1
|
Li S, Takada S, Abdel-Salam GMH, Abdel-Hamid MS, Zaki MS, Issa MY, Salem AMS, Koshimizu E, Fujita A, Fukai R, Ohshima T, Matsumoto N, Miyake N. Biallelic loss-of-function variants in GON4L cause microcephaly and brain structure abnormalities. NPJ Genom Med 2024; 9:55. [PMID: 39500882 PMCID: PMC11538285 DOI: 10.1038/s41525-024-00437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
We identified two homozygous truncating variants in GON4L [NM_001282860.2:c.62_63del, p.(Gln21Argfs*12) and c.5517+1G>A] in two unrelated families who presented prenatal-onset growth impairment, microcephaly, characteristic face, situs inversus, and developmental delay. The frameshift variant is predicted to invoke nonsense-mediated mRNA decay of all five known GON4L isoforms resulting in the complete loss of GON4L function. The splice site variant located at a region specific to the longer isoforms; therefore, defects of long GON4L isoforms may explain the phenotypes observed in the three patients. Knockdown of Gon4l in rat PC12 cells suppressed neurite outgrowth in vitro. gon4lb knockdown and knockout zebrafish successfully recapitulated the patients' phenotypes including craniofacial abnormalities. We also observed situs inversus in gon4lb-knockout zebrafish embryo. To our knowledge, the relationship between craniofacial abnormalities or situs inversus and gon4lb has not been reported before. Thus, our data provide evidence that GON4L is involved in craniofacial and left-right patterning during development.
Collapse
Affiliation(s)
- Simo Li
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Sanami Takada
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mahmoud Y Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Aida M S Salem
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryoko Fukai
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Medical Science Services, IQVIA Services Japan G.K., Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
2
|
Previdi A, Jordan P, Egloff C, Coussement A, Ahmed-Eli S, Tudal L, Bienvenu T, Picone O, Dupont JM. Prenatal diagnosis of a 15q24.1 microdeletion in a fetus with cerebral and urogenital abnormalities. Clin Genet 2024; 106:537-544. [PMID: 39012202 DOI: 10.1111/cge.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
15q24.1 microdeletion syndrome is a recently described condition often resulting from non-allelic homologous recombination (NAHR). Typical clinical features include pre and post-natal growth retardation, facial dysmorphism, developmental delay and intellectual disability. Nonspecific urogenital, skeletal, and digit abnormalities may be present, although other congenital malformations are less frequent. Consequently, only one case was reported prenatally, complicating the genotype-phenotype correlation and the genetic counseling. We identified prenatally a second case, presenting with cerebral abnormalities including hydrocephaly, macrocephaly, cerebellum hypoplasia, vermis hypoplasia, rhombencephalosynapsis, right kidney agenesis with left kidney duplication and micropenis. Genome-wide aCGH assay allowed a diagnosis at 26 weeks of amenorrhea revealing a 1.6 Mb interstitial deletion on the long arm of chromosome 15 at 15q24.1-q24.2 (arr[GRCh37] 15q24.1q24.2(74,399,112_76,019,966)x1). A deep review of the literature was undertaken to further delineate the prenatal clinical features and the candidate genes involved in the phenotype. Cerebral malformations are typically nonspecific, but microcephaly appears to be the most frequent in postnatal cases. Our case is the first reported with a frank cerebellar involvement.
Collapse
Affiliation(s)
- Anaïk Previdi
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Pénélope Jordan
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Charles Egloff
- AP-HP.Nord-Université Paris Cité, Site Hôpital Louis Mourier, Service de Gynécologie Obstétrique, Colombes, France
| | - Aurélie Coussement
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Samira Ahmed-Eli
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Laure Tudal
- AP-HP.Nord-Université Paris Cité, Site Hôpital Louis Mourier, Service de Gynécologie Obstétrique, Colombes, France
| | - Thierry Bienvenu
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Olivier Picone
- AP-HP.Nord-Université Paris Cité, Site Hôpital Louis Mourier, Service de Gynécologie Obstétrique, Colombes, France
| | - Jean-Michel Dupont
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| |
Collapse
|
3
|
Ren X, Zheng L, Maliskova L, Tam TW, Sun Y, Liu H, Lee J, Takagi MA, Li B, Ren B, Wang W, Shen Y. CRISPR tiling deletion screens reveal functional enhancers of neuropsychiatric risk genes and allelic compensation effects (ACE) on transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.616922. [PMID: 39416108 PMCID: PMC11483005 DOI: 10.1101/2024.10.08.616922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Precise transcriptional regulation is critical for cellular function and development, yet the mechanism of this process remains poorly understood for many genes. To gain a deeper understanding of the regulation of neuropsychiatric disease risk genes, we identified a total of 39 functional enhancers for four dosage-sensitive genes, APP, FMR1, MECP2, and SIN3A, using CRISPR tiling deletion screening in human induced pluripotent stem cell (iPSC)-induced excitatory neurons. We found that enhancer annotation provides potential pathological insights into disease-associated copy number variants. More importantly, we discovered that allelic enhancer deletions at SIN3A could be compensated by increased transcriptional activities from the other intact allele. Such allelic compensation effects (ACE) on transcription is stably maintained during differentiation and, once established, cannot be reversed by ectopic SIN3A expression. Further, ACE at SIN3A occurs through dosage sensing by the promoter. Together, our findings unravel a regulatory compensation mechanism that ensures stable and precise transcriptional output for SIN3A, and potentially other dosage-sensitive genes.
Collapse
Affiliation(s)
- Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Lenka Maliskova
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Tsz Wai Tam
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Sun
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Hongjiang Liu
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Lee
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Maya Asami Takagi
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Reynolds WT, Votava-Smith JK, Gabriel G, Lee VK, Rajagopalan V, Wu Y, Liu X, Yagi H, Slabicki R, Gibbs B, Tran NN, Weisert M, Cabral L, Subramanian S, Wallace J, del Castillo S, Baust T, Weinberg JG, Lorenzi Quigley L, Gaesser J, O’Neil SH, Schmithorst V, Panigrahy A, Ceschin R, Lo CW. Validation of a Paralimbic-Related Subcortical Brain Dysmaturation MRI Score in Infants with Congenital Heart Disease. J Clin Med 2024; 13:5772. [PMID: 39407833 PMCID: PMC11476423 DOI: 10.3390/jcm13195772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Brain magnetic resonance imaging (MRI) of infants with congenital heart disease (CHD) shows brain immaturity assessed via a cortical-based semi-quantitative score. Our primary aim was to develop an infant paralimbic-related subcortical-based semi-quantitative dysmaturation score, termed brain dysplasia score (BDS), to detect abnormalities in CHD infants compared to healthy controls and secondarily to predict clinical outcomes. We also validated our BDS in a preclinical mouse model of hypoplastic left heart syndrome. Methods: A paralimbic-related subcortical BDS, derived from structural MRIs of infants with CHD, was compared to healthy controls and correlated with clinical risk factors, regional cerebral volumes, feeding, and 18-month neurodevelopmental outcomes. The BDS was validated in a known CHD mouse model named Ohia with two disease-causing genes, Sap130 and Pchda9. To relate clinical findings, RNA-Seq was completed on Ohia animals. Findings: BDS showed high incidence of paralimbic-related subcortical abnormalities (including olfactory, cerebellar, and hippocampal abnormalities) in CHD infants (n = 215) compared to healthy controls (n = 92). BDS correlated with reduced cortical maturation, developmental delay, poor language and feeding outcomes, and increased length of stay. Ohia animals (n = 63) showed similar BDS findings, and RNA-Seq analysis showed altered neurodevelopmental and feeding pathways. Sap130 mutants correlated with a more severe BDS, whereas Pcdha9 correlated with a milder phenotype. Conclusions: Our BDS is sensitive to dysmaturational differences between CHD and healthy controls and predictive of poor outcomes. A similar spectrum of paralimbic and subcortical abnormalities exists between human and Ohia mutants, suggesting a common genetic mechanistic etiology.
Collapse
Affiliation(s)
- William T. Reynolds
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - George Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Vincent K. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vidya Rajagopalan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ruby Slabicki
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian Gibbs
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Nhu N. Tran
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Molly Weisert
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Cabral
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Subramanian Subramanian
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sylvia del Castillo
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tracy Baust
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 51213, USA
| | - Jacqueline G. Weinberg
- Division of Cardiology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Lauren Lorenzi Quigley
- Cardiac Neurodevelopmental Care Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jenna Gaesser
- Division of Neurology and Child Development, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sharon H. O’Neil
- Division of Neurology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Vanessa Schmithorst
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
5
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
6
|
Giovannetti M, Rodríguez-Palero MJ, Fabrizio P, Nicolle O, Bedet C, Michaux G, Witting M, Artal-Sanz M, Palladino F. SIN-3 transcriptional coregulator maintains mitochondrial homeostasis and polyamine flux. iScience 2024; 27:109789. [PMID: 38746662 PMCID: PMC11091686 DOI: 10.1016/j.isci.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.
Collapse
Affiliation(s)
- Marina Giovannetti
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - María-Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Paola Fabrizio
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ophélie Nicolle
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Grégoire Michaux
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Weihenstephan, Germany
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
7
|
Correa Brito L, Keselman A, Villegas F, Scaglia P, Esnaola Azcoiti M, Castro S, Sanguineti N, Izquierdo A, Maier M, Bergadá I, Arberas C, Rey RA, Ropelato MG. Case report: Novel SIN3A loss-of-function variant as causative for hypogonadotropic hypogonadism in Witteveen-Kolk syndrome. Front Genet 2024; 15:1354715. [PMID: 38528912 PMCID: PMC10961356 DOI: 10.3389/fgene.2024.1354715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Pubertal delay can be due to hypogonadotropic hypogonadism (HH), which may occur in association with anosmia or hyposmia and is known as Kallmann syndrome (OMIM #308700). Recently, hypogonadotropic hypogonadism has been suggested to overlap with Witteveen-Kolk syndrome (WITKOS, OMIM #613406) associated with 15q24 microdeletions encompassing SIN3A. Whether hypogonadotropic hypogonadism is due to haploinsufficiency of SIN3A or any of the other eight genes present in 15q24 is not known. We report the case of a female patient with delayed puberty associated with intellectual disability, behavior problems, dysmorphic facial features, and short stature, at the age of 14 years. Clinical, laboratory, and imaging assessments confirmed the diagnosis of Kallmann syndrome. Whole-exome sequencing identified a novel heterozygous frameshift variant, NM_001145358.2:c.3045_3046dup, NP_001138830.1:p.(Ile1016Argfs*6) in SIN3A, classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG/AMP) criteria. Reverse phenotyping led to the clinical diagnosis of WITKOS. No other variant was found in the 96 genes potentially related to hypogonadotropic hypogonadism. The analysis of the other contiguous seven genes to SIN3A in 15q24 did not reveal any clinically relevant variant. In conclusion, these findings point to SIN3A as the gene in 15q24 related to the reproductive phenotype in patients with overlapping WITKOS and Kallmann syndrome.
Collapse
Affiliation(s)
- Lourdes Correa Brito
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Florencia Villegas
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Esnaola Azcoiti
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sebastián Castro
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marianela Maier
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Claudia Arberas
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
8
|
Bradley M, Field RH, O'Rourke M, Stoke J, Murphy SM, Kearney H. Novel phenotype of SIN3A-related disorder diagnosed in adulthood with multi-system involvement. Eur J Hum Genet 2024; 32:257-259. [PMID: 38066172 PMCID: PMC10924085 DOI: 10.1038/s41431-023-01506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 03/10/2024] Open
Affiliation(s)
- Maeve Bradley
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| | - Robert H Field
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
| | - Michael O'Rourke
- Department of Ophthalmology, St James's Hospital, Dublin, Ireland
| | - John Stoke
- Department of Ophthalmology, Waterford University Hospital, Waterford, Ireland
| | - Sinéad M Murphy
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Hugh Kearney
- Department of Neurology, St James's Hospital, Dublin, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Gabriel GC, Yagi H, Tan T, Bais AS, Glennon BJ, Stapleton MC, Huang L, Reynolds WT, Shaffer MG, Ganapathiraju M, Simon D, Panigrahy A, Wu YL, Lo CW. Mitotic Block and Epigenetic Repression Underlie Neurodevelopmental Defects and Neurobehavioral Deficits in Congenital Heart Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.05.565716. [PMID: 38464057 PMCID: PMC10925221 DOI: 10.1101/2023.11.05.565716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Poor neurodevelopment is often observed with congenital heart disease (CHD), especially with mutations in chromatin modifiers. Here analysis of mice with hypoplastic left heart syndrome (HLHS) arising from mutations in Sin3A associated chromatin modifier Sap130 , and adhesion protein Pcdha9, revealed neurodevelopmental and neurobehavioral deficits reminiscent of those in HLHS patients. Microcephaly was associated with impaired cortical neurogenesis, mitotic block, and increased apoptosis. Transcriptional profiling indicated dysregulated neurogenesis by REST, altered CREB signaling regulating memory and synaptic plasticity, and impaired neurovascular coupling modulating cerebral blood flow. Many neurodevelopmental/neurobehavioral disease pathways were recovered, including autism and cognitive impairment. These same pathways emerged from genome-wide DNA methylation and Sap130 chromatin immunoprecipitation sequencing analyses, suggesting epigenetic perturbation. Mice with Pcdha9 mutation or forebrain-specific Sap130 deletion without CHD showed learning/memory deficits and autism-like behavior. These novel findings provide mechanistic insights indicating the adverse neurodevelopment in HLHS may involve cell autonomous/nonautonomous defects and epigenetic dysregulation and suggest new avenues for therapy.
Collapse
|
10
|
Wang C, Liu Z, Zeng Y, Zhou L, Long Q, Hassan IU, Zhang Y, Qi X, Cai D, Mao B, Lu G, Sun J, Yao Y, Deng Y, Zhao Q, Feng B, Zhou Q, Chan WY, Zhao H. ZSWIM4 regulates embryonic patterning and BMP signaling by promoting nuclear Smad1 degradation. EMBO Rep 2024; 25:646-671. [PMID: 38177922 PMCID: PMC10897318 DOI: 10.1038/s44319-023-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.
Collapse
Affiliation(s)
- Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ziran Liu
- Qingdao Municipal Center for Disease Control and Prevention, 266033, Qingdao, Shandong, China
| | - Yelin Zeng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Imtiaz Ul Hassan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Bingyu Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, 750004, Yinchuan, China
| | - Yonggang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qin Zhou
- School of Basic Medical Sciences, Harbin Medical University, 150081, Harbin, China
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Stokes G, Li Z, Talaba N, Genthe W, Brix MB, Pham B, Wienhold MD, Sandok G, Hernan R, Wynn J, Tang H, Tabima DM, Rodgers A, Hacker TA, Chesler NC, Zhang P, Murad R, Yuan JXJ, Shen Y, Chung WK, McCulley DJ. Rescuing lung development through embryonic inhibition of histone acetylation. Sci Transl Med 2024; 16:eadc8930. [PMID: 38295182 DOI: 10.1126/scitranslmed.adc8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A major barrier to the impact of genomic diagnosis in patients with congenital malformations is the lack of understanding regarding how sequence variants contribute to disease pathogenesis and whether this information could be used to generate patient-specific therapies. Congenital diaphragmatic hernia (CDH) is among the most common and severe of all structural malformations; however, its underlying mechanisms are unclear. We identified loss-of-function sequence variants in the epigenomic regulator gene SIN3A in two patients with complex CDH. Tissue-specific deletion of Sin3a in mice resulted in defects in diaphragm development, lung hypoplasia, and pulmonary hypertension, the cardinal features of CDH and major causes of CDH-associated mortality. Loss of SIN3A in the lung mesenchyme resulted in reduced cellular differentiation, impaired cell proliferation, and increased DNA damage. Treatment of embryonic Sin3a mutant mice with anacardic acid, an inhibitor of histone acetyltransferase, reduced DNA damage, increased cell proliferation and differentiation, improved lung and pulmonary vascular development, and reduced pulmonary hypertension. These findings demonstrate that restoring the balance of histone acetylation can improve lung development in the Sin3a mouse model of CDH.
Collapse
Affiliation(s)
- Giangela Stokes
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Zhuowei Li
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - William Genthe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maria B Brix
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Betty Pham
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Gracia Sandok
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca Hernan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Pan Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yufeng Shen
- Department of Systems Biology, Department of Biomedical Informatics, and JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
12
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
13
|
Robert VJ, Caron M, Gely L, Adrait A, Pakulska V, Couté Y, Chevalier M, Riedel CG, Bedet C, Palladino F. SIN-3 acts in distinct complexes to regulate the germline transcriptional program in Caenorhabditis elegans. Development 2023; 150:dev201755. [PMID: 38771303 PMCID: PMC10617626 DOI: 10.1242/dev.201755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
The transcriptional co-regulator SIN3 influences gene expression through multiple interactions that include histone deacetylases. Haploinsufficiency and mutations in SIN3 are the underlying cause of Witteveen-Kolk syndrome and related intellectual disability and autism syndromes, emphasizing its key role in development. However, little is known about the diversity of its interactions and functions in developmental processes. Here, we show that loss of SIN-3, the single SIN3 homolog in Caenorhabditis elegans, results in maternal-effect sterility associated with de-regulation of the germline transcriptome, including de-silencing of X-linked genes. We identify at least two distinct SIN3 complexes containing specific histone deacetylases and show that they differentially contribute to fertility. Single-cell, single-molecule fluorescence in situ hybridization reveals that in sin-3 mutants the X chromosome becomes re-expressed prematurely and in a stochastic manner in individual germ cells, suggesting a role for SIN-3 in its silencing. Furthermore, we identify histone residues whose acetylation increases in the absence of SIN-3. Together, this work provides a powerful framework for the in vivo study of SIN3 and associated proteins.
Collapse
Affiliation(s)
- Valerie J. Robert
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Matthieu Caron
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Loic Gely
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Annie Adrait
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Victoria Pakulska
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Yohann Couté
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Manon Chevalier
- Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 16, 14157 Huddinge, Sweden
| | - Christian G. Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 16, 14157 Huddinge, Sweden
| | - Cecile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| |
Collapse
|
14
|
Guo Z, Chu C, Lu Y, Zhang X, Xiao Y, Wu M, Gao S, Wong CCL, Zhan X, Wang C. Structure of a SIN3-HDAC complex from budding yeast. Nat Struct Mol Biol 2023:10.1038/s41594-023-00975-z. [PMID: 37081318 DOI: 10.1038/s41594-023-00975-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/23/2023] [Indexed: 04/22/2023]
Abstract
SIN3-HDAC (histone deacetylases) complexes have important roles in facilitating local histone deacetylation to regulate chromatin accessibility and gene expression. Here, we present the cryo-EM structure of the budding yeast SIN3-HDAC complex Rpd3L at an average resolution of 2.6 Å. The structure reveals that two distinct arms (ARM1 and ARM2) hang on a T-shaped scaffold formed by two coiled-coil domains. In each arm, Sin3 interacts with different subunits to create a different environment for the histone deacetylase Rpd3. ARM1 is in the inhibited state with the active site of Rpd3 blocked, whereas ARM2 is in an open conformation with the active site of Rpd3 exposed to the exterior space. The observed asymmetric architecture of Rpd3L is different from those of available structures of other class I HDAC complexes. Our study reveals the organization mechanism of the SIN3-HDAC complex and provides insights into the interaction pattern by which it targets histone deacetylase to chromatin.
Collapse
Affiliation(s)
- Zhouyan Guo
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chen Chu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yichen Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yihang Xiao
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Shuaixin Gao
- Human Nutrition Program & James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Chengcheng Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
15
|
Wang C, Guo Z, Chu C, Lu Y, Zhang X, Zhan X. Two assembly modes for SIN3 histone deacetylase complexes. Cell Discov 2023; 9:42. [PMID: 37076472 PMCID: PMC10115800 DOI: 10.1038/s41421-023-00539-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
The switch-independent 3 (SIN3)/histone deacetylase (HDAC) complexes play essential roles in regulating chromatin accessibility and gene expression. There are two major types of SIN3/HDAC complexes (named SIN3L and SIN3S) targeting different chromatin regions. Here we present the cryo-electron microscopy structures of the SIN3L and SIN3S complexes from Schizosaccharomyces pombe (S. pombe), revealing two distinct assembly modes. In the structure of SIN3L, each Sin3 isoform (Pst1 and Pst3) interacts with one histone deacetylase Clr6, and one WD40-containing protein Prw1, forming two lobes. These two lobes are bridged by two vertical coiled-coil domains from Sds3/Dep1 and Rxt2/Png2, respectively. In the structure of SIN3S, there is only one lobe organized by another Sin3 isoform Pst2; each of the Cph1 and Cph2 binds to an Eaf3 molecule, providing two modules for histone recognition and binding. Notably, the Pst1 Lobe in SIN3L and the Pst2 Lobe in SIN3S adopt similar conformation with their deacetylase active sites exposed to the space; however, the Pst3 Lobe in SIN3L is in a compact state with its active center buried inside and blocked. Our work reveals two classical organization mechanisms for the SIN3/HDAC complexes to achieve specific targeting and provides a framework for studying the histone deacetylase complexes.
Collapse
Affiliation(s)
- Chengcheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| | - Zhouyan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Chen Chu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Sha JM, Zhang RQ, Wang XC, Zhou Y, Song K, Sun H, Tu B, Tao H. Epigenetic reader MeCP2 repressed WIF1 boosts lung fibroblast proliferation, migration and pulmonary fibrosis. Toxicol Lett 2023; 381:1-12. [PMID: 37061208 DOI: 10.1016/j.toxlet.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Epigenetic has been implicated in pulmonary fibrosis. However, there is limited information regarding the biological role of the epigenetic reader MeCP2 in pulmonary fibrosis. The aim of this study was to investigate the role of MeCP2 and its target WIF1 in pulmonary fibrosis. The pathological changes and collagen depositions was analyzed by H&E, Masson's Trichrome Staining and Sirius Red staining. MeCP2, WIF1, α-SMA, Wnt1, β-catenin, and collagen I expression were analyzed by western blotting, RT-qPCR, immunohistochemistry, immunofluorescence, respectively. The effects of MeCP2 on pulmonary fibrosis involve epigenetic mechanisms, using cultured cells, animal models, and clinical samples. Herein, our results indicated that MeCP2 level was up-regulated, while WIF1 was decreased in Bleomycin (BLM)-induced mice pulmonary fibrosis tissues, patients pulmonary fibrosis tissues and TGF-β1-induced lung fibroblast. Knockdown of MeCP2 by siRNA can rescue WIF1 downregulation in TGF-β1-induced lung fibroblast, inhibited lung fibroblast activation. The DNA methylation inhibitor 5-azadC-treated lung fibroblasts have increased WIF1 expression with reduced MeCP2 association. In addition, we found that reduced expression of WIF1 caused by TGF-β1 is associated with the promoter methylation status of WIF1. Moreover, in vivo studies revealed that knockdown of MeCP2 mice exhibited significantly ameliorated pulmonary fibrosis, decreased interstitial collagen deposition, and increased WIF1 expression. Taken together, our study showed that epigenetic reader MeCP2 repressed WIF1 facilitates lung fibroblast proliferation, migration and pulmonary fibrosis.
Collapse
Affiliation(s)
- Ji-Ming Sha
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| | - Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Yang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Kai Song
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - He Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Bin Tu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Hui Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601.
| |
Collapse
|
17
|
Yagi H, Lo CW. Left-Sided Heart Defects and Laterality Disturbance in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2023; 10:jcdd10030099. [PMID: 36975863 PMCID: PMC10054755 DOI: 10.3390/jcdd10030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex congenital heart disease characterized by hypoplasia of left-sided heart structures. The developmental basis for restriction of defects to the left side of the heart in HLHS remains unexplained. The observed clinical co-occurrence of rare organ situs defects such as biliary atresia, gut malrotation, or heterotaxy with HLHS would suggest possible laterality disturbance. Consistent with this, pathogenic variants in genes regulating left-right patterning have been observed in HLHS patients. Additionally, Ohia HLHS mutant mice show splenic defects, a phenotype associated with heterotaxy, and HLHS in Ohia mice arises in part from mutation in Sap130, a component of the Sin3A chromatin complex known to regulate Lefty1 and Snai1, genes essential for left-right patterning. Together, these findings point to laterality disturbance mediating the left-sided heart defects associated with HLHS. As laterality disturbance is also observed for other CHD, this suggests that heart development integration with left-right patterning may help to establish the left-right asymmetry of the cardiovascular system essential for efficient blood oxygenation.
Collapse
Affiliation(s)
- Hisato Yagi
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15201, USA
| |
Collapse
|
18
|
DNA methylation episignature for Witteveen-Kolk syndrome due to SIN3A haploinsufficiency. Genet Med 2023; 25:63-75. [PMID: 36399132 DOI: 10.1016/j.gim.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Witteveen-Kolk syndrome (WITKOS) is a rare, autosomal dominant neurodevelopmental disorder caused by heterozygous loss-of-function alterations in the SIN3A gene. WITKOS has variable expressivity that commonly overlaps with other neurodevelopmental disorders. In this study, we characterized a distinct DNA methylation epigenetic signature (episignature) distinguishing WITKOS from unaffected individuals as well as individuals with other neurodevelopmental disorders with episignatures and described 9 previously unpublished individuals with SIN3A haploinsufficiency. METHODS We studied the phenotypic characteristics and the genome-wide DNA methylation in the peripheral blood samples of 20 individuals with heterozygous alterations in SIN3A. A total of 14 samples were used for the identification of the episignature and building of a predictive diagnostic biomarker, whereas the diagnostic model was used to investigate the methylation pattern of the remaining 6 samples. RESULTS A predominantly hypomethylated DNA methylation profile specific to WITKOS was identified, and the classifier model was able to diagnose a previously unresolved test case. The episignature was sensitive enough to detect individuals with varying degrees of phenotypic severity carrying SIN3A haploinsufficient variants. CONCLUSION We identified a novel, robust episignature in WITKOS due to SIN3A haploinsufficiency. This episignature has the potential to aid identification and diagnosis of individuals with WITKOS.
Collapse
|
19
|
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022; 8:35. [PMID: 35948598 PMCID: PMC9365836 DOI: 10.1038/s41526-022-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
Collapse
Affiliation(s)
- Jacob M Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
20
|
Karimzadeh M, Hoffman MM. Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome. Genome Biol 2022; 23:126. [PMID: 35681170 PMCID: PMC9185870 DOI: 10.1186/s13059-022-02690-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Existing methods for computational prediction of transcription factor (TF) binding sites evaluate genomic regions with similarity to known TF sequence preferences. Most TF binding sites, however, do not resemble known TF sequence motifs, and many TFs are not sequence-specific. We developed Virtual ChIP-seq, which predicts binding of individual TFs in new cell types, integrating learned associations with gene expression and binding, TF binding sites from other cell types, and chromatin accessibility data in the new cell type. This approach outperforms methods that predict TF binding solely based on sequence preference, predicting binding for 36 TFs (MCC>0.3).
Collapse
Affiliation(s)
- Mehran Karimzadeh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada.,Vector Institute, Toronto, ON, Canada
| | - Michael M Hoffman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, Toronto, ON, Canada. .,Vector Institute, Toronto, ON, Canada. .,Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Mallard TT, Karlsson Linnér R, Grotzinger AD, Sanchez-Roige S, Seidlitz J, Okbay A, de Vlaming R, Meddens SFW, Palmer AA, Davis LK, Tucker-Drob EM, Kendler KS, Keller MC, Koellinger PD, Harden KP. Multivariate GWAS of psychiatric disorders and their cardinal symptoms reveal two dimensions of cross-cutting genetic liabilities. CELL GENOMICS 2022; 2:S2666-979X(22)00073-8. [PMID: 35812988 PMCID: PMC9264403 DOI: 10.1016/j.xgen.2022.100140] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/25/2021] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Understanding which biological pathways are specific versus general across diagnostic categories and levels of symptom severity is critical to improving nosology and treatment of psychopathology. Here, we combine transdiagnostic and dimensional approaches to genetic discovery for the first time, conducting a novel multivariate genome-wide association study of eight psychiatric symptoms and disorders broadly related to mood disturbance and psychosis. We identify two transdiagnostic genetic liabilities that distinguish between common forms of psychopathology versus rarer forms of serious mental illness. Biological annotation revealed divergent genetic architectures that differentially implicated prenatal neurodevelopment and neuronal function and regulation. These findings inform psychiatric nosology and biological models of psychopathology, as they suggest that the severity of mood and psychotic symptoms present in serious mental illness may reflect a difference in kind rather than merely in degree.
Collapse
Affiliation(s)
- Travis T. Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Richard Karlsson Linnér
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | | | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Aysu Okbay
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ronald de Vlaming
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - S. Fleur W. Meddens
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Bipolar Disorder Working Group of the Psychiatric Genomics Consortium
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Medical College of Virginia/Virginia Commonwealth University, Richmond, VA, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lea K. Davis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elliot M. Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Medical College of Virginia/Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew C. Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Philipp D. Koellinger
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - K. Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Jacobson A, Bohnsack BL. Anterior megalophthalmos in sisters with Witteveen-Kolk syndrome. J AAPOS 2022; 26:148-150. [PMID: 35144002 DOI: 10.1016/j.jaapos.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
Anterior megalophthalmos is a form of anterior segment dysgenesis characterized by megalocornea (>12.5 mm) coupled with an enlarged lens-iris diaphragm and ciliary body ring. Importantly, intraocular pressure (IOP) is normal, and in contrast to buphthalmos, the ratio of anterior segment to vitreous cavity measurements is increased. Anterior megalophthalmos may be an isolated ocular finding, or it may be associated with syndromes such as albinism, Down syndrome, Frank-Ter-Haar, Marfan, Neuhauser, mucolipidosis type 2, and osteogenesis imperfecta. We report anterior megalophthalmos in 2 sisters with genetically confirmed (SIN3A, c.1657C>T, p.R553∗) Witteveen-Kolk syndrome (OMIM #613406).
Collapse
Affiliation(s)
- Adam Jacobson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago Illinois.
| |
Collapse
|
23
|
Penon-Portmann M, Carlston CM, Martin PM, Slavotinek A. Exome Sequencing Identifies a Novel <b><i>SIN3A</i></b> Variant in a Patient with Witteveen-Kolk Syndrome. Mol Syndromol 2022; 13:337-342. [PMID: 36158056 PMCID: PMC9421682 DOI: 10.1159/000520042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Witteveen-Kolk syndrome (WITKOS; OMIM #613406) is a recently described, rare neurodevelopmental syndrome characterized by mild intellectual disability and a recognizable facial gestalt. WITKOS is caused by heterozygous loss-of-function variants in SIN3A. It shares some features with 15q24 deletion syndrome but to date has only been described in a limited number of patients mostly of Northern European ancestry. Here, we report the first patient with Hispanic ancestry to our knowledge diagnosed with WITKOS, who has a novel, truncating variant in the SIN3A gene. Clinical exome sequencing performed in-house using a custom bioinformatics pipeline identified a de novo heterozygous, nonsense variant in SIN3A, c.1015C>T (p.Gln339Ter) that has not been previously described in the literature. This 3-year-old boy with WITKOS demonstrated classic features including mild developmental delay and triangular facies with hypotelorism and deep-set, hooded eyes. This patient supports the currently described phenotype for WITKOS in more diverse populations.
Collapse
Affiliation(s)
- Monica Penon-Portmann
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Colleen M. Carlston
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Pierre-Marie Martin
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
- *Anne Slavotinek,
| |
Collapse
|
24
|
Disruption of MeCP2-TCF20 complex underlies distinct neurodevelopmental disorders. Proc Natl Acad Sci U S A 2022; 119:2119078119. [PMID: 35074918 PMCID: PMC8794850 DOI: 10.1073/pnas.2119078119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
MeCP2 is associated with Rett syndrome (RTT), MECP2 duplication syndrome, and a number of conditions with isolated features of these diseases, including autism, intellectual disability, and motor dysfunction. MeCP2 is known to broadly bind methylated DNA, but the precise molecular mechanism driving disease pathogenesis remains to be determined. Using proximity-dependent biotinylation (BioID), we identified a transcription factor 20 (TCF20) complex that interacts with MeCP2 at the chromatin interface. Importantly, RTT-causing mutations in MECP2 disrupt this interaction. TCF20 and MeCP2 are highly coexpressed in neurons and coregulate the expression of key neuronal genes. Reducing Tcf20 partially rescued the behavioral deficits caused by MECP2 overexpression, demonstrating a functional relationship between MeCP2 and TCF20 in MECP2 duplication syndrome pathogenesis. We identified a patient exhibiting RTT-like neurological features with a missense mutation in the PHF14 subunit of the TCF20 complex that abolishes the MeCP2-PHF14-TCF20 interaction. Our data demonstrate the critical role of the MeCP2-TCF20 complex for brain function.
Collapse
|
25
|
Feng J, Zhu F, Ye D, Zhang Q, Guo X, Du C, Kang J. Sin3a drives mesenchymal-to-epithelial transition through cooperating with Tet1 in somatic cell reprogramming. Stem Cell Res Ther 2022; 13:29. [PMID: 35073971 PMCID: PMC8785580 DOI: 10.1186/s13287-022-02707-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022] Open
Abstract
Background Identifying novel regulatory factors and uncovered mechanisms of somatic cell reprogramming will be helpful for basic research and clinical application of induced pluripotent stem cells (iPSCs). Sin3a, a multifunctional transcription regulator, has been proven to be involved in the maintenance of pluripotency in embryonic stem cells (ESCs), but the role of Sin3a in somatic cell reprogramming remains unclear. Methods RNA interference of Sin3a during somatic cell reprogramming was realized by short hairpin RNAs. Reprogramming efficiency was evaluated by the number of alkaline phosphatase (AP)-positive colonies and Oct4-GFP-positive colonies. RNA sequencing was performed to identify the influenced biological processes after Sin3a knockdown and further confirmed by quantitative RT-PCR (qRT-PCR), western blotting and flow cytometry. The interaction between Sin3a and Tet1 was detected by coimmunoprecipitation. The enrichment of Sin3a and Tet1 at the epithelial gene promoters was measured by chromatin immunoprecipitation. Furthermore, DNA methylation patterns at the gene loci were investigated by hydroxymethylated DNA immunoprecipitation. Finally, Sin3a mutants that disrupt the interaction of Sin3a and Tet1 were also introduced to assess the importance of the Sin3a–Tet1 interaction during the mesenchymal-to-epithelial transition (MET) process. Results We found that Sin3a was gradually increased during OSKM-induced reprogramming and that knockdown of Sin3a significantly impaired MET at the early stage of reprogramming and iPSC generation. Mechanistic studies showed that Sin3a recruited Tet1 to facilitate the hydroxymethylation of epithelial gene promoters. Moreover, disrupting the interaction of Sin3a and Tet1 significantly blocked MET and iPSC generation. Conclusions Our studies revealed that Sin3a was a novel mediator of MET during early reprogramming, where Sin3a functioned as an epigenetic coactivator, cooperating with Tet1 to activate the epithelial program and promote the initiation of somatic cell reprogramming. These findings highlight the importance of Sin3a in the MET process and deepen our understanding of the epigenetic regulatory network of early reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02707-4.
Collapse
Affiliation(s)
- Jiabao Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Qingquan Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China. .,Institute for Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
26
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
27
|
Latypova X, Vincent M, Mollé A, Adebambo OA, Fourgeux C, Khan TN, Caro A, Rosello M, Orellana C, Niyazov D, Lederer D, Deprez M, Capri Y, Kannu P, Tabet AC, Levy J, Aten E, den Hollander N, Splitt M, Walia J, Immken LL, Stankiewicz P, McWalter K, Suchy S, Louie RJ, Bell S, Stevenson RE, Rousseau J, Willem C, Retiere C, Yang XJ, Campeau PM, Martinez F, Rosenfeld JA, Le Caignec C, Küry S, Mercier S, Moradkhani K, Conrad S, Besnard T, Cogné B, Katsanis N, Bézieau S, Poschmann J, Davis EE, Isidor B. Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B causes a syndromic intellectual disability/autism spectrum disorder. Am J Hum Genet 2021; 108:929-941. [PMID: 33811806 DOI: 10.1016/j.ajhg.2021.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.
Collapse
Affiliation(s)
- Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Marie Vincent
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Alice Mollé
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | | | - Cynthia Fourgeux
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Tahir N Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Alfonso Caro
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Monica Rosello
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Carmen Orellana
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Dmitriy Niyazov
- Department of Pediatrics, Ochsner Clinic, New Orleans, LA 70128, USA
| | - Damien Lederer
- Centre de Génétique Humaine, IPG, 6041 Gosselies, Belgium
| | - Marie Deprez
- Service de Neuropédiatrie, Clinique Saint Elizabeth, 5000 Namur, Belgium
| | - Yline Capri
- Service de Génétique Médicale, Hôpital Robert Debré, 75019 Paris, France
| | - Peter Kannu
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Jonathan Levy
- Service de Cytogénétique, Hôpital Robert Debré, 75019 Paris, France
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Nicolette den Hollander
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle Upon Tyne NE1 3BZ, UK
| | - Jagdeep Walia
- Kingston General Hospital Research Institute, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Ladonna L Immken
- Clinical Genetics, Dell Children's Medical Group, Austin, TX 78731, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Sharon Suchy
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Raymond J Louie
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Shannon Bell
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Roger E Stevenson
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Justine Rousseau
- Sainte-Justine Hospital, 3175, Cote-Sainte-Catherine, Montreal, QC, Canada
| | | | - Christelle Retiere
- Etablissement Français du Sang, 44000 Nantes, France; CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000 Nantes, France; LabEx IGO, Nantes 44000, France
| | - Xiang-Jiao Yang
- Rosalind & Morris Goodman Cancer Research Center and Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Philippe M Campeau
- Sainte-Justine Hospital, 3175, Cote-Sainte-Catherine, Montreal, QC, Canada
| | - Francisco Martinez
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cédric Le Caignec
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Sandra Mercier
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Kamran Moradkhani
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Solène Conrad
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Thomas Besnard
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Jeremie Poschmann
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France.
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|
28
|
Balasubramanian M, Dingemans AJM, Albaba S, Richardson R, Yates TM, Cox H, Douzgou S, Armstrong R, Sansbury FH, Burke KB, Fry AE, Ragge N, Sharif S, Foster A, De Sandre-Giovannoli A, Elouej S, Vasudevan P, Mansour S, Wilson K, Stewart H, Heide S, Nava C, Keren B, Demirdas S, Brooks AS, Vincent M, Isidor B, Küry S, Schouten M, Leenders E, Chung WK, Haeringen AV, Scheffner T, Debray FG, White SM, Palafoll MIV, Pfundt R, Newbury-Ecob R, Kleefstra T. Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype. Eur J Hum Genet 2021; 29:625-636. [PMID: 33437032 PMCID: PMC8115148 DOI: 10.1038/s41431-020-00769-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/08/2022] Open
Abstract
Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10-12.
Collapse
Affiliation(s)
- Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.
- Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Shadi Albaba
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Ruth Richardson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Thabo M Yates
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Helen Cox
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Francis H Sansbury
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Katherine B Burke
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Andrew E Fry
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Nicola Ragge
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Saba Sharif
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Alison Foster
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
- Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
- Biological Resource Center (CRB-TAC), Assistance Publique Hôpitaux de Marseille, La Timone Children's Hospital, Marseille, France
| | - Sahar Elouej
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - Pradeep Vasudevan
- Leicester Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Sahar Mansour
- Clinical Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Kate Wilson
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Solveig Heide
- Clinical Genetics Service, GH Pitié-Salpêtrière, Pitié Salpêtrière Hospital, APHP Sorbonne University, Paris, France
| | - Caroline Nava
- Clinical Genetics Service, GH Pitié-Salpêtrière, Pitié Salpêtrière Hospital, APHP Sorbonne University, Paris, France
| | - Boris Keren
- Clinical Genetics Service, GH Pitié-Salpêtrière, Pitié Salpêtrière Hospital, APHP Sorbonne University, Paris, France
| | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus Medical Centre, Erasmus University, Rotterdam, the Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus Medical Centre, Erasmus University, Rotterdam, the Netherlands
| | - Marie Vincent
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
- Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
- Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000, Nantes, France
| | - Sebastien Küry
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
- Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000, Nantes, France
| | - Meyke Schouten
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erika Leenders
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, USA
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Scheffner
- Klinik für Kinder- und Jugendmedizin, Perinatal- und Stoffwechselzentrum, Reutlingen, Germany
| | - Francois-Guillaume Debray
- Metabolic Unit-Department of Medical Genetics, CHU & University Liège Domaine L Sart-Tilman Bât B35, B-4000, Liège, Belgium
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Irene Valenzuela Palafoll
- Department of Clinical and Molecular Genetics, University Hospital Vall d´Hebron and Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruth Newbury-Ecob
- University Hospitals Bristol NHS Foundation Trust, Clinical Genetics, St. Michael's Hospital, Bristol, UK
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
29
|
Hatch HAM, Belalcazar HM, Marshall OJ, Secombe J. A KDM5-Prospero transcriptional axis functions during early neurodevelopment to regulate mushroom body formation. eLife 2021; 10:63886. [PMID: 33729157 PMCID: PMC7997662 DOI: 10.7554/elife.63886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the lysine demethylase 5 (KDM5) family of transcriptional regulators are associated with intellectual disability, yet little is known regarding their spatiotemporal requirements or neurodevelopmental contributions. Utilizing the mushroom body (MB), a major learning and memory center within the Drosophila brain, we demonstrate that KDM5 is required within ganglion mother cells and immature neurons for proper axogenesis. Moreover, the mechanism by which KDM5 functions in this context is independent of its canonical histone demethylase activity. Using in vivo transcriptional and binding analyses, we identify a network of genes directly regulated by KDM5 that are critical modulators of neurodevelopment. We find that KDM5 directly regulates the expression of prospero, a transcription factor that we demonstrate is essential for MB morphogenesis. Prospero functions downstream of KDM5 and binds to approximately half of KDM5-regulated genes. Together, our data provide evidence for a KDM5-Prospero transcriptional axis that is essential for proper MB development.
Collapse
Affiliation(s)
- Hayden AM Hatch
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, United States
| | - Helen M Belalcazar
- Department of Genetics Albert Einstein College of Medicine, Bronx, United States
| | - Owen J Marshall
- Menzies Institute for Medical Research University of Tasmania, Hobart, Australia
| | - Julie Secombe
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, United States.,Department of Genetics Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
30
|
Prenatal diagnosis and molecular cytogenetic characterization of a chromosome 15q24 microdeletion. Taiwan J Obstet Gynecol 2021; 59:432-436. [PMID: 32416893 DOI: 10.1016/j.tjog.2020.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis, molecular cytogenetic characterization and genetic counseling of a chromosome 15q24 microdeletion of paternal origin. CASE REPORT A 34-year-old primigravid woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY. Simultaneous array comparative genomic hybridization (aCGH) analysis on amniotic fluid revealed a de novo 2.571-Mb microdeletion of 15q24.1-q24.2. Prenatal ultrasound findings were unremarkable except persistent left superior vena cava and enlarged coronary sinus. The woman requested repeat amniocentesis at 22 weeks of gestation, and aCGH analysis confirmed the result of arr 15q24.1q24.2 (72,963,970-75,535,330) × 1.0 [GRCh37 (hg19)] and a 15q24 microdeletion encompassing the genes of STRA6, CYP11A1, SEMA7A, ARID3B, CYP1A1, CYP1A2, CSK and CPLX3. The parents did not have such a deletion, and polymorphic DNA marker analysis confirmed a paternal origin of the de novo deletion. Metaphase fluorescence in situ hybridization analysis confirmed a 15q24 deletion. The parents elected to terminate the pregnancy, and a malformed fetus was delivered with characteristic facial dysmorphism. CONCLUSION Simultaneous aCGH analysis of uncultured amniocytes at amniocentesis may help to detect rare de novo microdeletion disorders.
Collapse
|
31
|
Novel exon-skipping variant disrupting the basic domain of HCFC1 causes intellectual disability without metabolic abnormalities in both male and female patients. J Hum Genet 2021; 66:717-724. [PMID: 33517344 DOI: 10.1038/s10038-020-00892-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022]
Abstract
HCFC1, a global transcriptional regulator, has been shown to associate with MMACHC expression. Pathogenic variants in HCFC1 cause X-linked combined methylmalonic acidemia and hyperhomocysteinemia, CblX type (MIM# 309541). Recent studies showed that certain variants in HCFC1 are associated with X-linked intellectual disability with mild or absent metabolic abnormalities. Here, we report five subjects (three males, two females) from the same family with a novel predicted loss of function HCFC1 variant. All five patients exhibit developmental delay or intellectual disability/learning difficulty and some dysmorphic features; findings were milder in the female as compared to male subjects. Biochemical studies in all patients did not show methylmalonic acidemia or hyperhomocysteinemia but revealed elevated vitamin B12 levels. Trio exome sequencing of the proband and his parents revealed a maternally inherited novel variant in HCFC1 designated as c.1781_1803 + 3del26insCA (NM_005334). Targeted testing confirmed the presence of the same variant in two half-siblings and maternal great uncle. In silico analysis showed that the variant is expected to reduce the quality of the splice donor site in intron 10 and causes abnormal splicing. Sequencing of proband's cDNA revealed exon 10 skipping. Further molecular studies in the two manifesting females revealed moderate and high skewing of X inactivation. Our results support previous observation that HCFC1 variants located outside the Kelch domain exhibit dissociation of the clinical and biochemical phenotype and cause milder or no metabolic changes. We also show that this novel variant can be associated with a phenotype in females, although with milder severity, but further studies are needed to understand the role of skewed X inactivation among females in this rare disorder. Our work expands the genotypes and phenotypes associated with HCFC1-related disorder.
Collapse
|
32
|
Ercoskun P, Yuce Kahraman C. Witteveen-Kolk syndrome: The first patient from Turkey. Am J Med Genet A 2020; 185:617-619. [PMID: 33142042 DOI: 10.1002/ajmg.a.61950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/06/2022]
Abstract
Witteveen-Kolk syndrome is a rare genetic disorder characterized by intellectual disability, developmental delay and dysmorphic facial features including a long face with prominent forehead, depressed nasal bridge, long-smooth philtrum and malformed ears. Skeletal abnormalities, microcephaly and malformation of the brain are other findings. This syndrome is caused by mutations in the SIN3A gene or microdeletions encompassing this gene. The protein encoded by SIN3A gene plays a regulatory role in the control of various developmental processes, especially cortical expansion and maturation. To date, 17 patients have been reported in the medical literature. In this article, we reported a patient with Witteveen-Kolk syndrome who had a retrognathia as an unusually finding. To the best of our knowledge, this is the first patient of Witteveen-Kolk syndrome reported from Turkey.
Collapse
Affiliation(s)
- Pelin Ercoskun
- Faculty of Medicine, Department of Medical Genetics, Ataturk University, Erzurum, Turkey
| | - Cigdem Yuce Kahraman
- Faculty of Medicine, Department of Medical Genetics, Ataturk University, Erzurum, Turkey
| |
Collapse
|
33
|
Haploinsufficiency of RREB1 causes a Noonan-like RASopathy via epigenetic reprogramming of RAS-MAPK pathway genes. Nat Commun 2020; 11:4673. [PMID: 32938917 PMCID: PMC7495420 DOI: 10.1038/s41467-020-18483-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
RAS-MAPK signaling mediates processes critical to normal development including cell proliferation, survival, and differentiation. Germline mutation of RAS-MAPK genes lead to the Noonan-spectrum of syndromes. Here, we present a patient affected by a 6p-interstitial microdeletion with unknown underlying molecular etiology. Examination of 6p-interstitial microdeletion cases reveals shared clinical features consistent with Noonan-spectrum disorders including short stature, facial dysmorphia and cardiovascular abnormalities. We find the RAS-responsive element binding protein-1 (RREB1) is the common deleted gene in multiple 6p-interstitial microdeletion cases. Rreb1 hemizygous mice display orbital hypertelorism and cardiac hypertrophy phenocopying the human syndrome. Rreb1 haploinsufficiency leads to sensitization of MAPK signaling. Rreb1 recruits Sin3a and Kdm1a to control H3K4 methylation at MAPK pathway gene promoters. Haploinsufficiency of SIN3A and mutations in KDM1A cause syndromes similar to RREB1 haploinsufficiency suggesting genetic perturbation of the RREB1-SIN3A-KDM1A complex represents a new category of RASopathy-like syndromes arising through epigenetic reprogramming of MAPK pathway genes.
Collapse
|
34
|
van Dongen LCM, Wingbermühle E, Dingemans AJM, Bos-Roubos AG, Vermeulen K, Pop-Purceleanu M, Kleefstra T, Egger JIM. Behavior and cognitive functioning in Witteveen-Kolk syndrome. Am J Med Genet A 2020; 182:2384-2390. [PMID: 32783353 PMCID: PMC7540409 DOI: 10.1002/ajmg.a.61775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/19/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
Witteveen-Kolk syndrome (WITKOS) is a rare neurodevelopmental disorder characterized by developmental delay/intellectual disability, facial dysmorphisms, and short stature. The syndrome is caused by loss of function of switch-insensitive 3 transcription regulator family member A (SIN3A). Regarding behavioral functioning, Autism Spectrum Disorders (ASD), obsessive-compulsive behaviors, as well as Attention-Deficit/Hyperactivity Disorder symptoms (ADHD) have been suggested. The present study explores various aspects of neurocognitive functioning in five individuals (age range 10-23) with WITKOS. Medical records and results of extensive neuropsychological assessment are used to describe developmental trajectories and neurocognitive profiles. Systematic analysis of medical records displays developmental difficulties described as ASD or ADHD in childhood, sleep problems and internalizing problems during adolescence. Results of cognitive assessments indicate profoundly disabled (n = 1), mildly disabled (n = 2), borderline (n = 1), and average (n = 1) levels of intelligence. Furthermore, results indicate weaknesses in speed of information processing/sustained attention in all participants, and difficulties in planning and maintaining overview in three participants. Furthermore, parent reports of behavioral functioning primarily suggest problems in social functioning. Implications of both cognitive problems and social-emotional vulnerabilities for counseling are discussed and supplemented with suggestions for interventions.
Collapse
Affiliation(s)
- Linde C M van Dongen
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ellen Wingbermühle
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Stevig Specialized and Forensic Care for People with Intellectual Disability, Oostrum, The Netherlands
| | | | - Anja G Bos-Roubos
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Karlijn Vermeulen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Intellectual Disabilities, Karakter Child and Adolescent Psychiatry, Ede, The Netherlands
| | - Monica Pop-Purceleanu
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jos I M Egger
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Stevig Specialized and Forensic Care for People with Intellectual Disability, Oostrum, The Netherlands
| |
Collapse
|
35
|
A de-novo 15q24.2 deletion involving SIN3A is associated with emotional, behavioural, motor problems and hypersensitivity in a girl with above average intelligence and typical facial features. Clin Dysmorphol 2020; 29:210-213. [PMID: 32639238 DOI: 10.1097/mcd.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Barnett BR, Casey CP, Torres-Velázquez M, Rowley PA, Yu JPJ. Convergent brain microstructure across multiple genetic models of schizophrenia and autism spectrum disorder: A feasibility study. Magn Reson Imaging 2020; 70:36-42. [PMID: 32298718 PMCID: PMC7685399 DOI: 10.1016/j.mri.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies of psychiatric illness have revealed a broad spectrum of structural and functional perturbations that have been attributed in part to the complex genetic heterogeneity underpinning these disorders. These perturbations have been identified in both preclinical genetic models and in patients when compared to control populations, but recent work has also demonstrated strong evidence for genetic, molecular, and structural convergence of several psychiatric diseases. We explored potential similarities in neural microstructure in preclinical genetic models of ASD (Fmr1, Nrxn1, Pten) and schizophrenia (Disc1 svΔ2) and in age- and sex-matched control animals with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Our findings demonstrate a convergence in brain microstructure across these four genetic models with both tract-based and region-of-interest based analyses, which continues to buttress an emerging understanding of converging neural microstructure in psychiatric disease.
Collapse
Affiliation(s)
- Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cameron P Casey
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
37
|
Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci 2020; 43:608-621. [PMID: 32507511 DOI: 10.1016/j.tins.2020.05.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Neurodevelopmental disorders (NDDs) are a class of disorders affecting brain development and function and are characterized by wide genetic and clinical variability. In this review, we discuss the multiple factors that influence the clinical presentation of NDDs, with particular attention to gene vulnerability, mutational load, and the two-hit model. Despite the complex architecture of mutational events associated with NDDs, the various proteins involved appear to converge on common pathways, such as synaptic plasticity/function, chromatin remodelers and the mammalian target of rapamycin (mTOR) pathway. A thorough understanding of the mechanisms behind these pathways will hopefully lead to the identification of candidates that could be targeted for treatment approaches.
Collapse
|
38
|
Liu Y, Zhang Y, Zarrei M, Dong R, Yang X, Zhao D, Scherer SW, Gai Z. Refining critical regions in 15q24 microdeletion syndrome pertaining to autism. Am J Med Genet B Neuropsychiatr Genet 2020; 183:217-226. [PMID: 31953991 DOI: 10.1002/ajmg.b.32778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Chromosome 15q24 microdeletion syndrome is characterized by developmental delay, facial dysmorphism, hearing loss, hypotonia, recurrent infection, and other congenital malformations including microcephaly, scoliosis, joint laxity, digital anomalies, as well as sometimes having autism spectrum disorder (ASD) and attention deficit hyperactivity disorder. Here, we report a boy with a 2.58-Mb de novo deletion at chromosome 15q24. He is diagnosed with ASD and having multiple phenotypes similar to those reported in cases having 15q24 microdeletion syndrome. To delineate the critical genes and region that might be responsible for these phenotypes, we reviewed all previously published cases. We observe a potential minimum critical region of 650 kb (LCR15q24A-B) affecting NEO1 among other genes that might pertinent to individuals with ASD carrying this deletion. In contrast, a previously defined minimum critical region downstream of the 650-kb interval (LCR15q24B-D) is more likely associated with the developmental delay, facial dysmorphism, recurrent infection, and other congenital malformations. As a result, the ASD phenotype in this individual is potentially attributed by genes particularly NEO1 within the newly proposed critical region.
Collapse
Affiliation(s)
- Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Yanqing Zhang
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, 250022, China
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rui Dong
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Xiaomeng Yang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Dongmei Zhao
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, 250022, China
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
39
|
Liu Y, Mapow B. Coexistence of urogenital malformations in a female fetus with de novo 15q24 microdeletion and a literature review. Mol Genet Genomic Med 2020; 8:e1265. [PMID: 32400031 PMCID: PMC7336734 DOI: 10.1002/mgg3.1265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background 15q24 microdeletion is a relatively new syndrome caused by nonallelic homologous recombination (NAHR) between low‐copy repeats (LCRs) in the 15q24 chromosome region. This syndrome is characterized by a spectrum of clinical symptoms including global developmental delay, intellectual disability, facial dysmorphisms, and congenital malformations of the extremities, eye, gastrointestinal tract, genitourinary system, and genitalia. Method Molecular cytogenetic analysis was performed using whole genome single‐nucleotide polymorphism (SNP) microarray analysis. Autopsy examination including gross and microscopic examination were performed. In addition, a thorough review of the literature on 15q24 microdeletion was completed and summarized in table format. Result Molecular cytogenetic analysis revealed a 3.88 MB interstitial deletion within 15q24.1 to 15q24.3 (74,353,735–78,228,485 bp) in our case. Autopsy examination showed congenital malformations within the genitourinary system and genitalia, including left kidney agenesis and uterus didelphys. After thorough literature review, we found a series of midline defects associated with 15q24 microdeletion syndrome. Conclusion We report the first case of coexistence of urogenital abnormalities, including left kidney agenesis and uterus didelphys, with 15q24 microdeletion syndrome, which is also associated with midline defects secondary to abnormal development. Since 15q24 microdeletion syndrome is a relatively new entity, fully characterizing its variation and severity requires additional examination of the genetics, molecular profile and structural and functional abnormalities in affected patients. Due to the limited data in the literature, statistical analysis of abnormalities in each organ system is not possible. However, we can predict that novel genetic pathways involving cell migration, adhesion, apoptosis, and embryo development might be discovered with the advanced study of 15q24 microdeletion syndrome.
Collapse
Affiliation(s)
- Yaobin Liu
- Department of Pathology, Pennsylvania Hospital, Philadelphia, Pennsylvania, USA
| | - Beth Mapow
- Department of Pathology and Laboratory Medicine, Jefferson Health New jersey, Cherry Hill, New Jersey, USA
| |
Collapse
|
40
|
Murcia Pienkowski V, Kucharczyk M, Rydzanicz M, Poszewiecka B, Pachota K, Młynek M, Stawiński P, Pollak A, Kosińska J, Wojciechowska K, Lejman M, Cieślikowska A, Wicher D, Stembalska A, Matuszewska K, Materna-Kiryluk A, Gambin A, Chrzanowska K, Krajewska-Walasek M, Płoski R. Breakpoint Mapping of Symptomatic Balanced Translocations Links the EPHA6, KLF13 and UBR3 Genes to Novel Disease Phenotype. J Clin Med 2020; 9:jcm9051245. [PMID: 32344861 PMCID: PMC7287862 DOI: 10.3390/jcm9051245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
De novo balanced chromosomal aberrations (BCAs), such as reciprocal translocations and inversions, are genomic aberrations that, in approximately 25% of cases, affect the human phenotype. Delineation of the exact structure of BCAs may provide a precise diagnosis and/or point to new disease loci. We report on six patients with de novo balanced chromosomal translocations (BCTs) and one patient with a de novo inversion, in whom we mapped breakpoints to a resolution of 1 bp, using shallow whole-genome mate pair sequencing. In all seven cases, a disruption of at least one gene was found. In two patients, the phenotypic impact of the disrupted genes is well known (NFIA, ATP7A). In five patients, the aberration damaged genes: PARD3, EPHA6, KLF13, STK24, UBR3, MLLT10 and TLE3, whose influence on the human phenotype is poorly understood. In particular, our results suggest novel candidate genes for retinal degeneration with anophthalmia (EPHA6), developmental delay with speech impairment (KLF13), and developmental delay with brain dysembryoplastic neuroepithelial tumor (UBR3). In conclusion, identification of the exact structure of symptomatic BCTs using next generation sequencing is a viable method for both diagnosis and finding novel disease candidate genes in humans.
Collapse
Affiliation(s)
- Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Marzena Kucharczyk
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Barbara Poszewiecka
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland; (B.P.); (A.G.)
| | - Katarzyna Pachota
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Marlena Młynek
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Katarzyna Wojciechowska
- Department of Pediatric Hematology Oncology and Transplantology, University Children’s Hospital, 20-093 Lublin, Poland;
| | - Monika Lejman
- Department of Pediatric Hematology Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agata Cieślikowska
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Dorota Wicher
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | | | - Karolina Matuszewska
- Department of Medical Genetics, University of Medical Sciences, 60-806 Poznan, Poland; (K.M.); (A.M.-K.)
- Centers for Medical Genetics GENESIS, Grudzieniec, 60-406 Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, University of Medical Sciences, 60-806 Poznan, Poland; (K.M.); (A.M.-K.)
- Centers for Medical Genetics GENESIS, Grudzieniec, 60-406 Poznan, Poland
| | - Anna Gambin
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland; (B.P.); (A.G.)
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Małgorzata Krajewska-Walasek
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
- Correspondence: ; Tel.: +48-22-572-06-95; Fax: +48-22-572-06-96
| |
Collapse
|
41
|
Gene expression changes associated with trajectories of psychopathology in a longitudinal cohort of children and adolescents. Transl Psychiatry 2020; 10:99. [PMID: 32184383 PMCID: PMC7078305 DOI: 10.1038/s41398-020-0772-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
We aimed to identify blood gene expression patterns associated to psychopathological trajectories retrieved from a large community, focusing on the emergence and remission of general psychiatric symptoms. Hundred and three individuals from the Brazilian High-Risk Cohort Study (BHRCS) for mental disorders were classified in four groups according to Child Behavior Checklist (CBCL) total score at the baseline (w0) and after 3 years (w1): low-high (L-H) (N = 27), high-low (H-L) (N = 12), high-high (H-H) (N = 34) and low-low (L-L) groups (N = 30). Blood gene expression profile was measured using Illumina HT-12 Beadchips, and paired analyses comparing w0 and w1 were performed for each group. Results: 98 transcripts were differentially expressed comparing w0 and w1 in the L-H, 33 in the H-L, 177 in the H-H and 273 in the L-L. Of these, 66 transcripts were differentially expressed exclusively in the L-H; and 6 only in the H-L. Cross-Lagged Panel Models analyses revealed that RPRD2 gene expression at w1 might be influenced by the CBCL score at w0. Moreover, COX5B, SEC62, and NDUFA2 were validated with another technique and were also differentially regulated in postmortem brain of subjects with mental disorders, indicating that they might be important not only to specific disorders, but also to general psychopathology and symptoms trajectories. Whereas genes related to metabolic pathways seem to be associated with the emergence of psychiatric symptoms, mitochondrial inner membrane genes might be important over the course of normal development. These results suggest that changes in gene expression can be detected in blood in different psychopathological trajectories.
Collapse
|
42
|
Freeman DM, Lou D, Li Y, Martos SN, Wang Z. The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure. Epigenetics Chromatin 2020; 13:17. [PMID: 32178731 PMCID: PMC7076959 DOI: 10.1186/s13072-020-00338-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The significance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-traditional ASMs are sensitive to exposures in association with human disease. RESULTS We first explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal development and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identified regions were differentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegeneration. Both regions were significantly hypomethylated in response to rotenone. CONCLUSIONS Our data indicate that non-germline ASMs seem conserved between mouse and human genomes, overlap important regulatory factor binding motifs, and regulate the expression of genes vital to neuronal function. These results support the notion that ASMs are sensitive to environmental factors such as rotenone and may alter the risk of neurological disease later in life by disrupting neuronal development.
Collapse
Affiliation(s)
- Dana M Freeman
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Dan Lou
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yanqiang Li
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne N Martos
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zhibin Wang
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- The State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
43
|
Bridi M, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Porcari GS, Lejards C, Hahn CG, Giese KP, Havekes R, Spruston N, Abel T. Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling. JCI Insight 2020; 5:92385. [PMID: 32069266 DOI: 10.1172/jci.insight.92385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the metabotropic glutamate receptor 1α (mGluR1α) and mGluR5 dependence of long-term potentiation, and increases activation of ERK in the hippocampus after learning. Our studies define a critical role for corepressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.
Collapse
Affiliation(s)
| | | | | | | | - Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Nelson Spruston
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, Virginia, USA
| | | |
Collapse
|
44
|
Ferrer A, Schultz-Rogers L, Kaiwar C, Kemppainen JL, Klee EW, Gavrilova RH. Three rare disease diagnoses in one patient through exome sequencing. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004390. [PMID: 31427378 PMCID: PMC6913146 DOI: 10.1101/mcs.a004390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023] Open
Abstract
Diagnostic exome sequencing yields a single genetic diagnosis in ∼30% of cases, and according to recent studies the prevalence of identifying two genetic conditions in a single individual range between 4.6% and 7%. We present a patient diagnosed with three different rare conditions, each explained by a pathogenic variant in a different gene. A 17-yr-old female was evaluated for a history of motor and speech delay, scoliosis, distinctive craniofacial features, and dry skin in the Department of Clinical Genomics at Mayo Clinic. Her distinctive features included prominent forehead, epicanthus, depressed nasal bridge, narrow mouth, prognathism, malar flattening, and oligodontia. Family history was notable for dry skin in her mother and missing teeth in the paternal grandmother. Previous diagnostic testing was unrevealing including biochemical testing, echocardiogram, abdominal ultrasound, and electroencephalogram. Previous genetic testing included a microarray-based comparative genomic hybridization that was reported normal. Three pathogenic loss-of-function heterozygous variants were identified by exome trio sequencing, each linked to different genetic conditions: SIN3A (Witteveen–Kolk syndrome), FLG (dermatitis), and EDAR (ectodermal dysplasia). Together, these three genetic alterations could explain the patient's overall phenotype. This patient demonstrates the importance of performing a thorough curation of exome data when presented with a complex phenotype. Although phenotypic variability can explain some of these situations, the hypothesis of multiple diseases coexisting in a single patient should never be disregarded completely.
Collapse
Affiliation(s)
- Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Laura Schultz-Rogers
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Charu Kaiwar
- Invitae Corporation, San Francisco, California 94103, USA
| | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ralitza H Gavrilova
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
45
|
Frints SGM, Ozanturk A, Rodríguez Criado G, Grasshoff U, de Hoon B, Field M, Manouvrier-Hanu S, E Hickey S, Kammoun M, Gripp KW, Bauer C, Schroeder C, Toutain A, Mihalic Mosher T, Kelly BJ, White P, Dufke A, Rentmeester E, Moon S, Koboldt DC, van Roozendaal KEP, Hu H, Haas SA, Ropers HH, Murray L, Haan E, Shaw M, Carroll R, Friend K, Liebelt J, Hobson L, De Rademaeker M, Geraedts J, Fryns JP, Vermeesch J, Raynaud M, Riess O, Gribnau J, Katsanis N, Devriendt K, Bauer P, Gecz J, Golzio C, Gontan C, Kalscheuer VM. Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder. Mol Psychiatry 2019; 24:1748-1768. [PMID: 29728705 DOI: 10.1038/s41380-018-0065-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.
Collapse
Affiliation(s)
- Suzanna G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands. .,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| | - Aysegul Ozanturk
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | | | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Bas de Hoon
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands.,Department of Gynaecology and Obstetrics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Michael Field
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Sylvie Manouvrier-Hanu
- Clinique de Génétique médicale Guy Fontaine, Centre de référence maladies rares Anomalies du développement Hôpital Jeanne de Flandre, Lille, 59000, France.,EA 7364 RADEME Maladies Rares du Développement et du Métabolisme, Faculté de Médecine, Université de Lille, Lille, 59000, France
| | - Scott E Hickey
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Molka Kammoun
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Karen W Gripp
- Alfred I. duPont Hospital for Children Nemours, Wilmington, DE, 19803, USA
| | - Claudia Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Annick Toutain
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Theresa Mihalic Mosher
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Benjamin J Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Eveline Rentmeester
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Sungjin Moon
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Daniel C Koboldt
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Kees E P van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Hao Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Lucinda Murray
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Eric Haan
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renee Carroll
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Lynne Hobson
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Marjan De Rademaeker
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, 1090, Brussels, Belgium
| | - Joep Geraedts
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Jean-Pierre Fryns
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Joris Vermeesch
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Martine Raynaud
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas Katsanis
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Christelle Golzio
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, 67400, Illkirch, France
| | - Cristina Gontan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany.
| |
Collapse
|
46
|
Tao H, Tao JY, Song ZY, Shi P, Wang Q, Deng ZY, Ding XS. MeCP2 triggers diabetic cardiomyopathy and cardiac fibroblast proliferation by inhibiting RASSF1A. Cell Signal 2019; 63:109387. [DOI: 10.1016/j.cellsig.2019.109387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
|
47
|
Li L, Jin J, Yang XJ. Histone Deacetylase 3 Governs Perinatal Cerebral Development via Neural Stem and Progenitor Cells. iScience 2019; 20:148-167. [PMID: 31569049 PMCID: PMC6823663 DOI: 10.1016/j.isci.2019.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
We report that cerebrum-specific inactivation of the histone deacetylase 3 (HDAC3) gene causes striking developmental defects in the neocortex, hippocampus, and corpus callosum; post-weaning lethality; and abnormal behaviors, including hyperactivity and anxiety. The defects are due to rapid loss of embryonic neural stem and progenitor cells (NSPCs). Premature neurogenesis and abnormal neuronal migration in the mutant brain alter NSPC homeostasis. Mutant cerebral cortices also display augmented DNA damage responses, apoptosis, and histone hyperacetylation. Moreover, mutant NSPCs are impaired in forming neurospheres in vitro, and treatment with the HDAC3-specific inhibitor RGFP966 abolishes neurosphere formation. Transcriptomic analyses of neonatal cerebral cortices and cultured neurospheres support that HDAC3 regulates transcriptional programs through interaction with different transcription factors, including NFIB. These findings establish HDAC3 as a major deacetylase critical for perinatal development of the mouse cerebrum and NSPCs, thereby suggesting a direct link of this enzymatic epigenetic regulator to human cerebral and intellectual development. HDAC3 inactivation causes developmental defects in the neocortex and hippocampus HDAC3 loss leads to depletion of embryonic neural stem and progenitor cells HDAC3 inhibition abolishes neurosphere formation in vitro HDAC3 interacts with NFIB and other transcription factors in cerebral development
Collapse
Affiliation(s)
- Lin Li
- The Rosalind & Morris Goodman Cancer Research Center, Montreal, QC H3A 1A3, Canada; Department of Medicine and McGill University, Montreal, QC H3A 1A3, Canada
| | - Jianliang Jin
- The Rosalind & Morris Goodman Cancer Research Center, Montreal, QC H3A 1A3, Canada; Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory of Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center, Montreal, QC H3A 1A3, Canada; Department of Medicine and McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
48
|
In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Arl14ep risk gene. Nat Commun 2019; 10:4112. [PMID: 31511512 PMCID: PMC6739341 DOI: 10.1038/s41467-019-12013-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Many neuropsychiatric risk genes contribute to epigenetic regulation but little is known about specific chromatin-associated mechanisms governing the formation of neuronal connectivity. Here we show that transcallosal connectivity is critically dependent on C11orf46, a nuclear protein encoded in the chromosome 11p13 WAGR risk locus. C11orf46 haploinsufficiency was associated with hypoplasia of the corpus callosum. C11orf46 knockdown disrupted transcallosal projections and was rescued by wild type C11orf46 but not the C11orf46R236H mutant associated with intellectual disability. Multiple genes encoding key regulators of axonal development, including Sema6a, were hyperexpressed in C11orf46-knockdown neurons. RNA-guided epigenetic editing of Sema6a gene promoters via a dCas9-SunTag system with C11orf46 binding normalized SEMA6A expression and rescued transcallosal dysconnectivity via repressive chromatin remodeling by the SETDB1 repressor complex. Our study demonstrates that interhemispheric communication is sensitive to locus-specific remodeling of neuronal chromatin, revealing the therapeutic potential for shaping the brain's connectome via gene-targeted designer activators and repressor proteins.
Collapse
|
49
|
Yi SY, Barnett BR, Yu JPJ. Preclinical neuroimaging of gene-environment interactions in psychiatric disease. Br J Radiol 2019; 92:20180885. [PMID: 30982323 PMCID: PMC6732909 DOI: 10.1259/bjr.20180885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/21/2019] [Accepted: 03/13/2019] [Indexed: 01/30/2023] Open
Abstract
Psychiatric disease is one of the leading causes of disability worldwide. Despite the global burden and need for accurate diagnosis and treatment of mental illness, psychiatric diagnosis remains largely based on patient-reported symptoms, allowing for immense symptomatic heterogeneity within a single disease. In renewed efforts towards improved diagnostic specificity and subsequent evaluation of treatment response, a greater understanding of the underlying of the neuropathology and neurobiology of neuropsychiatric disease is needed. However, dissecting these mechanisms of neuropsychiatric illness in clinical populations are problematic with numerous experimental hurdles limiting hypothesis-driven studies including genetic confounds, variable life experiences, different environmental exposures, therapeutic histories, as well as the inability to investigate deeper molecular changes in vivo . Preclinical models, where many of these confounding factors can be controlled, can serve as a crucial experimental bridge for studying the neurobiological origins of mental illness. Furthermore, although behavioral studies and molecular studies are relatively common in these model systems, focused neuroimaging studies are very rare and represent an opportunity to link the molecular changes in psychiatric illness with advanced quantitative neuroimaging studies. In this review, we present an overview of well-validated genetic and environmental models of psychiatric illness, discuss gene-environment interactions, and examine the potential role of neuroimaging towards understanding genetic, environmental, and gene-environmental contributions to psychiatric illness.
Collapse
Affiliation(s)
- Sue Y. Yi
- Neuroscience Training Program, University of Wisconsin–Madison, Wisconsin Institutes for Medical Research, Madison, USA
| | - Brian R. Barnett
- Neuroscience Training Program, University of Wisconsin–Madison, Wisconsin Institutes for Medical Research, Madison, USA
| | | |
Collapse
|
50
|
Rare variants in novel and known genes associated with primary angle closure glaucoma based on whole exome sequencing of 549 probands. J Genet Genomics 2019; 46:353-357. [PMID: 31377238 DOI: 10.1016/j.jgg.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
|