1
|
Meng K, Li M, Guo L, Zhang R, Guo A, Liu M, Gu X, Qin Y, Yang T, Yang X, Hu S, Zhang C, Zheng R, Wu M, Sun X. Room-Temperature Organic Spintronic Devices with Wide Range Magnetocurrent Tuning and Multifunctionality via Electro-Optical Compensation Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417995. [PMID: 39901436 DOI: 10.1002/adma.202417995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/28/2025] [Indexed: 02/05/2025]
Abstract
In spintronics, devices exhibiting large, widely tunable magnetocurrent (MC) values at room temperature are particularly appealing due to their potential in advanced sensing, data storage, and multifunctional technologies. Organic semiconductors (OSCs), with their rich and unique spin-dependent and (opto-)electronic properties, hold significant promise for realizing such devices. However, current organic devices are constrained by limited design strategies, yielding MC values typically confined to tens of percent, thereby restricting their potential for multifunctional applications. Here, this study introduces an electro-optical compensation strategy to modulate MC values, which synergistically integrates and manages the interplays among carrier transport, spin-dependent reactions, and photogenerated carrier dynamics in OSCs-based devices. This approach achieves ultrahigh room-temperature MC values of +13 200% and -10 600% in the designed devices, with continuous and precise tunability over this range-marking a breakthrough in organic spintronic devices. Building on this achievement, by integrating multiple controllable parameters-light, bias, magnetic field, and mechanical flexibility-into a single device, a flexible, room-temperature, multifunctional device is activated, functioning as the high-sensitivity magnetic field sensor, composite field sensor, magnetic current inverter, and magnetically-controlled artificial synaptic, etc. These findings open an avenue for designing high-performance, multifunctional devices with broad implications for future spintronic-related technologies.
Collapse
Affiliation(s)
- Ke Meng
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Min Li
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Lidan Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Zhang
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ankang Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingzhe Liu
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xianrong Gu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yang Qin
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tingting Yang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xueli Yang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shunhua Hu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing, 102249, P. R. China
| | - Ruiheng Zheng
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meng Wu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, P. R. China
| |
Collapse
|
2
|
Pan L, Xie Y, Yang H, Bao X, Chen J, Zou M, Li RW. Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance. ACS NANO 2025. [PMID: 39883044 DOI: 10.1021/acsnano.4c15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations. Here, we demonstrate an omnidirectionally stretchable spin-valve sensor array with high stretchability and excellent performance. By integrating the modulus-distributed structure with liquid metal, the sensor can maintain its performance under complex deformations, enabling the overall system with omnidirectional stretchability. The fabricated spin-valve sensor exhibits a nearly unchanged giant magnetoresistance ratio of 8% and a maximum sensitivity of 0.93%/Oe upon omnidirectional strain up to 86% and can maintain stable performance without fatigue for over 1000 stretching cycles. Furthermore, this spin-valve sensor array is characterized by stable sensing performance for magnetic fields under complicated deformations and can be applied as a magnetosensitive electronic skin. Our results provide insights into the development of next-generation stretchable and wearable magnetoelectronics.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Mengting Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Wang GN, Zhang H. First-principles study on the adsorption and sensing properties of methyl acetate on VTe 2 doped systems (Ti, Sc, Ru, Y). Phys Chem Chem Phys 2024; 26:29825-29833. [PMID: 39606879 DOI: 10.1039/d4cp03497j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transition metal dichalcogenide (TMD) sensors feature a large surface-to-volume ratio, high sensitivity, fast response time, and low energy consumption. Among these materials, VTe2, with its spin polarization, shows potential as a magnetic sensor. This study aims to provide theoretical guidance for the development of methyl acetate sensors by investigating the stability and electronic properties of metal-doped VTe2 systems (Ti, Sc, Ru, and Y) using ab initio molecular dynamics (AIMD) simulations at 300 K and density functional theory (DFT) calculations. The results indicate that the doping system can be stable at 300 K. Doping VTe2 enhances spin polarization, increases the overall magnetic moment of the system, and maintains good conductivity. This suggests its potential for use in magnetic sensor applications. Among these systems, Ti-, Sc-, and Y-doped surfaces exhibited chemical adsorption, while the Ru-doped surface showed physical adsorption. Additionally, molecular dynamics simulations conducted over 5000 fs at 800 K showed that methyl acetate desorbs from the sensor surface, confirming its recyclability. These results highlight the excellent electrical and magnetic properties of the VTe2 doped system, making it a promising candidate for the design of methyl acetate sensors.
Collapse
Affiliation(s)
- Guan-Nan Wang
- College of Physics, Sichuan University, Chengdu 610065, China.
- Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610065, China
| | - Hong Zhang
- College of Physics, Sichuan University, Chengdu 610065, China.
- Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Melnikov GY, Komogortsev SV, Svalov AV, Gorchakovskiy AA, Vazhenina IG, Kurlyandskaya GV. Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements. SENSORS (BASEL, SWITZERLAND) 2024; 24:6308. [PMID: 39409348 PMCID: PMC11479168 DOI: 10.3390/s24196308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Multilayered [Cu(3 nm)/FeNi(100 nm)]5/Cu(150 nm)/FeNi(10 nm)/Cu(150 nm)/FeNi(10 nm)/Cu(150 nm)/[Cu(3 nm)/FeNi(100 nm)]5 structures were obtained by using the magnetron sputtering technique in the external in-plane magnetic field. From these, multilayer magnetoimpedance elements were fabricated in the shape of elongated stripes using the lift-off lithographic process. In order to obtain maximum magnetoimpedance (MI) sensitivity with respect to the external magnetic field, the short side of the rectangular element was oriented along the direction of the technological magnetic field applied during the multilayered structure deposition. MI sensitivity was defined as the change of the total impedance or its real part per unit of the magnetic field. The design of the elements (multilayered structure, shape of the element, etc.) contributed to the dynamic and static magnetic properties. The magnetostatic properties of the MI elements, including analysis of the magnetic domain structure, indicated the crucial importance of magnetostatic interactions between FeNi magnetic layers in the analyzed [Cu(3 nm)/FeNi(100 nm)]5 multilayers. In addition, the uniformity of the magnetic parameters was defined by the advanced technique of the local measurements of the ferromagnetic resonance field. Dynamic methods allowed investigation of the elements at different thicknesses by varying the frequency of the electromagnetic excitation. The maximum sensitivity of 40%/Oe with respect to the applied field in the range of the fields of 3 Oe to 5 Oe is promising for different applications.
Collapse
Affiliation(s)
- Grigory Yu. Melnikov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia; (G.Y.M.); (A.V.S.)
| | - Sergey V. Komogortsev
- Kirensky Institute of Physics, Federal Research Center SB RAS, 660036 Krasnoyarsk, Russia; (S.V.K.); (A.A.G.) (I.G.V.)
- Polytechnic School, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Andrey V. Svalov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia; (G.Y.M.); (A.V.S.)
| | - Alexander A. Gorchakovskiy
- Kirensky Institute of Physics, Federal Research Center SB RAS, 660036 Krasnoyarsk, Russia; (S.V.K.); (A.A.G.) (I.G.V.)
| | - Irina G. Vazhenina
- Kirensky Institute of Physics, Federal Research Center SB RAS, 660036 Krasnoyarsk, Russia; (S.V.K.); (A.A.G.) (I.G.V.)
- Polytechnic School, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Galina V. Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia; (G.Y.M.); (A.V.S.)
| |
Collapse
|
5
|
Yang H, Li S, Wu Y, Bao X, Xiang Z, Xie Y, Pan L, Chen J, Liu Y, Li RW. Advances in Flexible Magnetosensitive Materials and Devices for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311996. [PMID: 38776537 DOI: 10.1002/adma.202311996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Emerging fields, such as wearable electronics, digital healthcare, the Internet of Things, and humanoid robots, highlight the need for flexible devices capable of recording signals on curved surfaces and soft objects. In particular, flexible magnetosensitive devices garner significant attention owing to their ability to combine the advantages of flexible electronics and magnetoelectronic devices, such as reshaping capability, conformability, contactless sensing, and navigation capability. Several key challenges must be addressed to develop well-functional flexible magnetic devices. These include determining how to make magnetic materials flexible and even elastic, understanding how the physical properties of magnetic films change under external strain and stress, and designing and constructing flexible magnetosensitive devices. In recent years, significant progress is made in addressing these challenges. This study aims to provide a timely and comprehensive overview of the most recent developments in flexible magnetosensitive devices. This includes discussions on the fabrications and mechanical regulations of flexible magnetic materials, the principles and performances of flexible magnetic sensors, and their applications for wearable electronics. In addition, future development trends and challenges in this field are discussed.
Collapse
Affiliation(s)
- Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shengbin Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Zhang J, Jin Z, Chen G, Chen J. An ultrathin, rapidly fabricated, flexible giant magnetoresistive electronic skin. MICROSYSTEMS & NANOENGINEERING 2024; 10:109. [PMID: 39139649 PMCID: PMC11319584 DOI: 10.1038/s41378-024-00716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 08/15/2024]
Abstract
In recent years, there has been a significant increase in the prevalence of electronic wearables, among which flexible magnetoelectronic skin has emerged as a key component. This technology is part of the rapidly progressing field of flexible wearable electronics, which has facilitated a new human perceptual development known as the magnetic sense. However, the magnetoelectronic skin is limited due to its low sensitivity and substantial field limitations as a wearable electronic device for sensing minor magnetic fields. Additionally, achieving efficient and non-destructive delamination in flexible magnetic sensors remains a significant challenge, hindering their development. In this study, we demonstrate a novel magnetoelectronic touchless interactive device that utilizes a flexible giant magnetoresistive sensor array. The flexible magnetic sensor array was developed through an electrochemical delamination process, and the resultant ultra-thin flexible electronic system possessed both ultra-thin and non-destructive characteristics. The flexible magnetic sensor is capable of achieving a bending angle of up to 90 degrees, maintaining its performance integrity even after multiple repetitive bending cycles. Our study also provides demonstrations of non-contact interaction and pressure sensing. This research is anticipated to significantly contribute to the advancement of high-performance flexible magnetic sensors and catalyze the development of more sophisticated magnetic electronic skins.
Collapse
Affiliation(s)
- Junjie Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhenhu Jin
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guangyuan Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
7
|
Wang Q, Li M, Guo P, Gao L, Weng L, Huang W. Shape-position perceptive fusion electronic skin with autonomous learning for gesture interaction. MICROSYSTEMS & NANOENGINEERING 2024; 10:103. [PMID: 39045231 PMCID: PMC11263581 DOI: 10.1038/s41378-024-00739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024]
Abstract
Wearable devices, such as data gloves and electronic skins, can perceive human instructions, behaviors and even emotions by tracking a hand's motion, with the help of knowledge learning. The shape or position single-mode sensor in such devices often lacks comprehensive information to perceive interactive gestures. Meanwhile, the limited computing power of wearable applications restricts the multimode fusion of different sensing data and the deployment of deep learning networks. We propose a perceptive fusion electronic skin (PFES) with a bioinspired hierarchical structure that utilizes the magnetization state of a magnetostrictive alloy film to be sensitive to external strain or magnetic field. Installed at the joints of a hand, the PFES realizes perception of curvature (joint shape) and magnetism (joint position) information by mapping corresponding signals to the two-directional continuous distribution such that the two edges represent the contributions of curvature radius and magnetic field, respectively. By autonomously selecting knowledge closer to the user's hand movement characteristics, the reinforced knowledge distillation method is developed to learn and compress a teacher model for rapid deployment on wearable devices. The PFES integrating the autonomous learning algorithm can fuse curvature-magnetism dual information, ultimately achieving human machine interaction with gesture recognition and haptic feedback for cross-space perception and manipulation.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin, China
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Mingming Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin, China
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Pingping Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin, China
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Liang Gao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin, China
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Ling Weng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin, China
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Wenmei Huang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin, China
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
8
|
Kwon H, Yang Y, Kim G, Gim D, Ha M. Anisotropy in magnetic materials for sensors and actuators in soft robotic systems. NANOSCALE 2024; 16:6778-6819. [PMID: 38502047 DOI: 10.1039/d3nr05737b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of soft intelligent robots has rapidly developed, revealing extensive potential of these robots for real-world applications. By mimicking the dexterities of organisms, robots can handle delicate objects, access remote areas, and provide valuable feedback on their interactions with different environments. For autonomous manipulation of soft robots, which exhibit nonlinear behaviors and infinite degrees of freedom in transformation, innovative control systems integrating flexible and highly compliant sensors should be developed. Accordingly, sensor-actuator feedback systems are a key strategy for precisely controlling robotic motions. The introduction of material magnetism into soft robotics offers significant advantages in the remote manipulation of robotic operations, including touch or touchless detection of dynamically changing shapes and positions resulting from the actuations of robots. Notably, the anisotropies in the magnetic nanomaterials facilitate the perception and response with highly selective, directional, and efficient ways used for both sensors and actuators. Accordingly, this review provides a comprehensive understanding of the origins of magnetic anisotropy from both intrinsic and extrinsic factors and summarizes diverse magnetic materials with enhanced anisotropy. Recent developments in the design of flexible sensors and soft actuators based on the principle of magnetic anisotropy are outlined, specifically focusing on their applicabilities in soft robotic systems. Finally, this review addresses current challenges in the integration of sensors and actuators into soft robots and offers promising solutions that will enable the advancement of intelligent soft robots capable of efficiently executing complex tasks relevant to our daily lives.
Collapse
Affiliation(s)
- Hyeokju Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Yeonhee Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Geonsu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Dongyeong Gim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Minjeong Ha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Hua Q, Shen G. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem Soc Rev 2024; 53:1316-1353. [PMID: 38196334 DOI: 10.1039/d3cs00918a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Flexible/stretchable electronics, which are characterized by their ultrathin design, lightweight structure, and excellent mechanical robustness and conformability, have garnered significant attention due to their unprecedented potential in healthcare, advanced robotics, and human-machine interface technologies. An increasing number of low-dimensional nanostructures with exceptional mechanical, electronic, and/or optical properties are being developed for flexible/stretchable electronics to fulfill the functional and application requirements of information sensing, processing, and interactive loops. Compared to the traditional single-layer format, which has a restricted design space, a monolithic three-dimensional (M3D) integrated device architecture offers greater flexibility and stretchability for electronic devices, achieving a high-level of integration to accommodate the state-of-the-art design targets, such as skin-comfort, miniaturization, and multi-functionality. Low-dimensional nanostructures possess small size, unique characteristics, flexible/elastic adaptability, and effective vertical stacking capability, boosting the advancement of M3D-integrated flexible/stretchable systems. In this review, we provide a summary of the typical low-dimensional nanostructures found in semiconductor, interconnect, and substrate materials, and discuss the design rules of flexible/stretchable devices for intelligent sensing and data processing. Furthermore, artificial sensory systems in 3D integration have been reviewed, highlighting the advancements in flexible/stretchable electronics that are deployed with high-density, energy-efficiency, and multi-functionalities. Finally, we discuss the technical challenges and advanced methodologies involved in the design and optimization of low-dimensional nanostructures, to achieve monolithic 3D-integrated flexible/stretchable multi-sensory systems.
Collapse
Affiliation(s)
- Qilin Hua
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
10
|
Wang HL, Wang Y. Touchless Artificial Perception beyond Fingertip Probing. ACS NANO 2023; 17:20723-20733. [PMID: 37901955 DOI: 10.1021/acsnano.3c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Touchless perception technology allows us to acquire information beyond the contact interfaces, making it ideal for scenarios where physical engagements are not possible. Unlike tactile devices, which have so far achieved impressive results, touchless strategies are fascinating yet underdeveloped. We envisage that touchless technologies could be powerful supplements to current haptics. In this Perspective, we include emerging touchless electronics, aiming to provide a broader and comprehensive picture toward artificial perceptual realm. We overview popular touchless protocols, sketch what could be detected by touchless probing, and summarize their latest spectacular achievements. In addition, we present the promises and challenges posed by touchless technologies and discuss possible directions for their future deployments.
Collapse
Affiliation(s)
- Hai Lu Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| |
Collapse
|
11
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
12
|
Correa MA, Svalov AV, Ferreira A, Gamino M, da Silva EF, Bohn F, Vaz F, de Oliveira DF, Kurlyandskaya GV. Longitudinal Spin Seebeck Effect Thermopiles Based on Flexible Co-Rich Amorphous Ribbons/Pt Thin-Film Heterostructures. SENSORS (BASEL, SWITZERLAND) 2023; 23:7781. [PMID: 37765838 PMCID: PMC10537014 DOI: 10.3390/s23187781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Thermoelectric phenomena, such as the Anomalous Nernst and Longitudinal Spin Seebeck Effects, are promising for sensor applications in the area of renewable energy. In the case of flexible electronic materials, the request is even larger because they can be integrated into devices having complex shape surfaces. Here, we reveal that Pt promotes an enhancement of the thermoelectric response in Co-rich ribbon/Pt heterostructures due to the spin-to-charge conversion. Moreover, we demonstrated that the employment of the thermopiles configuration in this system increases the induced thermoelectric current, a fact related to the considerable decrease in the electric resistance of the system. By comparing present findings with the literature, we were able to design a flexible thermopile based on LSSE without the lithography process. Additionally, the thermoelectric voltage found in the studied flexible heterostructures is comparable to the ones verified for rigid systems.
Collapse
Affiliation(s)
- Marcio A. Correa
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (M.G.); (E.F.d.S.); (F.B.)
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal; (A.F.)
| | - Andrey V. Svalov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Armando Ferreira
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal; (A.F.)
- LaPMET—Laboratório de Física para Materiais e Tecnologias Emergentes, Universidade do Minho, 4710-057 Braga, Portugal
| | - Matheus Gamino
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (M.G.); (E.F.d.S.); (F.B.)
| | - Edimilson F. da Silva
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (M.G.); (E.F.d.S.); (F.B.)
| | - Felipe Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (M.G.); (E.F.d.S.); (F.B.)
| | - Filipe Vaz
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal; (A.F.)
- LaPMET—Laboratório de Física para Materiais e Tecnologias Emergentes, Universidade do Minho, 4710-057 Braga, Portugal
| | - Danniel F. de Oliveira
- Departamento de Ciências dos Materiais, Universidade Federal da Paraíba, João Pessoa 58059-900, PB, Brazil;
| | - Galina V. Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| |
Collapse
|
13
|
Wei J, Yu S, Li L, Wang X, Lu C. Tunable Magnetic Domain Patterns in Thickness-Gradient Nickel Films on Flexible PDMS Substrates. ACS OMEGA 2023; 8:31178-31187. [PMID: 37663513 PMCID: PMC10468897 DOI: 10.1021/acsomega.3c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Flexible magnetoelectronic devices (based on magnetic films) have great application prospects in the fields of information storages, bionic robotics, and electronic skins. The intrinsic stress and external loading are very important to modulate the structures and properties of flexible magnetic films due to the magnetoelastic coupling effect. Here, we report on tunable magnetic domain patterns in thickness-gradient nickel (Ni) films deposited on flexible polydimethylsiloxane substrates. It is found that stripe magnetic domains spontaneously form in the Ni films and their sizes increase with the film thickness. The internal stress evolves from tensile to compressive states with decreasing film thickness, leading to the formation of cracks in thicker regions and wrinkles in thinner regions. Meanwhile, the orientations of stripe magnetic domains change from the gradient direction to the orthogonal direction. The structural features, evolution behaviors, and physical mechanisms of the cracks, wrinkles, and magnetic domains are analyzed based on the stress theory and magnetoelastic coupling. Periodic gradient Ni films with large-scale regulations of stripe magnetic domains are also realized by masking of copper grids. This study helps to better understand the magnetoelastic coupling effect in gradient flexible magnetic films and provides a technique to modulate anisotropic magnetic properties by designing specific film systems.
Collapse
Affiliation(s)
- Jingjing Wei
- Key
Laboratory of Novel Materials for Sensor of Zhejiang Province, College
of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Senjiang Yu
- Key
Laboratory of Novel Materials for Sensor of Zhejiang Province, College
of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Lingwei Li
- Key
Laboratory of Novel Materials for Sensor of Zhejiang Province, College
of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Xin Wang
- Key
Laboratory of Novel Materials for Sensor of Zhejiang Province, College
of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Chenxi Lu
- Key
Laboratory of Novel Materials for Sensor of Zhejiang Province, College
of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
- State
Key Laboratory of Silicon Materials, Zhejiang
University, Hangzhou 310027, P. R. China
| |
Collapse
|
14
|
Melnikov GY, Vazhenina IG, Iskhakov RS, Boev NM, Komogortsev SV, Svalov AV, Kurlyandskaya GV. Magnetic Properties of FeNi/Cu-Based Lithographic Rectangular Multilayered Elements for Magnetoimpedance Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:6165. [PMID: 37448014 DOI: 10.3390/s23136165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
The rectangular elements in magnetoimpedance (MI) configuration with a specific nanocomposite laminated structure based on FeNi and Cu layers were prepared by lift-off lithographic process. The properties of such elements are controlled by their shape, the anisotropy induced during the deposition, and by effects associated with the composite structure. The characterizations of static and dynamic properties, including MI measurements, show that these elements are promising for sensor applications. We have shown that competition between the shape anisotropy and the in-plane induced anisotropy of the element material is worth taking into account in order to understand the magnetic behavior of multilayered rectangular stripes. A possibility of the dynamic methods (ferromagnetic and spin-wave resonance) to describe laminated planar elements having a non-periodic modulation of both structure and magnetic parameters of a system is demonstrated. We show that the multilayered structure, which was originally designed to prevent the development of a "transcritical" state in magnetic layers and to reach the required thickness, also induces the effects that hinder the achievement of the goal, namely an increase in the perpendicular magnetic anisotropy energy.
Collapse
Affiliation(s)
- Grigory Yu Melnikov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Irina G Vazhenina
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
- School of Space and Information Technology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Rauf S Iskhakov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Nikita M Boev
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Sergey V Komogortsev
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
- Applied Physics Department, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia
| | - Andrey V Svalov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Galina V Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| |
Collapse
|
15
|
Pan L, Xie Y, Yang H, Li M, Bao X, Shang J, Li RW. Flexible Magnetic Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:4083. [PMID: 37112422 PMCID: PMC10141728 DOI: 10.3390/s23084083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
With the merits of high sensitivity, high stability, high flexibility, low cost, and simple manufacturing, flexible magnetic field sensors have potential applications in various fields such as geomagnetosensitive E-Skins, magnetoelectric compass, and non-contact interactive platforms. Based on the principles of various magnetic field sensors, this paper introduces the research progress of flexible magnetic field sensors, including the preparation, performance, related applications, etc. In addition, the prospects of flexible magnetic field sensors and their challenges are presented.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Mengchao Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
16
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
17
|
Xue K, Zhou Z, Yang H, Cui A, Cheng W, Jiang D, Xu Y, Shang T, Zhan Q. Stabilizing High-Frequency Magnetic Properties of Stretchable CoFeB Films by Ribbon-Patterned Periodic Wrinkles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913709 DOI: 10.1021/acsami.3c00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The intrinsic nonstretchable feature of magnetic films has significantly limited its applications on wearable high-frequency devices. Recent studies have proved that the wrinkling surface structure based on the growth on polydimethylsiloxane (PDMS) is an effective route to obtain stretchable magnetic films. However, it is still a great challenge to simultaneously achieve a desired stretchability and stretching-insensitive high-frequency properties of magnetic films. Herein, we reported a convenient method to stabilize the high-frequency properties of stretchable magnetic films by depositing magnetic ribbon-patterned films on prestrain PDMS membranes. The ribbon-patterned wrinkling CoFeB films have far fewer cracks than the continuous film, which indicates a nice strain-relief effect and thus confers the stability of high-frequency properties for the films under stretching. However, the wrinkle bifurcation and the uneven thickness at the ribbon edge could adversely affect the stability of its high-frequency properties. The 200 μm wide ribbon-patterned film shows the best stretching-insensitive behaviors and maintains a constant resonance frequency of 3.17 GHz at strain from 10% to 25%. Moreover, a good repeatability has been demonstrated by performing thousands of stretch-release cycles, which did not significantly deteriorate its performances. The ribbon-patterned wrinkling CoFeB films with excellent stretching-insensitive high-frequency properties are promising for application in flexible microwave devices.
Collapse
Affiliation(s)
- Kelei Xue
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zheng Zhou
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Anyang Cui
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Wenjuan Cheng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Dongmei Jiang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yang Xu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Tian Shang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qingfeng Zhan
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
18
|
Han Y, Cao Y, Zhou J, Yao Y, Wu X, Bolisetty S, Diener M, Handschin S, Lu C, Mezzenga R. Interfacial Electrostatic Self-Assembly of Amyloid Fibrils into Multifunctional Protein Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206867. [PMID: 36698306 PMCID: PMC10037951 DOI: 10.1002/advs.202206867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Indexed: 05/31/2023]
Abstract
Amyloid fibrils have generated steadily increasing traction in the development of natural and artificial materials. However, it remains a challenge to construct bulk amyloid films directly from amyloid fibrils due to their intrinsic brittleness. Here, a facile and general methodology to fabricate macroscopic and tunable amyloid films via fast electrostatic self-assembly of amyloid fibrils at the air-water interface is introduced. Benefiting from the excellent templating properties of amyloid fibrils for nanoparticles (such as conductive carbon nanotubes or magnetic Fe3 O4 nanoparticles), multifunctional amyloid films with tunable properties are constructed. As proof-of-concept demonstrations, a magnetically oriented soft robotic swimmer with well-confined movement trajectory is prepared. In addition, a smart magnetic sensor with high sensitivity to external magnetic fields is fabricated via the combination of the conductive and magnetic amyloid films. This strategy provides a convenient, efficient, and controllable approach for the preparation of amyloid-based multifunctional films and related smart devices.
Collapse
Affiliation(s)
- Yangyang Han
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversitySichuan610065P. R. China
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Yiping Cao
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Jiangtao Zhou
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Yang Yao
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Xiaodong Wu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversitySichuan610065P. R. China
| | - Sreenath Bolisetty
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
- BluAct Technologies GmbHZurich8092Switzerland
| | - Michael Diener
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Stephan Handschin
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Canhui Lu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversitySichuan610065P. R. China
| | - Raffaele Mezzenga
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| |
Collapse
|
19
|
Correa MA, Ferreira A, Souza ALR, Dantas Neto JM, Bohn F, Vaz F, Kurlyandskaya GV. Anomalous Nernst Effect in Flexible Co-Based Amorphous Ribbons. SENSORS (BASEL, SWITZERLAND) 2023; 23:1420. [PMID: 36772460 PMCID: PMC9921265 DOI: 10.3390/s23031420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Fe3Co67Cr3Si15B12 ribbons with a high degree of flexibility and excellent corrosion stability were produced by rapid quenching technique. Their structural, magnetic, and thermomagnetic (Anomalous Nernst Effect) properties were studied both in an as-quenched (NR) state and after stress annealing during 1 h at the temperature of 350 °C and a specific load of 230 MPa (AR). X-ray diffraction was used to verify the structural characteristics of our ribbons. Static magnetic properties were explored by inductive technique and vibrating sample magnetometry. The thermomagnetic curves investigated through the Anomalous Nernst Effect are consistent with the obtained magnetization results, presenting a linear response in the thermomagnetic signal, an interesting feature for sensor applications. Additionally, Anomalous Nernst Effect coefficient SANE values of 2.66μV/K and 1.93μV/K were estimated for the as-quenched and annealed ribbons, respectively. The interplay of the low magnetostrictive properties, soft magnetic behavior, linearity of the thermomagnetic response, and flexibility of these ribbons place them as promising systems to probe curved surfaces and propose multifunctional devices, including magnetic field-specialized sensors.
Collapse
Affiliation(s)
- Marcio A. Correa
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
| | - Armando Ferreira
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratório de Física para Materiais e Tecnologias Emergentes, Universidade do Minho, 4710-057 Braga, Portugal
| | - Arthur L. R. Souza
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - João. M. Dantas Neto
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Felipe Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Filipe Vaz
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratório de Física para Materiais e Tecnologias Emergentes, Universidade do Minho, 4710-057 Braga, Portugal
| | - Galina V. Kurlyandskaya
- Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg, Russia
- Department of Electricity and Electronics, University of the Basque Country UPV/EHU, 48940 Leioa, Biscay, Spain
| |
Collapse
|
20
|
Svalov AV, Gorkovenko AN, Larrañaga A, Volochaev MN, Kurlyandskaya GV. Structural and Magnetic Properties of FeNi Films and FeNi-Based Trilayers with Out-of-Plane Magnetization Component. SENSORS (BASEL, SWITZERLAND) 2022; 22:8357. [PMID: 36366056 PMCID: PMC9658031 DOI: 10.3390/s22218357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
FeNi films of different thickness and FeNi/(Fe, Co)/FeNi trilayers were prepared by magnetron sputtering deposition onto glass substrates. The permalloy films had a columnar microstructure. The detailed analysis of the magnetic properties based on the magnetic and magneto-optical measurements showed that at thicknesses exceeding a certain critical thickness, hysteresis loops acquire a specific shape and the coercive force of the films increase sharply. The possibility of the estimation of the perpendicular magnetic anisotropy constant using the Murayama equation for the thickness dependence of saturation field was demonstrated. The results of studies of the structural and magnetic properties of FeNi films laminated by Fe and Co spacers with different thickness are presented.
Collapse
Affiliation(s)
- Andrey V. Svalov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Alexandr N. Gorkovenko
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Aitor Larrañaga
- Advanced Research Facilities (SGIKER), Universidad del País Vasco UPV-EHU, 48080 Bilbao, Spain
| | | | - Galina V. Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
- Departamento de Electricidad y Electrónica, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| |
Collapse
|
21
|
Plasma-Enhanced Carbon Nanotube Fiber Cathode for Li-S Batteries. Mol Vis 2022. [DOI: 10.3390/c8020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fiber-shaped batteries have attracted much interest in the last few years. However, a major challenge for this type of battery is their relatively low energy density. Here, we present a freestanding, flexible CNT fiber with high electrical conductivity and applied oxygen plasma-functionalization, which was successfully employed to serve as an effective cathode for Li-S batteries. The electrochemical results obtained from the conducted battery tests showed a decent rate capability and cyclic stability. The cathode delivered a capacity of 1019 mAh g−1 at 0.1 C. It accommodated a high sulfur loading of 73% and maintained 47% of the initial capacity after 300 cycles. The demonstrated performance of the fiber cathode provides new insights for the designing and fabrication of high energy density fiber-shaped batteries.
Collapse
|
22
|
Wu K, Tonini D, Liang S, Saha R, Chugh VK, Wang JP. Giant Magnetoresistance Biosensors in Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9945-9969. [PMID: 35167743 PMCID: PMC9055838 DOI: 10.1021/acsami.1c20141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The giant magnetoresistance (GMR) effect has seen flourishing development from theory to application in the last three decades since its discovery in 1988. Nowadays, commercial devices based on the GMR effect, such as hard-disk drives, biosensors, magnetic field sensors, microelectromechanical systems (MEMS), etc., are available in the market, by virtue of the advances in state-of-the-art thin-film deposition and micro- and nanofabrication techniques. Different types of GMR biosensor arrays with superior sensitivity and robustness are available at a lower cost for a wide variety of biomedical applications. In this paper, we review the recent advances in GMR-based biomedical applications including disease diagnosis, genotyping, food and drug regulation, brain and cardiac mapping, etc. The GMR magnetic multilayer structure, spin valve, and magnetic granular structure, as well as fundamental theories of the GMR effect, are introduced at first. The emerging topic of flexible GMR for wearable biosensing is also included. Different GMR pattern designs, sensor surface functionalization, bioassay strategies, and on-chip accessories for improved GMR performances are reviewed. It is foreseen that combined with the state-of-the-art complementary metal-oxide-semiconductor (CMOS) electronics, GMR biosensors hold great promise in biomedicine, particularly for point-of-care (POC) disease diagnosis and wearable devices for real-time health monitoring.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Denis Tonini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Wang X, Gao X, Wang Y, Niu X, Wang T, Liu Y, Qi F, Jiang Y, Liu H. Development of High-Sensitivity Piezoresistive Sensors Based on Highly Breathable Spacer Fabric with TPU/PPy/PDA Coating. Polymers (Basel) 2022; 14:859. [PMID: 35267681 PMCID: PMC8912863 DOI: 10.3390/polym14050859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, the research of flexible sensors has become a hot topic in the field of wearable technology, attracting the attention of many researchers. However, it is still a difficult challenge to prepare low-cost and high-performance flexible sensors by a simple process. Three-dimensional spacer fabric (SF) are the ideal substrate for flexible pressure sensors due to its good compression resilience and high permeability (5747.7 mm/s, approximately 10 times that of cotton). In this paper, Thermoplastic polyurethane/Polypyrrole/Polydopamine/Space Fabric (TPU/PPy/PDA/SF) composite fabrics were prepared in a simple in-situ polymerization method by sequentially coating polydopamine (PDA) and Polypyrrole (PPy) on the surface of SF, followed by spin-coating of different polymers (thermoplastic polyurethane (TPU), polydimethylsiloxane (PDMS) and Ecoflex) on the PPy/PDA/SF surface. The results showed that the TPU/PPy/PDA/SF pressure sensors prepared by spin-coating TPU at 900 rpm at a concentration of 0.3 mol of pyrrole monomer (py) and a polymerization time of 60 min have optimum sensing performance, a wide working range (0−10 kPa), high sensitivity (97.28 kPa−1), fast response (60 ms), good cycling stability (>500 cycles), and real-time motion monitoring of different parts of the body (e.g., arms and knees). The TPU/PPy/PDA/SF piezoresistive sensor with high sensitivity on a highly permeable spacer fabric base developed in this paper has promising applications in the field of health monitoring.
Collapse
Affiliation(s)
- Xiujuan Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
- Aerospace Life-supports Industries LTD, Xiangyang 441003, China
- Aviation Key Laboratory of Science and Technology on Life-support Technology, Xiangyang 441003, China
| | - Xiaoyu Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
| | - Yu Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
| | - Xin Niu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
| | - Tanyu Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
| | - Yuanjun Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
| | - Fangxi Qi
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
| | - Yaming Jiang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (X.W.); (X.G.); (Y.W.); (X.N.); (T.W.); (Y.L.); (F.Q.)
- Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin 300387, China
| |
Collapse
|
24
|
Robust Piezoelectric Coefficient Recovery by Nano-Inclusions Dispersion in Un-Poled PVDF–Ni0.5Zn0.5Fe2O4 Ultra-Thin Films. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work aimed to study the influence of the hybrid interface in polyvinylidene fluoride (PVDF)-based composite thin films on the local piezoelectric response. Our results provide evidence of a surprising contradiction: the optimization process of the β-phase content using nano-inclusions did not correspond to the expected nanoscale piezoelectric optimization. A large piezoelectric loss was observed at the nanoscale level, which contrasts with the macroscopic polarization measurement observations. Our main goal was to show that the dispersion of metallic ferromagnetic nano-inclusions inside the PVDF films allows for the partial recovery of the local piezoelectric properties. From a dielectric point of view, it is not trivial to expect that keeping the same amount of the metallic volume inside the dielectric PVDF matrix would bring a better piezoelectric response by simply dispersing this phase. On the local resonance measured by PFM, this should be the worst due to the homogeneous distribution of the nano-inclusions. Both neat PVDF films and hybrid ones (0.5% in wt of nanoparticles included into the polymer matrix) showed, as-deposited (un-poled), a similar β-phase content. Although the piezoelectric coefficient in the case of the hybrid films was one order of magnitude lower than that for the neat PVDF films, the robustness of the polarized areas was reported 24 h after the polarization process and after several images scanning. We thus succeeded in demonstrating that un-poled polymer thin films can show the same piezoelectric coefficient as the poled one (i.e., 10 pm/V). In addition, low electric field switching (50 MV/m) was used here compared to the typical values reported in the literature (100–150 MV/m).
Collapse
|
25
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
26
|
Zhang W, Guo Q, Duan Y, Xu Q, Shang C, Li N, Peng Z. Touchless Sensing Interface Based on the Magneto-Piezoresistive Effect of Magnetic Microstructures with Stacked Conductive Coating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61422-61433. [PMID: 34905921 DOI: 10.1021/acsami.1c19137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Robotics capable of human-like operations need to have electronic skin (e-skin) with not only tactile sensing functions but also proximity perception abilities. Especially, under the current widespread of COVID-19 pandemic, touchless interfaces are highly desirable. Magnetoreception, with inherent specificity for magnetic objects, is an effective approach to construct a non-contact sensing e-skin. In this work, we propose a new touchless sensing mechanism based on the magneto-piezoresistive effect. The substrate of the sensor is made of hierarchically microstructured ferromagnetic polydimethylsiloxane, coated with a three-dimensional (3D) piezoresistive network. The 3D network is constructed by stacked layers of reduced graphene oxide and carbon nanotubes through layer-by-layer deposition. With this integrated design, a magnetic force induced on the ferromagnetic substrate can seamlessly be applied to the piezoresistive layer of the sensor. Because the magnetic force relates strongly to the approaching distance, the position information can be transduced into the resistance change of the piezoresistive network. The flexible proximity sensor exhibits an ultrahigh spatial resolution of 60 μm, a sensitivity of 50.47 cm-1, a wide working range of 6 cm, and a fast response of 10 ms. The repeatable performance of the sensor is shown by over 5000 cycles of approaching-separation test. We also demonstrate successful application of the sensor in 3D positioning and motion tracking settings, which is critical for touchless tactile perception-based human-machine interactions.
Collapse
Affiliation(s)
- Weiguan Zhang
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qinhua Guo
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Duan
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qunhui Xu
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Shang
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Li
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
27
|
Gao HL, Wang ZY, Cui C, Bao JZ, Zhu YB, Xia J, Wen SM, Wu HA, Yu SH. A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102724. [PMID: 34387379 DOI: 10.1002/adma.202102724] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Porous carbon materials demonstrate extensive applications for their attractive characteristics. Mechanical flexibility is an essential property guaranteeing their durability. After decades of research efforts, compressive brittleness of porous carbon materials is well resolved. However, reversible stretchability remains challenging to achieve due to the intrinsically weak connections and fragile joints of the porous carbon networks. Herein, it is presented that a porous all-carbon material achieving both elastic compressibility and stretchability at large strain from -80% to 80% can be obtained when a unique long-range lamellar multi-arch microstructure is introduced. Impressively, the porous all-carbon material can maintain reliable structural robustness and durability under loading condition of cyclic compressing-stretching process, similar to a real metallic spring. The unique performance renders it as a promising platform for making smart vibration and magnetism sensors, even capable of operating at extreme temperatures. Furthermore, this study provides valuable insights for creating highly stretchable and compressible porous materials from other neat inorganic components for diverse applications in future.
Collapse
Affiliation(s)
- Huai-Ling Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Ze-Yu Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Cui
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Zheng Bao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shao-Meng Wen
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
28
|
Abstract
Soft wearable electronics are rapidly developing through exploration of new materials, fabrication approaches, and design concepts. Although there have been many efforts for decades, a resurgence of interest in liquid metals (LMs) for sensing and wiring functional properties of materials in soft wearable electronics has brought great advances in wearable electronics and materials. Various forms of LMs enable many routes to fabricate flexible and stretchable sensors, circuits, and functional wearables with many desirable properties. This review article presents a systematic overview of recent progresses in LM-enabled wearable electronics that have been achieved through material innovations and the discovery of new fabrication approaches and design architectures. We also present applications of wearable LM technologies for physiological sensing, activity tracking, and energy harvesting. Finally, we discuss a perspective on future opportunities and challenges for wearable LM electronics as this field continues to grow.
Collapse
Affiliation(s)
- Phillip Won
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute of Advanced Machines and Design / Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
29
|
Zhang J, Lee WK, Tu R, Rhee D, Zhao R, Wang X, Liu X, Hu X, Zhang X, Odom TW, Yan M. Spontaneous Formation of Ordered Magnetic Domains by Patterning Stress. NANO LETTERS 2021; 21:5430-5437. [PMID: 33847117 DOI: 10.1021/acs.nanolett.1c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The formation of ordered magnetic domains in thin films is important for the magnetic microdevices in spin-electronics, magneto-optics, and magnetic microelectromechanical systems. Although inducing anisotropic stress in magnetostrictive materials can achieve the domain assembly, controlling magnetic anisotropy over microscale areas is challenging. In this work, we realized the microscopic patterning of magnetic domains by engineering stress distribution. Deposition of ferromagnetic thin films on nanotrenched polymeric layers induced tensile stress at the interfaces, giving rise to the directional magnetoelastic coupling to form ordered domains spontaneously. By changing the periodicity and shape of nanotrenches, we spatially tuned the geometric configuration of domains by design. Theoretical analysis and micromagnetic characterization confirmed that the local stress distribution by the topographic confinement dominates the forming mechanism of the directed magnetization.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Won-Kyu Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Rui Tu
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Dongjoon Rhee
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Rongzhi Zhao
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Xinyu Wang
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Xiaolian Liu
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Xin Hu
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Teri W Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mi Yan
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| |
Collapse
|
30
|
Ge J, Zhu M, Eisner E, Yin Y, Dong H, Karnaushenko DD, Karnaushenko D, Zhu F, Ma L, Schmidt OG. Imperceptible Supercapacitors with High Area-Specific Capacitance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101704. [PMID: 33977641 DOI: 10.1002/smll.202101704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2 SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm-including substrate, electrode, and electrolyte-and an area-specific capacitance of 36 mF cm-2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2 SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2 SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
Collapse
Affiliation(s)
- Jin Ge
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
| | - Minshen Zhu
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
| | - Eric Eisner
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
| | - Yin Yin
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
| | - Haiyun Dong
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
| | | | - Daniil Karnaushenko
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
| | - Feng Zhu
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
| | - Libo Ma
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany
- School of Science, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
31
|
Hassan M, Laureti S, Rinaldi C, Fagiani F, Varotto S, Barucca G, Schmidt NY, Varvaro G, Albrecht M. Perpendicularly magnetized Co/Pd-based magneto-resistive heterostructures on flexible substrates. NANOSCALE ADVANCES 2021; 3:3076-3084. [PMID: 36133649 PMCID: PMC9418425 DOI: 10.1039/d1na00110h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 06/14/2023]
Abstract
Flexible magneto-resistive heterostructures have received a great deal of attention over the past few years as they allow for new product paradigms that are not possible with conventional rigid substrates. While the progress and development of systems with longitudinal magnetic anisotropy on non-planar substrates has been remarkable, flexible magneto-resistive heterostructures with perpendicular magnetic anisotropy (PMA) have never been studied despite the possibility to obtain additional functionality and improved performance. To fill this gap, flexible PMA Co/Pd-based giant magneto-resistive (GMR) spin-valve stacks were prepared by using an innovative transfer-and-bonding strategy exploiting the low adhesion of a gold underlayer to SiO x /Si(100) substrates. The approach allows overcoming the limits of the direct deposition on commonly used polymer substrates, whose high surface roughness and low melting temperature could hinder the growth of complex heterostructures with perpendicular magnetic anisotropy. The obtained PMA flexible spin-valves show a sizeable GMR ratio (∼1.5%), which is not affected by the transfer process, and a high robustness against bending as indicated by the slight change of the magneto-resistive properties upon bending, thus allowing for their integration on curved surfaces and the development of a novel class of advanced devices based on flexible magneto-resistive structures with perpendicular magnetic anisotropy. Besides endowing the family of flexible electronics with PMA magneto-resistive heterostructures, the exploitation of the results might apply to high temperature growth processes and to the fabrication of other functional and flexible multilayer materials engineered at the nanoscale.
Collapse
Affiliation(s)
- M Hassan
- Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, nM2-Lab Via Salaria km 29.300 Monterotondo Scalo (Roma) 00015 Italy
- Università Politecnica delle Marche, Dipartimento SIMAU Via Brecce Bianche Ancona 60131 Italy
| | - S Laureti
- Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, nM2-Lab Via Salaria km 29.300 Monterotondo Scalo (Roma) 00015 Italy
| | - C Rinaldi
- Politecnico di Milano, Department of Physics and IFN-CNR via G. Colombo 81 20133 Milano Italy
| | - F Fagiani
- Politecnico di Milano, Department of Physics and IFN-CNR via G. Colombo 81 20133 Milano Italy
| | - S Varotto
- Politecnico di Milano, Department of Physics and IFN-CNR via G. Colombo 81 20133 Milano Italy
| | - G Barucca
- Università Politecnica delle Marche, Dipartimento SIMAU Via Brecce Bianche Ancona 60131 Italy
| | - N Y Schmidt
- University of Augsburg, Institute of Physics Universitätsstraße 1 Nord D-86159 Augsburg Germany
| | - G Varvaro
- Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, nM2-Lab Via Salaria km 29.300 Monterotondo Scalo (Roma) 00015 Italy
| | - M Albrecht
- University of Augsburg, Institute of Physics Universitätsstraße 1 Nord D-86159 Augsburg Germany
| |
Collapse
|
32
|
Ha M, Cañón Bermúdez GS, Liu JA, Oliveros Mata ES, Evans EE, Tracy JB, Makarov D. Reconfigurable Magnetic Origami Actuators with On-Board Sensing for Guided Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008751. [PMID: 33969551 PMCID: PMC11481057 DOI: 10.1002/adma.202008751] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Origami utilizes orchestrated transformation of soft 2D structures into complex 3D architectures, mimicking shapes and functions found in nature. In contrast to origami in nature, synthetic origami lacks the ability to monitor the environment and correspondingly adjust its behavior. Here, magnetic origami actuators with capabilities to sense their orientation and displacement as well as detect their own magnetization state and readiness for supervised folding are designed, fabricated, and demonstrated. These origami actuators integrate photothermal heating and magnetic actuation by using composite thin films (≈60 µm thick) of shape-memory polymers with embedded magnetic NdFeB microparticles. Mechanically compliant magnetic field sensors, known as magnetosensitive electronic skins, are laminated on the surface of the soft actuators. These ultrathin actuators accomplish sequential folding and recovery, with hinge locations programmed on the fly. Endowing mechanically active smart materials with cognition is an important step toward realizing intelligent, stimuli-responsive structures.
Collapse
Affiliation(s)
- Minjeong Ha
- Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Institute of Ion Beam Physics and Materials ResearchBautzner Landstrasse 400Dresden01328Germany
| | - Gilbert Santiago Cañón Bermúdez
- Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Institute of Ion Beam Physics and Materials ResearchBautzner Landstrasse 400Dresden01328Germany
| | - Jessica A.‐C. Liu
- Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Eduardo Sergio Oliveros Mata
- Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Institute of Ion Beam Physics and Materials ResearchBautzner Landstrasse 400Dresden01328Germany
| | | | - Joseph B. Tracy
- Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Denys Makarov
- Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Institute of Ion Beam Physics and Materials ResearchBautzner Landstrasse 400Dresden01328Germany
| |
Collapse
|
33
|
Barcelos DA, Leitao DC, Pereira LCJ, Gonçalves MC. What Is Driving the Growth of Inorganic Glass in Smart Materials and Opto-Electronic Devices? MATERIALS (BASEL, SWITZERLAND) 2021; 14:2926. [PMID: 34072283 PMCID: PMC8198596 DOI: 10.3390/ma14112926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Inorganic glass is a transparent functional material and one of the few materials that keeps leading innovation. In the last decades, inorganic glass was integrated into opto-electronic devices such as optical fibers, semiconductors, solar cells, transparent photovoltaic devices, or photonic crystals and in smart materials applications such as environmental, pharmaceutical, and medical sensors, reinforcing its influence as an essential material and providing potential growth opportunities for the market. Moreover, inorganic glass is the only material that is 100% recyclable and can incorporate other industrial offscourings and/or residues to be used as raw materials. Over time, inorganic glass experienced an extensive range of fabrication techniques, from traditional melting-quenching (with an immense diversity of protocols) to chemical vapor deposition (CVD), physical vapor deposition (PVD), and wet chemistry routes as sol-gel and solvothermal processes. Additive manufacturing (AM) was recently added to the list. Bulks (3D), thin/thick films (2D), flexible glass (2D), powders (2D), fibers (1D), and nanoparticles (NPs) (0D) are examples of possible inorganic glass architectures able to integrate smart materials and opto-electronic devices, leading to added-value products in a wide range of markets. In this review, selected examples of inorganic glasses in areas such as: (i) magnetic glass materials, (ii) solar cells and transparent photovoltaic devices, (iii) photonic crystal, and (iv) smart materials are presented and discussed.
Collapse
Affiliation(s)
- Daniel Alves Barcelos
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- CQE, Centro de Química Estrutural, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diana C. Leitao
- INESC Microsistemas e Nanotecnologias, R. Alves Redol 9, 1000-029 Lisboa, Portugal;
- Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Laura C. J. Pereira
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2685-066 Bobadela LRS, Portugal;
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2685-066 Bobadela LRS, Portugal
| | - Maria Clara Gonçalves
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- CQE, Centro de Química Estrutural, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
34
|
Zighem F, Faurie D. A review on nanostructured thin films on flexible substrates: links between strains and magnetic properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:233002. [PMID: 33973532 DOI: 10.1088/1361-648x/abe96c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
This paper provides a topical review of work on systems based on magnetic nanostructured thin films on polymer substrates. This topic has indeed experienced a significant growth in the last ten years. Several studies show a strong potential of these systems for a number of applications requiring functionalities on non-planar surfaces. However, the deformations necessary for this type of applications are likely to modify their magnetic properties, and the relationships between strain fields, potential damages and functional properties must be well understood. This review focuses both on the development of techniques dedicated to this research, on the synthesis of the experimental results obtained over the last ten years and on the perspectives related to stretchable or flexible magnetoelectric systems. In particular, the article focuses on the links between magnetic behavior and the strain field developing during the whole history of these systems (elaboration, reversible and irreversible loading).
Collapse
Affiliation(s)
- F Zighem
- LSPM-CNRS, UPR3407, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - D Faurie
- LSPM-CNRS, UPR3407, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| |
Collapse
|
35
|
Ha M, Cañón Bermúdez GS, Kosub T, Mönch I, Zabila Y, Oliveros Mata ES, Illing R, Wang Y, Fassbender J, Makarov D. Printable and Stretchable Giant Magnetoresistive Sensors for Highly Compliant and Skin-Conformal Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005521. [PMID: 33533129 PMCID: PMC11469064 DOI: 10.1002/adma.202005521] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Highly compliant electronics, naturally conforming to human skin, represent a paradigm shift in the interplay with the surroundings. Solution-processable printing technologies are yet to be developed to comply with requirements to mechanical conformability of on-skin appliances. Here, it is demonstrated that high-performance spintronic elements can be printed on ultrathin 3 µm thick polymeric foils enabling the mechanically imperceptible printed magnetoelectronics, which can adapt to the periodic buckling surface to be biaxially stretched over 100%. They constitute the first example of printed and stretchable giant magnetoresistive sensors, revealing 2 orders of magnitude improvements in mechanical stability and sensitivity at small magnetic fields, compared to the state-of-the-art printed magnetoelectronics. The key enabler of this performance enhancement is the use of elastomeric triblock copolymers as a binder for the magnetosensitive paste. Even when bent to a radius of 16 µm, the sensors printed on ultrathin foils remain intact and possess unmatched sensitivity for printed magnetoelectronics of 3 T-1 in a low magnetic field of 0.88 mT. The compliant printed sensors can be used as components of on-skin interactive electronics as it is demonstrated with a touchless control of virtual objects including zooming in and out of interactive maps and scrolling through electronic documents.
Collapse
Affiliation(s)
- Minjeong Ha
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| | - Gilbert Santiago Cañón Bermúdez
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| | - Tobias Kosub
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| | - Ingolf Mönch
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| | - Yevhen Zabila
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
- The Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of SciencesKrakow31‐342Poland
| | - Eduardo Sergio Oliveros Mata
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| | - Rico Illing
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| | - Yakun Wang
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| | - Jürgen Fassbender
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 400Dresden01328Germany
| |
Collapse
|
36
|
Magneto-Transport in Flexible 3D Networks Made of Interconnected Magnetic Nanowires and Nanotubes. NANOMATERIALS 2021; 11:nano11010221. [PMID: 33467036 PMCID: PMC7830720 DOI: 10.3390/nano11010221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
Electrochemical deposition of interconnected nanowires and nanotubes made of ferromagnetic metals into track-etched polycarbonate templates with crossed nanochannels has been revealed suitable for the fabrication of mechanically stable three-dimensional magnetic nanostructures with large surface area. These 3D networks embedded into flexible polymer membranes are also planar and lightweight. This fabrication technique allows for the control of the geometric characteristics and material composition of interconnected magnetic nanowire or nanotube networks, which can be used to fine-tune their magnetic and magneto-transport properties. The magnetostatic contribution to the magnetic anisotropy of crossed nanowire networks can be easily controlled using the diameter, packing density, or angle distribution characteristics. Furthermore, the fabrication of Co and Co-rich NiCo alloy crossed nanowires with textured hcp phases leads to an additional significant magnetocrystalline contribution to the magnetic anisotropy that can either compete or add to the magnetostatic contribution. The fabrication of an interconnected nanotube network has also been demonstrated, where the hollow core and the control over the tube wall thickness add another degree of freedom to control the magnetic properties and magnetization reversal mechanisms. Finally, three-dimensional networks made of interconnected multilayered nanowire with a succession of ferromagnetic and non-magnetic layers have been successfully fabricated, leading to giant magnetoresistance responses measured in the current-perpendicular-to-plane configuration. These interconnected nanowire networks have high potential as integrated, reliable, and stable magnetic field sensors; magnetic devices for memory and logic operations; or neuromorphic computing.
Collapse
|
37
|
Liu Y, Lin G, Chen Y, Mönch I, Makarov D, Walsh BJ, Jin D. Coding and decoding stray magnetic fields for multiplexing kinetic bioassay platform. LAB ON A CHIP 2020; 20:4561-4571. [PMID: 33146648 DOI: 10.1039/d0lc00848f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymer microspheres can be fluorescently-coded for multiplexing molecular analysis, but their usage has been limited by fluorescent quenching and bleaching and crowded spectral domain with issues of cross-talks and background interference. Each bioassay step of mixing and separation of analytes and reagents require off-line particle handling procedures. Here, we report that stray magnetic fields can code and decode a collection of hierarchically-assembled beads. By the microfluidic assembling of mesoscopic superparamagnetic cores, diverse and non-volatile stray magnetic field response can be built in the series of microscopic spheres, dumbbells, pears, chains and triangles. Remarkably, the set of stray magnetic field fingerprints are readily discerned by a compact giant magnetoresistance sensor for parallelised screening of multiple distinctive pathogenic DNAs. This opens up the magneto-multiplexing opportunity and could enable streamlined assays to incorporate magneto-mixing, washing, enrichment and separation of analytes. This strategy therefore suggests a potential point-of-care testing solution for efficient kinetic assays.
Collapse
Affiliation(s)
- Yuan Liu
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Yinghui Chen
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Ingolf Mönch
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, NSW 2113, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia. and UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
38
|
Lee SW, Baek S, Park SW, Koo M, Kim EH, Lee S, Jin W, Kang H, Park C, Kim G, Shin H, Shim W, Yang S, Ahn JH, Park C. 3D motion tracking display enabled by magneto-interactive electroluminescence. Nat Commun 2020; 11:6072. [PMID: 33247086 PMCID: PMC7695719 DOI: 10.1038/s41467-020-19523-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Development of a human-interactive display enabling the simultaneous sensing, visualisation, and memorisation of a magnetic field remains a challenge. Here we report a skin-patchable magneto-interactive electroluminescent display, which is capable of sensing, visualising, and storing magnetic field information, thereby enabling 3D motion tracking. A magnetic field-dependent conductive gate is employed in an alternating current electroluminescent display, which is used to produce non-volatile and rewritable magnetic field-dependent display. By constructing mechanically flexible arrays of magneto-interactive displays, a spin-patchable and pixelated platform is realised. The magnetic field varying along the z-axis enables the 3D motion tracking (monitoring and memorisation) on 2D pixelated display. This 3D motion tracking display is successfully used as a non-destructive surgery-path guiding, wherein a pathway for a surgical robotic arm with a magnetic probe is visualised and recorded on a display patched on the abdominal skin of a rat, thereby helping the robotic arm to find an optimal pathway. Designing human-interactive displays enabling the simultaneous sensing, visualization, and memorization of a magnetic field remains a challenge. Here, the authors present a skin-patchable magneto-interactive electroluminescent display by employing a magnetic field-dependent conductive gate, thereby enabling 3D motion tracking.
Collapse
Affiliation(s)
- Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Soyeon Baek
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Sung-Won Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Min Koo
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Eui Hyuk Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Wookyeong Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Hansol Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Gwangmook Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Heechang Shin
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Korea
| | - Jong-Hyun Ahn
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea.
| |
Collapse
|
39
|
Ju YH, Lee HJ, Han CJ, Lee CR, Kim Y, Kim JW. Pressure-Sensitive Adhesive with Controllable Adhesion for Fabrication of Ultrathin Soft Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40794-40801. [PMID: 32799527 DOI: 10.1021/acsami.0c11986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the interest in foldable smartphones recently launched onto the market shifts toward the next generation of flexible electronics, the development of ultrathin devices is gaining considerable attention. The strain formed on the surfaces of film-based devices approximates the film thickness divided by twice the radius of curvature; therefore, the use of an ultrathin substrate is the key for the development of next generation foldable devices. However, the stiffness of ultrathin films is extremely low; thus, it cannot be easily used directly as a substrate for device fabrication. Therefore, these films generally undergo device manufacturing processes while being attached to a rigid substrate such as glass and are peeled from the rigid substrate after the process is finished. Thus, the initial adhesion of the adhesive used to fix the film to the temporary substrate should be strong, and after the process is completed, the adhesion must be lessened to enable soft peeling. In this study, we succeeded in developing a novel pressure-sensitive adhesive (PSA) whose adhesive strength can be severely reduced by water treatment. Accordingly, considering that amphiphilic oligomers promote water absorption through hydrogen bonding to water, amphiphilic oligomers were mixed with an acrylic polymer to prepare the water-responsive PSA (wr-PSA). The adhesion strength of the wr-PSA in the early stage, which reached 382(±22) N/m, dramatically dropped to 9(±2) N/m after a water immersion test. Using the wr-PSA, a 1.4 μm-thick polyethylene terephthalate film coated with Ag nanowires was softly peeled off from the glass after being immersed in warm water. In addition, the adhesion reduced by the immersion in water was recovered again when the water absorbed by the adhesive was dried. This implies that the developed adhesive can be reusable.
Collapse
Affiliation(s)
- Yun Hee Ju
- School of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Hee-Jin Lee
- Display Research Center,Korea Electronics Technology Institute, 25 Saenariro, Bundang-gu, Seongnam 13509, Republic of Korea
| | - Chul Jong Han
- Display Research Center,Korea Electronics Technology Institute, 25 Saenariro, Bundang-gu, Seongnam 13509, Republic of Korea
| | - Cheul-Ro Lee
- School of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Youngmin Kim
- Display Research Center,Korea Electronics Technology Institute, 25 Saenariro, Bundang-gu, Seongnam 13509, Republic of Korea
| | - Jong-Woong Kim
- School of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| |
Collapse
|
40
|
Jang J, Jun YS, Seo H, Kim M, Park JU. Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3624. [PMID: 32605148 PMCID: PMC7374490 DOI: 10.3390/s20133624] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023]
Abstract
In recent years, to develop more spontaneous and instant interfaces between a system and users, technology has evolved toward designing efficient and simple gesture recognition (GR) techniques. As a tool for acquiring human motion, a tactile sensor system, which converts the human touch signal into a single datum and executes a command by translating a bundle of data into a text language or triggering a preset sequence as a haptic motion, has been developed. The tactile sensor aims to collect comprehensive data on various motions, from the touch of a fingertip to large body movements. The sensor devices have different characteristics that are important for target applications. Furthermore, devices can be fabricated using various principles, and include piezoelectric, capacitive, piezoresistive, and field-effect transistor types, depending on the parameters to be achieved. Here, we introduce tactile sensors consisting of field-effect transistors (FETs). GR requires a process involving the acquisition of a large amount of data in an array rather than a single sensor, suggesting the importance of fabricating a tactile sensor as an array. In this case, an FET-type pressure sensor can exploit the advantages of active-matrix sensor arrays that allow high-array uniformity, high spatial contrast, and facile integration with electrical circuitry. We envision that tactile sensors based on FETs will be beneficial for GR as well as future applications, and these sensors will provide substantial opportunities for next-generation motion sensing systems.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Yoon Sun Jun
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Hunkyu Seo
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Moohyun Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
41
|
Shi X, Wu M, Lai Z, Li X, Gao P, Mi W. Bending Strain-Tailored Magnetic and Electronic Transport Properties of Reactively Sputtered γ'-Fe 4N/Muscovite Epitaxial Heterostructures toward Flexible Spintronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27394-27404. [PMID: 32462870 DOI: 10.1021/acsami.0c08042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The strain modulation on the magnetic and electronic transport properties of the ferromagnetic films is one of the hot topics due to the practical applications in flexible and wearable spintronic devices. However, the large strain-induced saturation magnetization and resistance change is not easy to achieve because most of the ferromagnetic films deposited on flexible substrates are polycrystalline or amorphous. Here, the flexible epitaxial γ'-Fe4N/mica films are fabricated by facing-target reactive sputtering. At a tensile strain with a radius of curvature (ROC) of 3 mm, the saturation magnetization (Ms) of the γ'-Fe4N/mica film is tailored significantly with a maximal variation of 210%. Meanwhile, the magnetic anisotropy was broadly tunable at different strains, where the out-of-plane Mr/Ms at a tensile strain of ROC = 2 mm is six times larger than that at the unbent state. Besides, the strain-tailored longitudinal resistance Rxx and anomalous Hall resistivity ρxy appear where the drop of Rxx (ρxy) reaches 5% (22%) at a tensile strain of ROC = 3 mm. The shift of the nitrogen position in the γ'-Fe4N unit cell at different bending strains plays a key role in the strain-tailored magnetic and electronic transport properties. The flexible epitaxial γ'-Fe4N films have the potential applications in magneto- and electromechanical wearable spintronic devices.
Collapse
Affiliation(s)
- Xiaohui Shi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China
| | - Mei Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhengxun Lai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China
| | - Xujing Li
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China
| |
Collapse
|
42
|
Huang S, Zhang B, Shao Z, He L, Zhang Q, Jie J, Zhang X. Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. NANO LETTERS 2020; 20:2478-2485. [PMID: 32142295 DOI: 10.1021/acs.nanolett.9b05217] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Miniaturized stretchable strain sensors are key components in E-skins for applications such as personalized health-monitoring, body motion perception, and human-machine interfaces. However, it remains a big challenge to fabricate miniaturized stretchable strain sensors with high imperceptibility. Here, we reported for the first time novel ultraminiaturized stretchable strain sensors based on single centimeter-long silicon nanowires (cm-SiNWs). With the diameter of the active materials even smaller than that of spider silks, these sensors are highly imperceptible. They exhibit a large strain sensing range (>45%) and a high durability (>10 000 cycles). Their optimum strain sensing ranges could be modulated by controlling the prestrains of the stretchable cm-SiNWs. On the basis of this capability, sensors with appropriate sensing ranges were chosen to respectively monitor large and subtle human motions including joint motion, swallow, and touch. The strategy of applying single cm-SiNWs in stretchable sensors would open new doors to fabricate ultraminiaturized stretchable devices.
Collapse
Affiliation(s)
- Siyi Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Bingchang Zhang
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Zhibin Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Le He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jiansheng Jie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiaohong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
43
|
Koehler M, Farka D, Yumusak C, Serdar Sariciftci N, Hinterdorfer P. Localizing Binding Sites on Bioconjugated Hydrogen-Bonded Organic Semiconductors at the Nanoscale. Chemphyschem 2020; 21:659-666. [PMID: 31867830 PMCID: PMC7187352 DOI: 10.1002/cphc.201901064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Hydrogen‐bonded organic semiconductors are extraordinarily stable organic solids forming stable, large crystallites with the ability to preserve favorable electrical properties upon bioconjugation. Lately, tremendous efforts have been made to use these bioconjugated semiconductors as platforms for stable multifunctional bioelectronics devices, yet the detailed characterization of bio‐active binding sites (orientation, density, etc.) at the nanoscale has not been achieved yet. The presented work investigates the bioconjugation of epindolidione and quinacridone, two representative semiconductors, with respect to their exposed amine‐functionalities. Relying on the biotin‐avidin lock‐and‐key system and applying the atomic force microscopy (AFM) derivative topography and recognition (TREC) imaging, we used activated biotin to flag crystal‐faces with exposed amine functional groups. Contrary to previous studies, biotin bonds were found to be stable towards removal by autolysis. The resolution strength and clear recognition capability makes TREC‐AFM a valuable tool in the investigation of bio‐conjugated, hydrogen‐bonded semiconductors.
Collapse
Affiliation(s)
- Melanie Koehler
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria.,Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Dominik Farka
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, 4040, Linz, Austria.,Institute of Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Cigdem Yumusak
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria
| |
Collapse
|
44
|
Fina I, Dix N, Menéndez E, Crespi A, Foerster M, Aballe L, Sánchez F, Fontcuberta J. Flexible Antiferromagnetic FeRh Tapes as Memory Elements. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15389-15395. [PMID: 32149498 DOI: 10.1021/acsami.0c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The antiferromagnetic to ferromagnetic transition occurring above room temperature in FeRh is attracting interest for applications in spintronics, with perspectives for robust and untraceable data storage. Here, we show that FeRh films can be grown on a flexible metallic substrate (tape shaped), coated with a textured rock-salt MgO layer, suitable for large-scale applications. The FeRh tape displays a sharp antiferromagnetic to ferromagnetic transition at about 90 °C. Its magnetic properties are preserved by bending (radii of 300 mm), and their anisotropic magnetoresistance (up to 0.05%) is used to illustrate data writing/reading capability.
Collapse
Affiliation(s)
- Ignasi Fina
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| | - Nico Dix
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| | - Enric Menéndez
- Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Anna Crespi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| | - Michael Foerster
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Lucia Aballe
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Florencio Sánchez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| | - Josep Fontcuberta
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
45
|
Karnaushenko D, Kang T, Bandari VK, Zhu F, Schmidt OG. 3D Self-Assembled Microelectronic Devices: Concepts, Materials, Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902994. [PMID: 31512308 DOI: 10.1002/adma.201902994] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self-assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin-film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self-assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.
Collapse
Affiliation(s)
- Daniil Karnaushenko
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
| | - Tong Kang
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
| | - Vineeth K Bandari
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
| | - Feng Zhu
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
- School of Science, TU Dresden, Dresden, 01062, Germany
| |
Collapse
|
46
|
Kondo M, Melzer M, Karnaushenko D, Uemura T, Yoshimoto S, Akiyama M, Noda Y, Araki T, Schmidt OG, Sekitani T. Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits. SCIENCE ADVANCES 2020; 6:eaay6094. [PMID: 32010789 PMCID: PMC6976294 DOI: 10.1126/sciadv.aay6094] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/25/2019] [Indexed: 05/02/2023]
Abstract
Artificial electronic skins (e-skins) comprise an integrated matrix of flexible devices arranged on a soft, reconfigurable surface. These sensors must perceive physical interaction spaces between external objects and robots or humans. Among various types of sensors, flexible magnetic sensors and the matrix configuration are preferable for such position sensing. However, sensor matrices must efficiently map the magnetic field with real-time encoding of the positions and motions of magnetic objects. This paper reports an ultrathin magnetic sensor matrix system comprising a 2 × 4 array of magnetoresistance sensors, a bootstrap organic shift register driving the sensor matrix, and organic signal amplifiers integrated within a single imperceptible platform. The system demonstrates high magnetic sensitivity owing to the use of organic amplifiers. Moreover, the shift register enabled real-time mapping of 2D magnetic field distribution.
Collapse
Affiliation(s)
- M. Kondo
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M. Melzer
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
| | - D. Karnaushenko
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
| | - T. Uemura
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - S. Yoshimoto
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - M. Akiyama
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Y. Noda
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - T. Araki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - O. G. Schmidt
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, D-09107 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Rosenbergstr. 6, D-09126 Chemnitz, Germany
- Corresponding author. (O.G.S.); (T.S.)
| | - T. Sekitani
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author. (O.G.S.); (T.S.)
| |
Collapse
|
47
|
Calais T, Valdivia y Alvarado P. Advanced functional materials for soft robotics: tuning physicochemical properties beyond rigidity control. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab4f9d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Wang Z, Wang T, Zhuang M, Xu H. Stretchable Polymer Composite with a 3D Segregated Structure of PEDOT:PSS for Multifunctional Touchless Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45301-45309. [PMID: 31710457 DOI: 10.1021/acsami.9b16353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soft electronics with the capability of perceiving surrounding objects and acquiring information without direct touch have become increasingly important for applications in remote safety and healthcare monitoring, artificial prosthetics, and augmented reality. So far, materials that are inherently stretchable and can exhibit distinct touchless sensing capability are still scarce. Here, we report that constructing a three-dimensional (3D) segregated structure in the carboxylated styrene-butadiene latex film using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) can lead to a highly stretchable polymer composite with high sensitivity toward various touchless stimuli. Consequently, the resultant composite can be directly used for touchless sensing. Control experiments reveal that the unique 3D segregated structure is essential to achieve high-performance touchless sensing. We further show that the composite can be assembled into capacitors to precisely identify surrounding objects via capacitive proximity sensing. Moreover, an intelligent prosthetic hand is fabricated by integrating piezoresistive and capacitive sensing modes together, demonstrating that the newly developed polymer composite holds great potential for practical touchless sensing by simultaneously perceiving the location and the temperature of the target.
Collapse
Affiliation(s)
- Zhiyong Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Tao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Mengdi Zhuang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hangxun Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
49
|
Becker C, Karnaushenko D, Kang T, Karnaushenko DD, Faghih M, Mirhajivarzaneh A, Schmidt OG. Self-assembly of highly sensitive 3D magnetic field vector angular encoders. SCIENCE ADVANCES 2019; 5:eaay7459. [PMID: 32064322 PMCID: PMC6989305 DOI: 10.1126/sciadv.aay7459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/28/2019] [Indexed: 05/02/2023]
Abstract
Novel robotic, bioelectronic, and diagnostic systems require a variety of compact and high-performance sensors. Among them, compact three-dimensional (3D) vector angular encoders are required to determine spatial position and orientation in a 3D environment. However, fabrication of 3D vector sensors is a challenging task associated with time-consuming and expensive, sequential processing needed for the orientation of individual sensor elements in 3D space. In this work, we demonstrate the potential of 3D self-assembly to simultaneously reorient numerous giant magnetoresistive (GMR) spin valve sensors for smart fabrication of 3D magnetic angular encoders. During the self-assembly process, the GMR sensors are brought into their desired orthogonal positions within the three Cartesian planes in a simultaneous process that yields monolithic high-performance devices. We fabricated vector angular encoders with equivalent angular accuracy in all directions of 0.14°, as well as low noise and low power consumption during high-speed operation at frequencies up to 1 kHz.
Collapse
Affiliation(s)
- Christian Becker
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Daniil Karnaushenko
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
- Corresponding author. (D.K.); (O.G.S.)
| | - Tong Kang
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Dmitriy D. Karnaushenko
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Maryam Faghih
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Alaleh Mirhajivarzaneh
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, 09126 Chemnitz, Germany
- Nanophysics, Faculty of Physics, TU Dresden, 01062 Dresden, Germany
- Corresponding author. (D.K.); (O.G.S.)
| |
Collapse
|
50
|
Wang Z, Hao Z, Yu S, De Moraes CG, Suh LH, Zhao X, Lin Q. An Ultraflexible and Stretchable Aptameric Graphene Nanosensor for Biomarker Detection and Monitoring. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1905202. [PMID: 33551711 PMCID: PMC7861488 DOI: 10.1002/adfm.201905202] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 05/20/2023]
Abstract
An ultraflexible and stretchable field-effect transistor nanosensor is presented that uses aptamer-functionalized monolayer graphene as the conducting channel. Specific binding of the aptamer with the target biomarker induces a change in the carrier concentration of the graphene, which is measured to determine the biomarker concentration. Based on a Mylar substrate that is only 2.5-μm thick, the nanosensor is capable of conforming to underlying surfaces (e.g., those of human tissue or skin) that undergo large bending, twisting, and stretching deformations. In experimental testing, the device is rolled on cylindrical surfaces with radii down to 40 μm, twisted by angles ranging from -180° to 180°, or stretched by extensions up to 125%. With these large deformations applied either cyclically or non-recurrently, the device is shown to incur no visible mechanical damage, maintain consistent electrical properties, and allow detection of TNF-α, an inflammatory cytokine biomarker, with consistently high selectivity and low limit of detection (down to 5 × 10-12M). The nanosensor can thus potentially enable consistent and reliable detection of liquid-borne biomarkers on human skin or tissue surfaces that undergo large mechanical deformations.
Collapse
Affiliation(s)
- Ziran Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Zhuang Hao
- Department of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shifeng Yu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Leejee H Suh
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xuezeng Zhao
- Department of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|