1
|
Davidenko A, Bogomazova A, Illarioshkin S, Lagarkova M. Molecular Mechanisms of Spinocerebellar Ataxia Type 17. Mol Neurobiol 2025; 62:5720-5729. [PMID: 39614971 DOI: 10.1007/s12035-024-04645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 03/29/2025]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a hereditary neurodegenerative disorder characterized by progressive motor and cognitive decline, leading to severe disability and death. SCA17 is caused by a CAG repeat expansion mutation in the TBP gene, resulting in the production of an abnormally long polyglutamine tract, which classifies it as a polyglutamine disorder. At present, there is no effective treatment for SCA17, and existing therapies provide only symptomatic relief. While the exact pathogenic mechanisms of SCA17 remain unclear, the TBP mutation affects a well-characterized transcription factor, making it an ideal model for studying polyglutamine-related neurodegeneration. Here, we review the clinical features of SCA17 and explore proposed mechanisms of its pathogenesis.
Collapse
Affiliation(s)
- Alina Davidenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
- Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Alexandra Bogomazova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | | | - Maria Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
2
|
Mishra R, Upadhyay A. An update on mammalian and non-mammalian animal models for biomarker development in neurodegenerative disorders. Cell Mol Life Sci 2025; 82:147. [PMID: 40192808 PMCID: PMC11977071 DOI: 10.1007/s00018-025-05668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Neurodegeneration is one of the leading factor for death globally, affecting millions of people. Developing animal models are critical to understand biological processes and comprehend pathological hallmarks of neurodegenerative diseases. For decades, many animal models have served as excellent tools to determine the disease progression, develop diagnostic methods and design novel therapies against distinct pathologies. Here, we provide a comprehensive overview of both, mammalian and non-mammalian animal models, with a focus on three most common and aggressive neurodegenerative disorders: Alzheimer's disease, Parkinson's disease and Spinocerebellar ataxia-1. We highlight various approaches including transgene, gene transfer, and chemically-induced methods used to develop disease models. In particular, we discuss applications of both non-mammalian and mammalian contributions in research on neurodegeneration. It is exciting to learn the roles of animal models in disease pathomechanisms, identifying biomarkers and hence devising novel interventions to treat neuropathological conditions.
Collapse
Affiliation(s)
- Ribhav Mishra
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, 491002, India
| |
Collapse
|
3
|
Prifti MV, Nuga O, Dulay RO, Patel NC, Kula T, Libohova K, Jackson-Butler A, Tsou WL, Richardson K, Todi SV. Insights into dentatorubral-pallidoluysian atrophy from a new Drosophila model of disease. Neurobiol Dis 2025; 207:106834. [PMID: 39921111 PMCID: PMC11969221 DOI: 10.1016/j.nbd.2025.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disorder that presents with ataxia, dementia and epilepsy. As a member of the polyglutamine family of diseases, DRPLA is caused by abnormal CAG triplet expansion beyond 48 repeats in the protein-coding region of ATROPHIN 1 (ATN1), a transcriptional co-repressor. To better understand DRPLA, we generated new Drosophila lines that can be induced to express full-length, human ATN1 with a normal (Q7) or pathogenic (Q88) repeat in a variety of cells, including neuronal, glial or any other type of tissue. Expression of ATN1 is toxic, with the polyglutamine-expanded version being consistently more problematic than wild-type ATN1. Fly motility, longevity and internal structures are negatively impacted by pathogenic ATN1. RNA-seq identified altered protein quality control and immune pathways in the presence of pathogenic ATN1. Based on these data, we conducted genetic experiments that confirmed the role of protein quality control components that ameliorate or exacerbate ATN1 toxicity. Hsc70-3, a chaperone, arose as a likely suppressor of toxicity. VCP (a proteasome-related AAA ATPase), Rpn11 (a proteasome-related deubiquitinase) and select DnaJ proteins (co-chaperones) were inconsistently protective, depending on the tissues where they were expressed. Lastly, informed by RNA-seq data that exercise-related genes may also be involved in this model of DRPLA, we conducted short-term exercise, which improved overall fly motility. This new model of DRPLA will prove important to understanding this understudied disease and will help to identify therapeutic targets for it.
Collapse
Affiliation(s)
- Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Oluwademilade Nuga
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Ryan O Dulay
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Nikhil C Patel
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Truman Kula
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | | | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Kristin Richardson
- Department of Pharmacology, Wayne State University School of Medicine, USA.
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA.
| |
Collapse
|
4
|
Selimovic A, Sbrocco K, Talukdar G, McCall A, Gilliat S, Zhang Y, Cvetanovic M. Sex Differences in a Novel Mouse Model of Spinocerebellar Ataxia Type 1 (SCA1). Int J Mol Sci 2025; 26:2623. [PMID: 40141263 PMCID: PMC11942590 DOI: 10.3390/ijms26062623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a rare autosomal dominant inherited neurodegenerative disease caused by the expansion of glutamine (Q)-encoding CAG repeats in the gene ATAXIN1 (ATXN1). Patients with SCA1 suffer from movement and cognitive deficits and severe cerebellar pathology. Previous studies identified sex differences in disease progression in SCA1 patients, but whether these differences are present in mouse models is unclear. Using a battery of behavioral tests, immunohistochemistry of brain slices, and RNA sequencing, we examined sex differences in motor and cognitive performance, cerebellar pathology, and cerebellar gene expression changes in a recently created conditional knock-in mouse model f-ATXN1146Q expressing human coding regions of ATXN1 with 146 CAG repeats. We found worse motor performance and weight loss accompanied by increased microglial activation and an increase in immune viral response pathways in male f-ATXN1146Q mice.
Collapse
Affiliation(s)
- Adem Selimovic
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA; (A.S.); (G.T.); (A.M.); (Y.Z.)
| | - Kaelin Sbrocco
- Graduate Medical Sciences-Anatomy & Neurobiology, Boston University, Boston, MA 02118, USA;
| | - Gourango Talukdar
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA; (A.S.); (G.T.); (A.M.); (Y.Z.)
| | - Adri McCall
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA; (A.S.); (G.T.); (A.M.); (Y.Z.)
| | - Stephen Gilliat
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA;
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA; (A.S.); (G.T.); (A.M.); (Y.Z.)
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA; (A.S.); (G.T.); (A.M.); (Y.Z.)
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Sharafi S, Rezvani Z. Investigation of Spinocerebellar Ataxia (SCA) Disease in Iranian Patients and Accurate Trinucleotide Repeat Detection in the SCA3 by TP-PCR Method. Mol Neurobiol 2025; 62:2756-2763. [PMID: 39155322 DOI: 10.1007/s12035-024-04434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
SCA (spinocerebellar ataxia) which is autosomal dominantly transferred is a subset of inherited cerebellar ataxia. These progressive neurological diseases have clinical features of ataxia and are derived from the destruction of the cerebellum. These diseases can also affect other areas, including the brainstem. Frequent proliferation of CAG nucleotides can encode polyglutamine and, as a result, produce the toxic polyglutamine (poly Q) protein that leads to many types of SCAs. They are categorized based on specific genetic mutations. The main symptoms of SCA, gait ataxia and incoordination, nystagmus, vision problems, and dysarthria, can be mentioned. In this study, 31 Iranians who were suspected of SCA disease were clinically diagnosed from November 2019 to September 2021. For these 31 patients suspected of spinocerebellar ataxia, PCR was performed, and the analysis was based on vertical electrophoresis. For SCA3 patients, the TP-PCR technique was carried out and evaluated by capillary electrophoresis. For all 31 patients, PCR function was successful according to the results attained by conventional PCR. The number of three nucleotide replications was within the normal range for 22 people, and nine patients were reported. Studies showed that three people suspected of SCA were infected with SCA3 according to the TP-PCR technique, and this was while seven people were diagnosed with SCA3 using the PCR method. As the purpose of this test is to provide a more accurate diagnostic method and prenatal diagnosis of this disease, the TP-PCR method proved to be more suitable when applied for the diagnosis of abnormal trinucleotides CAG in spinocerebellar ataxia type 3.
Collapse
Affiliation(s)
- Shafagh Sharafi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Qutb Rawandi Blvd, Kashan City, Isfahan Province, Iran
| | - Zahra Rezvani
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Qutb Rawandi Blvd, Kashan City, Isfahan Province, Iran.
| |
Collapse
|
6
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
7
|
Garcia FJ, Heiman M. Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases. Mol Neurodegener 2025; 20:13. [PMID: 39881338 PMCID: PMC11780804 DOI: 10.1186/s13024-025-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Francisco J Garcia
- The Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
8
|
Fagan KJ, Chillon G, Carrell EM, Waxman EA, Davidson BL. Cas9 editing of ATXN1 in a spinocerebellar ataxia type 1 mice and human iPSC-derived neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102317. [PMID: 39314800 PMCID: PMC11417534 DOI: 10.1016/j.omtn.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the ATXN1 gene. Currently there are no disease-modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models. To test this, we first characterized the number of transgenes harbored in the common B05 mouse model of SCA1. Despite having five copies of the human mutant transgene, a 20% reduction of ATXN1 improved behavior deficits without increases in inflammatory markers. Importantly, the editing approach was confirmed in induced pluripotent stem cell (iPSC) neurons derived from patients with SCA1, promoting the translatability of the approach to patients.
Collapse
Affiliation(s)
- Kelly J. Fagan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillem Chillon
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Bioengineering Graduate Program, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa A. Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Prifti MV, Nuga O, Dulay RO, Patel NC, Kula T, Libohova K, Jackson-Butler A, Tsou WL, Richardson K, Todi SV. Insights into Dentatorubral-Pallidoluysian Atrophy from a new Drosophila model of disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627083. [PMID: 39713465 PMCID: PMC11661066 DOI: 10.1101/2024.12.05.627083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disorder that presents with ataxia, dementia and epilepsy. As a member of the polyglutamine family of diseases, DRPLA is caused by abnormal CAG triplet expansion beyond 48 repeats in the protein-coding region of ATROPHIN 1 (ATN1), a transcriptional co-repressor. To better understand DRPLA, we generated new Drosophila lines that express full-length, human ATN1 with a normal (Q7) or pathogenic (Q88) repeat. Expression of ATN1 is toxic, with the polyglutamine-expanded version being consistently more problematic than wild-type ATN1. Fly motility, longevity and internal structures are negatively impacted by pathogenic ATN1. RNA-seq identified altered protein quality control and immune pathways in the presence of pathogenic ATN1. Based on these data, we conducted genetic experiments that confirmed the role of protein quality control components that ameliorate or exacerbate ATN1 toxicity. Hsc70-3, a chaperone, arose as a likely suppressor of toxicity. VCP (a proteasome-related AAA ATPase), Rpn11 (a proteasome-related deubiquitinase) and select DnaJ proteins (co-chaperones) were inconsistently protective, depending on the tissues where they were expressed. Lastly, informed by RNA-seq data that exercise-related genes may also be involved in this model of DRPLA, we conducted short-term exercise, which improved overall fly motility. This new model of DRPLA will prove important to understanding this understudied disease and will help to identify therapeutic targets for it.
Collapse
|
10
|
Palmer EM, Snoddy CA, York PM, Davis SM, Hunter MF, Krishnan N. Enhanced Age-Dependent Motor Impairment in Males of Drosophila melanogaster Modeling Spinocerebellar Ataxia Type 1 Is Linked to Dysregulation of a Matrix Metalloproteinase. BIOLOGY 2024; 13:854. [PMID: 39596808 PMCID: PMC11591802 DOI: 10.3390/biology13110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Over the past two decades, Drosophila melanogaster has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. In this study, pan-neuronal expression of human Ataxin-1 with long polyQ repeat of 82 amino acids was driven using an elav-GAL4 driver line. This would essentially model the polyQ disease spinocerebellar ataxia type 1 (SCA1). Longevity and behavioral analysis of male flies expressing human Ataxin-1 revealed compromised lifespan and accelerated locomotor activity deficits both in diurnal activity and negative geotaxis response compared to control flies. Interestingly, this decline in motor response was coupled to an enhancement of matrix metalloproteinase 1 (dMMP1) expression together with declining expression of extracellular matrix (ECM) fibroblast growth factor (FGF) signaling by hedgehog (Hh) and branchless (bnl) and a significant decrease in expression of survival motor neuron gene (dsmn) in old (30 d) flies. Taken together, our results indicate a role for dysregulation of matrix metalloproteinase in polyQ disease with consequent impact on ECM signaling factors, as well as SMN at the neuromuscular junction causing overt physiological and behavioral deficits.
Collapse
Affiliation(s)
| | | | | | | | | | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
11
|
Sheeler C, Labrada E, Duvick L, Thompson LM, Zhang Y, Orr HT, Cvetanovic M. Expanded ATXN1 alters transcription and calcium signaling in SCA1 human motor neurons differentiated from induced pluripotent stem cells. Neurobiol Dis 2024; 201:106673. [PMID: 39307401 PMCID: PMC11514977 DOI: 10.1016/j.nbd.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited and lethal neurodegenerative disease caused by the abnormal expansion of CAG repeats in the ATAXIN-1 (ATXN1) gene. Pathological studies identified dysfunction and loss of motor neurons (MNs) in the brain stem and spinal cord, which are thought to contribute to premature lethality by affecting the swallowing and breathing of SCA1 patients. However, the molecular and cellular mechanisms of MN pathogenesis remain unknown. To study SCA1 pathogenesis in human MNs, we differentiated induced pluripotent stem cells (iPSCs) derived from SCA1 patients and their unaffected siblings into MNs. We examined proliferation of progenitor cells, neurite outgrowth, spontaneous and glutamate-induced calcium activity of SCA1 MNs to investigate cellular mechanisms of pathogenesis. RNA sequencing was then used to identify transcriptional alterations in iPSC-derived MN progenitors (pMNs) and MNs which could underlie functional changes in SCA1 MNs. We found significantly decreased spontaneous and evoked calcium activity and identified dysregulation of genes regulating calcium signaling in SCA1 MNs. These results indicate that expanded ATXN1 causes dysfunctional calcium signaling in human MNs.
Collapse
Affiliation(s)
- Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States of America
| | - Emmanuel Labrada
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Leslie M Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, United States of America
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Department of Lab Pathology, University of Minnesota, Minneapolis, MN, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
12
|
Sobanska A, Czerwosz L, Sulek A, Rola R, Stepniak I, Rakowicz M. Quantitative Evaluation of Stance as a Sensitive Biomarker of Postural Ataxia Development in Preclinical SCA1 Mutation Carriers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1882-1891. [PMID: 38492164 DOI: 10.1007/s12311-024-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
The aim of this study was to determine the time between the first detection of postural control impairments and the evident manifestation of ataxia in preclinical SCA1 individuals. Twenty five preclinical SCA1 mutation carriers: 13 with estimated disease onset ≤ 6 years (SCA1 +) aged 27.8 ± 8.1 years; 12 with expected disease onset > 6 years (SCA1-) aged 26.6 ± 3.1 years and 26 age and sex matched healthy controls (HCs) underwent static posturography during 5 years of observation. The movements of the centre of feet pressure (COP) during quiet standing with eyes open (EO) and closed (EC) were quantified by calculating the mean radius (R), developed surface area (A) and mean COP movement velocity (V). Ataxia was evaluated by use of the Scale for Assessment and Rating of Ataxia (SARA).SCA1 + exhibited significantly worse quality of stance with EC vs. SCA1- (p < 0.05 for V) and HCs (p < 0.001) even 5 to 6 years before estimated disease onset. There were no statistically significant differences between SCA1- and HCs. A slow increase in Cohen's d effect size was observed for VEO up to the clinical manifestation of ataxia. VEO and AEC recorded in preclinical SCA1 individuals correlated slightly but statistically significantly with SARA (r = 0.47).The study confirms that static posturography detects COP sway changes in SCA1 preclinical gene carriers even 5 to 6 years before estimated disease onset. The quantitative evaluation of stance in preclinical SCA is a sensitive biomarker for the monitoring of the disease progression and may be useful in clinical trials.
Collapse
Affiliation(s)
- Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Leszek Czerwosz
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
- Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Rafal Rola
- Department of Neurology, Military Institute of Aviation Medicine, Warsaw, Poland
| | - Iwona Stepniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
13
|
Chen Z, Morris HR, Polke J, Wood NW, Gandhi S, Ryten M, Houlden H, Tucci A. Repeat expansion disorders. Pract Neurol 2024:pn-2023-003938. [PMID: 39349043 DOI: 10.1136/pn-2023-003938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 10/02/2024]
Abstract
An increasing number of repeat expansion disorders have been found to cause both rare and common neurological disease. This is exemplified in recent discoveries of novel repeat expansions underlying a significant proportion of several late-onset neurodegenerative disorders, such as CANVAS (cerebellar ataxia, neuropathy and vestibular areflexia syndrome) and spinocerebellar ataxia type 27B. Most of the 60 described repeat expansion disorders to date are associated with neurological disease, providing substantial challenges for diagnosis, but also opportunities for management in a clinical neurology setting. Commonalities in clinical presentation, overarching diagnostic features and similarities in the approach to genetic testing justify considering these disorders collectively based on their unifying causative mechanism. In this review, we discuss the characteristics and diagnostic challenges of repeat expansion disorders for the neurologist and provide examples to highlight their clinical heterogeneity. With the ready availability of clinical-grade whole-genome sequencing for molecular diagnosis, we discuss the current approaches to testing for repeat expansion disorders and application in clinical practice.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - James Polke
- The Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Mina Ryten
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Arianna Tucci
- William Harvey Institute, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Eubanks E, VanderSleen K, Mody J, Patel N, Sacks B, Farahani MD, Wang J, Elliott J, Jaber N, Akçimen F, Bandres-Ciga S, Helweh F, Liu J, Archakam S, Kimelman R, Sharma B, Socha P, Guntur A, Bartels T, Dettmer U, Mouradian MM, Bahrami AH, Dai W, Baum J, Shi Z, Hardy J, Kara E. Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610195. [PMID: 39257816 PMCID: PMC11384021 DOI: 10.1101/2024.08.30.610195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease and forms intraneuronal inclusions called Lewy Bodies. While the mechanism underlying the dysregulation of αSyn in Parkinson's disease is unclear, it is thought that prionoid cell-to-cell propagation of αSyn has an important role. Through a high throughput screen, we recently identified 38 genes whose knock down modulates αSyn propagation. Follow up experiments were undertaken for two of those genes, TAX1BP1 and ADAMTS19, to study the mechanism with which they regulate αSyn homeostasis. We used a recently developed M17D neuroblastoma cell line expressing triple mutant (E35K+E46K+E61K) "3K" αSyn under doxycycline induction. 3K αSyn spontaneously forms inclusions that show ultrastructural similarities to Lewy Bodies. Experiments using that cell line showed that TAX1BP1 and ADAMTS19 regulate how αSyn interacts with lipids and phase separates into inclusions, respectively, adding to the growing body of evidence implicating those processes in Parkinson's disease. Through RNA sequencing, we identified several genes that are differentially expressed after knock-down of TAX1BP1 or ADAMTS19. Burden analysis revealed that those differentially expressed genes (DEGs) carry an increased frequency of rare risk variants in Parkinson's disease patients versus healthy controls, an effect that was independently replicated across two separate cohorts (GP2 and AMP-PD). Weighted gene co-expression network analysis (WGCNA) showed that the DEGs cluster within modules in regions of the brain that develop high degrees of αSyn pathology (basal ganglia, cortex). We propose a novel model for the genetic architecture of sporadic Parkinson's disease: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis, thereby leading to pathology and neurodegeneration.
Collapse
Affiliation(s)
- Elena Eubanks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Katelyn VanderSleen
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Jiya Mody
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Neha Patel
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Benjamin Sacks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | | | - Jinying Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Fadel Helweh
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | - Jun Liu
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Sanjana Archakam
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Robert Kimelman
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Socha
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Ananya Guntur
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - M. Maral Mouradian
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Amir Houshang Bahrami
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - John Hardy
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Eleanna Kara
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Banerjee P, Mahendran TS, Wadsworth G, Singh A. Biomolecular condensates can enhance pathological RNA clustering. RESEARCH SQUARE 2024:rs.3.rs-4557520. [PMID: 39070659 PMCID: PMC11276000 DOI: 10.21203/rs.3.rs-4557520/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intracellular aggregation of repeat expanded RNA has been implicated in many neurological disorders. Here, we study the role of biomolecular condensates on irreversible RNA clustering. We find that physiologically relevant and disease-associated repeat RNAs spontaneously undergo an age-dependent percolation transition inside multi-component protein-nucleic acid condensates to form nanoscale clusters. Homotypic RNA clusters drive the emergence of multiphasic condensate structures with an RNA-rich solid core surrounded by an RNA-depleted fluid shell. The timescale of the RNA clustering, which drives a liquid-to-solid transition of biomolecular condensates, is determined by the sequence features, stability of RNA secondary structure, and repeat length. Importantly, G3BP1, the core scaffold of stress granules, introduces heterotypic buffering to homotypic RNA-RNA interactions and impedes intra-condensate RNA clustering in an ATP-independent manner. Our work suggests that biomolecular condensates can act as sites for RNA aggregation. It also highlights the functional role of RNA-binding proteins in suppressing aberrant RNA phase transitions.
Collapse
|
16
|
Hamel K, Moncada EL, Sheeler C, Rosa JG, Gilliat S, Zhang Y, Cvetanovic M. Cerebellar Heterogeneity and Selective vulnerability in Spinocerebellar Ataxia Type 1 (SCA1). Neurobiol Dis 2024; 197:106530. [PMID: 38750673 PMCID: PMC11184674 DOI: 10.1016/j.nbd.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024] Open
Abstract
Heterogeneity is one of the key features of the healthy brain and selective vulnerability characterizes many, if not all, neurodegenerative diseases. While cerebellum contains majority of brain cells, neither its heterogeneity nor selective vulnerability in disease are well understood. Here we describe molecular, cellular and functional heterogeneity in the context of healthy cerebellum as well as in cerebellar disease Spinocerebellar Ataxia Type 1 (SCA1). We first compared disease pathology in cerebellar vermis and hemispheres across anterior to posterior axis in a knock-in SCA1 mouse model. Using immunohistochemistry, we demonstrated earlier and more severe pathology of PCs and glia in the posterior cerebellar vermis of SCA1 mice. We also demonstrate heterogeneity of Bergmann glia in the unaffected, wild-type mice. Then, using RNA sequencing, we found both shared, as well as, posterior cerebellum-specific molecular mechanisms of pathogenesis that include exacerbated gene dysregulation, increased number of altered signaling pathways, and decreased pathway activity scores in the posterior cerebellum of SCA1 mice. We demonstrated unexpectedly large differences in the gene expression between posterior and anterior cerebellar vermis of wild-type mice, indicative of robust intraregional heterogeneity of gene expression in the healthy cerebellum. Additionally, we found that SCA1 disease profoundly reduces intracerebellar heterogeneity of gene expression. Further, using fiber photometry, we found that population level PC calcium activity was altered in the posterior lobules in SCA1 mice during walking. We also identified regional differences in the population level activity of Purkinje cells (PCs) in unrestrained wild-type mice that were diminished in SCA1 mice.
Collapse
Affiliation(s)
| | | | | | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, USA; Current affiliation Graduate Program for Neuroscience, Boston University, 677 Beacon Street, Boston, MA 02215, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, USA; Current affiliation Department of Neuroscience, Yale University, USA
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, USA; Minnesota Supercomputing Institute, University of Minnesota, USA; Institute for Translational Neuroscience, University of Minnesota, 2101 6(th) Street SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, USA; Institute for Translational Neuroscience, University of Minnesota, 2101 6(th) Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Choi DE, Shin JW, Zeng S, Hong EP, Jang JH, Loupe JM, Wheeler VC, Stutzman HE, Kleinstiver B, Lee JM. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease. eLife 2024; 12:RP89782. [PMID: 38869243 PMCID: PMC11175616 DOI: 10.7554/elife.89782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.
Collapse
Affiliation(s)
- Doo Eun Choi
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Sophia Zeng
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
- Medical and Population Genetics Program, The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jae-Hyun Jang
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jacob M Loupe
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Vanessa C Wheeler
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Hannah E Stutzman
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Massachusetts General HospitalBostonUnited States
| | - Ben Kleinstiver
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Harvard Medical SchoolBostonUnited States
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
- Medical and Population Genetics Program, The Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
18
|
Shao YR, Yu JY, Ma Y, Dong Y, Wu ZY. CAT Interruption as a Protective Factor in Chinese Patients with Spinocerebellar Ataxia Type 1. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1211-1214. [PMID: 37491649 DOI: 10.1007/s12311-023-01586-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is the third most common type of spinocerebellar ataxias in China. CAT interruptions in the pathogenic alleles of SCA1 patients had only been reported by limited documents and there was a lack of data based on the Chinese population. In this study, we detected CAT interrupted pathogenic alleles in SCA1 patients from 4 out of 79 (5.1%) Chinese families. Their total CAG repeats were larger (median 58 vs. 47, p < 0.001) but ages at onset were later (median 46 vs. 38, p = 0.020). The longest uninterrupted CAG repeats could explain 65.4% of the AAO variance, making an increase of 28.0% compared to the total CAG repeats. The interruption pattern was greatly different between Chinese cohort and Caucasian cohort, indicating the effect of race.
Collapse
Affiliation(s)
- Ya-Ru Shao
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jin-Yang Yu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yin Ma
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yi Dong
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Currò R, Dominik N, Facchini S, Vegezzi E, Sullivan R, Galassi Deforie V, Fernández-Eulate G, Traschütz A, Rossi S, Garibaldi M, Kwarciany M, Taroni F, Brusco A, Good JM, Cavalcanti F, Hammans S, Ravenscroft G, Roxburgh RH, Parolin Schnekenberg R, Rugginini B, Abati E, Manini A, Quartesan I, Ghia A, Lòpez de Munaìn A, Manganelli F, Kennerson M, Santorelli FM, Infante J, Marques W, Jokela M, Murphy SM, Mandich P, Fabrizi GM, Briani C, Gosal D, Pareyson D, Ferrari A, Prados F, Yousry T, Khurana V, Kuo SH, Miller J, Troakes C, Jaunmuktane Z, Giunti P, Hartmann A, Basak N, Synofzik M, Stojkovic T, Hadjivassiliou M, Reilly MM, Houlden H, Cortese A. Role of the repeat expansion size in predicting age of onset and severity in RFC1 disease. Brain 2024; 147:1887-1898. [PMID: 38193360 PMCID: PMC11068103 DOI: 10.1093/brain/awad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V β = -1.06, P < 0.001; lobules VI-VII β = -0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion.
Collapse
Affiliation(s)
- Riccardo Currò
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Natalia Dominik
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Stefano Facchini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Roisin Sullivan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Gorka Fernández-Eulate
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, 75013 Paris, France
| | - Andreas Traschütz
- Research Division ‘Translational Genomics of Neurodegenerative Diseases’, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076 Tübingen, Germany
| | - Salvatore Rossi
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Mariusz Kwarciany
- Department of Adult Neurology, Medical University of Gdańsk, 80-952 Gdańsk, Poland
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10124 Turin, Italy
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council (CNR), 87050 Mangone, Italy
| | - Simon Hammans
- Wessex Neurological Centre, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Gianina Ravenscroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedland, WA 6009, Australia
| | - Richard H Roxburgh
- Neurology Department, Auckland City Hospital, New Zealand and the Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| | | | - Bianca Rugginini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Abati
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Arianna Manini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Ilaria Quartesan
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Arianna Ghia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Adolfo Lòpez de Munaìn
- Neurology Department, Donostia University Hospital, University of the Basque Country-Osakidetza-CIBERNED-Biodonostia, 20014 Donostia-San Sebastián, Spain
| | - Fiore Manganelli
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Marina Kennerson
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Filippo Maria Santorelli
- IRCCS Stella Maris Foundation, Molecular Medicine for Neurodegenerative and Neuromuscular Disease Unit, 56128 Pisa, Italy
| | - Jon Infante
- University Hospital Marquès de Valdecilla-IDIVAL, University of Cantabria, 39008 Santander, Spain
| | - Wilson Marques
- Department of Neurology, School of Medicine of Ribeirão Preto, University of São Paulo, 2650 Ribeirão Preto, Brazil
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, 33520 Tampere, Finland
- Neurocenter, Department of Neurology, Clinical Neurosciences, Turku University Hospital and University of Turku, 20014 Turku, Finland
| | - Sinéad M Murphy
- Department of Neurology, Tallaght University Hospital, D24 NR0A Dublin, Ireland
- Academic Unit of Neurology, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Paola Mandich
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, 16132 Genova, Italy
| | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Chiara Briani
- Department of Neurosciences, ERN Neuromuscular Unit, University of Padova, 35100 Padova, Italy
| | - David Gosal
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Greater Manchester, M6 8HD, UK
| | - Davide Pareyson
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | | | - Ferran Prados
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, WC1V 6LJ, UK
- NMR Research Unit, Institute of Neurology, University College London (UCL), London, WC1N 3BG, UK
- e-Health Centre, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| | - Tarek Yousry
- Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Vikram Khurana
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - James Miller
- Department of Neurology, Royal Victoria Hospitals, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 4LP, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE21 8EA, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Paola Giunti
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Annette Hartmann
- Division of General Psychiatry, Medical University of Vienna, 1090 Vienna, Austria
| | - Nazli Basak
- Koç University, School of Medicine, Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine, 34010 Istanbul, Turkey
| | - Matthis Synofzik
- Research Division ‘Translational Genomics of Neurodegenerative Diseases’, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076 Tübingen, Germany
| | - Tanya Stojkovic
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, 75013 Paris, France
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Trust and University of Sheffield, Sheffield, S10 2JF, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
20
|
Ruffo P, De Amicis F, La Bella V, Conforti FL. Investigating Repeat Expansions in NIPA1, NOP56, and NOTCH2NLC Genes: A Closer Look at Amyotrophic Lateral Sclerosis Patients from Southern Italy. Cells 2024; 13:677. [PMID: 38667292 PMCID: PMC11049433 DOI: 10.3390/cells13080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The discovery of hexanucleotide repeats expansion (RE) in Chromosome 9 Open Reading frame 72 (C9orf72) as the major genetic cause of amyotrophic lateral sclerosis (ALS) and the association between intermediate repeats in Ataxin-2 (ATXN2) with the disorder suggest that repetitive sequences in the human genome play a significant role in ALS pathophysiology. Investigating the frequency of repeat expansions in ALS in different populations and ethnic groups is therefore of great importance. Based on these premises, this study aimed to define the frequency of REs in the NIPA1, NOP56, and NOTCH2NLC genes and the possible associations between phenotypes and the size of REs in the Italian population. Using repeat-primed-PCR and PCR-fragment analyses, we screened 302 El-Escorial-diagnosed ALS patients and compared the RE distribution to 167 age-, gender-, and ethnicity-matched healthy controls. While the REs distribution was similar between the ALS and control groups, a moderate association was observed between longer RE lengths and clinical features such as age at onset, gender, site of onset, and family history. In conclusion, this is the first study to screen ALS patients from southern Italy for REs in NIPA1, NOP56, and NOTCH2NLC genes, contributing to our understanding of ALS genetics. Our results highlighted that the extremely rare pathogenic REs in these genes do not allow an association with the disease.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD 20892, USA
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Vincenzo La Bella
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy;
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
21
|
Homma H, Yoshioka Y, Fujita K, Shirai S, Hama Y, Komano H, Saito Y, Yabe I, Okano H, Sasaki H, Tanaka H, Okazawa H. Dynamic molecular network analysis of iPSC-Purkinje cells differentiation delineates roles of ISG15 in SCA1 at the earliest stage. Commun Biol 2024; 7:413. [PMID: 38594382 PMCID: PMC11003991 DOI: 10.1038/s42003-024-06066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.
Collapse
Affiliation(s)
- Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa-shi, Ishikawa, 920-8640, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yuka Hama
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hajime Komano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
22
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
23
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
24
|
Sutherland HG, Jenkins B, Griffiths LR. Genetics of migraine: complexity, implications, and potential clinical applications. Lancet Neurol 2024; 23:429-446. [PMID: 38508838 DOI: 10.1016/s1474-4422(24)00026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/22/2024]
Abstract
Migraine is a common neurological disorder with large burden in terms of disability for individuals and costs for society. Accurate diagnosis and effective treatments remain priorities. Understanding the genetic factors that contribute to migraine risk and symptom manifestation could improve individual management. Migraine has a strong genetic basis that includes both monogenic and polygenic forms. Some distinct, rare, familial migraine subtypes are caused by pathogenic variants in genes involved in ion transport and neurotransmitter release, suggesting an underlying vulnerability of the excitatory-inhibitory balance in the brain, which might be exacerbated by disruption of homoeostasis and lead to migraine. For more prevalent migraine subtypes, genetic studies have identified many susceptibility loci, implicating genes involved in both neuronal and vascular pathways. Genetic factors can also reveal the nature of relationships between migraine and its associated biomarkers and comorbidities and could potentially be used to identify new therapeutic targets and predict treatment response.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bronwyn Jenkins
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Duvick L, Southern WM, Benzow KA, Burch ZN, Handler HP, Mitchell JS, Kuivinen H, Gadiparthi U, Yang P, Soles A, Sheeler CA, Rainwater O, Serres S, Lind EB, Nichols-Meade T, You Y, O’Callaghan B, Zoghbi HY, Cvetanovic M, Wheeler VC, Ervasti JM, Koob MD, Orr HT. Mapping SCA1 regional vulnerabilities reveals neural and skeletal muscle contributions to disease. JCI Insight 2024; 9:e176057. [PMID: 38512434 PMCID: PMC11141930 DOI: 10.1172/jci.insight.176057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the widely expressed ataxin-1 (ATXN1) protein. To elucidate anatomical regions and cell types that underlie mutant ATXN1-induced disease phenotypes, we developed a floxed conditional knockin mouse (f-ATXN1146Q/2Q) with mouse Atxn1 coding exons replaced by human ATXN1 exons encoding 146 glutamines. f-ATXN1146Q/2Q mice manifested SCA1-like phenotypes including motor and cognitive deficits, wasting, and decreased survival. Central nervous system (CNS) contributions to disease were revealed using f-ATXN1146Q/2Q;Nestin-Cre mice, which showed improved rotarod, open field, and Barnes maze performance by 6-12 weeks of age. In contrast, striatal contributions to motor deficits using f-ATXN1146Q/2Q;Rgs9-Cre mice revealed that mice lacking ATXN1146Q/2Q in striatal medium-spiny neurons showed a trending improvement in rotarod performance at 30 weeks of age. Surprisingly, a prominent role for muscle contributions to disease was revealed in f-ATXN1146Q/2Q;ACTA1-Cre mice based on their recovery from kyphosis and absence of muscle pathology. Collectively, data from the targeted conditional deletion of the expanded allele demonstrated CNS and peripheral contributions to disease and highlighted the need to consider muscle in addition to the brain for optimal SCA1 therapeutics.
Collapse
Affiliation(s)
- Lisa Duvick
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - W. Michael Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kellie A. Benzow
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Zoe N. Burch
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hillary P. Handler
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Jason S. Mitchell
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Hannah Kuivinen
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Udaya Gadiparthi
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Praseuth Yang
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Alyssa Soles
- Institute of Translational Neuroscience
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carrie A. Sheeler
- Institute of Translational Neuroscience
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Orion Rainwater
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Shannah Serres
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Erin B. Lind
- Institute of Translational Neuroscience
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tessa Nichols-Meade
- Institute of Translational Neuroscience
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yun You
- Mouse Genetics Laboratory, University of Minnesota, Minneapolis. Minnesota, USA
| | - Brennon O’Callaghan
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Huda Y. Zoghbi
- Departments of Molecular and Human Genetics, Pediatrics, and Howard Hughes Medical Institute, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Marija Cvetanovic
- Institute of Translational Neuroscience
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael D. Koob
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| | - Harry T. Orr
- Institute of Translational Neuroscience
- Department of Laboratory Medicine and Pathology, and
| |
Collapse
|
27
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
| | | | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
28
|
Tejwani L, Ravindra NG, Lee C, Cheng Y, Nguyen B, Luttik K, Ni L, Zhang S, Morrison LM, Gionco J, Xiang Y, Yoon J, Ro H, Haidery F, Grijalva RM, Bae E, Kim K, Martuscello RT, Orr HT, Zoghbi HY, McLoughlin HS, Ranum LPW, Shakkottai VG, Faust PL, Wang S, van Dijk D, Lim J. Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1. Neuron 2024; 112:362-383.e15. [PMID: 38016472 PMCID: PMC10922326 DOI: 10.1016/j.neuron.2023.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Neal G Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - Changwoo Lee
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yubao Cheng
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Billy Nguyen
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shupei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan M Morrison
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Gionco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Yangfei Xiang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Hannah Ro
- Yale College, New Haven, CT 06510, USA
| | | | - Rosalie M Grijalva
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Kristen Kim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, College of Medicine, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - David van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA.
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
van Prooije T, Knuijt S, Oostveen J, Kapteijns K, Vogel AP, van de Warrenburg B. Perceptual and Acoustic Analysis of Speech in Spinocerebellar ataxia Type 1. CEREBELLUM (LONDON, ENGLAND) 2024; 23:112-120. [PMID: 36633828 PMCID: PMC10864471 DOI: 10.1007/s12311-023-01513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
This study characterizes the speech phenotype of spinocerebellar ataxia type 1 (SCA1) using both perceptual and objective acoustic analysis of speech in a cohort of SCA1 patients. Twenty-seven symptomatic SCA1 patients in various disease stages (SARA score range: 3-32 points) and 18 sex and age matched healthy controls underwent a clinical assessment addressing ataxia severity, non-ataxia signs, cognitive functioning, and speech. Speech samples were perceptually rated by trained speech therapists, and acoustic metrics representing speech timing, vocal control, and voice quality were extracted. Perceptual analysis revealed reduced intelligibility and naturalness in speech samples of SCA1 patients. Acoustically, SCA1 patients presented with slower speech rate and diadochokinetic rate as well as longer syllable duration compared to healthy controls. No distinct abnormalities in voice quality in the acoustic analysis were detected at group level. Both the affected perceptual and acoustic variables correlated with ataxia severity. Longitudinal assessment of speech is needed to place changes in speech in the context of disease progression and potential response to treatment.
Collapse
Affiliation(s)
- Teije van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simone Knuijt
- Department of Rehabilitation, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Judith Oostveen
- Department of Rehabilitation, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kirsten Kapteijns
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Adam P Vogel
- Centre for Neuroscience of Speech, The University of Melbourne, Melbourne, Australia
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tubingen, Germany
- Redenlab Inc., Melbourne, Australia
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
30
|
Olmos V, Thompson EN, Gogia N, Luttik K, Veeranki V, Ni L, Sim S, Chen K, Krause DS, Lim J. Dysregulation of alternative splicing in spinocerebellar ataxia type 1. Hum Mol Genet 2024; 33:138-149. [PMID: 37802886 PMCID: PMC10979408 DOI: 10.1093/hmg/ddad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 is caused by an expansion of the polyglutamine tract in ATAXIN-1. Ataxin-1 is broadly expressed throughout the brain and is involved in regulating gene expression. However, it is not yet known if mutant ataxin-1 can impact the regulation of alternative splicing events. We performed RNA sequencing in mouse models of spinocerebellar ataxia type 1 and identified that mutant ataxin-1 expression abnormally leads to diverse splicing events in the mouse cerebellum of spinocerebellar ataxia type 1. We found that the diverse splicing events occurred in a predominantly cell autonomous manner. A majority of the transcripts with misregulated alternative splicing events were previously unknown, thus allowing us to identify overall new biological pathways that are distinctive to those affected by differential gene expression in spinocerebellar ataxia type 1. We also provide evidence that the splicing factor Rbfox1 mediates the effect of mutant ataxin-1 on misregulated alternative splicing and that genetic manipulation of Rbfox1 expression modifies neurodegenerative phenotypes in a Drosophila model of spinocerebellar ataxia type 1 in vivo. Together, this study provides novel molecular mechanistic insight into the pathogenesis of spinocerebellar ataxia type 1 and identifies potential therapeutic strategies for spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Victor Olmos
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Evrett N Thompson
- Department of Cell Biology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
| | - Neha Gogia
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Vaishnavi Veeranki
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Serena Sim
- Yale College, 433 Temple Street, New Haven, CT 06510, United States
| | - Kelly Chen
- Yale College, 433 Temple Street, New Haven, CT 06510, United States
| | - Diane S Krause
- Department of Cell Biology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Department of Pathology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Department of Laboratory Medicine, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Wu Tsai Institute, Yale School of Medicine, 100 College, New Haven, CT 06510, United States
| |
Collapse
|
31
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
32
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
33
|
Rafehi H, Bennett MF, Bahlo M. Detection and discovery of repeat expansions in ataxia enabled by next-generation sequencing: present and future. Emerg Top Life Sci 2023; 7:349-359. [PMID: 37733280 PMCID: PMC10754322 DOI: 10.1042/etls20230018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Hereditary cerebellar ataxias are a heterogenous group of progressive neurological disorders that are disproportionately caused by repeat expansions (REs) of short tandem repeats (STRs). Genetic diagnosis for RE disorders such as ataxias are difficult as the current gold standard for diagnosis is repeat-primed PCR assays or Southern blots, neither of which are scalable nor readily available for all STR loci. In the last five years, significant advances have been made in our ability to detect STRs and REs in short-read sequencing data, especially whole-genome sequencing. Given the increasing reliance of genomics in diagnosis of rare diseases, the use of established RE detection pipelines for RE disorders is now a highly feasible and practical first-step alternative to molecular testing methods. In addition, many new pathogenic REs have been discovered in recent years by utilising WGS data. Collectively, genomes are an important resource/platform for further advancements in both the discovery and diagnosis of REs that cause ataxia and will lead to much needed improvement in diagnostic rates for patients with hereditary ataxia.
Collapse
Affiliation(s)
- Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mark F Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Gkekas I, Vagiona AC, Pechlivanis N, Kastrinaki G, Pliatsika K, Iben S, Xanthopoulos K, Psomopoulos FE, Andrade-Navarro MA, Petrakis S. Intranuclear inclusions of polyQ-expanded ATXN1 sequester RNA molecules. Front Mol Neurosci 2023; 16:1280546. [PMID: 38125008 PMCID: PMC10730666 DOI: 10.3389/fnmol.2023.1280546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease caused by a trinucleotide (CAG) repeat expansion in the ATXN1 gene. It is characterized by the presence of polyglutamine (polyQ) intranuclear inclusion bodies (IIBs) within affected neurons. In order to investigate the impact of polyQ IIBs in SCA1 pathogenesis, we generated a novel protein aggregation model by inducible overexpression of the mutant ATXN1(Q82) isoform in human neuroblastoma SH-SY5Y cells. Moreover, we developed a simple and reproducible protocol for the efficient isolation of insoluble IIBs. Biophysical characterization showed that polyQ IIBs are enriched in RNA molecules which were further identified by next-generation sequencing. Finally, a protein interaction network analysis indicated that sequestration of essential RNA transcripts within ATXN1(Q82) IIBs may affect the ribosome resulting in error-prone protein synthesis and global proteome instability. These findings provide novel insights into the molecular pathogenesis of SCA1, highlighting the role of polyQ IIBs and their impact on critical cellular processes.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Pechlivanis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | - Georgia Kastrinaki
- Aerosol and Particle Technology Laboratory, Centre for Research and Technology Hellas, Chemical Process and Energy Resources Institute, Thessaloniki, Greece
| | - Katerina Pliatsika
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Konstantinos Xanthopoulos
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotis E. Psomopoulos
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | | | - Spyros Petrakis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| |
Collapse
|
35
|
Thompson LM, Orr HT. HD and SCA1: Tales from two 30-year journeys since gene discovery. Neuron 2023; 111:3517-3530. [PMID: 37863037 PMCID: PMC10842341 DOI: 10.1016/j.neuron.2023.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
One of the more transformative findings in human genetics was the discovery that the expansion of unstable nucleotide repeats underlies a group of inherited neurological diseases. A subset of these unstable repeat neurodegenerative diseases is due to the expansion of a CAG trinucleotide repeat encoding a stretch of glutamines, i.e., the polyglutamine (polyQ) repeat neurodegenerative diseases. Among the CAG/polyQ repeat diseases are Huntington's disease (HD) and spinocerebellar ataxia type 1 (SCA1), in which the expansions are within widely expressed proteins. Although both HD and SCA1 are autosomal dominantly inherited, and both typically cause mid- to late-life-onset movement disorders with cognitive decline, they each are characterized by distinct clinical characteristics and predominant sites of neuropathology. Importantly, the respective affected proteins, Huntingtin (HTT, HD) and Ataxin 1 (ATXN1, SCA1), have unique functions and biological properties. Here, we review HD and SCA1 with a focus on how their disease-specific and shared features may provide informative insights.
Collapse
Affiliation(s)
- Leslie M Thompson
- Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, Department of Biological Chemistry, Institute of Memory Impairments and Neurological Disorders, Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis and Saint Paul, MN 55455, USA.
| |
Collapse
|
36
|
Sena LS, Lemes RB, Furtado GV, Saraiva-Pereira ML, Jardim LB. A model for the dynamics of expanded CAG repeat alleles: ATXN2 and ATXN3 as prototypes. Front Genet 2023; 14:1296614. [PMID: 38034492 PMCID: PMC10682950 DOI: 10.3389/fgene.2023.1296614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Spinocerebellar ataxia types 2 (SCA2) and 3 (SCA3/MJD) are diseases due to dominant unstable expansions of CAG repeats (CAGexp). Age of onset of symptoms (AO) correlates with the CAGexp length. Repeat instability leads to increases in the expanded repeats, to important AO anticipations and to the eventual extinction of lineages. Because of that, compensatory forces are expected to act on the maintenance of expanded alleles, but they are poorly understood. Objectives: we described the CAGexp dynamics, adapting a classical equation and aiming to estimate for how many generations will the descendants of a de novo expansion last. Methods: A mathematical model was adapted to encompass anticipation, fitness, and allelic segregation; and empirical data fed the model. The arbitrated ancestral mutations included in the model had the lowest CAGexp and the highest AO described in the literature. One thousand generations were simulated until the alleles were eliminated, fixed, or 650 generations had passed. Results: All SCA2 lineages were eliminated in a median of 10 generations. In SCA3/MJD lineages, 593 were eliminated in a median of 29 generations. The other ones were eliminated due to anticipation after the 650th generation or remained indefinitely with CAG repeats transitioning between expanded and unexpanded ranges. Discussion: the model predicted outcomes compatible with empirical data - the very old ancestral SCA3/MJD haplotype, and the de novo SCA2 expansions -, which previously seemed to be contradictory. This model accommodates these data into understandable dynamics and might be useful for other CAGexp disorders.
Collapse
Affiliation(s)
- Lucas Schenatto Sena
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Gabriel Vasata Furtado
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
37
|
Deisseroth CA, Lee WS, Kim J, Jeong HH, Dhindsa RS, Wang J, Zoghbi HY, Liu Z. Literature-based predictions of Mendelian disease therapies. Am J Hum Genet 2023; 110:1661-1672. [PMID: 37741276 PMCID: PMC10577072 DOI: 10.1016/j.ajhg.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023] Open
Abstract
In the effort to treat Mendelian disorders, correcting the underlying molecular imbalance may be more effective than symptomatic treatment. Identifying treatments that might accomplish this goal requires extensive and up-to-date knowledge of molecular pathways-including drug-gene and gene-gene relationships. To address this challenge, we present "parsing modifiers via article annotations" (PARMESAN), a computational tool that searches PubMed and PubMed Central for information to assemble these relationships into a central knowledge base. PARMESAN then predicts putatively novel drug-gene relationships, assigning an evidence-based score to each prediction. We compare PARMESAN's drug-gene predictions to all of the drug-gene relationships displayed by the Drug-Gene Interaction Database (DGIdb) and show that higher-scoring relationship predictions are more likely to match the directionality (up- versus down-regulation) indicated by this database. PARMESAN had more than 200,000 drug predictions scoring above 8 (as one example cutoff), for more than 3,700 genes. Among these predicted relationships, 210 were registered in DGIdb and 201 (96%) had matching directionality. This publicly available tool provides an automated way to prioritize drug screens to target the most-promising drugs to test, thereby saving time and resources in the development of therapeutics for genetic disorders.
Collapse
Affiliation(s)
- Cole A Deisseroth
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Won-Seok Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiyoen Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Hwan Jeong
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ryan S Dhindsa
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Julia Wang
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Jagota P, Ugawa Y, Aldaajani Z, Ibrahim NM, Ishiura H, Nomura Y, Tsuji S, Diesta C, Hattori N, Onodera O, Bohlega S, Al-Din A, Lim SY, Lee JY, Jeon B, Pal PK, Shang H, Fujioka S, Kukkle PL, Phokaewvarangkul O, Lin CH, Shambetova C, Bhidayasiri R. Nine Hereditary Movement Disorders First Described in Asia: Their History and Evolution. J Mov Disord 2023; 16:231-247. [PMID: 37309109 PMCID: PMC10548072 DOI: 10.14802/jmd.23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Cid Diesta
- Section of Neurology, Department of Neuroscience, Makati Medical Center, NCR, Makati City, Philippines
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Riyad, Saudi Arabia
| | - Amir Al-Din
- Mid Yorkshire Hospitals National Health Services Trust, Wakefield, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson’s & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University Medical College, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University, Seoul, Korea
- Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - Prashanth Lingappa Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
39
|
Buijsen RAM, Hu M, Sáez-González M, Notopoulou S, Mina E, Koning W, Gardiner SL, van der Graaf LM, Daoutsali E, Pepers BA, Mei H, van Dis V, Frimat JP, van den Maagdenberg AMJM, Petrakis S, van Roon-Mom WMC. Spinocerebellar Ataxia Type 1 Characteristics in Patient-Derived Fibroblast and iPSC-Derived Neuronal Cultures. Mov Disord 2023; 38:1428-1442. [PMID: 37278528 DOI: 10.1002/mds.29446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein resulting in neuropathology including mutant ataxin-1 protein aggregation, aberrant neurodevelopment, and mitochondrial dysfunction. OBJECTIVES Identify SCA1-relevant phenotypes in patient-specific fibroblasts and SCA1 induced pluripotent stem cells (iPSCs) neuronal cultures. METHODS SCA1 iPSCs were generated and differentiated into neuronal cultures. Protein aggregation and neuronal morphology were evaluated using fluorescent microscopy. Mitochondrial respiration was measured using the Seahorse Analyzer. The multi-electrode array (MEA) was used to identify network activity. Finally, gene expression changes were studied using RNA-seq to identify disease-specific mechanisms. RESULTS Bioenergetics deficits in patient-derived fibroblasts and SCA1 neuronal cultures showed altered oxygen consumption rate, suggesting involvement of mitochondrial dysfunction in SCA1. In SCA1 hiPSC-derived neuronal cells, nuclear and cytoplasmic aggregates were identified similar in localization as aggregates in SCA1 postmortem brain tissue. SCA1 hiPSC-derived neuronal cells showed reduced dendrite length and number of branching points while MEA recordings identified delayed development in network activity in SCA1 hiPSC-derived neuronal cells. Transcriptome analysis identified 1050 differentially expressed genes in SCA1 hiPSC-derived neuronal cells associated with synapse organization and neuron projection guidance, where a subgroup of 151 genes was highly associated with SCA1 phenotypes and linked to SCA1 relevant signaling pathways. CONCLUSIONS Patient-derived cells recapitulate key pathological features of SCA1 pathogenesis providing a valuable tool for the identification of novel disease-specific processes. This model can be used for high throughput screenings to identify compounds, which may prevent or rescue neurodegeneration in this devastating disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Michel Hu
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Maria Sáez-González
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Sofia Notopoulou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Eleni Mina
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Winette Koning
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Barry A Pepers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Vera van Dis
- Department of Pathology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Jean-Philippe Frimat
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Spyros Petrakis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
40
|
Duvick L, Southern WM, Benzow K, Burch ZN, Handler HP, Mitchell JS, Kuivinen H, Gadiparthi UK, Yang P, Soles A, Scheeler C, Rainwater O, Serres S, Lind E, Nichols-Meade T, O'Callaghan B, Zoghbi HY, Cvetanovic M, Wheeler VC, Ervasti JM, Koob MD, Orr HT. Delineating regional vulnerability in the neurodegenerative disease SCA1 using a conditional mutant ATXN1 mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527710. [PMID: 36798410 PMCID: PMC9934664 DOI: 10.1101/2023.02.08.527710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the widely expressed ATXN1 protein. To elucidate anatomical regions and cell types that underlie mutant ATXN1-induced disease phenotypes, we developed a floxed conditional knockout mouse model ( f-ATXN1 146Q/2Q ) having mouse Atxn1 coding exons replaced by human exons encoding 146 glutamines. F-ATXN1 146Q/2Q mice manifest SCA1-like phenotypes including motor and cognitive deficits, wasting, and decreased survival. CNS contributions to disease were revealed using ATXN1 146Q/2Q ; Nestin-Cre mice, that showed improved rotarod, open field and Barnes maze performances. Striatal contributions to motor deficits were examined using f-ATXN1 146Q/2Q ; Rgs9-Cre mice. Mice lacking striatal ATXN1 146Q/2Q had improved rotarod performance late in disease. Muscle contributions to disease were revealed in f-ATXN1 146Q/2Q ; ACTA1-Cre mice which lacked muscle pathology and kyphosis seen in f-ATXN1 146Q/2Q mice. Kyphosis was not improved in f-ATXN1 146Q/2Q ;Nestin - Cre mice. Thus, optimal SCA1 therapeutics will require targeting mutant ATXN1 toxic actions in multiple brain regions and muscle.
Collapse
|
41
|
Lian M, Zhao M, Phang GP, Rajan-Babu IS, Chong SS. Triplet-primed PCR and Melting Curve Analysis for Rapid Molecular Screening of Spinocerebellar Ataxia Types 1, 2, and 3. Bio Protoc 2023; 13:e4704. [PMID: 37397792 PMCID: PMC10308190 DOI: 10.21769/bioprotoc.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
There are more than 40 types of spinocerebellar ataxia (SCA), most of which are caused by abnormal expansion of short tandem repeats at various gene loci. These phenotypically similar disorders require molecular testing at multiple loci by fluorescent PCR and capillary electrophoresis to identify the causative repeat expansion. We describe a simple strategy to screen for the more common SCA1, SCA2, and SCA3 by rapidly detecting the abnormal CAG repeat expansion at the ATXN1, ATXN2, and ATXN3 loci using melting curve analysis of triplet-primed PCR products. Each of the three separate assays employs a plasmid DNA carrying a known repeat size to generate a threshold melt peak temperature, which effectively distinguishes expansion-positive samples from those without a repeat expansion. Samples that are screened positive based on their melt peak profiles are subjected to capillary electrophoresis for repeat sizing and genotype confirmation. These screening assays are robust and provide accurate detection of the repeat expansion while eliminating the need for fluorescent PCR and capillary electrophoresis for every sample.
Collapse
Affiliation(s)
- Mulias Lian
- Department of Obstetrics and Gynecology, National University Hospital, Singapore, Singapore
| | - Mingjue Zhao
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gui-Ping Phang
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Indhu-Shree Rajan-Babu
- Department of Medical Genetics, University of British Columbia, and Children’s & Women’s Hospital, Vancouver, British Columbia, Canada
| | - Samuel S. Chong
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
42
|
Kerkhof LMC, van de Warrenburg BPC, van Roon-Mom WMC, Buijsen RAM. Therapeutic Strategies for Spinocerebellar Ataxia Type 1. Biomolecules 2023; 13:biom13050788. [PMID: 37238658 DOI: 10.3390/biom13050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that affects one or two individuals per 100,000. The disease is caused by an extended CAG repeat in exon 8 of the ATXN1 gene and is characterized mostly by a profound loss of cerebellar Purkinje cells, leading to disturbances in coordination, balance, and gait. At present, no curative treatment is available for SCA1. However, increasing knowledge on the cellular and molecular mechanisms of SCA1 has led the way towards several therapeutic strategies that can potentially slow disease progression. SCA1 therapeutics can be classified as genetic, pharmacological, and cell replacement therapies. These different therapeutic strategies target either the (mutant) ATXN1 RNA or the ataxin-1 protein, pathways that play an important role in downstream SCA1 disease mechanisms or which help restore cells that are lost due to SCA1 pathology. In this review, we will provide a summary of the different therapeutic strategies that are currently being investigated for SCA1.
Collapse
Affiliation(s)
- Laurie M C Kerkhof
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
43
|
Choi DE, Shin JW, Zeng S, Hong EP, Jang JH, Loupe JM, Wheeler VC, Stutzman HE, Kleinstiver BP, Lee JM. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538700. [PMID: 37162872 PMCID: PMC10168301 DOI: 10.1101/2023.04.28.538700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An expanded CAG repeat in the huntingtin gene ( HTT ) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and gRNAs efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion base editing strategies in HD and potentially other repeat expansion disorders.
Collapse
|
44
|
van Prooije T, Ruigrok S, van den Berkmortel N, Maas RPPWM, Wijn S, van Roon-Mom WMC, van de Warrenburg B, Grutters JPC. The potential value of disease-modifying therapy in patients with spinocerebellar ataxia type 1: an early health economic modeling study. J Neurol 2023:10.1007/s00415-023-11704-3. [PMID: 37076599 DOI: 10.1007/s00415-023-11704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE There currently is no disease-modifying therapy for spinocerebellar ataxia type 1 (SCA1). Genetic interventions, such as RNA-based therapies, are being developed but those currently available are very expensive. Early evaluation of costs and benefits is, therefore, crucial. By developing a health economic model, we aimed to provide first insights into the potential cost-effectiveness of RNA-based therapies for SCA1 in the Netherlands. METHODS We simulated disease progression of individuals with SCA1 using a patient-level state-transition model. Five hypothetical treatment strategies with different start and endpoints and level of effectiveness (5-50% reduction in disease progression) were evaluated. Consequences of each strategy were measured in terms of quality-adjusted life years (QALYs), survival, healthcare costs, and maximum costs to be cost effective. RESULTS Most QALYs (6.68) are gained when therapy starts during the pre-ataxic stage and continues during the entire disease course. Incremental costs are lowest (- €14,048) if therapy is stopped when the severe ataxia stage is reached. The maximum costs per year to be cost-effective are €19,630 in the "stop after moderate ataxia stage" strategy at 50% effectiveness. DISCUSSION Our model indicates that the maximum price for a hypothetical therapy to be cost-effective is considerably lower than currently available RNA-based therapies. Most value for money can be gained by slowing progression in the early and moderate stages of SCA1 and by stopping therapy upon entering the severe ataxia stage. To allow for such a strategy, it is crucial to identify individuals in early stages of disease, preferably just before symptom onset.
Collapse
Affiliation(s)
- Teije van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne Ruigrok
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niels van den Berkmortel
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stan Wijn
- Department of Operating Rooms, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Janneke P C Grutters
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Figueiredo AS, Loureiro JR, Macedo-Ribeiro S, Silveira I. Advances in Nucleotide Repeat Expansion Diseases: Transcription Gets in Phase. Cells 2023; 12:826. [PMID: 36980167 PMCID: PMC10047669 DOI: 10.3390/cells12060826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription.
Collapse
Affiliation(s)
- Ana S. Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
46
|
Current advances in neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:1881-1889. [PMID: 36795299 DOI: 10.1007/s10072-023-06677-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare but probably underdiagnosed neurodegenerative disorder due to pathogenic GGC expansions in the NOTCH2NLC gene. In this review, we summarize recent developments in the inheritance features, pathogenesis, and histopathologic and radiologic features of NIID that subvert the previous perceptions of NIID. GGC repeat sizes determine the age of onset and clinical phenotypes of NIID patients. Anticipation may be absent in NIID but paternal bias is observed in NIID pedigrees. Eosinophilic intranuclear inclusions in skin tissues once considered pathological hallmarks of NIID can also present in other GGC repeat diseases. Diffusion-weighted imaging (DWI) hyperintensity along the corticomedullary junction once considered the imaging hallmark of NIID can frequently be absent in muscle weakness and parkinsonism phenotype of NIID. Besides, DWI abnormalities can appear years after the onset of predominant symptoms and may even disappear completely with disease progression. Moreover, continuous reports of NOTCH2NLC GGC expansions in patients with other neurodegenerative diseases lead to the proposal of a new concept of NOTCH2NLC-related GGC repeat expansion disorders (NRED). However, by reviewing the previous literature, we point out the limitations of these studies and provide evidence that these patients are actually suffering from neurodegenerative phenotypes of NIID.
Collapse
|
47
|
Putka AF, McLoughlin HS. Diverse regional mechanisms drive spinocerebellar ataxia type 1 phenotypes. Neuron 2023; 111:447-449. [PMID: 36796325 DOI: 10.1016/j.neuron.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In this issue of Neuron, a pair of studies (Handler et al.1 and Coffin et al.2) elucidate new insights into spinocerebellar ataxia type 1 (SCA1) pathogenesis by genetically assessing mechanistic drivers of regional vulnerability and their relationships to SCA1 phenotypes.
Collapse
Affiliation(s)
- Alexandra F Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
48
|
Coffin SL, Durham MA, Nitschke L, Xhako E, Brown AM, Revelli JP, Villavicencio Gonzalez E, Lin T, Handler HP, Dai Y, Trostle AJ, Wan YW, Liu Z, Sillitoe RV, Orr HT, Zoghbi HY. Disruption of the ATXN1-CIC complex reveals the role of additional nuclear ATXN1 interactors in spinocerebellar ataxia type 1. Neuron 2023; 111:481-492.e8. [PMID: 36577402 PMCID: PMC9957872 DOI: 10.1016/j.neuron.2022.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative disease in that it is caused by a mutation in a broadly expressed protein, ATXN1; however, only select populations of cells degenerate. The interaction of polyglutamine-expanded ATXN1 with the transcriptional repressor CIC drives cerebellar Purkinje cell pathogenesis; however, the importance of this interaction in other vulnerable cells remains unknown. Here, we mutated the 154Q knockin allele of Atxn1154Q/2Q mice to prevent the ATXN1-CIC interaction globally. This normalized genome-wide CIC binding; however, it only partially corrected transcriptional and behavioral phenotypes, suggesting the involvement of additional factors in disease pathogenesis. Using unbiased proteomics, we identified three ATXN1-interacting transcription factors: RFX1, ZBTB5, and ZKSCAN1. We observed altered expression of RFX1 and ZKSCAN1 target genes in SCA1 mice and patient-derived iNeurons, highlighting their potential contributions to disease. Together, these data underscore the complexity of mechanisms driving cellular vulnerability in SCA1.
Collapse
Affiliation(s)
- Stephanie L Coffin
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Mark A Durham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Larissa Nitschke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eder Xhako
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Amanda M Brown
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Esmeralda Villavicencio Gonzalez
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hillary P Handler
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yanwan Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhandong Liu
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Saucier J, Al-Qadi M, Amor MB, Ishikawa K, Chamard-Witkowski L. Spinocerebellar ataxia type 31: A clinical and radiological literature review. J Neurol Sci 2023; 444:120527. [PMID: 36563608 DOI: 10.1016/j.jns.2022.120527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant disease, classified amongst pure cerebellar ataxias (ADCA type 3). While SCA31 is the third most prevalent autosomal dominant ataxia in Japan, it is extremely rare in other countries. A literature review was conducted on PubMed, where we included all case reports and studies describing the clinical presentation of original SCA31 cases. The clinical and radiological features of 374 patients issued from 25 studies were collected. This review revealed that the average age of onset was 59.1 ± 3.3 years, with symptoms of slowly progressing ataxia and dysarthria. Other common clinical features were oculomotor dysfunction (38.8%), dysphagia (22.1%), hypoacousia (23.3%), vibratory hypoesthesia (24.3%), and dysreflexia (41.6%). Unfrequently, abnormal movements (7.4%), extrapyramidal symptoms (4.5%) and cognitive impairment (6.9%) may be observed. Upon radiological examination, clinicians can expect a high prevalence of cerebellar atrophy (78.7%), occasionally accompanied by brainstem (9.1%) and cortical (9.1%) atrophy. Although SCA31 is described as a slowly progressive pure cerebellar syndrome characterized by cerebellar signs such as ataxia, dysarthria and oculomotor dysfunction, this study evaluated a high prevalence of extracerebellar manifestations. Extracerebellar signs were observed in 52.5% of patients, primarily consisting of dysreflexia, vibratory hypoesthesia and hypoacousia. Nonetheless, we must consider the old age and longstanding disease course of patients as a confounding factor for extracerebellar sign development, as some may not be directly attributable to SCA31. Clinicians should consider SCA31 in patients with a hereditary, pure cerebellar syndrome and in patients with extracerebellar signs.
Collapse
Affiliation(s)
- Jacob Saucier
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada..
| | - Mohammad Al-Qadi
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
| | - Mouna Ben Amor
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada.; Department of Genetic Medicine, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Kinya Ishikawa
- The Center for Personalized Medecine for Healthy Aging, Tokyo, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, 113-8519 Tokyo, Japan
| | - Ludivine Chamard-Witkowski
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada.; Department of Neurology, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| |
Collapse
|
50
|
Bustos BI, Billingsley K, Blauwendraat C, Gibbs JR, Gan-Or Z, Krainc D, Singleton AB, Lubbe SJ. Genome-wide contribution of common short-tandem repeats to Parkinson's disease genetic risk. Brain 2023; 146:65-74. [PMID: 36347471 PMCID: PMC10060720 DOI: 10.1093/brain/awac301] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is a complex neurodegenerative disorder with a strong genetic component, for which most known disease-associated variants are single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels). DNA repetitive elements account for >50% of the human genome; however, little is known of their contribution to Parkinson's disease aetiology. While select short tandem repeats (STRs) within candidate genes have been studied in Parkinson's disease, their genome-wide contribution remains unknown. Here we present the first genome-wide association study of STRs in Parkinson's disease. Through a meta-analysis of 16 imputed genome-wide association study cohorts from the International Parkinson's Disease Genomic Consortium (IPDGC), totalling 39 087 individuals (16 642 cases and 22 445 controls of European ancestry), we identified 34 genome-wide significant STR loci (P < 5.34 × 10-6), with the strongest signal located in KANSL1 [chr17:44 205 351:[T]11, P = 3 × 10-39, odds ratio = 1.31 (95% confidence interval = 1.26-1.36)]. Conditional-joint analyses suggested that four significant STRs mapping nearby NDUFAF2, TRIML2, MIRNA-129-1 and NCOR1 were independent from known risk SNPs. Including STRs in heritability estimates increased the variance explained by SNPs alone. Gene expression analysis of STRs (eSTRs) in RNA sequencing data from 13 brain regions identified significant associations of STRs influencing the expression of multiple genes, including known Parkinson's disease genes. Further functional annotation of candidate STRs revealed that significant eSTRs within NUDFAF2 and ZSWIM7 overlap with regulatory features and are associated with change in the expression levels of nearby genes. Here, we show that STRs at known and novel candidate loci contribute to Parkinson's disease risk and have functional effects in disease-relevant tissues and pathways, supporting previously reported disease-associated genes and giving further evidence for their functional prioritization. These data represent a valuable resource for researchers currently dissecting Parkinson's disease risk loci.
Collapse
Affiliation(s)
- Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kimberley Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|