1
|
Huang L, Xu W, Fu Y, Yang Z, Mo R, Ding Y, Xie T. RARB genetic variants might contribute to the risk of chronic obstructive pulmonary disease based on a case-control study. Ann Med 2025; 57:2445195. [PMID: 39723714 DOI: 10.1080/07853890.2024.2445195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease that severely impairs patients' respiratory function and quality of life. RARB is involved in COPD progression by affecting inflammatory reactions, cell proliferation, and apoptosis. The impact of single nucleotide polymorphisms (SNPs) within RARB on COPD susceptibility remains unclear. Here, we aimed to evaluate the association between RARB SNPs and COPD risk. METHODS A total of 270 COPD patients and 271 healthy controls were enrolled. The MassARRAY iPLEX platform tested the genotype of the SNPs. The association was analyzed using logistic regression analysis. The false-positive report probability (FPRP) analysis was performed to validate the significant findings. The relationship between SNPs and RARB expression was evaluated using the GTEx database. RESULTS Our study found a significant association between rs6799734 and COPD susceptibility (OR 1.88, p = 0.008, p (FDR) = 0.047). The stratified analysis revealed that this association was particularly pronounced among individuals aged ≤ 71 years (OR 2.34, p = 0.011, p (FDR) = 0.045), males (OR 2.60, p = 0.002, p (FDR) = 0.013), those with a BMI ≥ 24 (OR 3.95, p = 0.018, p (FDR) = 0.108), and smokers (OR 2.48, p = 0.020, p (FDR) = 0.120). Additionally, rs1286641 and rs1881706 showed significant associations with COPD risk in females and smokers. These associations were further validated by FPRP analysis. Preliminary mechanism studies indicated that rs1286641 and rs1881706 were related to RARB expression. CONCLUSION Our findings suggest a potential role of RARB SNPs in influencing COPD risk.
Collapse
Affiliation(s)
- Linhui Huang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenya Xu
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yihui Fu
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zehua Yang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Rubing Mo
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yipeng Ding
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou,China
| | - Tian Xie
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Tian Q, Jiang H, Luan Y, Sun J, Sui Y, Chen L, Wang Y, Tan N. Vicenin-2 in Suhuang antitussive capsule attenuates mitophagy-dependent ferroptosis via LRP1 for treating post-infectious cough. JOURNAL OF ETHNOPHARMACOLOGY 2025:119880. [PMID: 40288661 DOI: 10.1016/j.jep.2025.119880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suhuang antitussive capsule (SH) is the only clinically approved traditional Chinese patent medicine for the treatment of post-infectious cough (PIC). During the past decade, our lab has conducted intensive researches on SH, including its efficacy and mechanism on PIC, and determined that SH has favorable anti-inflammatory, antitussive, expectorant, and anti-asthmatic pharmacological effects. Recently, we found that vicenin-2 (VIC-2) could be detected in SH and showed activity in vitro primary screening on PIC. AIM OF THE STUDY To investigate the therapeutic effects of VIC-2 on PIC and its potential mechanisms, and want to elucidate VIC-2 as one of the efficacious components of SH. MATERIALS AND METHODS The PIC mouse model was established with lipopolysaccharide (LPS)-induced combined cigarette smoke (CS)-exposed ICR mice, while the in vitro assay was constructed to induce BEAS-2B cells with cigarette smoke extract (CSE). The therapeutic effects of VIC-2 on PIC in vitro and in vivo were assessed by pathological sections, cough assay, immune cell counting, and quantitative-polymerase chain reaction (Q-PCR). The mechanisms of VIC-2 on ferroptosis and mitophagy in PIC were further explored by cell viability assay, Prussian blue staining, lipid peroxidation assessment, confocal laser scanning microscopy, and western blotting. Subsequently, virtual docking, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) verified the target relationship between VIC-2 and LDL receptor-related protein 1 (LRP1). In addition, the link between LRP1 and mitophagy-dependent ferroptosis was explored by knocking down LRP1. RESULTS VIC-2 significantly improved lung inflammation, oxidative stress, and airway remodeling in PIC and inhibited mitophagy-dependent ferroptosis, confirming that it is one of the antitussive components of SH for the treatment of PIC. LRP1 is one of the pharmacological targets of VIC-2, in which VIC-2 exerted the above effects through up-regulating LRP1 by influencing the LRP1-Parkin interaction. The blockade of LRP1 reversed the both in vitro and in vivo pharmacological activities of VIC-2. Furthermore, our results showed for the first time that defects in LRP1 lead to ferroptosis. CONCLUSION This study demonstrates that VIC-2 inhibits mitophagy-dependent ferroptosis via LRP1 for the treatment of PIC, constituting one of the antitussive components of SH.
Collapse
Affiliation(s)
- Qimeng Tian
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hong Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yajun Luan
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangzijiang Pharmaceutical Group, Beijing 102206, P. R. China
| | - Jingge Sun
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yihang Sui
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ling Chen
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yongxiang Wang
- Key Laboratory for Quality Control of Traditional Chinese Medicine of National Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Jiangsu Longfengtang Chinese Medicine Co., Ltd., Yangzijiang Pharmaceutical Group, Taizhou, 225321, P.R. China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
3
|
Wu B, Zhang W, Yu H, Ruan L, Wang K, Gu M, Geng H, Fang J, Xu C, Sheng Y, Tan Q, Shen Q, Duan Z, Wu H, Hua R, Guo R, Wei Z, Zhou P, Xu Y, Cao Y, He X, Li K, Lv M, Tang D. Broadening the ARMC2 mutational phenotype: linking multiple morphological abnormalities of the Flagella to Pulmonary Manifestations in Primary Ciliary Dyskinesia. Reprod Biol Endocrinol 2025; 23:48. [PMID: 40158138 PMCID: PMC11954227 DOI: 10.1186/s12958-025-01385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Severe asthenoteratozoospermia, a prevalent cause of male infertility, has increasingly been associated with ARMC2 variants that cause Multiple Morphological Abnormalities of the Sperm Flagella (MMAF). Although ARMC2 is also expressed in other ciliary structures, no studies have yet reported a link between ARMC2 gene variants and other symptoms of Primary Ciliary Dyskinesia (PCD). METHODS Here, we performed whole-exome sequencing (WES) on Chinese subjects with MMAF to identify potential genetic variants. Sanger sequencing was used to validate the candidate variants. Sperm morphology was assessed using modified hematoxylin and eosin (H&E) staining, and transmission electron microscopy (TEM) was performed to observe the ultrastructural defects of the sperm flagella. Western blot analysis and immunofluorescence (IF) of spermatozoa were performed to evaluate variations in structural protein. Additionally, intracytoplasmic sperm injection (ICSI) was applied for assisted fertilization. RESULTS We identified two compound heterozygous ARMC2 variants and one homozygous variant (P1: c.1030_1042del, p.T344fs/c.1331G > A, p.R444H; P2:c.1264C > T, p.R422X) in two unrelated individuals. Notably, in addition to MMAF, individual P2 exhibited classic symptoms of PCD in the lungs, including recurrent airway infections, bronchitis, and rhinosinusitis. Morphological and ultrastructural analyses of the spermatozoa obtained from the two individuals revealed dramatic disorganization in axonemal and peri-axonemal structures, as well as the absence of the axonemal central pair complex (CPC). Immunoblotting and immunofluorescence assays revealed the reduced expression of ARMC2 and the abnormality of various axonal structural proteins. Further assisted reproduction outcomes showed that one of the individuals conceived successfully after Intracytoplasmic Sperm Injection (ICSI). CONCLUSIONS Overall, this study significantly expanded the mutational phenotype of ARMC2, marking the first discovery of PCD-related pulmonary phenotypes outside of the reproductive system. This work establishes the association between ARMC2 and typical PCD and lays the groundwork for further investigation into the molecular mechanisms of ARMC2 in both flagellogenesis and ciliogenesis.
Collapse
Affiliation(s)
- Baoyan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenhao Zhang
- Department of Clinical Medical, First Clinical Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lewen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kai Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meng Gu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Jiajun Fang
- The First Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuying Sheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Provincial Human Sperm Bank First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Provincial Human Sperm Bank First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| |
Collapse
|
4
|
Plichta J, Panek M. Role of the TGF-β cytokine and its gene polymorphisms in asthma etiopathogenesis. FRONTIERS IN ALLERGY 2025; 6:1529071. [PMID: 39949968 PMCID: PMC11821632 DOI: 10.3389/falgy.2025.1529071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Transforming growth factor beta (TGF-β) is a pluripotent cytokine expressed by all cells of the human body which plays important roles in maintaining homeostasis and allowing for proper individual development. Disturbances in TGF-β signaling contribute to the development of many diseases and disorders, including cancer and organ fibrosis. One of the diseases with the best-characterized correlation between TGF-β action and etiopathogenesis is asthma. Asthma is the most common chronic inflammatory disease of the lower and upper respiratory tract, characterized by bronchial hyperresponsiveness to a number of environmental factors, leading to bronchospasm and reversible limitation of expiratory flow. TGF-β, in particular TGF-β1, is a key factor in the etiopathogenesis of asthma. TGF-β1 concentration in bronchoalveolar lavage fluid samples is elevated in atopic asthma, and TGF-β expression is increased in asthmatic bronchial samples. The expression of all TGF-β isoforms is affected by a number of single nucleotide polymorphisms found in the genes encoding these cytokines. Some of the SNPs that alter the level of TGF-β expression may be associated with the occurrence and severity of symptoms of asthma and other diseases. The TGF-β gene polymorphisms, which are the subject of this paper, are potential diagnostic factors. If properly used, these polymorphisms can facilitate the early and precise diagnosis of asthma, allowing for the introduction of appropriate therapy and reduction of asthma exacerbation frequency.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
5
|
Zhuo G, Lin S, Yuan F, Zheng Q, Guo Y, Wang Z, Hu J, Yao M, Zhong F, Chen S, Chen Y, Chen H. Comprehensive analysis of the expression and prognostic value of ARMCs in pancreatic adenocarcinoma. BMC Cancer 2025; 25:28. [PMID: 39773340 PMCID: PMC11708071 DOI: 10.1186/s12885-024-13365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) has a very poor prognosis, and there are few treatments for PAAD. Therefore, it is important to find some biomarkers for the diagnosis and treatment of PAAD. Although some members of Armadillo repeat containing proteins (ARMCs) have been implicated in the development of certain cancers, their relationship with PAAD remains unknown. In this study, we aimed to explore the expression and prognostic value of ARMCs in PAAD. METHODS We used the The Cancer Genome Atlas (TCGA) database for survival analysis. Then, Gene Expression Profiling Interactive Analysis (GEPIA), the cBioPortal database, the Human Protein Atlas (HPA), Kaplan-Meier Plotter, LinkedOmics Database, Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG), Cytoscape and Timer were used to analyze the relationship between ARMCs and PAAD. In addition, we established a prognostic model of ARMCs for PAAD. Immunohistochemistry (IHC) was also performed. Then Image-J was used to analyze all images obtained from the experiment, and GraphPad-Prism (9.5.1) was used for statistical analysis to verify the expression of ARMCs in PAAD. RESULTS In the TCGA database, the expressions of ARMC1, 2, 3, 5, 6, 7, 8, 9 and 10 in PAAD tissues were significantly higher than those in normal tissues. And higher expressions of ARMC1 and 10 were associated with lower survival rate of PAAD patients. In addition, ARMC2, 5, 6, and 10 were positively associated with advanced stages of PAAD. ARMCs mutations occur in 11% of PAAD patients, and missense mutations and amplification of ARMCs account for most of them. In addition, ARMC5 and ARMC10 were independent prognostic factors in univariate and multivariate Cox regression analyses. Finally, through our confirmation experiment, it was found that the expression of ARMC1 and 10 in PAAD tissues was significantly increased compared with those in paracancer tissue. CONCLUSION This study suggests that ARMCs may be able to play important roles in PAAD, and they can act as biomarkers, providing valuable clues for the treatment and diagnosis of PAAD.
Collapse
Affiliation(s)
- Guanxiang Zhuo
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Department of Hepatobiliary Surgery, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, 350003, Fujian, China
| | - Shengzhai Lin
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Fei Yuan
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Qiaoling Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yinpin Guo
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Zuwei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jianfei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Fuxiu Zhong
- Department of Hepatobiliary Surgery Nursing, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China.
| | - Huixing Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
6
|
Zhang J, Wang J, Ma X, Wang Y, Liu K, Li Z, Wang J, Na L, Li J. Rapid FEV1 decline and the effects of both FEV1 and FVC on cardiovascular disease: A UK biobank cohort analysis. BMC Public Health 2024; 24:3214. [PMID: 39563289 PMCID: PMC11575200 DOI: 10.1186/s12889-024-20716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The relationship between lung function and cardiovascular disease (CVD) has emerged as a significant research focus in recent years, but studies on the effects of both forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) remain limited. METHODS Among 29,662 participants in the UK Biobank study free of CVD, rapid lung function decline was defined as the decline in either FEV1 (greatest quartile), FVC (greatest quartile), or both (when both FEV1 and FVC exceeded the greatest quartile). CVDs include coronary heart disease (CHD), arrhythmias, heart failure (HF), peripheral arterial disease (PAD), and other CVDs (including endocarditis, stroke, and myocardial diseases). Cox proportional hazards models were used to explore the associations between lung function and CVD incidence. Fine‒Gray models were used to account for the competing risk of death. RESULTS Among 29,662 participants in the UK Biobank study free of CVD, the adjusted hazard ratios (HRs) for FEV1 rapid decline were 1.150 (95% CI: 1.009-1.311) for CHD, 1.307 (95% CI: 1.167-1.465) for arrhythmias, 1.406 (95% CI: 1.084-1.822) for HF, 1.287 (95% CI: 1.047-1.582) for PAD, 1.170 (95% CI: 1.022-1.340) for other CVDs, and 1.216 (95% CI: 1.124-1.315) for composite CVD. The adjusted HRs for the impact of both rapid decreases in FEV1 and FVC were 1.386 (95% CI: 1.226-1.567) for arrhythmias, 1.390 (95% CI: 1.041-1.833) for HF, 1.222 (95% CI: 1.054-1.417) for other CVDs, and 1.230 (95% CI: 1.128-1.340) for composite CVD. CONCLUSIONS The rapid decline in FEV1 and the impact of both FEV1 and FVC are closely associated with the subsequent incidence of various CVDs and composite CVD.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Junru Wang
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaojun Ma
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yali Wang
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Kai Liu
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhuoyuan Li
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jing Wang
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Lisha Na
- Department of Cardiac Function Examination of Heart Centre, General Hospital of Ningxia Medical University, 750004, Yinchuan City, Ningxia, China.
| | - Jiangping Li
- Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, 750004, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
7
|
Li W, Zhang H, Xu J, Maimaitijiang A, Su Z, Fan Z, Li J. The Biological Roles of ZKSCAN3 (ZNF306) in the Hallmarks of Cancer: From Mechanisms to Therapeutics. Int J Mol Sci 2024; 25:11532. [PMID: 39519085 PMCID: PMC11546961 DOI: 10.3390/ijms252111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
ZKSCAN3 (also known as ZNF306) plays a pivotal role in the regulation of various cellular processes that are fundamental to the development of cancer. It has been widely acknowledged as a key contributor to cancer progression, with its overexpression consistently reported in a broad spectrum of malignancies. Importantly, clinical studies have demonstrated a significant association between elevated ZKSCAN3 levels and adverse prognosis, as well as resistance to therapeutic drugs. Specifically, ZKSCAN3 promotes tumor progression by enhancing multiple hallmark features of cancer and promoting the acquisition of cancer-specific phenotypes. These effects manifest as increased tumor cell proliferation, invasion, and metastasis, accompanied by inhibiting tumor cell apoptosis and modulating autophagy. Consequently, ZKSCAN3 emerges as a promising prognostic marker, and targeting its inhibition represents a potential strategy for anti-tumor therapy. In this review, we provide an updated perspective on the role of ZKSCAN3 in governing tumor characteristics and the underlying molecular mechanisms. Furthermore, we underscore the clinical relevance of ZKSCAN3 and its potential implications for tumor prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhongxiong Fan
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
8
|
Li H, House JS, Nichols CE, Gruzdev A, Ward JM, Li JL, Wyss AB, Haque E, Edin ML, Elmore SA, Mahler BW, Degraff LM, Shi M, Zeldin DC, London SJ. Adam19 Deficiency Impacts Pulmonary Function: Human GWAS Follow-up in a Mouse Knockout Model. Lung 2024; 202:659-672. [PMID: 39153120 PMCID: PMC11427501 DOI: 10.1007/s00408-024-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. METHODS We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Mouse body composition was assessed using dual-energy X-ray absorptiometry. Mouse lung function was measured using flexiVent. RESULTS Contrary to prior publications, the KO was not neonatal lethal. KO mice had lower body weight and shorter tibial length than wild-type (WT) mice. Their body composition revealed lower soft weight, fat weight, and bone mineral content. Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. CONCLUSION Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.
Collapse
Affiliation(s)
- Huiling Li
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - John S House
- Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cody E Nichols
- Whitsell Innovations, Inc., Chapel Hill, North Carolina, USA
| | - Artiom Gruzdev
- Reproductive & Developmental Biology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Annah B Wyss
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ezazul Haque
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Matthew L Edin
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Susan A Elmore
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Beth W Mahler
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Laura M Degraff
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Darryl C Zeldin
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
9
|
Howes A, Rogerson C, Belyaev N, Karagyozova T, Rapiteanu R, Fradique R, Pellicciotta N, Mayhew D, Hurd C, Crotta S, Singh T, Dingwell K, Myatt A, Arad N, Hasan H, Bijlsma H, Panjwani A, Vijayan V, Young G, Bridges A, Petit-Frere S, Betts J, Larminie C, Smith JC, Hessel EM, Michalovich D, Walport L, Cicuta P, Powell AJ, Beinke S, Wack A. The FAM13A Long Isoform Regulates Cilia Movement and Coordination in Airway Mucociliary Transport. Am J Respir Cell Mol Biol 2024; 71:282-293. [PMID: 38691660 PMCID: PMC11376246 DOI: 10.1165/rcmb.2024-0063oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024] Open
Abstract
Single nucelotide polymorphisms (SNPs) at the FAM13A locus are among the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases; however, the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: "long" and "short," but their functions remain unknown, partly because of a lack of isoform conservation in mice. We performed in-depth characterization of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase-activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate the RhoGAP activity of this domain. In Xenopus laevis, which conserve the long-isoform, Fam13a deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long-isoform deficiency did not affect multiciliogenesis but reduced cilia coordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform coordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance.
Collapse
Affiliation(s)
| | - Clare Rogerson
- Immunoregulation Laboratory
- Crick-GSK Biomedical LinkLabs
| | | | | | | | - Ricardo Fradique
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Catherine Hurd
- Protein-Protein Interaction Laboratory
- Crick-GSK Biomedical LinkLabs
| | | | | | | | - Anniek Myatt
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Navot Arad
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Hikmatyar Hasan
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Hielke Bijlsma
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | | | - Vinaya Vijayan
- Development Digital and Tech, GSK, Collegeville, Pennsylvania
| | - George Young
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Edith M. Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GSK R&D, Stevenage, United Kingdom
| | | | | | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
10
|
Sayers I, John C, Chen J, Hall IP. Genetics of chronic respiratory disease. Nat Rev Genet 2024; 25:534-547. [PMID: 38448562 DOI: 10.1038/s41576-024-00695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.
Collapse
Affiliation(s)
- Ian Sayers
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Catherine John
- University of Leicester, Leicester, UK
- University Hospitals of Leicester, Leicester, UK
| | - Jing Chen
- University of Leicester, Leicester, UK
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
11
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Castaldi PJ, Sauler M. Molecular Characterization of the Distal Lung: Novel Insights from Chronic Obstructive Pulmonary Disease Omics. Am J Respir Crit Care Med 2024; 210:147-154. [PMID: 38701385 PMCID: PMC11273319 DOI: 10.1164/rccm.202310-1972pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Peter J. Castaldi
- Channing Division of Network Medicine and
- Division of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Maor Sauler
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
13
|
Seo J, Gaddis NC, Patchen BK, Xu J, Barr RG, O'Connor G, Manichaikul AW, Gharib SA, Dupuis J, North KE, Cassano PA, Hancock DB. Exploiting meta-analysis of genome-wide interaction with serum 25-hydroxyvitamin D to identify novel genetic loci associated with pulmonary function. Am J Clin Nutr 2024; 119:1227-1237. [PMID: 38484975 PMCID: PMC11130669 DOI: 10.1016/j.ajcnut.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.
Collapse
Affiliation(s)
- Jungkyun Seo
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Nathan C Gaddis
- RTI International, Research Triangle Park, NC, United States
| | - Bonnie K Patchen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jiayi Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - R Graham Barr
- Divisions of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY, United States
| | - George O'Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, United States
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, NY, United States
| | - Dana B Hancock
- RTI International, Research Triangle Park, NC, United States.
| |
Collapse
|
14
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Gao J, Yang Y, Xiang X, Zheng H, Yi X, Wang F, Liang Z, Chen D, Shi W, Wang L, Wu D, Feng S, Huang Q, Li X, Shu W, Chen R, Zhong N, Wang Z. Human genetic associations of the airway microbiome in chronic obstructive pulmonary disease. Respir Res 2024; 25:165. [PMID: 38622589 PMCID: PMC11367891 DOI: 10.1186/s12931-024-02805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaopeng Xiang
- The Hong Kong Polytechnic University, Hong Kong, Hung Hom Kowloon, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Di Wu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shengchuan Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiaoyun Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueping Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Zhang Wang
- Institute of Ecological Sciences, Biomedical Research Center, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
16
|
Wang Z, Li S, Cai G, Gao Y, Yang H, Li Y, Liang J, Zhang S, Hu J, Zheng J. Mendelian randomization analysis identifies druggable genes and drugs repurposing for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2024; 14:1386506. [PMID: 38660492 PMCID: PMC11039854 DOI: 10.3389/fcimb.2024.1386506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a prevalent condition that significantly impacts public health. Unfortunately, there are few effective treatment options available. Mendelian randomization (MR) has been utilized to repurpose existing drugs and identify new therapeutic targets. The objective of this study is to identify novel therapeutic targets for COPD. Methods Cis-expression quantitative trait loci (cis-eQTL) were extracted for 4,317 identified druggable genes from genomics and proteomics data of whole blood (eQTLGen) and lung tissue (GTEx Consortium). Genome-wide association studies (GWAS) data for doctor-diagnosed COPD, spirometry-defined COPD (Forced Expiratory Volume in one second [FEV1]/Forced Vital Capacity [FVC] <0.7), and FEV1 were obtained from the cohort of FinnGen, UK Biobank and SpiroMeta consortium. We employed Summary-data-based Mendelian Randomization (SMR), HEIDI test, and colocalization analysis to assess the causal effects of druggable gene expression on COPD and lung function. The reliability of these druggable genes was confirmed by eQTL two-sample MR and protein quantitative trait loci (pQTL) SMR, respectively. The potential effects of druggable genes were assessed through the phenome-wide association study (PheWAS). Information on drug repurposing for COPD was collected from multiple databases. Results A total of 31 potential druggable genes associated with doctor-diagnosed COPD, spirometry-defined COPD, and FEV1 were identified through SMR, HEIDI test, and colocalization analysis. Among them, 22 genes (e.g., MMP15, PSMA4, ERBB3, and LMCD1) were further confirmed by eQTL two-sample MR and protein SMR analyses. Gene-level PheWAS revealed that ERBB3 expression might reduce inflammation, while GP9 and MRC2 were associated with other traits. The drugs Montelukast (targeting the MMP15 gene) and MARIZOMIB (targeting the PSMA4 gene) may reduce the risk of spirometry-defined COPD. Additionally, an existing small molecule inhibitor of the APH1A gene has the potential to increase FEV1. Conclusions Our findings identified 22 potential drug targets for COPD and lung function. Prioritizing clinical trials that target these identified druggable genes with existing drugs or novel medications will be beneficial for the development of COPD treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinping Zheng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Li H, House J, Nichols C, Gruzdev A, Ward J, Li JL, Wyss A, Haque E, Edin M, Elmore S, Mahler B, Degraff L, Shi M, Zeldin D, London S. Adam19 Deficiency Impacts Pulmonary Function: Human GWAS Follow-up in Mouse. RESEARCH SQUARE 2024:rs.3.rs-4207678. [PMID: 38659817 PMCID: PMC11042436 DOI: 10.21203/rs.3.rs-4207678/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Purpose Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. Methods We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Contrary to prior publications, the KO was not neonatal lethal. Thus, we phenotyped the Adam19 KO. Results KO mice had lower body weight and shorter tibial length than wild type (WT). Dual-energy X-ray Absorptiometry indicated lower soft weight, fat weight, and bone mineral content in KO mice. In lung function analyses using flexiVent, compared to WT, Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. Conclusion Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.
Collapse
Affiliation(s)
- Huiling Li
- National Institute of Environmental Health Sciences
| | - John House
- National Institute of Environmental Health Sciences
| | | | | | - James Ward
- National Institute of Environmental Health Sciences
| | | | | | - Ezazul Haque
- National Institute of Environmental Health Sciences
| | - Matthew Edin
- National Institute of Environmental Health Sciences
| | - Susan Elmore
- National Institute of Environmental Health Sciences
| | - Beth Mahler
- National Institute of Environmental Health Sciences
| | | | - Min Shi
- National Institute of Environmental Health Sciences
| | | | | |
Collapse
|
18
|
Kato A, Pipil S, Ota C, Kusakabe M, Watanabe T, Nagashima A, Chen AP, Islam Z, Hayashi N, Wong MKS, Komada M, Romero MF, Takei Y. Convergent gene losses and pseudogenizations in multiple lineages of stomachless fishes. Commun Biol 2024; 7:408. [PMID: 38570609 PMCID: PMC10991444 DOI: 10.1038/s42003-024-06103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The regressive evolution of independent lineages often results in convergent phenotypes. Several teleost groups display secondary loss of the stomach, and four gastric genes, atp4a, atp4b, pgc, and pga2 have been co-deleted in agastric (stomachless) fish. Analyses of genotypic convergence among agastric fishes showed that four genes, slc26a9, kcne2, cldn18a, and vsig1, were co-deleted or pseudogenized in most agastric fishes of the four major groups. kcne2 and vsig1 were also deleted or pseudogenized in the agastric monotreme echidna and platypus, respectively. In the stomachs of sticklebacks, these genes are expressed in gastric gland cells or surface epithelial cells. An ohnolog of cldn18 was retained in some agastric teleosts but exhibited an increased non-synonymous substitution when compared with gastric species. These results revealed novel convergent gene losses at multiple loci among the four major groups of agastric fish, as well as a single gene loss in the echidna and platypus.
Collapse
Affiliation(s)
- Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan.
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA.
| | - Supriya Pipil
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makoto Kusakabe
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
- Department of Biological Sciences, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Taro Watanabe
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - An-Ping Chen
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
| | - Zinia Islam
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Naoko Hayashi
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Marty Kwok-Shing Wong
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
- Department of Biomolecular Science, Toho University, Funabashi, Japan
| | - Masayuki Komada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael F Romero
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
- Department of Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
| | - Yoshio Takei
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
19
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
20
|
Wang Y, Pan H, Gong X, Wang Z, Qin X, Zhou S, Zhu C, Hu X, Chen S, Liu H, Jin H, Pang Q, Wu W. CDC123 promotes Hepatocellular Carcinoma malignant progression by regulating CDKAL1. Pathol Res Pract 2024; 254:154987. [PMID: 38237400 DOI: 10.1016/j.prp.2023.154987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
The cell proliferation protein 123 (CDC123) is involved in the synthesis of the eukaryotic initiation factor 2 (eIF2), which regulates eukaryotic translation. Although CDC123 is considered a candidate oncogene in breast cancer, its expression and role in Hepatocellular Carcinoma (HCC) remain unknown. Herein, we obtained the CDC123 RNA-seq and clinical prognostic data from the TCGA database. The mRNA level revealed that CDC123 was highly expressed in HCC patients, and Kaplan-Meier analysis implied better prognoses in HCC patients with low CDC123 expression (P < 0.001). The multivariate Cox analysis revealed that the CDC123 level was an independent prognostic factor (P < 0.001). We further confirmed a high CDC123 expression in HCC cell lines. Additionally, we found that CDC123 knockdown in HCC cell lines significantly inhibited cellular proliferation, invasion, and migration. Moreover, CDC123 was co-expressed with the CDK5 Regulatory Subunit-Associated Protein 1 Like 1 (CDKAL1), whose mRNA level was decreased after silencing CDC123. Therefore, we hypothesized that CDC123 promotes HCC progression by regulating CDKAL1.
Collapse
Affiliation(s)
- Yong Wang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - HongTao Pan
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - XuanKun Gong
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - ZhiCheng Wang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - XiLiang Qin
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Shuai Zhou
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Chao Zhu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - XiaoSi Hu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - ShiLei Chen
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - HuiChun Liu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Hao Jin
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Qing Pang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| | - WenYong Wu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| |
Collapse
|
21
|
Werder RB, Berthiaume KA, Merritt C, Gallagher M, Villacorta-Martin C, Wang F, Bawa P, Malik V, Lyons SM, Basil MC, Morrisey EE, Kotton DN, Zhou X, Cho MH, Wilson AA. The COPD GWAS gene ADGRG6 instructs function and injury response in human iPSC-derived type II alveolar epithelial cells. Am J Hum Genet 2023; 110:1735-1749. [PMID: 37734371 PMCID: PMC10577075 DOI: 10.1016/j.ajhg.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Emphysema and chronic obstructive pulmonary disease (COPD) most commonly result from the effects of environmental exposures in genetically susceptible individuals. Genome-wide association studies have implicated ADGRG6 in COPD and reduced lung function, and a limited number of studies have examined the role of ADGRG6 in cells representative of the airway. However, the ADGRG6 locus is also associated with DLCO/VA, an indicator of gas exchange efficiency and alveolar function. Here, we sought to evaluate the mechanistic contributions of ADGRG6 to homeostatic function and disease in type 2 alveolar epithelial cells. We applied an inducible CRISPR interference (CRISPRi) human induced pluripotent stem cell (iPSC) platform to explore ADGRG6 function in iPSC-derived AT2s (iAT2s). We demonstrate that ADGRG6 exerts pleiotropic effects on iAT2s including regulation of focal adhesions, cytoskeleton, tight junctions, and proliferation. Moreover, we find that ADGRG6 knockdown in cigarette smoke-exposed iAT2s alters cellular responses to injury, downregulating apical complexes in favor of proliferation. Our work functionally characterizes the COPD GWAS gene ADGRG6 in human alveolar epithelium.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Kayleigh A Berthiaume
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carly Merritt
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marissa Gallagher
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Vidhi Malik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Biochemistry Department, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maria C Basil
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
22
|
Guyatt A, John C, Williams AT, Shrine N, Reeve NF, Sayers I, Hall I, Wain LV, Sheehan N, Dudbridge F, Tobin MD. Mendelian randomisation of eosinophils and other cell types in relation to lung function and disease. Thorax 2023; 78:496-503. [PMID: 35537820 PMCID: PMC10176352 DOI: 10.1136/thoraxjnl-2021-217993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
Abstract
RATIONALE Eosinophils are associated with airway inflammation in respiratory disease. Eosinophil production and survival is controlled partly by interleukin-5: anti-interleukin-5 agents reduce asthma and response correlates with baseline eosinophil counts. However, whether raised eosinophils are causally related to chronic obstructive pulmonary disease (COPD) and other respiratory phenotypes is not well understood. OBJECTIVES We investigated causality between eosinophils and: lung function, acute exacerbations of COPD, asthma-COPD overlap (ACO), moderate-to-severe asthma and respiratory infections. METHODS We performed Mendelian randomisation (MR) using 151 variants from genome-wide association studies of blood eosinophils in UK Biobank/INTERVAL, and respiratory traits in UK Biobank/SpiroMeta, using methods relying on different assumptions for validity. We performed multivariable analyses using eight cell types where there was possible evidence of causation by eosinophils. MEASUREMENTS AND MAIN RESULTS Causal estimates derived from individual variants were highly heterogeneous, which may arise from pleiotropy. The average effect of raising eosinophils was to increase risk of ACO (weighted median OR per SD eosinophils, 1.44 (95%CI 1.19 to 1.74)), and moderate-severe asthma (weighted median OR 1.50 (95%CI 1.23 to 1.83)), and to reduce forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and FEV1 (weighted median estimator, SD FEV1/FVC: -0.054 (95% CI -0.078 to -0.029), effect only prominent in individuals with asthma). CONCLUSIONS Broad consistency across MR methods may suggest causation by eosinophils (although of uncertain magnitude), yet heterogeneity necessitates caution: other important mechanisms may be responsible for the impairment of respiratory health by these eosinophil-raising variants. These results could suggest that anti-IL5 agents (designed to lower eosinophils) may be valuable in treating other respiratory conditions, including people with overlapping features of asthma and COPD.
Collapse
Affiliation(s)
- Anna Guyatt
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola F Reeve
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ian Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Nuala Sheehan
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
23
|
Jiang J, Xu S, Chen Z, Liu W, Zhang L, Li J, Zhu Z, Zhou L. Animal models: An essential tool to dissect the heterogeneity of chronic obstructive pulmonary disease. J Transl Int Med 2023; 11:4-10. [PMID: 37533843 PMCID: PMC10393054 DOI: 10.2478/jtim-2023-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Affiliation(s)
- Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing210029, Jiangsu Province, China
| | - Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing210029, Jiangsu Province, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing210029, Jiangsu Province, China
| | - Weihua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing210029, Jiangsu Province, China
| | - Liuchao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing210029, Jiangsu Province, China
| | - Jianmin Li
- Animal Core Facility, Key Laboratory of Model Animal, Nanjing Medical University, Nanjing211166, Jiangsu Province, China
| | - Zhou Zhu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI02912, USA
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing210029, Jiangsu Province, China
- Animal Core Facility, Key Laboratory of Model Animal, Nanjing Medical University, Nanjing211166, Jiangsu Province, China
- Institute of Integrative Medicine, Nanjing Medical University, Nanjing210029, Jiangsu Province, China
| |
Collapse
|
24
|
Dapas M, Thompson EE, Wentworth-Sheilds W, Clay S, Visness CM, Calatroni A, Sordillo JE, Gold DR, Wood RA, Makhija M, Khurana Hershey GK, Sherenian MG, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Altman MC, Busse WW, Becker PM, Nicolae D, O’Connor GT, Gern JE, Jackson DJ, Ober C. Multi-omic association study identifies DNA methylation-mediated genotype and smoking exposure effects on lung function in children living in urban settings. PLoS Genet 2023; 19:e1010594. [PMID: 36638096 PMCID: PMC9879483 DOI: 10.1371/journal.pgen.1010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/26/2023] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | - Emma E. Thompson
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | - Selene Clay
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | | | - Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States of America
| | - Melanie Makhija
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital, Chicago, Illinois, United States of America
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Michael G. Sherenian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rebecca S. Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle A. Gill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Liu
- Department of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haejin Kim
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Leonard B. Bacharier
- Monroe Carell Jr. Children’s Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepa Rastogi
- Children’s National Health System, Washington, District of Columbia, United States of America
| | - Matthew C. Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - William W. Busse
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dan Nicolae
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - George T. O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James E. Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
25
|
The Biology and Function of Tissue Inhibitor of Metalloproteinase 2 in the Lungs. Pulm Med 2022; 2022:3632764. [PMID: 36624735 PMCID: PMC9825218 DOI: 10.1155/2022/3632764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/02/2023] Open
Abstract
Tissue inhibitors of matrix metalloproteinases (TIMP) are a family of four endogenous proteins that primarily function to inhibit the activities of proteases such as the matrix metalloproteinases (MMP). Altered MMP/TIMP ratios are frequently observed in several human diseases. During aging and disease progression, the extracellular matrix (ECM) undergoes structural changes in which elastin and collagens serve an essential role. MMPs and TIMPs significantly influence the ECM. Classically, elevated levels of TIMPs are suggested to result in ECM accumulation leading to fibrosis, whereas loss of TIMP responses leads to enhanced matrix proteolysis. Here, we outline the known roles of the most abundant TIMP, TIMP2, in pulmonary diseases but also discuss future perspectives in TIMP2 research that could impact the lungs. TIMP2 directly inhibits MMPs, in particular MMP2, but TIMP2 is also required for the activation of MMP2 through its interaction with MMP14. The protease and antiprotease imbalance of MMPs and TIMPs are extensively studied in diseases but recent discoveries suggest that TIMPs, specifically, TIMP2 could play other roles in aging and inflammation processes.
Collapse
|
26
|
Ahmed WUR, Patel MIA, Ng M, McVeigh J, Zondervan K, Wiberg A, Furniss D. Shared genetic architecture of hernias: A genome-wide association study with multivariable meta-analysis of multiple hernia phenotypes. PLoS One 2022; 17:e0272261. [PMID: 36584111 PMCID: PMC9803250 DOI: 10.1371/journal.pone.0272261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
Abdominal hernias are common and characterised by the abnormal protrusion of a viscus through the wall of the abdominal cavity. The global incidence is 18.5 million annually and there are limited non-surgical treatments. To improve understanding of common hernia aetiopathology, we performed a six-stage genome-wide association study (GWAS) of 62,637 UK Biobank participants with either single or multiple hernia phenotypes including inguinal, femoral, umbilical and hiatus hernia. Additionally, we performed multivariable meta-analysis with metaUSAT, to allow integration of summary data across traits to generate combined effect estimates. On individual hernia analysis, we identified 3404 variants across 38 genome-wide significant (p < 5×10-8) loci of which 11 are previously unreported. Robust evidence for five shared susceptibility loci was discovered: ZC3H11B, EFEMP1, MHC region, WT1 and CALD1. Combined hernia phenotype analyses with additional multivariable meta-analysis of summary statistics in metaUSAT revealed 28 independent (seven previously unreported) shared susceptibility loci. These clustered in functional categories related to connective tissue and elastic fibre homeostasis. Weighted genetic risk scores also correlated with disease severity suggesting a phenotypic-genotypic severity correlation, an important finding to inform future personalised therapeutic approaches to hernia.
Collapse
Affiliation(s)
- Waheed Ul-Rahman Ahmed
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Manal I. A. Patel
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael Ng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - James McVeigh
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Krina Zondervan
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Akira Wiberg
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Wang X, Guo Z, Yan F. RNA Epigenetics in Chronic Lung Diseases. Genes (Basel) 2022; 13:genes13122381. [PMID: 36553648 PMCID: PMC9777603 DOI: 10.3390/genes13122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic lung diseases are highly prevalent worldwide and cause significant mortality. Lung cancer is the end stage of many chronic lung diseases. RNA epigenetics can dynamically modulate gene expression and decide cell fate. Recently, studies have confirmed that RNA epigenetics plays a crucial role in the developing of chronic lung diseases. Further exploration of the underlying mechanisms of RNA epigenetics in chronic lung diseases, including lung cancer, may lead to a better understanding of the diseases and promote the development of new biomarkers and therapeutic strategies. This article reviews basic information on RNA modifications, including N6 methylation of adenosine (m6A), N1 methylation of adenosine (m1A), N7-methylguanosine (m7G), 5-methylcytosine (m5C), 2'O-methylation (2'-O-Me or Nm), pseudouridine (5-ribosyl uracil or Ψ), and adenosine to inosine RNA editing (A-to-I editing). We then show how they relate to different types of lung disease. This paper hopes to summarize the mechanisms of RNA modification in chronic lung disease and finds a new way to develop early diagnosis and treatment of chronic lung disease.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
| | - Zhihou Guo
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
| | - Furong Yan
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
- Correspondence:
| |
Collapse
|
28
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Lahmar Z, Ahmed E, Fort A, Vachier I, Bourdin A, Bergougnoux A. Hedgehog pathway and its inhibitors in chronic obstructive pulmonary disease (COPD). Pharmacol Ther 2022; 240:108295. [PMID: 36191777 DOI: 10.1016/j.pharmthera.2022.108295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
COPD affects millions of people and is now ranked as the third leading cause of death worldwide. This largely untreatable chronic airway disease results in irreversible destruction of lung architecture. The small lung hypothesis is now supported by epidemiological, physiological and clinical studies. Accordingly, the early and severe COPD phenotype carries the most dreadful prognosis and finds its roots during lung growth. Pathophysiological mechanisms remain poorly understood and implicate individual susceptibility (genetics), a large part of environmental factors (viral infections, tobacco consumption, air pollution) and the combined effects of those triggers on gene expression. Genetic susceptibility is most likely involved as the disease is severe and starts early in life. The latter observation led to the identification of Mendelian inheritance via disease-causing variants of SERPINA1 - known as the basis for alpha-1 anti-trypsin deficiency, and TERT. In the last two decades multiple genome wide association studies (GWAS) identified many single nucleotide polymorphisms (SNPs) associated with COPD. High significance SNPs are located in 4q31 near HHIP which encodes an evolutionarily highly conserved physiological inhibitor of the Hedgehog signaling pathway (HH). HHIP is critical to several in utero developmental lung processes. It is also implicated in homeostasis, injury response, epithelial-mesenchymal transition and tumor resistance to apoptosis. A few studies have reported decreased HHIP RNA and protein levels in human adult COPD lungs. HHIP+/- murine models led to emphysema. HH pathway inhibitors, such as vismodegib and sonidegib, are already validated in oncology, whereas other drugs have evidenced in vitro effects. Targeting the Hedgehog pathway could lead to a new therapeutic avenue in COPD. In this review, we focused on the early and severe COPD phenotype and the small lung hypothesis by exploring genetic susceptibility traits that are potentially treatable, thus summarizing promising therapeutics for the future.
Collapse
Affiliation(s)
- Z Lahmar
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France
| | - E Ahmed
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Fort
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - I Vachier
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bourdin
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bergougnoux
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France; Laboratoire de Génétique Moléculaire et de Cytogénomique, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
30
|
Caligiuri SPB, Howe WM, Wills L, Smith ACW, Lei Y, Bali P, Heyer MP, Moen JK, Ables JL, Elayouby KS, Williams M, Fillinger C, Oketokoun Z, Lehmann VE, DiFeliceantonio AG, Johnson PM, Beaumont K, Sebra RP, Ibanez-Tallon I, Kenny PJ. Hedgehog-interacting protein acts in the habenula to regulate nicotine intake. Proc Natl Acad Sci U S A 2022; 119:e2209870119. [PMID: 36346845 PMCID: PMC9674224 DOI: 10.1073/pnas.2209870119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2023] Open
Abstract
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William M Howe
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexander C W Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mary P Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zainab Oketokoun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Vanessa E Lehmann
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Paul M Johnson
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Ibanez-Tallon
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
31
|
Abbott GW. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology (Bethesda) 2022; 37:0. [PMID: 35797055 PMCID: PMC9394777 DOI: 10.1152/physiol.00005.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
32
|
Zhou Y, Qiu J, Liu S, Wang P, Ma D, Zhang G, Cao Y, Hu L, Wang Z, Wu J, Jiang C. CFDP1 promotes hepatocellular carcinoma progression through activating NEDD4/PTEN/PI3K/AKT signaling pathway. Cancer Med 2022; 12:425-444. [PMID: 35861040 PMCID: PMC9844661 DOI: 10.1002/cam4.4919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND AIMS It is being increasingly reported that the Cranio Facial Development Protein 1 (CFDP1) plays a significant role in the onset and progression of tumors. Nonetheless, the underlying mechanisms associated with CFDP1 that contribute to hepatocellular carcinoma (HCC) and the specific biological role of CFDP1 remain vague. METHODS The Gene Expression Omnibus (GEO) database was analyzed to obtain the gene expression profiles as well as the matching clinical data of HCC patients. The gene co-expression network was developed by means of weighted gene co-expression network analysis (WGCNA) to screen for possible biomarkers that could be used for the purpose of predicting prognosis. The Cancer Genome Atlas (TCGA) and Gene Expression Profile Interaction Analysis (GEPIA) databases were used to assess the relationship between survival and expression. In addition, we identified the underlying mechanism associated with CFDP1 by analyzing the KEGG pathway database, applying the GSEA and GeneCards analysis method. We performed a sequence of experiments (in vivo and in vitro) for the purpose of investigating the specific function of CFDP1 in liver cancer. RESULTS The obtained results revealed high expression of CFDP1 in HCC tissues and cell lines. A positive correlation between the overexpression of CFDP1 and the adverse clinicopathological features was observed. Moreover, we observed that the low recurrence-free survival and overall survival were associated with CFDP1 overexpression. In addition, GeneCards and GSEA analysis showed that CFDP1 may interact with NEDD4 and participate in PTEN regulation. Meanwhile, CFDP1 can promote the malignant development of liver cancer in vivo and in vitro. The western blotting technique was also employed so as to examine the samples, and the findings demonstrated that CFDP1 enhanced the malignancy of HCC via the NEDD4-mediated PTEN/PI3K/AKT pathway. CONCLUSION We highlighted that CFDP1 played an oncogenic role in HCC and was identified as a possible clinical prognostic factor and a potential novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
| | - Jiannan Qiu
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
| | - Siyuan Liu
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
| | - Peng Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
| | - Ding Ma
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
| | - Guang Zhang
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Yin Cao
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Lili Hu
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Chunping Jiang
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| |
Collapse
|
33
|
Li D, Kim W, An J, Kim S, Lee S, Do A, Kim W, Lee S, Yoon D, Lee K, Ha S, Silverman EK, Cho M, Shin C, Won S. Heritability Analyses Uncover Shared Genetic Effects of Lung Function and Change over Time. Genes (Basel) 2022; 13:genes13071261. [PMID: 35886044 PMCID: PMC9316642 DOI: 10.3390/genes13071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Genetic influence on lung functions has been identified in previous studies; however, the relative longitudinal effects of genetic factors and their interactions with smoking on lung function remain unclear. Here, we identified the longitudinal effects of genetic variants on lung function by determining single nucleotide polymorphism (SNP) heritability and genetic correlations, and by analyzing interactions with smoking. Subject-specific means and annual change rates were calculated for eight spirometric measures obtained from 6622 Korean adults aged 40−69 years every two years for 14 years, and their heritabilities were estimated separately. Statistically significant (p < 0.05) heritability for the subject-specific means of all spirometric measures (8~32%) and change rates of forced expiratory volume in 1 s to forced vital capacity ratio (FEV1/FVC; 16%) and post-bronchodilator FEV1/FVC (17%) were detected. Significant genetic correlations of the change rate with the subject-specific mean were observed for FEV1/FVC (ρg = 0.64) and post-bronchodilator FEV1/FVC (ρg = 0.47). Furthermore, post-bronchodilator FEV1/FVC showed significant heritability of SNP-by-smoking interaction (hGXS2 = 0.4) for the annual change rate. The GWAS also detected genome-wide significant SNPs for FEV1 (rs4793538), FEV1/FVC (rs2704589, rs62201158, and rs9391733), and post-bronchodilator FEV1/FVC (rs2445936). We found statistically significant evidence of heritability role on the change in lung function, and this was shared with the effects on cross-sectional measurements. We also found some evidence of interaction with smoking for the change of lung function.
Collapse
Affiliation(s)
- Donghe Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Woojin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Jahoon An
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea;
| | - Soriul Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
| | - Seungku Lee
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
| | - Ahra Do
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
| | - Wonji Kim
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Sanghun Lee
- Department of Medical Consilience, Graduate School, Dankook University, Yongin 16890, Korea;
| | - Dankyu Yoon
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea;
| | - Kwangbae Lee
- Korea Medical Institute, Seoul 03173, Korea; (K.L.); (S.H.)
| | - Seounguk Ha
- Korea Medical Institute, Seoul 03173, Korea; (K.L.); (S.H.)
| | - Edwin K. Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Michael Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Chol Shin
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
- Division of Pulmonary Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan 15355, Korea
- Correspondence: (C.S.); (S.W.)
| | - Sungho Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea;
- Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
- RexSoft Inc., Seoul 08826, Korea
- Correspondence: (C.S.); (S.W.)
| |
Collapse
|
34
|
Werder RB, Liu T, Abo KM, Lindstrom-Vautrin J, Villacorta-Martin C, Huang J, Hinds A, Boyer N, Bullitt E, Liesa M, Silverman EK, Kotton DN, Cho MH, Zhou X, Wilson AA. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. SCIENCE ADVANCES 2022; 8:eabo6566. [PMID: 35857525 PMCID: PMC9278866 DOI: 10.1126/sciadv.abo6566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Genome-wide association studies (GWAS) have identified dozens of loci associated with chronic obstructive pulmonary disease (COPD) susceptibility; however, the function of associated genes in the cell type(s) affected in disease remains poorly understood, partly due to a lack of cell models that recapitulate human alveolar biology. Here, we apply CRISPR interference to interrogate the function of nine genes implicated in COPD by GWAS in induced pluripotent stem cell-derived type 2 alveolar epithelial cells (iAT2s). We find that multiple genes implicated by GWAS affect iAT2 function, including differentiation potential, maturation, and/or proliferation. Detailed characterization of the GWAS gene DSP demonstrates that it regulates iAT2 cell-cell junctions, proliferation, mitochondrial function, and response to cigarette smoke-induced injury. Our approach thus elucidates the biological function, as well as disease-relevant consequences of dysfunction, of genes implicated in COPD by GWAS in type 2 alveolar epithelial cells.
Collapse
Affiliation(s)
- Rhiannon B. Werder
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Tao Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristine M. Abo
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anne Hinds
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- Institut de Biologia Molecular De Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew A. Wilson
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
35
|
Rivas M, Gupta G, Costanzo L, Ahmed H, Wyman AE, Geraghty P. Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:817. [PMID: 35744080 PMCID: PMC9228143 DOI: 10.3390/medicina58060817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a disease of accelerated lung aging. Over the past two decades, mounting evidence suggests an accumulation of senescent cells within the lungs of patients with COPD that contributes to dysregulated tissue repair and the secretion of multiple inflammatory proteins, termed the senescence-associated secretory phenotype (SASP). Cellular senescence in COPD is linked to telomere dysfunction, DNA damage, and oxidative stress. This review gives an overview of the mechanistic contributions and pathologic consequences of cellular senescence in COPD and discusses potential therapeutic approaches targeting senescence-associated signaling in COPD.
Collapse
Affiliation(s)
- Melissa Rivas
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Louis Costanzo
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Anne E. Wyman
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| |
Collapse
|
36
|
Zani ALS, Gouveia MH, Aquino MM, Quevedo R, Menezes RL, Rotimi C, Lwande GO, Ouma C, Mekonnen E, Fagundes NJR. Genetic differentiation in East African ethnicities and its relationship with endurance running success. PLoS One 2022; 17:e0265625. [PMID: 35588128 PMCID: PMC9119534 DOI: 10.1371/journal.pone.0265625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Since the 1960s, East African athletes, mainly from Kenya and Ethiopia, have dominated long-distance running events in both the male and female categories. Further demographic studies have shown that two ethnic groups are overrepresented among elite endurance runners in each of these countries: the Kalenjin, from Kenya, and the Oromo, from Ethiopia, raising the possibility that this dominance results from genetic or/and cultural factors. However, looking at the life history of these athletes or at loci previously associated with endurance athletic performance, no compelling explanation has emerged. Here, we used a population approach to identify peaks of genetic differentiation for these two ethnicities and compared the list of genes close to these regions with a list, manually curated by us, of genes that have been associated with traits possibly relevant to endurance running in GWAS studies, and found a significant enrichment in both populations (Kalenjin, P = 0.048, and Oromo, P = 1.6x10-5). Those traits are mainly related to anthropometry, circulatory and respiratory systems, energy metabolism, and calcium homeostasis. Our results reinforce the notion that endurance running is a systemic activity with a complex genetic architecture, and indicate new candidate genes for future studies. Finally, we argue that a deterministic relationship between genetics and sports must be avoided, as it is both scientifically incorrect and prone to reinforcing population (racial) stereotyping.
Collapse
Affiliation(s)
- André L. S. Zani
- Postgraduate Program in Genetics and Molecular Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marla M. Aquino
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Quevedo
- School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo L. Menezes
- School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gerald O. Lwande
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nelson J. R. Fagundes
- Postgraduate Program in Genetics and Molecular Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Postgraduate Program in Animal Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
37
|
Garcia-Arcos I, Park SS, Mai M, Alvarez-Buve R, Chow L, Cai H, Baumlin-Schmid N, Agudelo CW, Martinez J, Kim MD, Dabo AJ, Salathe M, Goldberg IJ, Foronjy RF. LRP1 loss in airway epithelium exacerbates smoke-induced oxidative damage and airway remodeling. J Lipid Res 2022; 63:100185. [PMID: 35202607 PMCID: PMC8953659 DOI: 10.1016/j.jlr.2022.100185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1-/-) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1-/- mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1-/- mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1-/- mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.
Collapse
Affiliation(s)
- Itsaso Garcia-Arcos
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA.
| | - Sangmi S Park
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michelle Mai
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Roger Alvarez-Buve
- Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Lillian Chow
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Huchong Cai
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | | | - Christina W Agudelo
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Jennifer Martinez
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michael D Kim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abdoulaye J Dabo
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ira J Goldberg
- Department of Medicine, NYU Langone School of Medicine, New York, NY, USA
| | - Robert F Foronjy
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| |
Collapse
|
38
|
Günes Günsel G, Conlon TM, Jeridi A, Kim R, Ertüz Z, Lang NJ, Ansari M, Novikova M, Jiang D, Strunz M, Gaianova M, Hollauer C, Gabriel C, Angelidis I, Doll S, Pestoni JC, Edelmann SL, Kohlhepp MS, Guillot A, Bassler K, Van Eeckhoutte HP, Kayalar Ö, Konyalilar N, Kanashova T, Rodius S, Ballester-López C, Genes Robles CM, Smirnova N, Rehberg M, Agarwal C, Krikki I, Piavaux B, Verleden SE, Vanaudenaerde B, Königshoff M, Dittmar G, Bracke KR, Schultze JL, Watz H, Eickelberg O, Stoeger T, Burgstaller G, Tacke F, Heissmeyer V, Rinkevich Y, Bayram H, Schiller HB, Conrad M, Schneider R, Yildirim AÖ. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun 2022; 13:1303. [PMID: 35288557 PMCID: PMC8921220 DOI: 10.1038/s41467-022-28809-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Extravasation of monocytes into tissue and to the site of injury is a fundamental immunological process, which requires rapid responses via post translational modifications (PTM) of proteins. Protein arginine methyltransferase 7 (PRMT7) is an epigenetic factor that has the capacity to mono-methylate histones on arginine residues. Here we show that in chronic obstructive pulmonary disease (COPD) patients, PRMT7 expression is elevated in the lung tissue and localized to the macrophages. In mouse models of COPD, lung fibrosis and skin injury, reduced expression of PRMT7 associates with decreased recruitment of monocytes to the site of injury and hence less severe symptoms. Mechanistically, activation of NF-κB/RelA in monocytes induces PRMT7 transcription and consequential mono-methylation of histones at the regulatory elements of RAP1A, which leads to increased transcription of this gene that is responsible for adhesion and migration of monocytes. Persistent monocyte-derived macrophage accumulation leads to ALOX5 over-expression and accumulation of its metabolite LTB4, which triggers expression of ACSL4 a ferroptosis promoting gene in lung epithelial cells. Conclusively, inhibition of arginine mono-methylation might offer targeted intervention in monocyte-driven inflammatory conditions that lead to extensive tissue damage if left untreated.
Collapse
Affiliation(s)
- Gizem Günes Günsel
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Thomas M Conlon
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Rinho Kim
- Institute of Functional Epigenetics, Helmholtz Munich, 85764, Munich, Germany
| | - Zeynep Ertüz
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Niklas J Lang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Meshal Ansari
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, 85764, Munich, Germany
| | - Mariia Novikova
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764, Munich, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Ostrovityanova1 bldg 10, 117997, Moscow, Russia
| | - Dongsheng Jiang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Maximilian Strunz
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Mariia Gaianova
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Christine Hollauer
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Christina Gabriel
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Ilias Angelidis
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Sebastian Doll
- Institute of Computational Biology, Helmholtz Munich, 85764, Munich, Germany
| | - Jeanine C Pestoni
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Stephanie L Edelmann
- Research Unit Molecular Immune Regulation, Helmholtz Munich, 81377, Munich, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Kevin Bassler
- Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115, Bonn, Germany
- aimed analytics, 53121, Bonn, Germany
| | - Hannelore P Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University, University Hospital Ghent, 9000, Ghent, Belgium
| | - Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Tamara Kanashova
- Max-Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Sophie Rodius
- Proteomics of cellular signalling, Luxembourg Institute of Health, 1272, Strassen, Luxembourg
| | - Carolina Ballester-López
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | | | - Natalia Smirnova
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, 80045, USA
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Charu Agarwal
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Ioanna Krikki
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Benoit Piavaux
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242, Vestec, Czech Republic
| | - Stijn E Verleden
- Division of Pneumology, KU Leuven, 3000, Leuven, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre, University of Antwerp, 2650, Edegem, Belgium
| | | | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gunnar Dittmar
- Proteomics of cellular signalling, Luxembourg Institute of Health, 1272, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University, University Hospital Ghent, 9000, Ghent, Belgium
| | - Joachim L Schultze
- Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE and the University of Bonn, 53115, Bonn, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Grosshansdorf, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Munich, 81377, Munich, Germany
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
| | - Yuval Rinkevich
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764, Munich, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Munich, 85764, Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany.
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey.
| |
Collapse
|
39
|
A year of Covid-19 GWAS results from the GRASP portal reveals potential genetic risk factors. HGG ADVANCES 2022; 3:100095. [PMID: 35224516 PMCID: PMC8863308 DOI: 10.1016/j.xhgg.2022.100095] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Host genetic variants influence the susceptibility and severity of several infectious diseases, and the discovery of genetic associations with Covid-19 phenotypes could help developing new therapeutic strategies to reduce its burden. Between May 2020 and June 2021, we used Covid-19 data released periodically by UK Biobank and performed 65 Genome-Wide Association Studies (GWAS) in up to 18 releases of Covid-19 susceptibility (N=18,481 cases in June 2021), hospitalization (N=3,260), severe outcomes (N=1,244) and death (N=1,104), stratified by sex and ancestry. In coherence with previous studies, we observed 2 independent signals at the chr3p21.31 locus (rs73062389-A, OR=1.21, P=4.26×10-15 and rs71325088-C, OR=1.62, P=2.25×10-9) modulating susceptibility and severity, respectively, and a signal influencing susceptibility at the ABO locus (rs9411378-A, OR=1.10, P=3.30×10-12), suggesting an increased risk of infection in non-O blood groups carriers. Additional signals at the APOE (associated with severity and death) LRMDA (susceptibility in non-European) and chr2q32.3 (susceptibility in women) loci were also identified but did not replicate in independent datasets. We then devised an approach to extract variants suggestively associated (P<10-5) exhibiting an increase in significance over time. When applied to the susceptibility, hospitalization and severity analyses, this approach revealed the known RPL24, DPP9, and MAPT loci, respectively, amongst hundreds of other signals. These results, freely available on the GRASP portal, provide insights on the genetic mechanisms involved in Covid-19 phenotypes.
Collapse
|
40
|
Daghals I, Sargurupremraj M, Danning R, Gormley P, Malik R, Amouyel P, Metso T, Pezzini A, Kurth T, Debette S, Chasman D. Migraine, Stroke, and Cervical Arterial Dissection: Shared Genetics for a Triad of Brain Disorders With Vascular Involvement. Neurol Genet 2022; 8:e653. [PMID: 35128049 PMCID: PMC8808356 DOI: 10.1212/nxg.0000000000000653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Background and Objectives Migraine, stroke, and cervical artery dissection (CeAD) represent a triad of cerebrovascular disorders with pairwise comorbid relationships and vascular involvement. Larger samples and recent advances in methodology invite systematic exploration of their shared genetics. Methods Genetic analyses leveraged summary statistics from genome-wide association studies of the largest available samples of each disorder, including subtypes of stroke (ischemic stroke, large artery stroke, small vessel stroke, and cardioembolic stroke) and migraine (with aura and without aura). For each pair of disorders, genetic correlation was assessed both on a genome-wide basis and within independent segments across the genome including known specific loci for each disorder. A cross-trait meta-analysis was used to identify novel candidate loci. Finally, potential causality of migraine susceptibility on stroke and CeAD was assessed by Mendelian randomization. Results Among all pairs of disorders, genome-wide genetic correlation was observed only between CeAD and migraine, particularly MO. Local genetic correlations were more extensive between migraine and CeAD than those between migraine and stroke or CeAD and stroke and revealed evidence for novel CeAD associations at rs6693567 (ADAMTSL4/ECM1), rs11187838 (PLCE1), and rs7940646 (MRVI1) while strengthening prior subthreshold evidence at rs9486725 (FHL5) and rs650724 (LRP1). At known migraine loci, novel associations with stroke had concordant risk alleles for small vessel stroke at rs191602009 (CARF) and for cardioembolic stroke at rs55884259 (NKX2-5). Known migraine loci also revealed novel associations but with opposite risk alleles for all stroke, ischemic stroke, and small vessel stroke at rs55928386 (HTRA1), for large artery stroke at rs11172113 (LRP1), and for all stroke and ischemic stroke at rs1535791 and rs4942561 (both LRCH1), respectively. rs182923402 (near PTCH1) was a novel concordant locus for migraine and cardioembolic stroke. Mendelian randomization supported potential causal influences of migraine on CeAD (odds ratio [95% confidence interval] per doubling migraine prevalence = 1.69 [1.24-2.3], p = 0.0009) with concordant risk, but with opposite risk on large artery stroke (0.86 [0.76-0.96], p = 0.0067). Discussion The findings emphasize shared genetic risk between migraine and CeAD while identifying loci with likely vascular function in migraine and shared but opposite genetic risk between migraine and stroke subtypes, and a central role of LRP1 in all 3 cerebrovascular disorders.
Collapse
Affiliation(s)
| | | | - Rebecca Danning
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Padhraig Gormley
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Rainer Malik
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Philippe Amouyel
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Tiina Metso
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Alessandro Pezzini
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Tobias Kurth
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | | | | |
Collapse
|
41
|
Pascoe CD, Basu S, Schwartz J, Fonseca M, Kahnamoui S, Jha A, Dolinsky VW, Halayko AJ. Maternal diabetes promotes offspring lung dysfunction and inflammation in a sex-dependent manner. Am J Physiol Lung Cell Mol Physiol 2022; 322:L373-L384. [PMID: 35043678 DOI: 10.1152/ajplung.00425.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exposure to maternal diabetes is increasingly recognized as a risk factor for chronic respiratory disease in children. It is currently unclear, however, whether maternal diabetes affects the lung health of male and female offspring equally. This study characterizes the sex-specific impact of a murine model of diet-induced gestational diabetes (GDM) on offspring lung function and airway inflammation. Female adult mice are fed a high-fat (45% kcal) diet for 6-weeks prior to mating. Control offspring are from mothers fed a low fat (10% kcal) diet. Offspring were weaned and fed a chow diet until 10-weeks of age, at which point lung function was measured and lung lavage was collected. Male, but not female offspring exposed to GDM had increased lung compliance and reduced lung resistance at baseline. Female offspring exposed to GDM displayed increased methacholine reactivity and elevated levels of pro-inflammatory cytokines (e.g. interleukin (IL)-1β, IL-5, and CXCL1) in lung lavage. Female GDM offspring also displayed elevated abundance of matrix metalloproteinases (MMP) within their airways, namely MMP-3 and MMP-8. These results indicate disparate effects of maternal diabetes on lung health and airway inflammation of male and female offspring exposed to GDM. Female mice may be at greater risk of inflammatory lung conditions, such as asthma, while male offspring display changes that more closely align with models of chronic obstructive pulmonary disease. In conclusion, there are important sex-based differences in the impact of maternal diabetes on offspring lung health that could signal differences in future disease risk.
Collapse
Affiliation(s)
- Christopher D Pascoe
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jacquie Schwartz
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Mario Fonseca
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Shana Kahnamoui
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew John Halayko
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. eLife 2022; 11:74993. [PMID: 34982025 PMCID: PMC8789290 DOI: 10.7554/elife.74993] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 co-migrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Jin Dai
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Rama A Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Jack Butler
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Lea Alford
- Division of Natural Sciences,, Oglethorpe University, Atlanta, United States
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| |
Collapse
|
43
|
Huang Y, Jiang Z, Gao X, Luo P, Jiang X. ARMC Subfamily: Structures, Functions, Evolutions, Interactions, and Diseases. Front Mol Biosci 2021; 8:791597. [PMID: 34912852 PMCID: PMC8666550 DOI: 10.3389/fmolb.2021.791597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Armadillo repeat-containing proteins (ARMCs) are widely distributed in eukaryotes and have important influences on cell adhesion, signal transduction, mitochondrial function regulation, tumorigenesis, and other processes. These proteins share a similar domain consisting of tandem repeats approximately 42 amino acids in length, and this domain constitutes a substantial platform for the binding between ARMCs and other proteins. An ARMC subfamily, including ARMC1∼10, ARMC12, and ARMCX1∼6, has received increasing attention. These proteins may have many terminal regions and play a critical role in various diseases. On the one hand, based on their similar central domain of tandem repeats, this ARMC subfamily may function similarly to other ARMCs. On the other hand, the unique domains on their terminals may cause these proteins to have different functions. Here, we focus on the ARMC subfamily (ARMC1∼10, ARMC12, and ARMCX1∼6), which is relatively conserved in vertebrates and highly conserved in mammals, particularly primates. We review the structures, biological functions, evolutions, interactions, and related diseases of the ARMC subfamily, which involve more than 30 diseases and 40 bypasses, including interactions and relationships between more than 100 proteins and signaling molecules. We look forward to obtaining a clearer understanding of the ARMC subfamily to facilitate further in-depth research and treatment of related diseases.
Collapse
Affiliation(s)
- Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zijian Jiang
- Department of Hepato-biliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
44
|
Role of the LRP1-pPyk2-MMP9 pathway in hyperoxia-induced lung injury in neonatal rats. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1289-1294. [PMID: 34911615 PMCID: PMC8690715 DOI: 10.7499/j.issn.1008-8830.2108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the role of the low-density lipoprotein receptor-related protein 1 (LRP1)-proline-rich tyrosine kinase 2 phosphorylation (pPyk2)-matrix metalloproteinases 9 (MMP9) pathway in hyperoxia-induced lung injury in neonatal rats. METHODS A total of 16 neonatal rats were randomly placed in chambers containing room air (air group) or 95% medical oxygen (hyperoxia group) immediately after birth, with 8 rats in each group. All of the rats were sacrificed on day 8 of life. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue. ELISA was used to measure the levels of soluble LRP1 (sLRP1) and MMP9 in serum and bronchoalveolar lavage fluid (BALF). Western blot was used to measure the protein expression levels of LRP1, MMP9, Pyk2, and pPyk2 in lung tissue. RT-PCR was used to measure the mRNA expression levels of LRP1 and MMP9 in lung tissue. RESULTS The hyperoxia group had significantly higher levels of sLRP1 and MMP9 in serum and BALF than the air group (P<0.05). Compared with the air group, the hyperoxia group had significant increases in the protein expression levels of LRP1, MMP9, and pPyk2 in lung tissue (P<0.05). The hyperoxia group had significantly higher relative mRNA expression levels of LRP1 and MMP9 in lung tissue than the air group (P<0.05). CONCLUSIONS The activation of the LRP1-pPyk2-MMP9 pathway is enhanced in hyperoxia-induced lung injury in neonatal rats, which may be involved in the pathogenesis of bronchopulmonary dysplasia.
Collapse
|
45
|
Nasri A, Foisset F, Ahmed E, Lahmar Z, Vachier I, Jorgensen C, Assou S, Bourdin A, De Vos J. Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3467. [PMID: 34943975 PMCID: PMC8700565 DOI: 10.3390/cells10123467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amel Nasri
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Florent Foisset
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Engi Ahmed
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Zakaria Lahmar
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
| | - Christian Jorgensen
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
- Department of Cell and Tissue Engineering, Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France
| |
Collapse
|
46
|
Elastic Correlation Adjusted Regression (ECAR) scores for high dimensional variable importance measuring. Sci Rep 2021; 11:23354. [PMID: 34857823 PMCID: PMC8640025 DOI: 10.1038/s41598-021-02706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
Investigation of the genetic basis of traits or clinical outcomes heavily relies on identifying relevant variables in molecular data. However, characteristics such as high dimensionality and complex correlation structures of these data hinder the development of related methods, resulting in the inclusion of false positives and negatives. We developed a variable importance measure method, termed the ECAR scores, that evaluates the importance of variables in the dataset. Based on this score, ranking and selection of variables can be achieved simultaneously. Unlike most current approaches, the ECAR scores aim to rank the influential variables as high as possible while maintaining the grouping property, instead of selecting the ones that are merely predictive. The ECAR scores' performance is tested and compared to other methods on simulated, semi-synthetic, and real datasets. Results showed that the ECAR scores improve the CAR scores in terms of accuracy of variable selection and high-rank variables' predictive power. It also outperforms other classic methods such as lasso and stability selection when there is a high degree of correlation among influential variables. As an application, we used the ECAR scores to analyze genes associated with forced expiratory volume in the first second in patients with lung cancer and reported six associated genes.
Collapse
|
47
|
Papanikolaou M, Crump SM, Abbott GW. The focal adhesion protein Testin modulates KCNE2 potassium channel β subunit activity. Channels (Austin) 2021; 15:229-238. [PMID: 33464998 PMCID: PMC7833772 DOI: 10.1080/19336950.2021.1874119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
Coronary Artery Disease (CAD) typically kills more people globally each year than any other single cause of death. A better understanding of genetic predisposition to CAD and the underlying mechanisms will help to identify those most at risk and contribute to improved therapeutic approaches. KCNE2 is a functionally versatile, ubiquitously expressed potassium channel β subunit associated with CAD and cardiac arrhythmia susceptibility in humans and mice. Here, to identify novel KCNE2 interaction partners, we employed yeast two-hybrid screening of adult and fetal human heart libraries using the KCNE2 intracellular C-terminal domain as bait. Testin (encoded by TES), an endothelial cell-expressed, CAD-associated, focal adhesion protein, was identified as a high-confidence interaction partner for KCNE2. We confirmed physical association between KCNE2 and Testin in vitro by co-immunoprecipitation. Whole-cell patch clamp electrophysiology revealed that KCNE2 negative-shifts the voltage dependence and increases the rate of activation of the endothelial cell and cardiomyocyte-expressed Kv channel α subunit, Kv1.5 in CHO cells, whereas Testin did not alter Kv1.5 function. However, Testin nullified KCNE2 effects on Kv1.5 voltage dependence and gating kinetics. In contrast, Testin did not prevent KCNE2 regulation of KCNQ1 gating. The data identify a novel role for Testin as a tertiary ion channel regulatory protein. Future studies will address the potential role for KCNE2-Testin interactions in arterial and myocyte physiology and CAD.
Collapse
Affiliation(s)
- Maria Papanikolaou
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Shawn M. Crump
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
48
|
Scaffa A, Yao H, Oulhen N, Wallace J, Peterson AL, Rizal S, Ragavendran A, Wessel G, De Paepe ME, Dennery PA. Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biol 2021; 48:102091. [PMID: 34417156 PMCID: PMC8710996 DOI: 10.1016/j.redox.2021.102091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 01/11/2023] Open
Abstract
Ventilatory support, such as supplemental oxygen, used to save premature infants impairs the growth of the pulmonary microvasculature and distal alveoli, leading to bronchopulmonary dysplasia (BPD). Although lung cellular composition changes with exposure to hyperoxia in neonatal mice, most human BPD survivors are weaned off oxygen within the first weeks to months of life, yet they may have persistent lung injury and pulmonary dysfunction as adults. We hypothesized that early-life hyperoxia alters the cellular landscape in later life and predicts long-term lung injury. Using single-cell RNA sequencing, we mapped lung cell subpopulations at postnatal day (pnd)7 and pnd60 in mice exposed to hyperoxia (95% O2) for 3 days as neonates. We interrogated over 10,000 cells and identified a total of 45 clusters within 32 cell states. Neonatal hyperoxia caused persistent compositional changes in later life (pnd60) in all five type II cell states with unique signatures and function. Premature infants requiring mechanical ventilation with different durations also showed similar alterations in these unique signatures of type II cell states. Pathologically, neonatal hyperoxic exposure caused alveolar simplification in adult mice. We conclude that neonatal hyperoxia alters the lung cellular landscape in later life, uncovering neonatal programing of adult lung dysfunction.
Collapse
Affiliation(s)
- Alejandro Scaffa
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Joselynn Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, United States
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Salu Rizal
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Ashok Ragavendran
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, United States
| | - Gary Wessel
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States.
| |
Collapse
|
49
|
Yamada M, Motoike IN, Kojima K, Fuse N, Hozawa A, Kuriyama S, Katsuoka F, Tadaka S, Shirota M, Sakurai M, Nakamura T, Hamanaka Y, Suzuki K, Sugawara J, Ogishima S, Uruno A, Kodama EN, Fujino N, Numakura T, Ichikawa T, Mitsune A, Ohe T, Kinoshita K, Ichinose M, Sugiura H, Yamamoto M. Genetic loci for lung function in Japanese adults with adjustment for exhaled nitric oxide levels as airway inflammation indicator. Commun Biol 2021; 4:1288. [PMID: 34782693 PMCID: PMC8593164 DOI: 10.1038/s42003-021-02813-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
Lung function reflects the ability of the respiratory system and is utilized for the assessment of respiratory diseases. Because type 2 airway inflammation influences lung function, genome wide association studies (GWAS) for lung function would be improved by adjustment with an indicator of the inflammation. Here, we performed a GWAS for lung function with adjustment for exhaled nitric oxide (FeNO) levels in two independent Japanese populations. Our GWAS with genotype imputations revealed that the RNF5/AGER locus including AGER rs2070600 SNP, which introduces a G82S substitution of AGER, was the most significantly associated with FEV1/FVC. Three other rare missense variants of AGER were further identified. We also found genetic loci with three candidate genes (NOS2, SPSB2 and RIPOR2) associated with FeNO levels. Analyses with the BioBank-Japan GWAS resource revealed genetic links of FeNO and asthma-related traits, and existence of common genetic background for allergic diseases and their biomarkers. Our study identified the genetic locus most strongly associated with airway obstruction in the Japanese population and three genetic loci associated with FeNO, an indicator of type 2 airway inflammation in adults.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ikuko N Motoike
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Nobuo Fuse
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shinichi Kuriyama
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shu Tadaka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Matsuyuki Shirota
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Miyuki Sakurai
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomohiro Nakamura
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yohei Hamanaka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kichiya Suzuki
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Junichi Sugawara
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Eiichi N Kodama
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Mitsune
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Ohe
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Department of System Bioinformatics, Tohoku University Graduate School of Information Sciences, Sendai, Japan
| | | | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
50
|
Yang T, Jackson VE, Smith AV, Chen H, Bartz TM, Sitlani CM, Psaty BM, Gharib SA, O'Connor GT, Dupuis J, Xu J, Lohman K, Liu Y, Kritchevsky SB, Cassano PA, Flexeder C, Gieger C, Karrasch S, Peters A, Schulz H, Harris SE, Starr JM, Deary IJ, Manichaikul A, Oelsner EC, Barr RG, Taylor KD, Rich SS, Bonten TN, Mook-Kanamori DO, Noordam R, Li-Gao R, Jarvelin MR, Wielscher M, Terzikhan N, Lahousse L, Brusselle G, Weiss S, Ewert R, Gläser S, Homuth G, Shrine N, Hall IP, Tobin M, London SJ, Wei P, Morrison AC. Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function. Sci Rep 2021; 11:19365. [PMID: 34588469 PMCID: PMC8481467 DOI: 10.1038/s41598-021-98120-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were significantly associated with FEV1. This study investigates the utility of assessing gene-by-smoking interactions and underscores their effects on potential pulmonary function.
Collapse
Affiliation(s)
- Tianzhong Yang
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, University of Washington, Seattle, WA, USA
| | - George T O'Connor
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jiayi Xu
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, USA
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Karrasch
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Sarah E Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Ani Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth C Oelsner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - R G Barr
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Medicine, Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Kent D Taylor
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Tobias N Bonten
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymond Noordam
- Division of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Oulu, Finland
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lies Lahousse
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Ralf Ewert
- Division of Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Sven Gläser
- Division of Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- Department of Internal Medicine, Vivantes Hospital Berlin Spandau, Berlin, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Martin Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research, Glenfield Hospital, Leicester, UK
| | - Stephanie J London
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|