1
|
Mutchler AL, Haynes AP, Saleem M, Jamison S, Khan MM, Ertuglu L, Kirabo A. Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension. Circ Res 2025; 136:232-254. [PMID: 39819017 PMCID: PMC11750173 DOI: 10.1161/circresaha.124.325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohd Mabood Khan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
2
|
Chen S, Lei Z, Sun T. The critical role of miRNA in bacterial zoonosis. Int Immunopharmacol 2024; 143:113267. [PMID: 39374566 DOI: 10.1016/j.intimp.2024.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The public's health and the financial sustainability of international societies remain threatened by bacterial zoonoses, with limited reliable diagnostic and therapeutic options available for bacterial diseases. Bacterial infections influence mammalian miRNA expression in host-pathogen interactions. In order to counteract bacterial infections, miRNAs participate in gene-specific expression and play important regulatory roles that rely on translational inhibition and target gene degradation by binding to the 3' non-coding region of target genes. Intriguingly, according to current studies, that exogenous miRNAs derived from plants could potentially serve as effective medicinal components sourced from traditional Chinese medicine plants. These exogenous miRNAs exhibit stable functionality in mammals and mimic the regulatory roles of endogenous miRNAs, illuminating the molecular processes behind the therapeutic effects of plants. This review details the immune defense mechanisms of inflammation, apoptosis, autophagy and cell cycle disturbance caused by some typical bacterial infections, summarizes the role of some mammalian miRNAs in regulating these mechanisms, and introduces the cGAS-STING signaling pathway in detail. Evidence suggests that this newly discovered immune defense mechanism in mammalian cells can also be affected by miRNAs. Meanwhile, some examples of transboundary regulation of mammalian mRNA and even bacterial diseases by exogenous miRNAs from plants are also summarized. This viewpoint provides fresh understanding of microbial tactics and host mechanisms in the management of bacterial illnesses.
Collapse
Affiliation(s)
- Si Chen
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
3
|
Wei J, Wang X, Yu D, Tu Y, Yu Y. MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies. Discov Oncol 2024; 15:662. [PMID: 39549162 PMCID: PMC11569378 DOI: 10.1007/s12672-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This paper provides an exhaustive overview of the intricate interplay between microRNAs (miRNAs) and autophagy in the context of human cancers, underscoring the pivotal role these non-coding RNAs play in modulating autophagic pathways and their implications for cancer development, progression, and resistance to therapy. MiRNAs, as critical regulators of gene expression post-transcription, influence various biological processes, including autophagy, a catabolic mechanism essential for cellular homeostasis, stress response, and survival. The review meticulously delineates the mechanisms through which miRNAs impact autophagy by targeting specific genes and signaling pathways, thereby affecting cancer cell proliferation, metastasis, and response to chemotherapy. It highlights several miRNAs with dual roles, acting either as oncogenes or tumor suppressors based on the cellular context and the specific autophagic pathways they regulate. The paper further explores the therapeutic potential of targeting miRNA-autophagy axis, offering insights into novel strategies for cancer treatment through modulation of this axis. Emphasizing the complexity of the miRNA-autophagy relationship, the review calls for more in-depth studies to unravel the nuanced regulatory networks between miRNAs and autophagy in cancer, which could pave the way for the development of innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Jinxing Wei
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Xianghui Wang
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Duo Yu
- Department of Biopharmaceutics School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Yaoyu Yu
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China.
| |
Collapse
|
4
|
Okanoue S, Sakae H, Yokota K, Tanaka T, Obayashi Y, Abe M, Kono Y, Kanzaki H, Iwamuro M, Kawano S, Kawahara Y, Yanai H, Okada H. Endoscopic and Histological Gastritis in University Students with Helicobacter pylori Infection. Intern Med 2024; 63:2875-2884. [PMID: 38432971 PMCID: PMC11604383 DOI: 10.2169/internalmedicine.1851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/30/2023] [Indexed: 03/05/2024] Open
Abstract
Objective Although the characteristics of Helicobacter pylori infection have been extensively reported, there is a lack of consensus regarding its characteristics in young adults. The present study examined the endoscopic and histological characteristics of young adults who underwent eradication therapy for H. pylori infection. Methods We examined the H. pylori infection status of first-year students at Okayama University School of Medicine and Dentistry between 2014 and 2020. A total of 152 (6.8%) students who were positive for H. pylori antibody or pepsinogen tests were enrolled in the study. Among them, 107 students underwent endoscopy, and their biopsy samples were investigated. Seventy-five students were diagnosed with H. pylori infections. Results Of 75 H. pylori-positive patients, 57 (76.0%) had endoscopic atrophic gastritis, and 42 (56.0%) had histological atrophy. A few patients had severe atrophic gastritis. All 65 patients who underwent an eradication assessment were successfully treated. After successful eradication, 26 patients underwent endoscopic follow-up. The mean follow-up period was 32.9 months. A histological evaluation revealed that gastric antrum atrophy had subsided in 11 of 14 patients, and atrophy in the lesser curvature of the gastric body had subsided in 7 of 8 patients. Conclusion More than half of young adults with H. pylori infection had atrophic gastritis. We found mild atrophy in young adults, which subsided shortly after eradication treatment. This study provides a foundation for future studies to evaluate the validity of eradication therapy in preventing gastric cancer in patients.
Collapse
Affiliation(s)
- Shotaro Okanoue
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hiroyuki Sakae
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Kenji Yokota
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yuka Obayashi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Makoto Abe
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yoshiyasu Kono
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hiromitsu Kanzaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yoshiro Kawahara
- Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
5
|
Shi Z, Zhang Y, Chen W, Yu Z. Crosstalk between 6-methyladenine and 4-methylcytosine in Geobacter sulfurreducens exposed to extremely low-frequency electromagnetic field. iScience 2024; 27:110607. [PMID: 39262814 PMCID: PMC11388800 DOI: 10.1016/j.isci.2024.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
4-Methylcytosine (4mC) and 6-methyladenine (6mA) are the most prevalent types of DNA modifications in prokaryotes. However, whether there is crosstalk between 4mC and 6mA remain unknown. Here, methylomes and transcriptomes of Geobacter sulfurreducens exposed to different intensities of extremely low frequency electromagnetic fields (ELF-EMF) were investigated. Results showed that the second adenine of all the 5'-GTACAG-3' motif was modified to 6mA (M-6mA). For the other 6mA (O-6mA), the variation in their distance from the neighboring M-6mA increased with the intensity of ELF-EMF. Moreover, cytosine adjacent to O-6mA has a much higher probability of being modified to 4mC than cytosine adjacent to M-6mA, and the closer an unmodified cytosine is to 4mC, the higher the probability that the cytosine will be modified to 4mC. Furthermore, there was no significant correlation between DNA methylation and gene expression regulation. These results suggest a reference signal that goes from M-6mA to O-6mA to 4mC.
Collapse
Affiliation(s)
- Zhenhua Shi
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Yingrong Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Wanqiu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Zhen Yu
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, 7 Wu Si Road, Gu Lou District, Fuzhou, Fujian 350001, China
| |
Collapse
|
6
|
Xu H, Huang K, Shi M, Gong H, Han M, Tian W, Wang X, Zhang D. MicroRNAs in Helicobacter pylori-infected gastric cancer: Function and clinical application. Pharmacol Res 2024; 205:107216. [PMID: 38761883 DOI: 10.1016/j.phrs.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and it is associated with a combination of genetic, environmental, and microbial risk factors. Helicobacter pylori (H. pylori) is classified as a type I carcinogen, however, the exact regulatory mechanisms underlying H. pylori-induced GC are incompletely defined. MicroRNAs (miRNAs), one of small non-coding RNAs, negatively regulate gene expression through binding to their target genes. Dysregulation of miRNAs is crucial in human cancer. A noteworthy quantity of aberrant miRNAs induced by H. pylori through complex regulatory networks have been identified. These miRNAs substantially affect genetic instability, cell proliferation, apoptosis, invasion, metastasis, autophagy, chemoresistance, and the tumor microenvironment, leading to GC development and progression. Importantly, some H. pylori-associated miRNAs hold promise as therapeutic tools and biomarkers for GC prevention, diagnosis, and prognosis. Nonetheless, clinical application of miRNAs remains in its infancy with multiple issues, including sensitivity and specificity, stability, reliable delivery systems, and off-target effects. Additional research on the specific molecular mechanisms and more clinical data are still required. This review investigated the biogenesis, regulatory mechanisms, and functions of miRNAs in H. pylori-induced GC, offering novel insights into the potential clinical applications of miRNA-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Huimei Xu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Mengyu Han
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Wenji Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoying Wang
- Department of Emergency, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
7
|
Myrou A. Molecular Mechanisms and Treatment Strategies for Helicobacter pylori-Induced Gastric Carcinogenesis and Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma. Cureus 2024; 16:e60326. [PMID: 38883131 PMCID: PMC11177234 DOI: 10.7759/cureus.60326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Helicobacter pylori has been classified as a class I carcinogen by WHO because of its primary involvement in the development of gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. This review focuses on understanding the molecular pathophysiological mechanisms that operate within intracellular transduction pathways and their relevance in the treatment strategies for the two main diseases caused by H. pylori. H. pylori virulence factors such as cytotoxin-associated gene A and vacuolating cytotoxin A genotypes, inflammatory mediators, H. pylori-induced microRNA deregulation, alterations in autophagy proteins and regulators, and changes in DNA methylation are some of the molecular mechanisms that play essential roles in H. pylori infection and gastric carcinogenesis. The discovery of novel treatment strategies that target the deregulated intracellular transduction pathways in gastric carcinogenesis and MALT lymphoma is critical. H. pylori eradication (HPE) is not limited to H. pylori-dependent low-grade MALT lymphoma and may be used in patients with high-grade diffuse large B-cell lymphoma (DLBCL) (de novo or DLBCL-MALT lymphoma). The loss of H. pylori dependency and high-grade transformation appear to be distinct events in the progression of gastric lymphoma. Interestingly, patients with H. pylori-positive gastric DLBCL without histological evidence of MALT lymphoma (pure gastric DLBCL) may respond to HPE therapy.
Collapse
Affiliation(s)
- Athena Myrou
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| |
Collapse
|
8
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Fathi D, Elballal MS, Elesawy AE, Abulsoud AI, Elshafei A, Elsakka EG, Ismail A, El-Mahdy HA, Elrebehy MA, Doghish AS. An emphasis on the interaction of signaling pathways highlights the role of miRNAs in the etiology and treatment resistance of gastric cancer. Life Sci 2023; 322:121667. [PMID: 37023952 DOI: 10.1016/j.lfs.2023.121667] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Gastric cancer (GC) is 4th in incidence and mortality rates globally. Several genetic and epigenetic factors, including microRNAs (miRNAs), affect its initiation and progression. miRNAs are short chains of nucleic acids that can regulate several cellular processes by controlling their gene expression. So, dysregulation of miRNAs expressions is associated with GC initiation, progression, invasion capacity, apoptosis evasions, angiogenesis, promotion and EMT enhancement. Of important pathways in GC and controlled by miRNAs are Wnt/β-catenin signaling, HMGA2/mTOR/P-gp, PI3K/AKT/c-Myc, VEGFR and TGFb signaling. Hence, this review was conducted to review an updated view of the role of miRNAs in GC pathogenesis and their modulatory effects on responses to different GC treatment modalities.
Collapse
|
10
|
Tuhongjiang A, Wang F, Zhang C, Pang S, Qu Y, Feng B, Amuti G. Construction of an RNA modification-related gene predictive model associated with prognosis and immunity in gastric cancer. BMC Bioinformatics 2023; 24:147. [PMID: 37061682 PMCID: PMC10105968 DOI: 10.1186/s12859-023-05283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common causes of cancer-related fatalities worldwide, and its progression is associated with RNA modifications. Here, using RNA modification-related genes (RNAMRGs), we aimed to construct a prognostic model for patients with GC. METHODS Based on RNAMRGs, RNA modification scores (RNAMSs) were obtained for GC samples from The Cancer Genome Atlas and were divided into high- and low-RNAMS groups. Differential analysis and weighted correlation network analysis were performed for the differential expressed genes (DEGs) to obtain the key genes. Next, univariate Cox regression, least absolute shrinkage and selection operator, and multivariate Cox regression analyses were performed to obtain the model. According to the model risk score, samples were divided into high- and low-risk groups. Enrichment analysis and immunoassays were performed for the DEGs in these groups. Four external datasets from Gene Expression Omnibus data base were used to test the accuracy of the predictive model. RESULTS We identified SELP and CST2 as key DEGs, which were used to generate the predictive model. The high-risk group had a worse prognosis compared to the low-risk group (p < 0.05). Enrichment analysis and immunoassays revealed that 144 DEGs related to immune cell infiltration were associated with the Wnt signaling pathway and included hub genes such as ELN. Overall mutation levels, tumor mutation burden, and microsatellite instability were lower, but tumor immune dysfunction and exclusion scores were greater (p < 0.05) in the high-risk group than in the low-risk group. The validation results showed that the prediction model score can accurately predict the prognosis of GC patients. Finally, a nomogram was constructed using the risk score combined with the clinicopathological characteristics of patients with GC. CONCLUSION This risk score from the prediction model related to the tumor microenvironment and immunotherapy could accurately predict the overall survival of GC patients.
Collapse
Affiliation(s)
- Airexiati Tuhongjiang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Feng Wang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Chengrong Zhang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Sisi Pang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yujiang Qu
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Bo Feng
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Gulimire Amuti
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| |
Collapse
|
11
|
Tong T, Zhou Y, Huang Q, Xiao C, Bai Q, Deng B, Chen L. The regulation roles of miRNAs in Helicobacter pylori infection. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03094-9. [PMID: 36781601 DOI: 10.1007/s12094-023-03094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Helicobacter pylori is a kind of Gram-negative bacteria that parasitizes on human gastric mucosa. Helicobacter pylori infection is very common in human beings, which often causes gastrointestinal diseases, including chronic gastritis, duodenal ulcer and gastric cancer. MicroRNAs are a group of endogenous non-coding single stranded RNAs, which play an important role in cell proliferation, differentiation, autophagy, apoptosis and inflammation. In recent years, relevant studies have found that the expression of microRNA is changed after Helicobacter pylori infection, and then regulate the biological process of host cells. This paper reviews the regulation role of microRNAs on cell biological behavior through different signal pathways after Helicobacter pylori infection.
Collapse
Affiliation(s)
- Ting Tong
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - You Zhou
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Qiaoling Huang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Cui Xiao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Bo Deng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China.
| |
Collapse
|
12
|
Liu Y, Shi Y, Han R, Liu C, Qin X, Li P, Gu R. Signaling pathways of oxidative stress response: the potential therapeutic targets in gastric cancer. Front Immunol 2023; 14:1139589. [PMID: 37143652 PMCID: PMC10151477 DOI: 10.3389/fimmu.2023.1139589] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Gastric cancer is one of the top causes of cancer-related death globally. Although novel treatment strategies have been developed, attempts to eradicate gastric cancer have been proven insufficient. Oxidative stress is continually produced and continually present in the human body. Increasing evidences show that oxidative stress contributes significantly to the development of gastric cancer, either through initiation, promotion, and progression of cancer cells or causing cell death. As a result, the purpose of this article is to review the role of oxidative stress response and the subsequent signaling pathways as well as potential oxidative stress-related therapeutic targets in gastric cancer. Understanding the pathophysiology of gastric cancer and developing new therapies for gastric cancer depends on more researches focusing on the potential contributors to oxidative stress and gastric carcinogenesis.
Collapse
Affiliation(s)
- Yingying Liu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yu Shi
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoge Liu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Xiaogang Qin
- Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| |
Collapse
|
13
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Kim GH, Heo HJ, Kang JW, Kim EK, Baek SE, Kim K, Kim IJ, Suh S, Lee BJ, Kim YH, Pak K. Multi-omics analysis revealed TEK and AXIN2 are potential biomarkers in multifocal papillary thyroid cancer. Cancer Cell Int 2022; 22:185. [PMID: 35550582 PMCID: PMC9097102 DOI: 10.1186/s12935-022-02606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC), the most common endocrine cancer, accounts for 80-85% of all malignant thyroid tumors. This study focused on identifying targets that affect the multifocality of PTC. In a previous study, we determined 158 mRNAs related to multifocality in BRAF-mutated PTC using The Cancer Genome Atlas. METHODS We used multi-omics data (miRNAs and mRNAs) to identify the regulatory mechanisms of the investigated mRNAs. miRNA inhibitors were used to determine the relationship between mRNAs and miRNAs. We analyzed the target protein levels in patient sera using ELISA and immunohistochemical staining of patients' tissues. RESULTS We identified 44 miRNAs that showed a negative correlation with mRNA expression. Using in vitro experiments, we identified four miRNAs that inhibit TEK and/or AXIN2 among the target mRNAs. We also showed that the downregulation of TEK and AXIN2 decreased the proliferation and migration of BRAF ( +) PTC cells. To evaluate the diagnostic ability of multifocal PTC, we examined serum TEK or AXIN2 in unifocal and multifocal PTC patients using ELISA, and showed that the serum TEK in multifocal PTC patients was higher than that in the unifocal PTC patients. The immunohistochemical study showed higher TEK and AXIN2 expression in multifocal PTC than unifocal PTC. CONCLUSIONS Both TEK and AXIN2 play a potential role in the multifocality of PTC, and serum TEK may be a diagnostic marker for multifocal PTC.
Collapse
Affiliation(s)
- Ga Hyun Kim
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Wan Kang
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Eun-Kyung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sunghwan Suh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University Hospital, Busan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea. .,Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea. .,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| |
Collapse
|
15
|
Cao L, Zhu S, Lu H, Soutto M, Bhat N, Chen Z, Peng D, Lin J, Lu J, Li P, Zheng C, Huang C, El-Rifai W. Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis. Gastroenterology 2022; 162:1716-1731.e17. [PMID: 35134322 PMCID: PMC9038683 DOI: 10.1053/j.gastro.2022.01.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection is the predominant risk factor for gastric cancer. RAS protein activator like 2 (RASAL2) is considered a double-edged sword in carcinogenesis. Herein, we investigated the role of RASAL2 in response to H pylori infection and gastric tumorigenesis. METHODS Bioinformatics analyses of local and public databases were applied to analyze RASAL2 expression, signaling pathways, and clinical significance. In vitro cell culture, spheroids, patient-derived organoids, and in vivo mouse models were used. Molecular assays included chromatin immunoprecipitation, co-immunoprecipitation, Western blotting, quantitative polymerase chain reaction, and immunocyto/histochemistry. RESULTS H pylori infection induced RASAL2 expression via a nuclear factor-κB (NF-κB)-dependent mechanism whereby NF-κB was directly bound to the RASAL2 promoter activating its transcription. By gene silencing and ectopic overexpression, we found that RASAL2 upregulated β-catenin transcriptional activity. RASAL2 inhibited protein phosphatase 2A activity through direct binding with subsequent activation of the AKT/β-catenin signaling axis. Functionally, RASAL2 silencing decreased nuclear β-catenin levels and impaired tumor spheroids and organoids formation. Furthermore, the depletion of RASAL2 impaired tumor growth in gastric tumor xenograft mouse models. Clinicopathological analysis indicated that abnormal overexpression of RASAL2 correlated with poor prognosis and chemoresistance in human gastric tumors. CONCLUSIONS These studies uncovered a novel signaling axis of NF-κB/RASAL2/β-catenin, providing a novel link between infection, inflammation and gastric tumorigenesis.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadeem Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
16
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
17
|
Huang X, Yang Q, Yan Z, Wang P, Shi H, Li J, Shang X, Gun S. Combined Analysis of RRBS DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Clostridium perfringens Type C-Induced Diarrhea. Front Genet 2022; 13:803477. [PMID: 35401691 PMCID: PMC8990837 DOI: 10.3389/fgene.2022.803477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Clostridium perfringens type C (Cp) is one of the principal microorganisms responsible for bacterial diarrhea in neonatal and pre-weaning piglets. To better understand the molecular effects of Cp infection, we performed a genome-wide comparison of the changes in DNA methylation and gene expression in Cp infected resistant and susceptible piglets. We characterized the pattern of changes in methylation and found 6485, 5968, and 6472 differentially methylated regions (DMRs) of piglets infected with Cp in IR vs. IC, IS vs. IC, and IS vs. IR groups, respectively. These methylation changes for genes mainly involved in immune and inflammatory responses, cell adhesion, and activation of transcription factors. Gene ontology and KEGG pathway analyses showed that the differentially methylated genes (DMGs) were associated with negative regulation of transcription, apoptotic processes, protein binding, and kinase activity. In addition, they were enriched in immunity-related pathways, such as MAPK signaling pathway, Toll-like receptor signaling pathway, and NF-kappa B signaling pathway. Integrative analysis identified 168, 198, and 7 mRNAs showing inverse correlations between methylation and expression with Cp infection. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon Cp infection, 14 immune-associated mRNAs with differential methylation and transcriptional repression were identified in IS vs. IR, commonly revealing that the differentially expressed genes (DEGs) LBP, TBX21, and LCN2 were likely involved in the piglets against Cp infection. The present results provide further insight into the DNA methylation epigenetic alterations of C. perfringens type C infected piglet ileum tissues, and may advance the identification of biomarkers and drug targets for predicting susceptibility to and controlling C. perfringens type C-induced piglet diarrhea.
Collapse
Affiliation(s)
- Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Hairen Shi
- Tibet Academy of Agricultural and Animal Husbandry Science, Lasa, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuefeng Shang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
- *Correspondence: Shuangbao Gun,
| |
Collapse
|
18
|
MiR-1298-5p level downregulation induced by Helicobacter pylori infection inhibits autophagy and promotes gastric cancer development by targeting MAP2K6. Cell Signal 2022; 93:110286. [DOI: 10.1016/j.cellsig.2022.110286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/07/2023]
|
19
|
Wu J, Shi X, Wu L, Wu Z, Wu S, Bao W. Genome-Wide DNA Methylome and Transcriptome Analysis of Porcine Testicular Cells Infected With Transmissible Gastroenteritis Virus. Front Vet Sci 2022; 8:779323. [PMID: 35097042 PMCID: PMC8794705 DOI: 10.3389/fvets.2021.779323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine pathogen causing highly communicable gastrointestinal infection that are lethal for suckling piglets. In an attempt to delineate the pathogenic mechanism of TGEV-infected porcine testicular cells (ST cells), we conducted a whole genome analysis of DNA methylation and expression in ST cells through reduced bisulfate-seq and RNA-seq. We examined alterations in the methylation patterns and recognized 1764 distinct methylation sites. 385 differentially expressed genes (DEGs) were enriched in the viral defense and ribosome biogenesis pathways. Integrative analysis identified two crucial genes (EMILIN2, RIPOR3), these two genes expression were negatively correlated to promoter methylation. In conclusion, alterations in DNA methylation and differential expression of genes reveal that their potential functional interactions in TGEV infection. Our data highlights the epigenetic and transcriptomic landscapes in TGEV-infected ST cells and provides a reliable dataset for screening TGEV resistance genes and genetic markers.
Collapse
Affiliation(s)
- Jiayun Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoru Shi
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lisi Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Wenbin Bao
| |
Collapse
|
20
|
Kiga K. [RNA functions in bacterial infections and its application to antimicrobial therapy]. Nihon Saikingaku Zasshi 2022; 77:139-144. [PMID: 36351608 DOI: 10.3412/jsb.77.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the concept of central dogma (RNA is transcribed from DNA to produce proteins), RNA was thought to be merely an intermediary for genetic information to synthesize proteins from DNA. Since the discovery of RNA interference in 2000, research on RNA has progressed remarkably, especially in mammals. On the other hand, the role of RNA in bacterial infections was largely unknown. At that time, we started research on RNA and bacterial infection and revealed that miR-210, a small RNA in the gastric epithelial cells, is involved in gastric diseases caused by Helicobacter pylori in-fection. Furthermore, we have successfully developed sequence-specific antimicrobials by loading CRISPR-Cas13, an RNA-targeting CRISPR-Cas, on bacteriophage. The constructed antimicrobials were effective against at least Escherichia coli and Staphylococcus aureus. In this paper, we would like to introduce the importance of RNA in bacteriology.
Collapse
Affiliation(s)
- Kotaro Kiga
- Laboratory of Drug Design, Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases
| |
Collapse
|
21
|
Kambis TN, Tofilau HMN, Gawargi FI, Chandra S, Mishra PK. Regulating Polyamine Metabolism by miRNAs in Diabetic Cardiomyopathy. Curr Diab Rep 2021; 21:52. [PMID: 34902085 PMCID: PMC8668854 DOI: 10.1007/s11892-021-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska-Kearney, Kearney, NE, 68845, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
22
|
Expression Analysis of MicroRNAs, miR-20a, miR-30a, miR-210, and miR-874 in Helicobacter pylori-infected patients with or without Gastric Cancer. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett 2021; 526:322-334. [PMID: 34767926 DOI: 10.1016/j.canlet.2021.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022]
Abstract
The relationship between microRNA (miRNA) and hosting long non-coding RNA (lncRNA) remains unclear. Here, the expression levels of microRNA-210 (miR-210) and hosting lncRNA MIR210HG are significantly increased and positively correlated in gastric cancer (GC). Gain- and loss-of-function studies demonstrate that miR-210 and MIR210HG synergistically promote the migration and invasion of GC cells in vitro. Furthermore, GC sublines simultaneously expressing miR-210 and MIR210HG display synergistic promotion of lung metastasis in vivo. Mechanistically, MIR210HG interacts with DExH-box helicase 9 (DHX9) to increase DHX9/c-Jun complex's occupancy on the promoter of matrix metallopeptidases (MMPs), and thus promotes migration and invasion of GC cells. Additionally, miR-210 directly suppresses the expression of dopamine receptor D5 (DRD5), serine/threonine kinase 24 (STK24) and MAX network transcriptional repressor (MNT), resulting in enhanced migration and invasion. Finally, MYC proto-oncogene (c-Myc) transactivates miR-210 and MIR210HG. Overexpression of miR-210 or/and MIR210HG can rescue the inhibitory effect on the migration and invasion by silencing c-Myc. Moreover, c-Myc inhibitor significantly decreases lung metastasis of GC in vivo. Collectively, our findings identify a novel mechanism, by which c-Myc-activated miR-210 and MIR210HG synergistically promote the metastasis of GC.
Collapse
|
24
|
Prashar A, Capurro MI, Jones NL. Under the Radar: Strategies Used by Helicobacter pylori to Evade Host Responses. Annu Rev Physiol 2021; 84:485-506. [PMID: 34672717 DOI: 10.1146/annurev-physiol-061121-035930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The body depends on its physical barriers and innate and adaptive immune responses to defend against the constant assault of potentially harmful microbes. In turn, successful pathogens have evolved unique mechanisms to adapt to the host environment and manipulate host defenses. Helicobacter pylori (Hp), a human gastric pathogen that is acquired in childhood and persists throughout life, is an example of a bacterium that is very successful at remodeling the host-pathogen interface to promote a long-term persistent infection. Using a combination of secreted virulence factors, immune subversion, and manipulation of cellular mechanisms, Hp can colonize and persist in the hostile environment of the human stomach. Here, we review the most recent and relevant information regarding how this successful pathogen overcomes gastric epithelial host defense responses to facilitate its own survival and establish a chronic infection. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akriti Prashar
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Mariana I Capurro
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Nicola L Jones
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada; .,Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Zarin B, Eshraghi A, Zarifi F, Javanmard SH, Laher I, Amin B, Vaseghi G. A review on the role of tau and stathmin in gastric cancer metastasis. Eur J Pharmacol 2021; 908:174312. [PMID: 34245746 DOI: 10.1016/j.ejphar.2021.174312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer is resistant to chemotherapy, especially in the later stages. The prevalence of gastric cancer increases after the age of 40, and its peak is in the 7th decade of life. The proteins tau (tubulin associated unit) and stathmin are overexpressed in gastric cancer and contribute to the progression of the disease by increasing cancer cell proliferation, invasion, and inducing drug resistance. This review summarizes the current knowledge on the expression of tau protein and stathmin in gastric cancer and their roles in drug resistance. Medline and PubMed databases were searched from 1990 till February 2021 for the terms "tau protein", "stathmin", and "gastric cancer." Two reviewers screened all articles and assessed prognostic studies on the role of tau and stathmin proteins in gastric cancer progression. Collectively, studies reported that both proteins are expressed at different concentrations in gastric cancer and could be significant molecular biomarkers for prognosis. Both proteins could be good candidates for targeted therapy of gastric cancer and are associated with resistance to taxanes.
Collapse
Affiliation(s)
- Bahareh Zarin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Eshraghi
- Department of Clinical Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Zarifi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
26
|
Shen H, Gonskikh Y, Stoute J, Liu KF. Human DIMT1 generates N 26,6A-dimethylation-containing small RNAs. J Biol Chem 2021; 297:101146. [PMID: 34473991 PMCID: PMC8463865 DOI: 10.1016/j.jbc.2021.101146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dimethyladenosine transferase 1 (DIMT1) is an evolutionarily conserved RNA N6,6-dimethyladenosine (m26,6A) methyltransferase. DIMT1 plays an important role in ribosome biogenesis, and the catalytic activity of DIMT1 is indispensable for cell viability and protein synthesis. A few RNA-modifying enzymes can install the same modification in multiple RNA species. However, whether DIMT1 can work on RNA species other than 18S rRNA is unclear. Here, we describe that DIMT1 generates m26,6A not only in 18S rRNA but also in small RNAs. In addition, m26,6A in small RNAs were significantly decreased in cells expressing catalytically inactive DIMT1 variants (E85A or NLPY variants) compared with cells expressing wildtype DIMT1. Both E85A and NLPY DIMT1 variant cells present decreased protein synthesis and cell viability. Furthermore, we observed that DIMT1 is highly expressed in human cancers, including acute myeloid leukemia. Our data suggest that downregulation of DIMT1 in acute myeloid leukemia cells leads to a decreased m26,6A level in small RNAs. Together, these data suggest that DIMT1 not only installs m26,6A in 18S rRNA but also generates m26,6A-containing small RNAs, both of which potentially contribute to the impact of DIMT1 on cell viability and gene expression.
Collapse
Affiliation(s)
- Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yulia Gonskikh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
27
|
Zhou HZ, Chen B, Li XJ, Du JJ, Zhang N, Shao YX, Zhang K, Tong ZC. MicroRNA-545-5p regulates apoptosis, migration and invasion of osteosarcoma by targeting dimethyladenosine transferase 1. Oncol Lett 2021; 22:763. [PMID: 34539867 PMCID: PMC8436355 DOI: 10.3892/ol.2021.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
The metastasis of osteosarcoma is a major threat to both adolescents and young adults. Identifying novel targets that may prevent osteosarcoma metastasis is critical in developing advanced clinical therapies for treating this cancer. The present study aimed to explore the mechanism of microRNA (miR)-545-5p in the metastasis of osteosarcoma. The present study identified miR-545-5p as a potential target that was downregulated in both osteosarcoma clinical samples and cell lines, and in the latter, ectopically expressed miR-545-5p caused apoptosis. In addition, miR-545-5p exerted inhibitory effects in osteosarcoma migration and invasion. Overexpression of miR-545-5p induced xenograft growth inhibition in vivo. In addition, miR-545-5p targeted dimethyladenosine transferase 1 (DIMT1), an oncogenic protein that facilitates osteosarcoma proliferation, migration and invasion. Taken together, the results of the present study suggest that miR-545-5p functions as a tumor suppressor in osteosarcoma that promotes apoptosis, while inhibiting migration and invasion by targeting DIMT1. Taken together, the results of the present study suggest two potential novel targets for osteosarcoma treatment and metastasis prevention.
Collapse
Affiliation(s)
- Hai-Zhen Zhou
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Bo Chen
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xiao-Ju Li
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Juan-Juan Du
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Nan Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yu-Xiong Shao
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Kun Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Zhi-Chao Tong
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
28
|
Crosstalk between Environmental Inflammatory Stimuli and Non-Coding RNA in Cancer Occurrence and Development. Cancers (Basel) 2021; 13:cancers13174436. [PMID: 34503246 PMCID: PMC8430834 DOI: 10.3390/cancers13174436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Increasing evidence has indicated that chronic inflammatory processes have an influence on tumor occurrence and all stages of tumor development. A dramatic increase of studies into non-coding RNAs (ncRNAs) biology has shown that ncRNAs act as oncogenic drivers and tumor suppressors in various inflammation-induced cancers. Thus, this complex network of inflammation-associated cancers and ncRNAs offers targets for prevention from the malignant transformation from inflammation and treatment of malignant diseases. Abstract There is a clear relationship between inflammatory response and different stages of tumor development. Common inflammation-related carcinogens include viruses, bacteria, and environmental mutagens, such as air pollutants, toxic metals, and ultraviolet light. The expression pattern of ncRNA changes in a variety of disease conditions, including inflammation and cancer. Non-coding RNAs (ncRNAs) have a causative role in enhancing inflammatory stimulation and evading immune responses, which are particularly important in persistent pathogen infection and inflammation-to-cancer transformation. In this review, we investigated the mechanism of ncRNA expression imbalance in inflammation-related cancers. A better understanding of the function of inflammation-associated ncRNAs may help to reveal the potential of ncRNAs as a new therapeutic strategy.
Collapse
|
29
|
Wang C, Hu Y, Yang H, Wang S, Zhou B, Bao Y, Huang Y, Luo Q, Yang C, Xie X, Yang S. Function of Non-coding RNA in Helicobacter pylori-Infected Gastric Cancer. Front Mol Biosci 2021; 8:649105. [PMID: 34046430 PMCID: PMC8144459 DOI: 10.3389/fmolb.2021.649105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive system. Its occurrence and development are the result of a combination of genetic, environmental, and microbial factors. Helicobacter pylori infection is a chronic infection that is closely related to the occurrence of gastric tumorigenesis. Non-coding RNA has been demonstrated to play a very important role in the organism, exerting a prominent role in the carcinogenesis, proliferation, apoptosis, invasion, metastasis, and chemoresistance of tumor progression. H. pylori infection affects the expression of non-coding RNA at multiple levels such as genetic polymorphisms and signaling pathways, thereby promoting or inhibiting tumor progression or chemoresistance. This paper mainly introduces the relationship between H. pylori-infected gastric cancer and non-coding RNA, providing a new perspective for gastric cancer treatment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yulu Bao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chuan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Zong X, Cheng Y, Xiao X, Fu J, Wang F, Lu Z, Wang Y, Jin M. Protective effects of sulfated polysaccharide from Enterobacter cloacae Z0206 against DSS-induced intestinal injury via DNA methylation. Int J Biol Macromol 2021; 183:861-869. [PMID: 33940061 DOI: 10.1016/j.ijbiomac.2021.04.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
We previously obtained and characterized a novel sulfated derivative of the exopolysaccharides from Enterobacter cloacae Z0206 (SEPS). This study aimed at investigating the effects and mechanism of SEPS against dextran sulfate sodium (DSS) induced intestinal injury. The results showed that SEPS increased the proliferation and survival of intestinal epithelial cells during DSS stimulation. Furthermore, SEPS maintained the barrier function and inflammatory response via JAK2 and MAPK signaling to protect against DSS-induced intestinal injury. Mechanistically, SEPS elevated the DNA methylation in the promoter region to negatively regulate the JAK2 and MAPKs expression. Thus, the current study shows the potential effects and mechanism of SEPS on DSS-induced intestinal epithelial cell injury.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| |
Collapse
|
31
|
Prinz C, Mese K, Weber D. MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection. Genes (Basel) 2021; 12:genes12040597. [PMID: 33921696 PMCID: PMC8073778 DOI: 10.3390/genes12040597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Despite medical advances, gastric-cancer (GC) mortality remains high in Europe. Bacterial infection with Helicobacter pylori (H. pylori) and viral infection with the Epstein–Barr virus (EBV) are associated with the development of both distal and proximal gastric cancer. Therefore, the detection of these infections and the prediction of further cancer development could be clinically significant. To this end, microRNAs (miRNAs) could serve as promising new tools. MiRNAs are highly conserved noncoding RNAs that play an important role in gene silencing, mainly acting via translational repression and the degradation of mRNA targets. Recent reports demonstrate the downregulation of numerous miRNAs in GC, especially miR-22, miR-145, miR-206, miR-375, and miR-490, and these changes seem to promote cancer-cell invasion and tumor spreading. The dysregulation of miR-106b, miR-146a, miR-155, and the Let-7b/c complex seems to be of particular importance during H. pylori infection or gastric carcinogenesis. In contrast, many reports describe changes in host miRNA expression and outline the effects of bamHI-A region rightward transcript (BART) miRNA in EBV-infected tissue. The differential regulation of these miRNA, acting alone or in close interaction when both infections coexist, may therefore enable us to detect cancer earlier. In this review, we focus on the two different etiologies of gastric cancer and outline the molecular pathways through which H. pylori- or EBV-induced changes might synergistically act via miR-155 dysregulation to potentiate cancer risk. The three markers, namely, H. pylori presence, EBV infection, and miR-155 expression, may be checked in routine biopsies to evaluate the risk of developing gastric cancer.
Collapse
Affiliation(s)
- Christian Prinz
- Medizinische Klinik 2, Helios Universitätsklinikum Wuppertal, 42283 Wuppertal, Germany;
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
- Correspondence: ; Tel.: +49-202-896-2243; Fax: +49-202-896-2740
| | - Kemal Mese
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
- Institute of Virology, University of Göttingen, 37075 Göttingen, Germany
| | - David Weber
- Medizinische Klinik 2, Helios Universitätsklinikum Wuppertal, 42283 Wuppertal, Germany;
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
| |
Collapse
|
32
|
Liao TT, Cheng WC, Yang CY, Chen YQ, Su SH, Yeh TY, Lan HY, Lee CC, Lin HH, Lin CC, Lu RH, Chiou AET, Jiang JK, Hwang WL. The microRNA-210-Stathmin1 Axis Decreases Cell Stiffness to Facilitate the Invasiveness of Colorectal Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13081833. [PMID: 33921319 PMCID: PMC8069838 DOI: 10.3390/cancers13081833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Metastasis of tumor cells is the leading cause of death in cancer patients. Concurrent therapy with surgical removal of primary and metastatic lesions is the main approach for cancer therapy. Currently, therapeutic resistant properties of cancer stem cells (CSCs) are known to drive malignant cancer progression, including metastasis. Our study aimed to identify molecular tools dedicated to the detection and treatment of CSCs. We confirmed that microRNA-210-3p (miR-210) was upregulated in colorectal stem-like cancer cells, which targeted stathmin1 (STMN1), to decrease cell elasticity for increasing mobility. We envision that strategies for softening cellular elasticity will reduce the onset of CSC-orientated metastasis. Abstract Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.
Collapse
Affiliation(s)
- Tsai-Tsen Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.-T.L.); (H.-Y.L.)
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Wei-Chung Cheng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, China Medical University, Taichung 406, Taiwan;
- Research Center for Cancer Biology, China Medical University, Taichung 406, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei 106, Taiwan;
- General Education Center, University of Taipei, Taipei 100, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Shu-Han Su
- Institution of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan; (S.-H.S.); (T.-Y.Y.)
| | - Tzu-Yu Yeh
- Institution of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan; (S.-H.S.); (T.-Y.Y.)
| | - Hsin-Yi Lan
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.-T.L.); (H.-Y.L.)
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chih-Chan Lee
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hung-Hsin Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Chun-Chi Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Lu
- Department of Surgery, Zhongxing Branch, Taipei City Hospital, Taipei 106, Taiwan;
| | - Arthur Er-Terg Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (J.-K.J.); (W.-L.H.); Tel.: +886-2-2826-7000 (ext. 65832) (W.-L.H.)
| | - Wei-Lun Hwang
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (J.-K.J.); (W.-L.H.); Tel.: +886-2-2826-7000 (ext. 65832) (W.-L.H.)
| |
Collapse
|
33
|
A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment. Nat Commun 2021; 12:2085. [PMID: 33837194 PMCID: PMC8035401 DOI: 10.1038/s41467-021-22317-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen’s adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160’s targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis. Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. Here, Kinoshita-Daitoku et al. show that a small non-coding RNA of H. pylori regulates bacterial adaptation to the stomach environment and bacterial oncoprotein production.
Collapse
|
34
|
Riahi Rad Z, Riahi Rad Z, Goudarzi H, Goudarzi M, Mahmoudi M, Yasbolaghi Sharahi J, Hashemi A. MicroRNAs in the interaction between host-bacterial pathogens: A new perspective. J Cell Physiol 2021; 236:6249-6270. [PMID: 33599300 DOI: 10.1002/jcp.30333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Gene expression regulation plays a critical role in host-pathogen interactions, and RNAs function is essential in this process. miRNAs are small noncoding, endogenous RNA fragments that affect stability and/or translation of mRNAs, act as major posttranscriptional regulators of gene expression. miRNA is involved in regulating many biological or pathological processes through targeting specific mRNAs, including development, differentiation, apoptosis, cell cycle, cytoskeleton organization, and autophagy. Deregulated microRNA expression is associated with many types of diseases, including cancers, immune disturbances, and infection. miRNAs are a vital section of the host immune response to bacterial-made infection. Bacterial pathogens suppress host miRNA expression for their benefit, promoting survival, replication, and persistence. The role played through miRNAs in interaction with host-bacterial pathogen has been extensively studied in the past 10 years, and knowledge about these staggering molecules' function can clarify the complicated and ambiguous interactions of the host-bacterial pathogen. Here, we review how pathogens prevent the host miRNA expression. We briefly discuss emerging themes in this field, including their role as biomarkers in identifying bacterial infections, as part of the gut microbiota, on host miRNA expression.
Collapse
Affiliation(s)
- Zohreh Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
36
|
Xu G, Yan X, Chen J, Guo X, Guo X, Tang Y, Shi Z. Bioinformatics Analysis of Key Candidate Genes and Pathways in Ulcerative Colitis. Biol Pharm Bull 2020; 43:1760-1766. [PMID: 33132321 DOI: 10.1248/bpb.b20-00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ulcerative colitis (UC) is chronic, idiopathic disease that affects the colon and the rectum and the underlying pathogenesis of UC remains to be known. The clinical drugs are mainly work based on anti-inflammation and immune system. However, most of them are expensive and have severe side effects. Therefore, identification of novel targets and exploring new drugs are urgently needed. In this study, several bioinformatics approaches were used to discover key genes and further in order to explore the pathogenesis of UC. Two microarray datasets, GSE38713 and GSE9452 were selected from NCBI-Gene Expression Omnibus database. Differentially expression genes (DEGs) were identified by using LIMMA Package of R. Then, we filtered clustered candidate genes into Gene Ontology (GO) and pathway enrichment analysis with the Database for Annotation, Visualization and Integrated Discovery (DAVID), KEGG pathway based on functions and signaling pathways with significant enrichment analysis. The protein-protein interaction (PPI) network was constructed by the Search Tool for the Retrieval of Interacting Genes/ Proteins (STRING) analysis, and visualized by Cytoscape and further analyzed by Molecular Complex Detection. Lastly, 353 up-regulated and 145 down-regulated genes were than recognized. After consulting a number of references and network degree analysis, four hub genes, namely FCGR2A, C3, INPP5A, and ACAA1 were identified, and these genes were mainly enriched in complement and coagulation cascades, mineral absorption, and Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathways. In conclusion, this study would provide new clues for the pathogenesis and identification of drug targets of UC in the near future.
Collapse
Affiliation(s)
- Guangya Xu
- College of Basic Medicine & Sichuan Industrial Institute of Antibiotics, Chengdu University
| | - Xueling Yan
- College of Basic Medicine & Sichuan Industrial Institute of Antibiotics, Chengdu University
| | - Jie Chen
- Central Laboratory of Clinical Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital
| | - Xiaoheng Guo
- College of Basic Medicine & Sichuan Industrial Institute of Antibiotics, Chengdu University
| | - Xiaolan Guo
- College of Basic Medicine & Sichuan Industrial Institute of Antibiotics, Chengdu University
| | - Yong Tang
- College of Basic Medicine & Sichuan Industrial Institute of Antibiotics, Chengdu University.,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Zheng Shi
- College of Basic Medicine & Sichuan Industrial Institute of Antibiotics, Chengdu University
| |
Collapse
|
37
|
Chen P, Guo H, Wu X, Li J, Duan X, Ba Q, Wang H. Epigenetic silencing of microRNA-204 by Helicobacter pylori augments the NF-κB signaling pathway in gastric cancer development and progression. Carcinogenesis 2020; 41:430-441. [PMID: 31873718 DOI: 10.1093/carcin/bgz143] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori infection induces gastric cancer (GC) development through a progressive cascade; however, the roles of the microRNAs that are involved in the cascade and the underlying mechanisms are still unclear. Here, we found that microRNA-204 was suppressed in gastric mucosal cells in response to H.pylori infection and downregulated in GC tissues due to aberrant methylation of the promoter of its host gene, TRPM3. Helicobacter pylori induced a progressive downregulation of microRNA-204 from superficial gastritis to intestinal metaplasia, with an accompanying increment of the methylated levels of CpG sites in the TRPM3 promoter. With the GC cellular models of AGS, MGC-803 or BGC-823, we found that microRNA-204 suppressed the tumor necrosis factor (TNF)-α-induced activation of NF-κB signaling pathways and, in animal models, inhibited tumor growth and metastasis. The conditional supernatant of microRNA-204 overexpression GC cells led to reduced tube formation of human umbilical vein endothelial cells. A target gene for microRNA-204 was BIRC2, and in GC cells, BIRC2 knockdown recapitulated the biological phenotype of microRNA-204 overexpression. BIRC2 overexpression promoted the metastasis of GC cells and rescued the inhibition activities of microRNA-204 on cell migration and the NF-κB signaling pathway. Moreover, lower microRNA-204 and higher BIRC2 expression levels were associated with a poorer prognosis of GC patients. These results demonstrate that epigenetic silencing of microRNA-204 induced by H.pylori infection augments the NF-κB signaling pathway in H.pylori-induced gastritis and GC, potentially providing novel intervention targets for these diseases. MicroRNA-204 was epigenetically down-regulated by H. pylori infection in gastric mucosal cells. It led to enhanced BIRC2 expression level and BIRC2/TNF-a/NF-kB signaling pathway activities, which promoted angiogenesis and metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Peizhan Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - He Guo
- Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| | - Xuming Wu
- Nantong Center for Disease Control and Prevention, Nantong, P.R. China.,Nantong Tumor Hospital, Nantong, P. R. China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiaohua Duan
- Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| | - Qian Ba
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Food Safety Research, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
38
|
Shen H, Stoute J, Liu KF. Structural and catalytic roles of the human 18 S rRNA methyltransferases DIMT1 in ribosome assembly and translation. J Biol Chem 2020; 295:12058-12070. [PMID: 32616653 PMCID: PMC7443495 DOI: 10.1074/jbc.ra120.014236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
rRNA-modifying enzymes participate in ribosome assembly. However, whether the catalytic activities of these enzymes are important for the ribosome assembly and other cellular processes is not fully understood. Here, we report the crystal structure of WT human dimethyladenosine transferase 1 (DIMT1), an 18S rRNA N6,6-dimethyladenosine (m26,6A) methyltransferase, and results obtained with a catalytically inactive DIMT1 variant. We found that DIMT1+/- heterozygous HEK 293T cells have a significantly decreased 40S fraction and reduced protein synthesis but no major changes in m26,6A levels in 18S rRNA. Expression of a catalytically inactive variant, DIMT1-E85A, in WT and DIMT1+/- cells significantly decreased m26,6A levels in 18S rRNA, indicating a dominant-negative effect of this variant on m26,6A levels. However, expression of the DIMT1-E85A variant restored the defects in 40S levels. Of note, unlike WT DIMT1, DIMT1-E85A could not revert the defects in protein translation. We found that the differences between this variant and the WT enzyme extended to translation fidelity and gene expression patterns in DNA damage response pathways. These results suggest that the catalytic activity of DIMT1 is involved in protein translation and that the overall protein scaffold of DIMT1, regardless of the catalytic activity on m26,6A in 18S rRNA, is essential for 40S assembly.
Collapse
MESH Headings
- Amino Acid Substitution
- Catalysis
- Crystallography, X-Ray
- HEK293 Cells
- Humans
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Mutation, Missense
- Protein Biosynthesis
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
Collapse
Affiliation(s)
- Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
39
|
Wang W, Zhou C, Tang H, Yu Y, Zhang Q. Combined Analysis of DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Escherichia coli F4ab/ac-Induced Diarrhea. Front Cell Infect Microbiol 2020; 10:250. [PMID: 32547963 PMCID: PMC7272597 DOI: 10.3389/fcimb.2020.00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) that express F4 (K88) fimbriae are the principal microorganisms responsible for bacterial diarrhea in neonatal and pre-weaning piglets. To better understand the molecular effects of ETEC F4ab/ac infection, we performed a genome-wide comparison of the changes in DNA methylation and gene expression in ETEC F4ab/ac infected porcine intestinal epithelial cells. We characterized the pattern of changes in methylation and found 3297 and 1593 differentially methylated regions in cells infected with F4ab and F4ac, respectively. Moreover, 606 and 780 differentially expressed genes (DEGs) in ETEC F4ab and F4ac infected cells were detected and these genes were highly enriched in immune/defense response related pathways. Integrative analysis identified 27 and 10 genes showing inverse correlations between promoter methylation and expression with ETEC F4ab/ac infection. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon ETEC F4ab/ac infection. Further functional analyses revealed that three DEGs (S100A9, SGO1, and ESPL1) in F4ab infected cells and three DEGs (MAP3K21, PAK6, and MPZL1) in F4ac infected cells are likely involved in the host cells response to ETEC infection. Our data provides further insight into the epigenetic and transcriptomic alterations of ETEC F4ab/ac infected porcine intestinal epithelial cells, and may advance the identification of biomarkers and drug targets for predicting susceptibility to and controlling ETEC F4ab/ac induced diarrhea.
Collapse
Affiliation(s)
- Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chuanli Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ying Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Satoh-Takayama N, Kato T, Motomura Y, Kageyama T, Taguchi-Atarashi N, Kinoshita-Daitoku R, Kuroda E, Di Santo JP, Mimuro H, Moro K, Ohno H. Bacteria-Induced Group 2 Innate Lymphoid Cells in the Stomach Provide Immune Protection through Induction of IgA. Immunity 2020; 52:635-649.e4. [PMID: 32240600 DOI: 10.1016/j.immuni.2020.03.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
The intestinal microbiota shapes and directs immune development locally and systemically, but little is known about whether commensal microbes in the stomach can impact their immunological microenvironment. Here, we report that group 2 innate lymphoid cells (ILC2s) were the predominant ILC subset in the stomach and show that their homeostasis and effector functions were regulated by local commensal communities. Microbes elicited interleukin-7 (IL-7) and IL-33 production in the stomach, which in turn triggered the propagation and activation of ILC2. Stomach ILC2s were also rapidly induced following infection with Helicobacter pylori. ILC2-derived IL-5 resulted in the production of IgA, which coated stomach bacteria in both specific pathogen-free (SPF) and H. pylori-infected mice. Our study thus identifies ILC2-dependent IgA response that is regulated by the commensal microbiota, which is implicated in stomach protection by eliminating IgA-coated bacteria including pathogenic H. pylori.
Collapse
Affiliation(s)
- Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University Yokohama, Kanagawa 230-0045, Japan.
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University Yokohama, Kanagawa 230-0045, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University Suita, Osaka 565-0871, Japan; Laboratory for Innate Immune Systems, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan
| | - Tomoko Kageyama
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan
| | - Naoko Taguchi-Atarashi
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Kinoshita-Daitoku
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | - Eisuke Kuroda
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1223 Paris 75013, France
| | - Hitomi Mimuro
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University Suita, Osaka 565-0871, Japan; Laboratory for Innate Immune Systems, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN Yokohama, Kanagawa 230-0045, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University Yokohama, Kanagawa 230-0045, Japan; Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology Ebina, Kanagawa 243-0435, Japan.
| |
Collapse
|
41
|
Wang Y, Hao Y, Zhang H, Xu L, Ding N, Wang R, Zhu G, Ma S, Yang A, Yang Y, Wu K, Jiang Y, Zhang H, Jiang Y. DNA Hypomethylation of miR-30a Mediated the Protection of Hypoxia Postconditioning Against Aged Cardiomyocytes Hypoxia/Reoxygenation Injury Through Inhibiting Autophagy. Circ J 2020; 84:616-625. [PMID: 32115441 DOI: 10.1253/circj.cj-19-0915] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ischemic postconditioning (IPostC) is an endogenous protective mechanism to reduce ischemia-reperfusion (I/R) injury. However, whether IPostC protects aged cardiomyocytes against I/R injury is not fully understood. Considering the protective function of microRNA 30a (miR-30a) against ischemia-induced injury in H9C2 cells, its role in the protective effects of IPostC on I/R injury of aged cardiomyocytes was investigated further. METHODS AND RESULTS To mimic I/R and IPostC in vitro, the aged cardiomyocyte model for hypoxia postconditioning (HPostC) treatment was established by 9 days of incubation with 8 mg/mL D-galactose and then followed by exposure to hypoxic environment. HPostC significantly alleviated hypoxia/reoxygenation (H/R) injury and reduced autophagy of aged cardiomyocytes, as evidenced by decreased LC3B-II expression and increased p62 by Western blot. Quantified by quantitative real-time polymerase chain reaction (qRT-PCR), miR-30a was increased in aged cardiomyocytes treated with HPostC compared with I/R injury group. Overexpression of miR-30a by LV3-rno-miR-30a mimic promoted cardioprotective effect of HPostC in aged cardiomyocytes by suppressing BECN1-mediated autophagy, all of which was abrogated by knockdown of miR-30a expression. Epigenetic analyses demonstrated that HPostC reduced DNA methyltransferase 3b-mediated DNA hypomethylation levels at miR-30a promoter, leading to upregulation of miR-30a. CONCLUSIONS HPostC protected aged cardiomyocytes survival against H/R injury via DNMT3b-dependent activation of miR-30a. miR-30a could be a potential therapeutic target for ischemic myocardial infarction.
Collapse
Affiliation(s)
- YanHua Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - YinJu Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Department of Pharmacology, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - Hui Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - LingBo Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - Ning Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - Rui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - GuangRong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - ShengChao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - AnNing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - Yong Yang
- People's Hospital in Ningxia Hui Autonomous Region
| | - Kai Wu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| | - YuanXu Jiang
- Department of Pharmacology, Ningxia Medical University
| | - HuiPing Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University
| | - YiDeng Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University
- Ningxia Key Laboratory of Vascular Injury and Repair Research
| |
Collapse
|
42
|
Ni J, Liang S, Shan B, Tian W, Wang H, Ren Y. Methylation‑associated silencing of miR‑638 promotes endometrial carcinoma progression by targeting MEF2C. Int J Mol Med 2020; 45:1753-1770. [PMID: 32186750 PMCID: PMC7169941 DOI: 10.3892/ijmm.2020.4540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Promoter methylation‑associated silencing of cancer‑associated microRNAs (miRNAs) is a common epigenetic mechanism during tumorigenesis in various types of human cancer. However, this has not been comprehensively examined in endometrial carcinoma (EC). In the present study, an miRNA microarray consisting of 1,347 common human miRNAs was used to select potential tumor suppressive miRNAs that were hyper‑methylated in EC. This led to the identification of miR‑638, miR‑210 and miR‑3665. The methylation status of miR‑638 was examined by bisulfite sequencing polymerase chain reaction and miR‑638 expression was measured by TaqMan miRNA assays. EC cell lines transfected with vectors overexpressing miR‑638, its target gene myocyte enhancer factor 2C (MEF2C) or both, were constructed. Dual‑luciferase reporter assays, a xenograft mouse model and rescue experiments were designed to study miR‑638 and its target gene MEF2C. The results indicated that the promoter region of miR‑638 was highly methylated and the expression of miR‑638 was significantly downregulated in cancerous tissues from 42 patients with EC who underwent surgical resection. Additionally, a low expression of miR‑638 was significantly associated with advanced Federation of Gynecology and Obstetrics stage and was demonstrated to indicate shorter disease‑free survival. Functional studies indicated that the overexpression of miR‑638 in EC cell lines inhibited in vitro tumor progression and in vivo tumorigenicity. MEF2C was verified as a direct target of miR‑638 and was demonstrated to mediate the tumor‑suppressive function of miR‑638 in EC.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Shanhui Liang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Boer Shan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wenjuan Tian
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Huaying Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yulan Ren
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
43
|
Cancer-associated fibroblasts-derived VCAM1 induced by H. pylori infection facilitates tumor invasion in gastric cancer. Oncogene 2020; 39:2961-2974. [PMID: 32034307 DOI: 10.1038/s41388-020-1197-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a major role in the progression of stomach cancer, but the related mechanisms are not fully understood. H. pylori infection is recognized as one of the strongest risk factors for gastric carcinoma, but its effects on CAFs remain unknown. We aimed to determine the causative relationship between H. pylori infection in fibroblasts and the promoted cancer pathogenesis and progression in gastric cancer. Primary CAFs and normal activated fibroblasts (NAFs) were generated from gastric cancer patients. Gene signature of H. pylori-infected human stomach fibroblasts was performed using the RNA-seq analysis. Spheroid cell invasion assay and zebrafish cell line-derived xenograft (zCDX) model were introduced to evaluate tumor invasion induced by CAFs. The molecule interactions were determined using the kinetic binding analysis with the Biolayer Interferometry (BLI). Clinical significance and relevance were also assessed using the database analyses. H. pylori infection activated stomach fibroblasts and caused multiple gene alterations, including vascular adhesion molecule 1 (VCAM1). H. pylori infection increased VCAM1 expression in CAFs in gastric carcinoma via activation of JAK/STAT1 signaling pathway, and VCAM1 levels were positively associated with tumor progression and dismal prognosis in stomach cancer patients. Furthermore, CAFs-derived VCAM1 molecularly interacted with integrin αvβ1/5 in gastric cancer cells facilitated tumor invasion in vitro and in vivo. Our results identify a novel mechanism underlying CAFs to promote tumor invasion during H. pylori infection. These studies facilitate us for a better understanding of the molecular process of gastric carcinoma progression, and provide the potential strategies for gastric cancer therapy.
Collapse
|
44
|
Seo AN, Jung Y, Jang H, Lee E, Bae HI, Son T, Kwon O, Chung HY, Yu W, Lee YM. Clinical significance and prognostic role of hypoxia-induced microRNA 382 in gastric adenocarcinoma. PLoS One 2019; 14:e0223608. [PMID: 31596872 PMCID: PMC6785122 DOI: 10.1371/journal.pone.0223608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
Hypoxia and angiogenesis are critical components in the progression of solid cancer, including gastric cancers (GCs). miR-382 has been identified as a hypoxia-induced miR (hypoxamiR), but the clinical significance in GCs has not been identified yet. To explore the clinical and prognostic importance of miR-382 in GCs, the surgical specimens of 398 patients with GCs in KNU hospital in Korea, the total of 183 patients was randomly selected using simple sampling methods and big data with 446 GCs and 45 normal tissues from the data portal (https://portal.gdc.cancer.gov/) were analysed. Expression of miR-382 as well as miR-210, as a positive control hypoxamiR by qRT-PCR in histologically malignant region of GCs showed significantly positive correlation (R = 0.516, p<0.001). High miR-210 and miR-382 expression was significantly correlated with unfavorable prognosis including advanced GCs (AGC), higher T category, N category, pathologic TNM stage, lymphovascular invasion, venous invasion, and perinueral invasion, respectively (all p<0.05). In univariate analysis, high miR-210 expression was significantly associated with worse overall survival (OS) (p = 0.036) but not high miR-382. In paired 60 gastric normal and cancer tissues, miR-382 expression in cancer tissues was significantly higher than normal counterpart (p = 0.003), but not miR-210 expression. However, by increasing the patient number from the big data analysis, miR-210 as well as miR-382 expression in tumor tissues was significantly higher than the normal tissues. Our results suggest that miR-382, as novel hypoxamiR, can be a prognostic marker for advanced GCs and might be correlated with metastatic potential. miR-382 might play important roles in the aggressiveness, progression and prognosis of GCs. In addition, miR-382 give a predictive marker for progression of GCs compared to the normal or preneoplastic lesion.
Collapse
Affiliation(s)
- An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Yukdong Jung
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Hyeonha Jang
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Eunhye Lee
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Han-Ik Bae
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Taekwon Son
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ohkyung Kwon
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Ho Young Chung
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Wansik Yu
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - You Mie Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
45
|
Abstract
An organ-specific chronic inflammation–remodeling–carcinoma sequence has been proposed, mainly for the alimentary tract. As representative diseases, gastroesophageal reflux disease, chronic gastritis and inflammatory bowel disease (ulcerative colitis and Crohn’s disease of the colitis type) were adopted for this discussion. Tissue remodeling is such an important part of tumorigenesis in this sequence that an organ-specific chronic inflammation–remodeling–carcinoma sequence has been proposed in detail. Chronic inflammation accelerates the cycle of tissue injury and regeneration; in other words, cell necrosis (or apoptosis) and proliferation result in tissue remodeling in long-standing cases of inflammation. Remodeling encompasses epithelial cell metaplasia and stromal fibrosis, and modifies epithelial–stromal cell interactions. Further, the accumulation of genetic, epigenetic and molecular changes—as well as morphologic disorganization—also occurs during tissue remodeling. The expression of mucosal tissue adapted to chronic inflammatory injury is thought to occur at an early stage. Subsequently, dysplasia and carcinoma develop on a background of remodeling due to continuous, active inflammation. Accordingly, organ-specific chronic inflammation should be ameliorated or well controlled with appropriate monitoring if complete healing is unachievable.
Collapse
|
46
|
Dastmalchi N, Safaralizadeh R, Banan Khojasteh SM. The correlation between microRNAs and Helicobacter pylori in gastric cancer. Pathog Dis 2019; 77:5539973. [DOI: 10.1093/femspd/ftz039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT
Helicobacter pylori infection and H. pylori-related gastric inflammation can be considered as the most significant promoter of gastric cancer (GC). Recent investigations have evaluated the regulatory function of microRNAs (miRNAs) in H. pylori pathogenesis and H. pylori-related diseases, especially GC. The present study reviewed the correlation between miRNAs and H. pylori in gastrointestinal diseases. Furthermore, the current review highlighted the role of H. pylori pathogen and some H. pylori-related virulence factors in the deregulation of various miRNAs, especially oncogenic miRNAs (miRs) and their associated molecular pathways. Among the related studies, some have focused on the effects of H. pylori infection on regulatory networks of miRs, while others have highlighted the effects of alterations in the expression level of miRs in H. pylori-related diseases. The connectivity between miRNAs and H. pylori is regulated by various molecular pathways and different molecular targets of miRNAs.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
47
|
Wang H, Zong Q, Wang S, Zhao C, Wu S, Bao W. Genome-Wide DNA Methylome and Transcriptome Analysis of Porcine Intestinal Epithelial Cells upon Deoxynivalenol Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6423-6431. [PMID: 31013075 DOI: 10.1021/acs.jafc.9b00613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deoxynivalenol (DON) is a type of mycotoxin that is disruptive to intestinal and immune systems. To better understand the molecular effects of DON exposure, we performed genome-wide comparisons of DNA methylation and gene expression from porcine intestinal epithelial cell IPEC-J2 upon DON exposure using reduced representation bisulfite sequencing and RNA-seq technologies. We characterized the methylation pattern changes and found 3030 differentially methylated regions. Moreover, 3226 genes showing differential expression were enriched in pathways of protein and nucleic acid synthesis and ribosome biogenesis. Integrative analysis identified 29 genes showing inverse correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon DON exposure. Our data provided new insights into epigenetic and transcriptomic alterations of intestinal epithelial cells upon DON exposure and may advance the identification of biomarkers and drug targets for predicting and controlling the toxic effects of this common mycotoxin.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Qiufang Zong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Shiqin Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Chengxiang Zhao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| |
Collapse
|
48
|
Aguilar C, Mano M, Eulalio A. Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0002-2019. [PMID: 31152522 PMCID: PMC11026079 DOI: 10.1128/microbiolspec.bai-0002-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a well-characterized class of small noncoding RNAs that act as major posttranscriptional regulators of gene expression. Accordingly, miRNAs have been associated with a wide range of fundamental biological processes and implicated in human diseases. During the past decade, miRNAs have also been recognized for their role in the complex interplay between the host and bacterial pathogens, either as part of the host response to counteract infection or as a molecular strategy employed by bacteria to subvert host pathways for their own benefit. Importantly, the characterization of downstream miRNA targets and their underlying mechanisms of action has uncovered novel molecular factors and pathways relevant to infection. In this article, we review the current knowledge of the miRNA response to bacterial infection, focusing on different bacterial pathogens, including Salmonella enterica, Listeria monocytogenes, Mycobacterium spp., and Helicobacter pylori, among others.
Collapse
Affiliation(s)
- Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-Based Therapeutics Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- RNA & Infection Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Zhang Z, Dai DQ. MicroRNA-596 acts as a tumor suppressor in gastric cancer and is upregulated by promotor demethylation. World J Gastroenterol 2019; 25:1224-1237. [PMID: 30886505 PMCID: PMC6421237 DOI: 10.3748/wjg.v25.i10.1224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the present study, we investigated a suppressive role of microRNA-596 (miR-596) in gastric cancer (GC). Moreover, the downregulation of miR-596 in GC cell lines was associated with an increase of miR-596 promoter methylation. We also established that miR-596 controls the expression of peroxiredoxin 1 (PRDX1), which has never been reported before, suggesting that this interaction could play an important role in GC progression.
AIM To study the potential role and possible regulatory mechanism of miR-596 in GC.
METHODS The expression levels of miR-596 and PRDX1 in gastric cancer tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR). Western blot and luciferase reporter assay were used to detect the effect of miR-596 on PRDX1 expression. Then, the proliferation, metastasis, and invasion of GC cell lines transfected with miR-596 mimics were analyzed, respectively, by Cell Counting Kit-8 proliferation assay, wound healing assay, and transwell invasion assay. Meanwhile, the methylation status of the promoter CpG islands of miR-596 in GC cell lines was detected by methylation-specific PCR (MSP).
RESULTS Expression of miR-596 was decreased and PRDX1 was upregulated in GC tissues and cell lines. Overexpression of miR-596 decreased the expression of PRDX1 and luciferase reporter assays detected the direct binding of miR-596 to the 3'-untranslated region (UTR) of PRDX1 transcripts. Furthermore, we found that overexpression of miR-596 remarkably suppressed cell proliferation, migration, and invasion in GC cells. We further analyzed miR-596 promoter methylation by MSP and qRT-PCR, and found the downregulation of miR-596 was associated with promoter methylation status in GC cell lines. Moreover, DNA demethylation and reactivation of miR-596 after treatment with 5-Aza-2’-deoxycytidine inhibited the proliferative ability of GC cells.
CONCLUSION MiR-596 has a tumor suppressive role in GC and is downregulated partly due to promoter hypermethylation. Furthermore, PRDX1 is one of the putative target genes of miR-596.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
50
|
Behavioral patterns of laboratory Mongolian gerbils by sex and housing condition: a case study with an emphasis on sleeping patterns. J Vet Behav 2019. [DOI: 10.1016/j.jveb.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|