mechanical and Electrical Engineering, Suqian College, Suqian 223800, China
| | - Di Wu
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Yawen Xue
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Wenhao Ma
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Feiyue He
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Guanxiang Du
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Li Zhou
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| |
Collapse
|
13
|
Navarathna A, Bennett JS, Bowen WP. Continuous Optical-to-Mechanical Quantum State Transfer in the Unresolved Sideband Regime. PHYSICAL REVIEW LETTERS 2023; 130:263603. [PMID: 37450795 DOI: 10.1103/physrevlett.130.263603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Optical-to-mechanical quantum state transfer is an important capability for future quantum networks, quantum communication, and distributed quantum sensing. However, existing continuous state transfer protocols operate in the resolved sideband regime, necessitating a high-quality optical cavity and a high mechanical resonance frequency. Here, we propose a continuous protocol that operates in the unresolved sideband regime. The protocol is based on feedback cooling, can be implemented with current technology, and is able to transfer non-Gaussian quantum states with high fidelity. Our protocol significantly expands the kinds of optomechanical devices for which continuous optical-to-mechanical state transfer is possible, paving the way toward quantum technological applications and the preparation of macroscopic superpositions to test the fundamentals of quantum science.
Collapse
Affiliation(s)
- Amy Navarathna
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
| | - James S Bennett
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Quantum Dynamics, Griffith University, Nathan, Queensland 4222, Australia
| | - Warwick P Bowen
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
14
|
Zhao J, Li Y, Liu X, Gao Y, Zheng D, Wang Q, Liu Z, Li Z, Guo H, Yasuhiro S, Tang J, Ma Z, Liu J. Pico-tesla magnetic field detection with integrated flux concentrators using a multi-frequency modulation technique on the solid nuclear spin in diamonds. APPLIED OPTICS 2023; 62:3967-3975. [PMID: 37706707 DOI: 10.1364/ao.483088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 09/15/2023]
Abstract
In this paper, we implement integrated magnetic flux concentrators (MFCs) combined with a multi-frequency modulation method to achieve high-magnetic-detection sensitivity using a nuclear spin on the solid nuclear spin in diamonds. First, we excited the nuclear spin in diamonds using a continuous-wave technique, and a linewidth of 1.37 MHz and frequency resolution of 79 Hz were successfully obtained, which is reduced by one order of the linewidth, and increased by 56 times in frequency resolution compared to that excited by an electron spin. The integrated high-permeability MFC was designed to magnify the magnetic field near the diamond, with a magnification of 9.63 times. Then, the multi-frequency modulation technique was used to fully excite the hyperfine energy level of Nitrogen Vacancy (NV) centers along the four axes on the diamond with MFC, and magnetic detection sensitivity of 250p T/H z 1/2 was realized. These techniques should allow designing an integrated NV magnetometer with high sensitivity in a small volume.
Collapse
|
15
|
Koppenhöfer M, Padgett C, Cady JV, Dharod V, Oh H, Bleszynski Jayich AC, Clerk AA. Single-Spin Readout and Quantum Sensing Using Optomechanically Induced Transparency. PHYSICAL REVIEW LETTERS 2023; 130:093603. [PMID: 36930901 DOI: 10.1103/physrevlett.130.093603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Solid-state spin defects are promising quantum sensors for a large variety of sensing targets. Some of these defects couple appreciably to strain in the host material. We propose to use this strain coupling for mechanically mediated dispersive single-shot spin readout by an optomechanically induced transparency measurement. Surprisingly, the estimated measurement times for negatively charged silicon-vacancy defects in diamond are an order of magnitude shorter than those for single-shot optical fluorescence readout. Our scheme can also be used for general parameter-estimation metrology and offers a higher sensitivity than conventional schemes using continuous position detection.
Collapse
Affiliation(s)
- Martin Koppenhöfer
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Carl Padgett
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Jeffrey V Cady
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Systems and Processes Engineering Corporation, Austin, Texas 78737, USA
| | - Viraj Dharod
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Hyunseok Oh
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Ania C Bleszynski Jayich
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - A A Clerk
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Hei XL, Li PB, Pan XF, Nori F. Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. PHYSICAL REVIEW LETTERS 2023; 130:073602. [PMID: 36867822 DOI: 10.1103/physrevlett.130.073602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Coherent tripartite interactions among degrees of freedom of completely different nature are instrumental for quantum information and simulation technologies, but they are generally difficult to realize and remain largely unexplored. Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single nitrogen-vacancy (NV) center and a micromagnet. We propose to realize direct and strong tripartite interactions among single NV spins, magnons, and phonons via modulating the relative motion between the NV center and the micromagnet. Specifically, by introducing a parametric drive (two-phonon drive) to modulate the mechanical motion (such as the center-of-mass motion of a NV spin in diamond trapped in an electrical trap or a levitated micromagnet in a magnetic trap), we can obtain a tunable and strong spin-magnon-phonon coupling at the single quantum level, with up to 2 orders of magnitude enhancement for the tripartite coupling strength. This enables, for example, tripartite entanglement among solid-state spins, magnons, and mechanical motions in quantum spin-magnonics-mechanics with realistic experimental parameters. This protocol can be readily implemented with the well-developed techniques in ion traps or magnetic traps and could pave the way for general applications in quantum simulations and information processing based on directly and strongly coupled tripartite systems.
Collapse
Affiliation(s)
- Xin-Lei Hei
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng-Bo Li
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Xue-Feng Pan
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
17
|
Shen X, Zhao L, Ge F. Structural Optimization and MEMS Implementation of the NV Center Phonon Piezoelectric Device. MICROMACHINES 2022; 13:1628. [PMID: 36295982 PMCID: PMC9611964 DOI: 10.3390/mi13101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The nitrogen-vacancy (NV) center of the diamond has attracted widespread attention because of its high sensitivity in quantum precision measurement. The phonon piezoelectric device of the NV center is designed on the basis of the phonon-coupled regulation mechanism. The propagation characteristics and acoustic wave excitation modes of the phonon piezoelectric device are analyzed. In order to improve the performance of phonon-coupled manipulation, the influence of the structural parameters of the diamond substrate and the ZnO piezoelectric layer on the phonon propagation characteristics are analyzed. The structure of the phonon piezoelectric device of the NV center is optimized, and its Micro-Electro-Mechanical System (MEMS) implementation and characterization are carried out. Research results show that the phonon resonance manipulation method can effectively increase the NV center's spin transition probability using the MEMS phonon piezoelectric device prepared in this paper, improving the quantum spin manipulation efficiency.
Collapse
Affiliation(s)
| | - Liye Zhao
- Correspondence: ; Tel.: +86-139-0517-8308
| | | |
Collapse
|
18
|
Yang R, Yousuf SMEH, Lee J, Zhang P, Liu Z, Feng PXL. Raman Spectroscopic Probe for Nonlinear MoS 2 Nanoelectromechanical Resonators. NANO LETTERS 2022; 22:5780-5787. [PMID: 35792575 DOI: 10.1021/acs.nanolett.2c01250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Resonant nanoelectromechanical systems (NEMS) enabled by two-dimensional (2D) semiconductors have been actively explored and engineered for making ultrascaled transducers toward applications in ultralow-power signal processing, communication, and sensing. Although the transduction of miniscule resonant motions has been achieved by low-noise optical or electronic techniques, direct probing of strain in vibrating 2D semiconductor membranes and the interplay between the spectroscopic and mechanical properties are still largely unexplored. Here, we experimentally demonstrate dynamical phonon softening in atomically thin molybdenum disulfide (MoS2) NEMS resonators by directly coupling Raman spectroscopy with optical interferometry resonance motion detection. In single-layer, bilayer, and trilayer (1L to 3L) MoS2 circular membrane NEMS resonators, we show that high-amplitude nonlinear resonances can enhance the Raman signal amplitude, as well as introduce Raman modes softening up to 0.8 cm-1. These results shall pave the way for engineering the coupling and control between collective mechanical vibrations and Raman modes of the constituent crystals in 2D transducers.
Collapse
Affiliation(s)
- Rui Yang
- Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - S M Enamul Hoque Yousuf
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Jaesung Lee
- Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Pengcheng Zhang
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zuheng Liu
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Philip X-L Feng
- Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
19
|
Yin TS, Jin GR, Chen A. Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators. MICROMACHINES 2022; 13:mi13040591. [PMID: 35457897 PMCID: PMC9027357 DOI: 10.3390/mi13040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023]
Abstract
We propose a scheme to implement the phonon antibunching and phonon blockade in a circuit quantum acoustodynamical system containing two surface acoustic wave (SAW) resonators coupled to a superconducting qubit. In the cases of driving only one SAW resonator and two SAW resonators, we investigate the phonon statistics by numerically calculating the second-order correlation function. It is found that, when only one SAW cavity is resonantly driven, the phonon antibunching effect can be achieved even when the qubit–phonon coupling strength is smaller than the decay rates of acoustic cavities. This result physically originates from the quantum interference between super-Poissonian statistics and Poissonian statistics of phonons. In particular, when the two SAW resonators are simultaneously driven under the mechanical resonant condition, the phonon antibunching effect can be significantly enhanced, which ultimately allows for the generation of a phonon blockade. Moreover, the obtained phonon blockade can be optimized by regulating the intensity ratio of the two SAW driving fields. In addition, we also discuss in detail the effect of system parameters on the phonon statistics. Our work provides an alternative way for manipulating and controlling the nonclassical effects of SAW phonons. It may inspire the engineering of new SAW-based phonon devices and extend their applications in quantum information processing.
Collapse
|
20
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
21
|
Chen J, Li Z, Luo XQ, Xiong W, Wang M, Li HC. Strong single-photon optomechanical coupling in a hybrid quantum system. OPTICS EXPRESS 2021; 29:32639-32648. [PMID: 34615329 DOI: 10.1364/oe.438114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/13/2021] [Indexed: 05/26/2023]
Abstract
Engineering strong single-photon optomechanical couplings is crucial for optomechanical systems. Here, we propose a hybrid quantum system consisting of a nanobeam (phonons) coupled to a spin ensemble and a cavity (photons) to overcome it. Utilizing the critical property of the lower-branch polariton (LBP) formed by the ensemble-phonon interaction, the LBP-cavity coupling can be greatly enhanced by three orders magnitude of the original one, while the upper-branch polariton (UBP)-cavity coupling is fully suppressed. Our proposal breaks through the condition of the coupling strength less than the critical value in previous schemes using two harmonic oscillators. Also, strong Kerr effect can be induced in our proposal. This shows our proposed approach can be used to study quantum nonlinear and nonclassical effects in weakly coupled optomechanical systems.
Collapse
|
22
|
Chen J, Chen OY, Chang HC. Relaxation of a dense ensemble of spins in diamond under a continuous microwave driving field. Sci Rep 2021; 11:16278. [PMID: 34381097 PMCID: PMC8358020 DOI: 10.1038/s41598-021-95722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
Decoherence of Rabi oscillation in a two-level quantum system consists of two components, a simple exponential decay and a damped oscillation. In dense-ensemble spin systems like negatively charged nitrogen-vacancy (NV−) centers in diamond, fast quantum state decoherence often obscures clear observation of the Rabi nutation. On the other hand, the simple exponential decay (or baseline decay) of the oscillation in such spin systems can be readily detected but has not been thoroughly explored in the past. This study investigates in depth the baseline decay of dense spin ensembles in diamond under continuously driving microwave (MW). It is found that the baseline decay times of NV− spins decrease with the increasing MW field strength and the MW detuning dependence of the decay times shows a Lorentzian-like spectrum. The experimental findings are in good agreement with simulations based on the Bloch formalism for a simple two-level system in the low MW power region after taking into account the effect of inhomogeneous broadening. This combined investigation provides new insight into fundamental spin relaxation processes under continuous driving electromagnetic fields and paves ways to better understanding of this underexplored phenomena using single NV− centers, which have shown promising applications in quantum computing and quantum metrology.
Collapse
Affiliation(s)
- Jeson Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan. .,Department of Electronic Engineering, Feng Chia University, Taichung, 40724, Taiwan.
| | - Oliver Y Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.
| |
Collapse
|
23
|
Xie T, Zhao Z, Guo M, Wang M, Shi F, Du J. Identity Test of Single NV^{-} Centers in Diamond at Hz-Precision Level. PHYSICAL REVIEW LETTERS 2021; 127:053601. [PMID: 34397227 DOI: 10.1103/physrevlett.127.053601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Atomiclike defects in solids are not considered to be identical owing to the imperfections of host lattice. Here, we found that even under ambient conditions, negatively charged nitrogen-vacancy (NV^{-}) centers in diamond could still manifest identical at Hz-precision level, corresponding to a 10^{-7}-level relative precision, while the lattice strain can destroy the identity by tens of Hz. All parameters involved in the NV^{-}-^{14}N Hamiltonian are determined by formulating six nuclear frequencies at 10-mHz-level precision and measuring them at Hz-level precision. The most precisely measured parameter, the ^{14}N quadrupole coupling P, is given by -494 575 4.9(8) Hz, whose precision is improved by nearly 4 orders of magnitude compared with previous measurements. We offer an approach for performing precision measurements in solids and deepening our understandings of NV centers as well as other solid-state defects. Besides, these high-precision results imply a potential application of a robust and integrated atomiclike clock based on ensemble NV centers.
Collapse
Affiliation(s)
- Tianyu Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhiyuan Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Maosen Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mengqi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fazhan Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiangfeng Du
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Rosenfeld E, Riedinger R, Gieseler J, Schuetz M, Lukin MD. Efficient Entanglement of Spin Qubits Mediated by a Hot Mechanical Oscillator. PHYSICAL REVIEW LETTERS 2021; 126:250505. [PMID: 34241526 DOI: 10.1103/physrevlett.126.250505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Localized electronic and nuclear spin qubits in the solid state constitute a promising platform for storage and manipulation of quantum information, even at room temperature. However, the development of scalable systems requires the ability to entangle distant spins, which remains a challenge today. We propose and analyze an efficient, heralded scheme that employs a parity measurement in a decoherence free subspace to enable fast and robust entanglement generation between distant spin qubits mediated by a hot mechanical oscillator. We find that high-fidelity entanglement at cryogenic and even ambient temperatures is feasible with realistic parameters and show that the entangled pair can be subsequently leveraged for deterministic controlled-NOT operations between nuclear spins. Our results open the door for novel quantum processing architectures for a wide variety of solid-state spin qubits.
Collapse
Affiliation(s)
- Emma Rosenfeld
- Physics Department, Harvard University, Cambridge, Massachusetts 02318, USA
| | - Ralf Riedinger
- Physics Department, Harvard University, Cambridge, Massachusetts 02318, USA
| | - Jan Gieseler
- Physics Department, Harvard University, Cambridge, Massachusetts 02318, USA
| | - Martin Schuetz
- Amazon Quantum Solutions Lab, Seattle, Washington, D.C. 98170, USA
- AWS Center for Quantum Computing, Pasadena, California 91125, USA
| | - Mikhail D Lukin
- Physics Department, Harvard University, Cambridge, Massachusetts 02318, USA
| |
Collapse
|
25
|
Perdriat M, Pellet-Mary C, Huillery P, Rondin L, Hétet G. Spin-Mechanics with Nitrogen-Vacancy Centers and Trapped Particles. MICROMACHINES 2021; 12:651. [PMID: 34206001 PMCID: PMC8227763 DOI: 10.3390/mi12060651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022]
Abstract
Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins' inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists' toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.
Collapse
Affiliation(s)
- Maxime Perdriat
- Laboratoire De Physique de l’École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, CEDEX 05, 75231 Paris, France; (M.P.); (C.P.-M.); (P.H.)
| | - Clément Pellet-Mary
- Laboratoire De Physique de l’École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, CEDEX 05, 75231 Paris, France; (M.P.); (C.P.-M.); (P.H.)
| | - Paul Huillery
- Laboratoire De Physique de l’École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, CEDEX 05, 75231 Paris, France; (M.P.); (C.P.-M.); (P.H.)
| | - Loïc Rondin
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centrale-Supélec, LuMIn, 91190 Gif-sur-Yvette, France;
| | - Gabriel Hétet
- Laboratoire De Physique de l’École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, CEDEX 05, 75231 Paris, France; (M.P.); (C.P.-M.); (P.H.)
| |
Collapse
|
26
|
Abstract
Scalable quantum information systems would store, manipulate, and transmit quantum information locally and across a quantum network, but no single qubit technology is currently robust enough to perform all necessary tasks. Defect centers in solid-state materials have emerged as potential intermediaries between other physical manifestations of qubits, such as superconducting qubits and photonic qubits, to leverage their complementary advantages. It remains an open question, however, how to design and to control quantum interfaces to defect centers. Such interfaces would enable quantum information to be moved seamlessly between different physical systems. Understanding and constructing the required interfaces would, therefore, unlock the next big steps in quantum computing, sensing, and communications. In this Perspective, we highlight promising coupling mechanisms, including dipole-, phonon-, and magnon-mediated interactions, and discuss how contributions from nanotechnologists will be paramount in realizing quantum information processors in the near-term.
Collapse
Affiliation(s)
- Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael Haas
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
27
|
Battery Characterization via Eddy-Current Imaging with Nitrogen-Vacancy Centers in Diamond. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries using noninvasive detection. We demonstrate a microwave-free alternating current (AC) magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between nitrogen-vacancy (NV) centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructively image solid-state batteries. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolution is μμμ360μm. The maximum magnetic field and phase shift generated by the battery at the modulation frequency of 5 kHz are estimated as 0.04 mT and 0.03 rad respectively.
Collapse
|
28
|
Cha J, Kim H, Kim J, Shim SB, Suh J. Superconducting Nanoelectromechanical Transducer Resilient to Magnetic Fields. NANO LETTERS 2021; 21:1800-1806. [PMID: 33555879 DOI: 10.1021/acs.nanolett.0c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale electromechanical coupling provides a unique route toward control of mechanical motions and microwave fields in superconducting cavity electromechanical devices. However, conventional devices composed of aluminum have presented severe constraints on their operating conditions due to the low superconducting critical temperature (1.2 K) and magnetic field (0.01 T) of aluminum. To enhance their potential in device applications, we fabricate a superconducting electromechanical device employing niobium and demonstrate a set of cavity electromechanical dynamics, including back-action cooling and amplification, and electromechanically induced reflection at 4.2 K and in strong magnetic fields up to 0.8 T. Niobium-based electromechanical transducers operating at this temperature could potentially be employed to realize compact, nonreciprocal microwave devices in place of conventional isolators and cryogenic amplifiers. Moreover, with their resilience to magnetic fields, niobium devices utilizing the electromechanical back-action effects could be used to study spin-phonon interactions for nanomechanical spin-sensing.
Collapse
Affiliation(s)
- Jinwoong Cha
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Hakseong Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Jihwan Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
- Department of Physics, Korea Advanced Institute of Science and Technology, 34141 Daejeon, South Korea
| | - Seung-Bo Shim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Junho Suh
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| |
Collapse
|
29
|
Luo W, Gao N, Liu D. Multimode Nonlinear Coupling Induced by Internal Resonance in a Microcantilever Resonator. NANO LETTERS 2021; 21:1062-1067. [PMID: 33443433 DOI: 10.1021/acs.nanolett.0c04301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coupled resonators represent a generic model for many physical systems. In this context, a microcantilever is a multimode resonator clamped at one end, and it finds extensive application in high-precision metrology and is expected to be of great potential use in emerging quantum technologies. Here, we explore the microcantilever as a flexible platform for realizing multimode nonlinear interactions. Multimode nonlinear coupling is achieved by (1:2) internal resonance (IR) and parametric excitation with efficient coherent energy transfer. Specifically, we demonstrate abundant tunable parametric behaviors via frequency and voltage sweeps; these behaviors include mode veering, degenerate four-wave mixing (D4WM) with satellite resonances, partial amplitude suppression, acoustic frequency comb (AFC) generation, mechanically induced transparency (MIT), and normal-mode splitting. The experiments depict a new scheme for manipulating multimode microresonators with IR and parametric excitation.
Collapse
Affiliation(s)
- Wenyao Luo
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100, People's Republic of China
| | - Naikun Gao
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100, People's Republic of China
| | - Duo Liu
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100, People's Republic of China
- Jinan Institute of Quantum Technology, Jinan, Shandong 250101, People's Republic of China
| |
Collapse
|
30
|
Dang C, Chou JP, Dai B, Chou CT, Yang Y, Fan R, Lin W, Meng F, Hu A, Zhu J, Han J, Minor AM, Li J, Lu Y. Achieving large uniform tensile elasticity in microfabricated diamond. Science 2021; 371:76-78. [PMID: 33384375 DOI: 10.1126/science.abc4174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/23/2020] [Indexed: 11/02/2022]
Abstract
Diamond is not only the hardest material in nature, but is also an extreme electronic material with an ultrawide bandgap, exceptional carrier mobilities, and thermal conductivity. Straining diamond can push such extreme figures of merit for device applications. We microfabricated single-crystalline diamond bridge structures with ~1 micrometer length by ~100 nanometer width and achieved sample-wide uniform elastic strains under uniaxial tensile loading along the [100], [101], and [111] directions at room temperature. We also demonstrated deep elastic straining of diamond microbridge arrays. The ultralarge, highly controllable elastic strains can fundamentally change the bulk band structures of diamond, including a substantial calculated bandgap reduction as much as ~2 electron volts. Our demonstration highlights the immense application potential of deep elastic strain engineering for photonics, electronics, and quantum information technologies.
Collapse
Affiliation(s)
- Chaoqun Dang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Jyh-Pin Chou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan
| | - Bing Dai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Chang-Ti Chou
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yang Yang
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Weitong Lin
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fanling Meng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Alice Hu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong. .,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China.
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Andrew M Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong. .,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
31
|
Abstract
High-Q mechanical modes of transverse oscillation at a few megahertz are characterized for a photonic crystal waveguide (PCW) consisting of parallel dielectric nanobeams. The transduction of thermally excited motion of 33 pm at 300 K results in phase modulation with high signal-to-noise ratio for light propagating in a guided mode of the PCW. Numerical modeling gives good agreement with experiment. With these measurements in hand, the system is assessed for possible applications in quantum information science and technology involving strong coupling of single phonons of vibration to single atoms and photons trapped within the PCW. Observations of thermally driven transverse vibration of a photonic crystal waveguide (PCW) are reported. The PCW consists of two parallel nanobeams whose width is modulated symmetrically with a spatial period of 370 nm about a 240-nm vacuum gap between the beams. The resulting dielectric structure has a band gap (i.e., a photonic crystal stop band) with band edges in the near infrared that provide a regime for transduction of nanobeam motion to phase and amplitude modulation of an optical guided mode. This regime is in contrast to more conventional optomechanical coupling by way of moving end mirrors in resonant optical cavities. Models are developed and validated for this optomechanical mechanism in a PCW for probe frequencies far from and near to the dielectric band edge (i.e., stop band edge). The large optomechanical coupling strength predicted should make possible measurements with an imprecision below that at the standard quantum limit and well into the backaction-dominated regime. Since our PCW has been designed for near-field atom trapping, this research provides a foundation for evaluating possible deleterious effects of thermal motion on optical atomic traps near the surfaces of PCWs. Longer-term goals are to achieve strong atom-mediated links between individual phonons of vibration and single photons propagating in the guided modes (GMs) of the PCW, thereby enabling optomechanics at the quantum level with atoms, photons, and phonons. The experiments and models reported here provide a basis for assessing such goals.
Collapse
|
32
|
Sun H, Sang L, Wu H, Zhang Z, Teraji T, Li TF, You JQ, Toda M, Koizumi S, Liao M. Effect of Deep-Defects Excitation on Mechanical Energy Dissipation of Single-Crystal Diamond. PHYSICAL REVIEW LETTERS 2020; 125:206802. [PMID: 33258634 DOI: 10.1103/physrevlett.125.206802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
The ultrawide band gap of diamond distinguishes it from other semiconductors, in that all known defects have deep energy levels that are less active at room temperature. Here, we present the effect of deep defects on the mechanical energy dissipation of single-crystal diamond experimentally and theoretically up to 973 K. Energy dissipation is found to increase with temperature and exhibits local maxima due to the interaction between phonons and deep defects activated at specific temperatures. A two-level model with deep energies is proposed to explain well the energy dissipation at elevated temperatures. It is evident that the removal of boron impurities can substantially increase the quality factor of room-temperature diamond mechanical resonators. The deep energy nature of the defects bestows single-crystal diamond with outstanding low intrinsic energy dissipation in mechanical resonators at room temperature or above.
Collapse
Affiliation(s)
- Huanying Sun
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
- Research Center for Materials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Liwen Sang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Haihua Wu
- Research Center for Materials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Zilong Zhang
- Research Center for Materials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Tokuyuki Teraji
- Research Center for Materials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Tie-Fu Li
- Institute of Microelectronics and Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - J Q You
- Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Masaya Toda
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Satoshi Koizumi
- Research Center for Materials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Meiyong Liao
- Research Center for Materials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
33
|
Zhang X, Makles K, Colombier L, Metten D, Majjad H, Verlot P, Berciaud S. Dynamically-enhanced strain in atomically thin resonators. Nat Commun 2020; 11:5526. [PMID: 33139724 PMCID: PMC7608634 DOI: 10.1038/s41467-020-19261-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/01/2020] [Indexed: 11/13/2022] Open
Abstract
Graphene and related two-dimensional (2D) materials associate remarkable mechanical, electronic, optical and phononic properties. As such, 2D materials are promising for hybrid systems that couple their elementary excitations (excitons, phonons) to their macroscopic mechanical modes. These built-in systems may yield enhanced strain-mediated coupling compared to bulkier architectures, e.g., comprising a single quantum emitter coupled to a nano-mechanical resonator. Here, using micro-Raman spectroscopy on pristine monolayer graphene drums, we demonstrate that the macroscopic flexural vibrations of graphene induce dynamical optical phonon softening. This softening is an unambiguous fingerprint of dynamically-induced tensile strain that reaches values up to ≈4 × 10−4 under strong non-linear driving. Such non-linearly enhanced strain exceeds the values predicted for harmonic vibrations with the same root mean square (RMS) amplitude by more than one order of magnitude. Our work holds promise for dynamical strain engineering and dynamical strain-mediated control of light-matter interactions in 2D materials and related heterostructures. Here, the authors use Raman spectroscopy on circular graphene drums to demonstrate dynamical softening of optical phonons induced by the macroscopic flexural motion of graphene, and find evidence that the strain in graphene is enhanced under non-linear driving.
Collapse
Affiliation(s)
- Xin Zhang
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France.
| | - Kevin Makles
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France
| | - Léo Colombier
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France
| | - Dominik Metten
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France
| | - Hicham Majjad
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France
| | - Pierre Verlot
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.,Institut Universitaire de France, 1 rue Descartes, 05 75231, Paris Cedex, France
| | - Stéphane Berciaud
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France. .,Institut Universitaire de France, 1 rue Descartes, 05 75231, Paris Cedex, France.
| |
Collapse
|
34
|
Li PB, Zhou Y, Gao WB, Nori F. Enhancing Spin-Phonon and Spin-Spin Interactions Using Linear Resources in a Hybrid Quantum System. PHYSICAL REVIEW LETTERS 2020; 125:153602. [PMID: 33095609 DOI: 10.1103/physrevlett.125.153602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.
Collapse
Affiliation(s)
- Peng-Bo Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Yuan Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei-Bo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
35
|
Basso L, Sacco M, Bazzanella N, Cazzanelli M, Barge A, Orlandi M, Bifone A, Miotello A. Laser-Synthesis of NV-Centers-Enriched Nanodiamonds: Effect of Different Nitrogen Sources. MICROMACHINES 2020; 11:mi11060579. [PMID: 32527055 PMCID: PMC7344492 DOI: 10.3390/mi11060579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023]
Abstract
Due to the large number of possible applications in quantum technology fields—especially regarding quantum sensing—of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), research on a cheap, scalable and effective NDs synthesis technique has acquired an increasing interest. Standard production methods, such as detonation and grinding, require multistep post-synthesis processes and do not allow precise control in the size and fluorescence intensity of NDs. For this reason, a different approach consisting of pulsed laser ablation of carbon precursors has recently been proposed. In this work, we demonstrate the synthesis of NV-fluorescent NDs through pulsed laser ablation of an N-doped graphite target. The obtained NDs are fully characterized in the morphological and optical properties, in particular with optically detected magnetic resonance spectroscopy to unequivocally prove the NV origin of the NDs photoluminescence. Moreover, to compare the different fluorescent NDs laser-ablation-based synthesis techniques recently developed, we report an analysis of the effect of the medium in which laser ablation of graphite is performed. Along with it, thermodynamic aspects of the physical processes occurring during laser irradiation are analyzed. Finally, we show that the use of properly N-doped graphite as a target for laser ablation can lead to precise control in the number of NV centers in the produced NDs.
Collapse
Affiliation(s)
- Luca Basso
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, corso Bettini 31, 38068 Rovereto, Italy; (M.S.); (A.B.)
- Correspondence:
| | - Mirko Sacco
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, corso Bettini 31, 38068 Rovereto, Italy; (M.S.); (A.B.)
- Department of Drug Science and Technology, University of Torino, corso Raffaello 30, 10125 Torino, Italy;
| | - Nicola Bazzanella
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
| | - Massimo Cazzanelli
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Torino, corso Raffaello 30, 10125 Torino, Italy;
| | - Michele Orlandi
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
| | - Angelo Bifone
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, corso Bettini 31, 38068 Rovereto, Italy; (M.S.); (A.B.)
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| | - Antonio Miotello
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
| |
Collapse
|
36
|
Ghaderi Goran Abad M, Ashrafizadeh Khalifani F, Mahmoudi M. Acoustic field induced nonlinear magneto-optical rotation in a diamond mechanical resonator. Sci Rep 2020; 10:8197. [PMID: 32424206 PMCID: PMC7235033 DOI: 10.1038/s41598-020-65049-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/22/2020] [Indexed: 11/14/2022] Open
Abstract
We study the nonlinear magneto-optical rotation (MOR) of a linearly polarized microwave probe field passing through many nitrogen-vacancy (NV) centers embedded in a high-Q single-crystal diamond mechanical resonator. On the basis of the strain-mediated coupling mechanism, we establish a three-level closed-loop system in the ground states of the NV center in the presence of a static magnetic field. It is shown that by applying an acoustic field, the birefringence is induced in the system through the cross-Kerr effect, so that the probe field is transmitted with a high intensity and rotated polarization plane by 90 degrees. In addition, we demonstrate that the acoustic field has a major role in enhancing the MOR angle to 90 degrees. Moreover, it is shown that the MOR angle of the polarization plane after passing through the presented system is sensitive to the relative phase of the applied fields. The physical mechanism of the MOR enhancement is explained using the analytical expressions which are in good agreement with the numerical results. The presented scheme can be used as a polarization converter for efficient switching TE/TM modes in optical communication, the depolarization backscattering lidar, polarization spectroscopy and precision measurements.
Collapse
Affiliation(s)
| | | | - Mohammad Mahmoudi
- Department of Physics, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran.
| |
Collapse
|
37
|
Coherent acoustic control of a single silicon vacancy spin in diamond. Nat Commun 2020; 11:193. [PMID: 31924759 PMCID: PMC6954199 DOI: 10.1038/s41467-019-13822-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022] Open
Abstract
Phonons are considered to be universal quantum transducers due to their ability to couple to a wide variety of quantum systems. Among these systems, solid-state point defect spins are known for being long-lived optically accessible quantum memories. Recently, it has been shown that inversion-symmetric defects in diamond, such as the negatively charged silicon vacancy center (SiV), feature spin qubits that are highly susceptible to strain. Here, we leverage this strain response to achieve coherent and low-power acoustic control of a single SiV spin, and perform acoustically driven Ramsey interferometry of a single spin. Our results demonstrate an efficient method of spin control for these systems, offering a path towards strong spin-phonon coupling and phonon-mediated hybrid quantum systems. Qubits in solid state systems like point defects in diamond can be influenced by local strain. Here the authors use surface acoustic waves to coherently control silicon vacancies in diamond, which have the potential to reach the strong coupling regime necessary for many applications.
Collapse
|
38
|
Oeckinghaus T, Momenzadeh SA, Scheiger P, Shalomayeva T, Finkler A, Dasari D, Stöhr R, Wrachtrup J. Spin-Phonon Interfaces in Coupled Nanomechanical Cantilevers. NANO LETTERS 2020; 20:463-469. [PMID: 31820999 DOI: 10.1021/acs.nanolett.9b04198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coupled micro- and nanomechanical oscillators are of fundamental and technical interest for emerging quantum technologies. Upon interfacing with long-lived solid-state spins, the coherent manipulation of the quantum hybrid system becomes possible even at ambient conditions. Although the ability of these systems to act as a quantum bus inducing long-range spin-spin interactions has been known, the possibility to coherently couple electron/nuclear spins to the common modes of multiple oscillators and map their mechanical motion to spin-polarization has not been experimentally demonstrated. We here report experiments on interfacing spins to the common modes of a coupled cantilever system and show their correlation by translating ultralow forces induced by radiation from one oscillator to a distant spin. Further, we analyze the coherent spin-spin coupling induced by the common modes and estimate the entanglement generation among distant spins.
Collapse
Affiliation(s)
- Thomas Oeckinghaus
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
| | - S Ali Momenzadeh
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
| | - Philipp Scheiger
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
| | - Tetyana Shalomayeva
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
| | - Amit Finkler
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
- Department of Chemical and Biological Physics , Weizmann Institute of Science , 76100 Rehovot , Israel
| | - Durga Dasari
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
- Max Planck Institute for Solid State Research , 70569 Stuttgart , Germany
| | - Rainer Stöhr
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
- Center for Applied Quantum Technology , University of Stuttgart , 70569 Stuttgart , Germany
| | - Jörg Wrachtrup
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
- Max Planck Institute for Solid State Research , 70569 Stuttgart , Germany
| |
Collapse
|
39
|
Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart TJ, Machado F, Kobrin B, Höhn TO, Rui NZ, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin VV, Moore JE, Levitas VI, Jeanloz R, Yao NY. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 2019; 366:1349-1354. [DOI: 10.1126/science.aaw4352] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/06/2019] [Indexed: 01/19/2023]
Abstract
Pressure alters the physical, chemical, and electronic properties of matter. The diamond anvil cell enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena. Here, we introduce and use a nanoscale sensing platform that integrates nitrogen-vacancy (NV) color centers directly into the culet of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging of both stress fields and magnetism as a function of pressure and temperature. We quantify all normal and shear stress components and demonstrate vector magnetic field imaging, enabling measurement of the pressure-driven α↔ϵ phase transition in iron and the complex pressure-temperature phase diagram of gadolinium. A complementary NV-sensing modality using noise spectroscopy enables the characterization of phase transitions even in the absence of static magnetic signatures.
Collapse
Affiliation(s)
- S. Hsieh
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - P. Bhattacharyya
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - C. Zu
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - T. Mittiga
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - T. J. Smart
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - F. Machado
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - B. Kobrin
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - T. O. Höhn
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - N. Z. Rui
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - M. Kamrani
- Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
| | - S. Chatterjee
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - S. Choi
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - M. Zaletel
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - V. V. Struzhkin
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - J. E. Moore
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - V. I. Levitas
- Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
- Ames Laboratory, Division of Materials Science and Engineering, Ames, IA 50011, USA
| | - R. Jeanloz
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - N. Y. Yao
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Doster J, Hoenl S, Lorenz H, Paulitschke P, Weig EM. Collective dynamics of strain-coupled nanomechanical pillar resonators. Nat Commun 2019; 10:5246. [PMID: 31748570 PMCID: PMC6868224 DOI: 10.1038/s41467-019-13309-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Semiconductur nano- and micropillars represent a promising platform for hybrid nanodevices. Their ability to couple to a broad variety of nanomechanical, acoustic, charge, spin, excitonic, polaritonic, or electromagnetic excitations is utilized in fields as diverse as force sensing or optoelectronics. In order to fully exploit the potential of these versatile systems e.g. for metamaterials, synchronization or topologically protected devices an intrinsic coupling mechanism between individual pillars needs to be established. This can be accomplished by taking advantage of the strain field induced by the flexural modes of the pillars. Here, we demonstrate strain-induced, strong coupling between two adjacent nanomechanical pillar resonators. Both mode hybridization and the formation of an avoided level crossing in the response of the nanopillar pair are experimentally observed. The described coupling mechanism is readily scalable, enabling hybrid nanomechanical resonator networks for the investigation of a broad range of collective dynamical phenomena.
Collapse
Affiliation(s)
- J Doster
- Department of Physics, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - S Hoenl
- Department of Physics, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.,IBM Research - Zurich, Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland
| | - H Lorenz
- Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - P Paulitschke
- Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - E M Weig
- Department of Physics, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
41
|
Chen H, Opondo NF, Jiang B, MacQuarrie ER, Daveau RS, Bhave SA, Fuchs GD. Engineering Electron-Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator. NANO LETTERS 2019; 19:7021-7027. [PMID: 31498998 DOI: 10.1021/acs.nanolett.9b02430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 μm, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f × Q > 1012 (>1013). The semiconfocal geometry confines the phonon mode laterally below 10 μm. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2π)2.19(14) MHz/Vp, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.
Collapse
Affiliation(s)
- Huiyao Chen
- Cornell University , Ithaca , New York 14853 , United States
| | - Noah F Opondo
- Purdue University , West Lafayette , Indiana 47907 , United States
| | - Boyang Jiang
- Purdue University , West Lafayette , Indiana 47907 , United States
| | | | | | - Sunil A Bhave
- Purdue University , West Lafayette , Indiana 47907 , United States
| | - Gregory D Fuchs
- Cornell University , Ithaca , New York 14853 , United States
- Kavli Institute at Cornell for Nanoscale Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
42
|
Carter SG, Bracker AS, Yakes MK, Zalalutdinov MK, Kim M, Kim CS, Lee B, Gammon D. Tunable Coupling of a Double Quantum Dot Spin System to a Mechanical Resonator. NANO LETTERS 2019; 19:6166-6172. [PMID: 31389244 DOI: 10.1021/acs.nanolett.9b02207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction of quantum systems with mechanical resonators is of practical interest for applications in quantum information and sensing and also of fundamental interest as hybrid quantum systems. Achieving a large and tunable interaction strength is of great importance in this field as it enables controlled access to the quantum limit of motion and coherent interactions between different quantum systems. This has been challenging with solid state spins, where typically the coupling is weak and cannot be tuned. Here we use pairs of coupled quantum dots embedded within cantilevers to achieve a high coupling strength of the singlet-triplet spin system to mechanical motion through strain. Two methods of achieving strong, tunable coupling are demonstrated. The first is through different strain-induced energy shifts for the two QDs when the cantilever vibrates, resulting in changes to the exchange interaction. The second is through a laser-driven AC Stark shift that is sensitive to strain-induced shifts of the optical transitions. Both of these mechanisms can be tuned to zero with electrical bias or laser power, respectively, and give large spin-mechanical coupling strengths.
Collapse
Affiliation(s)
- Samuel G Carter
- Naval Research Laboratory , Washington , DC 20375 , United States
| | - Allan S Bracker
- Naval Research Laboratory , Washington , DC 20375 , United States
| | - Michael K Yakes
- Naval Research Laboratory , Washington , DC 20375 , United States
| | | | - Mijin Kim
- KeyW Corporation , 7740 Milestone Parkway, Suite 150 , Hanover , Maryland 21076 , United States
| | - Chul Soo Kim
- Naval Research Laboratory , Washington , DC 20375 , United States
| | - Bumsu Lee
- NRC Research Associate at the Naval Research Laboratory , Washington , DC 20375 , United States
| | - Daniel Gammon
- Naval Research Laboratory , Washington , DC 20375 , United States
| |
Collapse
|
43
|
Broadway DA, Johnson BC, Barson MSJ, Lillie SE, Dontschuk N, McCloskey DJ, Tsai A, Teraji T, Simpson DA, Stacey A, McCallum JC, Bradby JE, Doherty MW, Hollenberg LCL, Tetienne JP. Microscopic Imaging of the Stress Tensor in Diamond Using in Situ Quantum Sensors. NANO LETTERS 2019; 19:4543-4550. [PMID: 31150580 DOI: 10.1021/acs.nanolett.9b01402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The precise measurement of mechanical stress at the nanoscale is of fundamental and technological importance. In principle, all six independent variables of the stress tensor, which describe the direction and magnitude of compression/tension and shear stress in a solid, can be exploited to tune or enhance the properties of materials and devices. However, existing techniques to probe the local stress are generally incapable of measuring the entire stress tensor. Here, we make use of an ensemble of atomic-sized in situ strain sensors in diamond (nitrogen-vacancy defects) to achieve spatial mapping of the full stress tensor, with a submicrometer spatial resolution and a sensitivity of the order of 1 MPa (10 MPa) for the shear (axial) stress components. To illustrate the effectiveness and versatility of the technique, we apply it to a broad range of experimental situations, including mapping the stress induced by localized implantation damage, nanoindents, and scratches. In addition, we observe surprisingly large stress contributions from functional electronic devices fabricated on the diamond and also demonstrate sensitivity to deformations of materials in contact with the diamond. Our technique could enable in situ measurements of the mechanical response of diamond nanostructures under various stimuli, with potential applications in strain engineering for diamond-based quantum technologies and in nanomechanical sensing for on-chip mass spectroscopy.
Collapse
Affiliation(s)
- D A Broadway
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
- Centre for Quantum Computation and Communication Technology, School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - B C Johnson
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
- Centre for Quantum Computation and Communication Technology, School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - M S J Barson
- Laser Physics Centre, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - S E Lillie
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
- Centre for Quantum Computation and Communication Technology, School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - N Dontschuk
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
- Centre for Quantum Computation and Communication Technology, School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - D J McCloskey
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - A Tsai
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - T Teraji
- National Institute for Materials Science , Tsukuba , Ibaraki 305-0044 , Japan
| | - D A Simpson
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - A Stacey
- Centre for Quantum Computation and Communication Technology, School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
- Melbourne Centre for Nanofabrication , Clayton , VIC 3168 , Australia
| | - J C McCallum
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - J E Bradby
- Department Electronic Materials Engineering, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - M W Doherty
- Laser Physics Centre, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - L C L Hollenberg
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
- Centre for Quantum Computation and Communication Technology, School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| | - J-P Tetienne
- School of Physics , University of Melbourne , Parkville , VIC 3010 , Australia
| |
Collapse
|
44
|
Liu YX, Ajoy A, Cappellaro P. Nanoscale Vector dc Magnetometry via Ancilla-Assisted Frequency Up-Conversion. PHYSICAL REVIEW LETTERS 2019; 122:100501. [PMID: 30932644 DOI: 10.1103/physrevlett.122.100501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 06/09/2023]
Abstract
Sensing static magnetic fields with high sensitivity and spatial resolution is critical to many applications in fundamental physics, bioimaging, and materials science. Even more beneficial would be full vector magnetometry with nanoscale spatial resolution. Several versatile magnetometry platforms have emerged over the past decade, such as electronic spins associated with nitrogen vacancy (NV) centers in diamond. Achieving vector magnetometry has, however, often required using an ensemble of sensors or degrading the sensitivity. Here we introduce a hybrid magnetometry platform, consisting of a sensor and an ancillary qubit, that allows vector magnetometry of static fields. While more generally applicable, we demonstrate the method for an electronic NV sensor and a nuclear spin qubit. In particular, sensing transverse fields relies on frequency up-conversion of the dc fields through the ancillary qubit, allowing quantum lock-in detection with low-frequency noise rejection. In combination with the Ramsey detection of longitudinal fields, our frequency up-conversion scheme delivers a sensitive technique for vector dc magnetometry at the nanoscale.
Collapse
Affiliation(s)
- Yi-Xiang Liu
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ashok Ajoy
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, University of California Berkeley, and Materials Science Division Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Paola Cappellaro
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
45
|
Abstract
Deforming a material to a large extent without inelastic relaxation can result in unprecedented properties. However, the optimal deformation state is buried within the vast continua of choices available in the strain space. Here we advance a unique and powerful strategy to circumvent conventional trial-and-error methods, and adopt artificial intelligence techniques for rationally designing the most energy-efficient pathway to achieve a desirable material property such as the electronic bandgap. The broad framework for tailoring any target figure of merit, for any material using machine learning, opens up opportunities to adapt elastic strain engineering of properties and performance in devices and systems in a controllable and efficient manner, for potential applications in microelectronics, optoelectronics, photonics, and energy technologies. Nanoscale specimens of semiconductor materials as diverse as silicon and diamond are now known to be deformable to large elastic strains without inelastic relaxation. These discoveries harbinger a new age of deep elastic strain engineering of the band structure and device performance of electronic materials. Many possibilities remain to be investigated as to what pure silicon can do as the most versatile electronic material and what an ultrawide bandgap material such as diamond, with many appealing functional figures of merit, can offer after overcoming its present commercial immaturity. Deep elastic strain engineering explores full six-dimensional space of admissible nonlinear elastic strain and its effects on physical properties. Here we present a general method that combines machine learning and ab initio calculations to guide strain engineering whereby material properties and performance could be designed. This method invokes recent advances in the field of artificial intelligence by utilizing a limited amount of ab initio data for the training of a surrogate model, predicting electronic bandgap within an accuracy of 8 meV. Our model is capable of discovering the indirect-to-direct bandgap transition and semiconductor-to-metal transition in silicon by scanning the entire strain space. It is also able to identify the most energy-efficient strain pathways that would transform diamond from an ultrawide-bandgap material to a smaller-bandgap semiconductor. A broad framework is presented to tailor any target figure of merit by recourse to deep elastic strain engineering and machine learning for a variety of applications in microelectronics, optoelectronics, photonics, and energy technologies.
Collapse
|
46
|
Abdi M, Plenio MB. Quantum Effects in a Mechanically Modulated Single-Photon Emitter. PHYSICAL REVIEW LETTERS 2019; 122:023602. [PMID: 30720325 DOI: 10.1103/physrevlett.122.023602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 05/13/2023]
Abstract
Recent observation of quantum emitters in monolayers of hexagonal boron nitride (h-BN) has provided a novel platform for optomechanical experiments where the single-photon emitters can couple to the motion of a freely suspended h-BN membrane. Here, we propose a scheme where the electronic degree of freedom (d.o.f.) of an embedded color center is coupled to the motion of the hosting h-BN resonator via dispersive forces. We show that the coupling of membrane vibrations to the electronic d.o.f. of the emitter can reach the strong regime. By suitable driving of a three-level Λ-system composed of two spin d.o.f. in the electronic ground state as well as an isolated excited state of the emitter, a multiple electromagnetically induced transparency spectrum becomes available. The experimental feasibility of the efficient vibrational ground-state cooling of the membrane via quantum interference effects in the two-color drive scheme is numerically confirmed. More interestingly, the emission spectrum of the defect exhibits a frequency comb with frequency spacings as small as the fundamental vibrational mode, which finds applications in high-precision spectroscopy.
Collapse
Affiliation(s)
- Mehdi Abdi
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Institute of Theoretical Physics and IQST, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
47
|
Carter SG, Bracker AS, Bryant GW, Kim M, Kim CS, Zalalutdinov MK, Yakes MK, Czarnocki C, Casara J, Scheibner M, Gammon D. Spin-Mechanical Coupling of an InAs Quantum Dot Embedded in a Mechanical Resonator. PHYSICAL REVIEW LETTERS 2018; 121:246801. [PMID: 30608739 PMCID: PMC6527321 DOI: 10.1103/physrevlett.121.246801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 05/05/2023]
Abstract
We demonstrate strain-induced coupling between a hole spin in a quantum dot and mechanical motion of a cantilever. The optical transitions of quantum dots integrated into GaAs mechanical resonators are measured synchronously with the motion of the driven resonators. In a Voigt magnetic field, both electron and hole spin splittings are measured, showing negligible change for the electron spin but a large change for the hole spin of up to 36%. This large effect is attributed to the stronger spin orbit interaction of holes compared to electrons.
Collapse
Affiliation(s)
- S. G. Carter
- Naval Research Laboratory, Washington, DC 20375, USA
| | - A. S. Bracker
- Naval Research Laboratory, Washington, DC 20375, USA
| | - G. W. Bryant
- Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - M. Kim
- KeyW corporation, Hanover, Maryland 21076, USA
| | - C. S. Kim
- Naval Research Laboratory, Washington, DC 20375, USA
| | | | - M. K. Yakes
- Naval Research Laboratory, Washington, DC 20375, USA
| | - C. Czarnocki
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - J. Casara
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - M. Scheibner
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - D. Gammon
- Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
48
|
Sánchez Muñoz C, Lara A, Puebla J, Nori F. Hybrid Systems for the Generation of Nonclassical Mechanical States via Quadratic Interactions. PHYSICAL REVIEW LETTERS 2018; 121:123604. [PMID: 30296112 DOI: 10.1103/physrevlett.121.123604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
We present a method to implement two-phonon interactions between mechanical resonators and spin qubits in hybrid setups, and show that these systems can be applied for the generation of nonclassical mechanical states even in the presence of dissipation. In particular, we demonstrate that the implementation of a two-phonon Jaynes-Cummings Hamiltonian under coherent driving of the qubit yields a dissipative phase transition with similarities to the one predicted in the model of the degenerate parametric oscillator: beyond a certain threshold in the driving amplitude, the driven-dissipative system sustains a mixed steady state consisting of a "jumping cat," i.e., a cat state undergoing random jumps between two phases. We consider realistic setups and show that, in samples within reach of current technology, the system features nonclassical transient states, characterized by a negative Wigner function, that persist during timescales of fractions of a second.
Collapse
Affiliation(s)
- Carlos Sánchez Muñoz
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Antonio Lara
- Dpto. Física Materia Condensada C03, Instituto Nicolas Cabrera (INC), Condensed Matter Physics Institute (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Puebla
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
49
|
Patel RN, Wang Z, Jiang W, Sarabalis CJ, Hill JT, Safavi-Naeini AH. Single-Mode Phononic Wire. PHYSICAL REVIEW LETTERS 2018; 121:040501. [PMID: 30095955 DOI: 10.1103/physrevlett.121.040501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 06/08/2023]
Abstract
Photons and electrons transmit information to form complex systems and networks. Phonons on the other hand, the quanta of mechanical motion, are often considered only as carriers of thermal energy. Nonetheless, their flow can also be molded in fabricated nanoscale circuits. We design and experimentally demonstrate wires for phonons by patterning the surface of a silicon chip. Our device eliminates all but one channel of phonon conduction, allowing coherent phonon transport over millimeter length scales. We characterize the phononic wire optically, by coupling it strongly to an optomechanical transducer. The phononic wire enables new ways to manipulate information and energy on a chip. In particular, our result is an important step towards realizing on-chip phonon networks, in which quantum information is transmitted between nodes via phonons.
Collapse
Affiliation(s)
- Rishi N Patel
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Zhaoyou Wang
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Wentao Jiang
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Christopher J Sarabalis
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Jeff T Hill
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Amir H Safavi-Naeini
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| |
Collapse
|
50
|
Ohta R, Okamoto H, Tawara T, Gotoh H, Yamaguchi H. Dynamic Control of the Coupling between Dark and Bright Excitons with Vibrational Strain. PHYSICAL REVIEW LETTERS 2018; 120:267401. [PMID: 30004772 DOI: 10.1103/physrevlett.120.267401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/08/2023]
Abstract
We numerically and experimentally investigate strain-induced coupling between dark and bright excitons and its dynamic control using a gallium arsenide (GaAs) micromechanical resonator. Uniaxial strain induced by the mechanical resonance efficiently detunes the exciton energies and modulates the coupling strength via the deformation potential in GaAs. This allows optical access to the long-lived dark states without using any external electromagnetic field. This field-free approach could be expanded to a wide range of solid-state materials, leading to on-chip excitonic memories and circuits based on micromechanical resonators.
Collapse
Affiliation(s)
- Ryuichi Ohta
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
| | - Hajime Okamoto
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
| | - Takehiko Tawara
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
| | - Hideki Gotoh
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
| | - Hiroshi Yamaguchi
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
| |
Collapse
|