1
|
Roman KM, Dinasarapu AR, Cherian S, Fan X, Donsante Y, Aravind N, Chan CS, Jinnah H, Hess EJ. Striatal cell-type-specific molecular signatures reveal therapeutic targets in a model of dystonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617010. [PMID: 39415987 PMCID: PMC11482807 DOI: 10.1101/2024.10.07.617010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Striatal dysfunction is implicated in many forms of dystonia, including idiopathic, inherited and iatrogenic dystonias. The striatum is comprised largely of GABAergic spiny projection neurons (SPNs) that are defined by their long-range efferents. Direct SPNs (dSPNs) project to the internal globus pallidus/substantia nigra reticulata whereas indirect pathway SPNs (iSPNs) project to the external pallidum; the concerted activity of both SPN subtypes modulates movement. Convergent results from genetic, imaging and physiological studies in patients suggest that abnormalities of both dSPNs and iSPNs contribute to the expression of dystonia, but the molecular adaptations underlying these abnormalities are not known. Here we provide a comprehensive analysis of SPN cell-type-specific molecular signatures in a model of DOPA-responsive dystonia (DRD mice), which is caused by gene defects that reduce dopamine neurotransmission, resulting in dystonia that is specifically associated with striatal dysfunction. Individually profiling the translatome of dSPNs and iSPNs using translating ribosome affinity purification with RNA-seq revealed hundreds of differentially translating mRNAs in each SPN subtype in DRD mice, yet there was little overlap between the dysregulated genes in dSPNs and iSPNs. Despite the paucity of shared adaptations, a disruption in glutamatergic signaling was predicted for both dSPNs and iSPNs. Indeed, we found that both AMPA and NMDA receptor-mediated currents were enhanced in dSPNs but diminished in iSPNs in DRD mice. The pattern of mRNA dysregulation was specific to dystonia as the adaptations in DRD mice were distinct from those in parkinsonian mice where the dopamine deficit occurs in adults, suggesting that the phenotypic outcome is dependent on both the timing of the dopaminergic deficit and the SPN-specific adaptions. We leveraged the unique molecular signatures of dSPNs and iSPNs in DRD mice to identify biochemical mechanisms that may be targets for therapeutics, including LRRK2 inhibition. Administration of the LRRK2 inhibitor MLi-2 ameliorated the dystonia in DRD mice suggesting a novel target for therapeutics and demonstrating that the delineation of cell-type-specific molecular signatures provides a powerful approach to revealing both CNS dysfunction and therapeutic targets in dystonia.
Collapse
Affiliation(s)
- Kaitlyn M. Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Suraj Cherian
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Nivetha Aravind
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - C. Savio Chan
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - H.A. Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ellen J. Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Suenaga Y, Takeshita E, Yamamoto K, Sumitomo N, Baba S, Shimizu-Motohashi Y, Saito T, Komaki H, Nakagawa E, Sasaki M. Epidemiological study on pediatric-onset dystonia in Japan: A questionnaire-based survey. Brain Dev 2024; 46:274-279. [PMID: 38942709 DOI: 10.1016/j.braindev.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE This study aimed to investigate the clinical characteristics of pediatric-onset dystonia in Japan, addressing the diagnostic challenges arising from symptom variations and etiological diversity. METHODS From 2020 to 2022, questionnaires were distributed to 1218 board certified child neurologists (BCCNs) by Japanese Society of Child Neurology. In the primary survey, participants were asked to report the number of patients with pediatric-onset dystonia under their care. Subsequently, the follow-up secondary survey sought additional information on the clinical characteristics of these patients. RESULTS The primary survey obtained 550 responses (response rate: 45 %) from BCCNs for their 736 patients with dystonia. The predominant etiologies included inherited cases (with DYT10 being the most prevalent, followed by DYT5 and ATP1A3-related neurologic disorders), acquired cases (with perinatal abnormalities being the most common), and idiopathic cases. The secondary survey provided clinical insights into 308 cases from 82 BCCNs. Infancy-onset dystonia presented as persistent and generalized with diverse symptoms, primarily linked to ATP1A3-related neurologic disorders and other genetic disorders resembling acquired dystonia. Conversely, childhood/adolescent-onset dystonia showed paroxysmal, fluctuating courses, predominantly affecting limbs. The most common etiologies were DYT5 and DYT10 , leading to therapeutic diagnoses. CONCLUSION Pediatric-onset dystonia in Japan was treated by 28 % of BCCNs. The majority of cases were inherited, with high prevalence rates of DYT5 and DYT10 . Infancy-onset dystonia exhibits diverse etiologies and symptoms, emphasizing the utility of various examinations, including genetic testing. These findings significantly contribute to our understanding of pediatric-onset dystonia in Japan, although this study has the limitation of questionnaire survey.
Collapse
Affiliation(s)
- Yuta Suenaga
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
| | - Kaoru Yamamoto
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Noriko Sumitomo
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Shimpei Baba
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan; Department of Pediatrics, Tokyo Children Rehabilitation Hospital, 4-10-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
3
|
Novelli M, Tolve M, Quiroz V, Carducci C, Bove R, Ricciardi G, Yang K, Manti F, Pisani F, Ebrahimi‐Fakhari D, Galosi S, Leuzzi V. Autosomal Recessive Guanosine Triphosphate Cyclohydrolase I Deficiency: Redefining the Phenotypic Spectrum and Outcomes. Mov Disord Clin Pract 2024; 11:1072-1084. [PMID: 39001623 PMCID: PMC11452796 DOI: 10.1002/mdc3.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/06/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The GCH1 gene encodes the enzyme guanosine triphosphate cyclohydrolase I (GTPCH), which catalyzes the rate-limiting step in the biosynthesis of tetrahydrobiopterin (BH4), a critical cofactor in the production of monoamine neurotransmitters. Autosomal dominant GTPCH (adGTPCH) deficiency is the most common cause of dopa-responsive dystonia (DRD), whereas the recessive form (arGTPCH) is an ultrarare and poorly characterized disorder with earlier and more complex presentation that may disrupt neurodevelopmental processes. Here, we delineated the phenotypic spectrum of ARGTPCHD and investigated the predictive value of biochemical and genetic correlates for disease outcome. OBJECTIVES The aim was to study 4 new cases of arGTPCH deficiency and systematically review patients reported in the literature. METHODS Clinical, biochemical, and genetic data and treatment response of 45 patients are presented. RESULTS Three phenotypes were outlined: (1) early-infantile encephalopathic phenotype with profound disability (24 of 45 patients), (2) dystonia-parkinsonism phenotype with infantile/early-childhood onset of developmental stagnation/regression preceding the emergence of movement disorder (7 of 45), and (3) late-onset DRD phenotype (14 of 45). All 3 phenotypes were responsive to pharmacological treatment, which for the first 2 must be initiated early to prevent disabling neurodevelopmental outcomes. A gradient of BH4 defect and genetic variant severity characterizes the 3 clinical subgroups. Hyperphenylalaninemia was not observed in the second and third groups and was associated with a higher likelihood of intellectual disability. CONCLUSIONS The clinical spectrum of arGTPCH deficiency is a continuum from early-onset encephalopathies to classical DRD. Genotype and biochemical alterations may allow early diagnosis and predict clinical severity. Early treatment remains critical, especially for the most severe patients.
Collapse
Affiliation(s)
- Maria Novelli
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Manuela Tolve
- Clinical Pathology Unit, Department of Experimental MedicineAOU Policlinico Umberto I‐Sapienza UniversityRomeItaly
| | - Vicente Quiroz
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Claudia Carducci
- Clinical Pathology Unit, Department of Experimental MedicineAOU Policlinico Umberto I‐Sapienza UniversityRomeItaly
| | - Rossella Bove
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Giacomina Ricciardi
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Kathryn Yang
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Filippo Manti
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Darius Ebrahimi‐Fakhari
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Serena Galosi
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Vincenzo Leuzzi
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| |
Collapse
|
4
|
Nagatsu T. Catecholamines and Parkinson's disease: tyrosine hydroxylase (TH) over tetrahydrobiopterin (BH4) and GTP cyclohydrolase I (GCH1) to cytokines, neuromelanin, and gene therapy: a historical overview. J Neural Transm (Vienna) 2024; 131:617-630. [PMID: 37638996 DOI: 10.1007/s00702-023-02673-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023]
Abstract
The author identified the genes and proteins of human enzymes involved in the biosynthesis of catecholamines (dopamine, norepinephrine, epinephrine) and tetrahydrobiopterin (BH4): tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine β-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), and GTP cyclohydrolase I (GCH1). In Parkinson's disease (PD), the activities and levels of mRNA and protein of all catecholamine-synthesizing enzymes are decreased, especially in dopamine neurons in the substantia nigra. Hereditary GCH1 deficiency results in reductions in the levels of BH4 and the activities of TH, causing decreases in dopamine levels. Severe deficiencies in GCH1 or TH cause severe decreases in dopamine levels leading to severe neurological symptoms, whereas mild decreases in TH activity in mild GCH1 deficiency or in mild TH deficiency result in only modest reductions in dopamine levels and symptoms of DOPA-responsive dystonia (DRD, Segawa disease) or juvenile Parkinsonism. DRD is a treatable disease and small doses of L-DOPA can halt progression. The death of dopamine neurons in PD in the substantia nigra may be related to (i) inflammatory effect of extra neuronal neuromelanin, (ii) inflammatory cytokines which are produced by activated microglia, (iii) decreased levels of BDNF, and/or (iv) increased levels of apoptosis-related factors. This review also discusses progress in gene therapies for the treatment of PD, and of GCH1, TH and AADC deficiencies, by transfection of TH, AADC, and GCH1 via adeno-associated virus (AAV) vectors.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
5
|
Thomsen M, Lange LM, Zech M, Lohmann K. Genetics and Pathogenesis of Dystonia. ANNUAL REVIEW OF PATHOLOGY 2024; 19:99-131. [PMID: 37738511 DOI: 10.1146/annurev-pathmechdis-051122-110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
6
|
Terao Y, Fukuda H, Hikosaka O, Yugeta A, Matsuda SI, Fisicaro F, Ugawa Y, Hoshino K, Nomura Y. Age- and sex-related oculomotor manifestation of dopamine deficiency in Segawa disease. Clin Neurophysiol 2024; 157:73-87. [PMID: 38064930 DOI: 10.1016/j.clinph.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/28/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the oculomotor manifestations of Segawa disease (SD), considered to represent mild dopamine deficiency and discuss their pathophysiological basis. METHODS We recorded visually- (VGS) and memory-guided saccade (MGS) tasks in 31 SD patients and 153 age-matched control subjects to study how basal ganglia (BG) dysfunction in SD evolves with age for male and female subjects. RESULTS SD patients were impaired in initiating MGS, showing longer latencies with occasional failure. Patients showed impaired ability to suppress reflexive saccades; saccades to cues presented in MGS were more frequent and showed a shorter latency than in control subjects. These findings were more prominent in male patients, particularly between 13 and 25 years. Additionally, male patients showed larger delay in MGS latency in trials preceded by saccades to cue than those unpreceded. CONCLUSIONS The findings can be explained by a dysfunction of the BG-direct pathway impinging on superior colliculus (SC) due to dopamine deficiency. The disturbed inhibitory control of saccades may be explained by increased SC responsivity to visual stimuli. SIGNIFICANCE Oculomotor abnormalities in SD can be explained by dysfunction of the BG inhibitory pathways reaching SC, with a delayed maturation in male SD patients, consistent with previous pathological/physiological studies.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Medical Physiology, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan.
| | - Hideki Fukuda
- Segawa Memorial Neurological Clinic for Children, 2-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Okihide Hikosaka
- Section of Neuronal Networks, Laboratory of Sensorimotor Research, National Eye Institute, 49 Convent Drive, Bethesda 20892-4435, MD, USA
| | - Akihiro Yugeta
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shun-Ichi Matsuda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Piazza Università, 2, 95131 Catalina, Italy
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children, 2-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo 113-0034, Japan
| |
Collapse
|
7
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
8
|
Jagota P, Ugawa Y, Aldaajani Z, Ibrahim NM, Ishiura H, Nomura Y, Tsuji S, Diesta C, Hattori N, Onodera O, Bohlega S, Al-Din A, Lim SY, Lee JY, Jeon B, Pal PK, Shang H, Fujioka S, Kukkle PL, Phokaewvarangkul O, Lin CH, Shambetova C, Bhidayasiri R. Nine Hereditary Movement Disorders First Described in Asia: Their History and Evolution. J Mov Disord 2023; 16:231-247. [PMID: 37309109 PMCID: PMC10548072 DOI: 10.14802/jmd.23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Cid Diesta
- Section of Neurology, Department of Neuroscience, Makati Medical Center, NCR, Makati City, Philippines
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Riyad, Saudi Arabia
| | - Amir Al-Din
- Mid Yorkshire Hospitals National Health Services Trust, Wakefield, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson’s & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University Medical College, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University, Seoul, Korea
- Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - Prashanth Lingappa Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
9
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
10
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Roman KM, Briscione MA, Donsante Y, Ingram J, Fan X, Bernhard D, Campbell SA, Downs AM, Gutman D, Sardar TA, Bonno SQ, Sutcliffe DJ, Jinnah HA, Hess EJ. Striatal Subregion-selective Dysregulated Dopamine Receptor-mediated Intracellular Signaling in a Model of DOPA-responsive Dystonia. Neuroscience 2023; 517:37-49. [PMID: 36871883 PMCID: PMC10085842 DOI: 10.1016/j.neuroscience.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Although the mechanisms underlying dystonia are largely unknown, dystonia is often associated with abnormal dopamine neurotransmission. DOPA-responsive dystonia (DRD) is a prototype disorder for understanding dopamine dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of dopamine and alleviated by the indirect-acting dopamine agonist l-DOPA. Although adaptations in striatal dopamine receptor-mediated intracellular signaling have been studied extensively in models of Parkinson's disease, another movement disorders associated with dopamine deficiency, little is known about dopaminergic adaptations in dystonia. To identify the dopamine receptor-mediated intracellular signaling associated with dystonia, we used immunohistochemistry to quantify striatal protein kinase A activity and extracellular signal-related kinase (ERK) phosphorylation after dopaminergic challenges in a knockin mouse model of DRD. l-DOPA treatment induced the phosphorylation of both protein kinase A substrates and ERK largely in D1 dopamine receptor-expressing striatal neurons. As expected, this response was blocked by pretreatment with the D1 dopamine receptor antagonist SCH23390. The D2 dopamine receptor antagonist raclopride also significantly reduced the phosphorylation of ERK; this contrasts with models of parkinsonism in which l-DOPA-induced ERK phosphorylation is not mediated by D2 dopamine receptors. Further, the dysregulated signaling was dependent on striatal subdomains whereby ERK phosphorylation was largely confined to dorsomedial (associative) striatum while the dorsolateral (sensorimotor) striatum was unresponsive. This complex interaction between striatal functional domains and dysregulated dopamine-receptor mediated responses has not been observed in other models of dopamine deficiency, such as parkinsonism, suggesting that regional variation in dopamine-mediated neurotransmission may be a hallmark of dystonia.
Collapse
Affiliation(s)
- Kaitlyn M Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Maria A Briscione
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jordan Ingram
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Simone A Campbell
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - David Gutman
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Tejas A Sardar
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Sofia Q Bonno
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Lin J, Li C, Cui Y, Hou Y, Zhang L, Ou R, Wei Q, Liu K, Yang T, Xiao Y, Jiang Q, Zhao B, Yang J, Chen X, Shang H. Rare variants in IMPDH2 cause autosomal dominant dystonia in Chinese population. J Neurol 2023; 270:2197-2203. [PMID: 36648520 DOI: 10.1007/s00415-023-11564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
STUDY OBJECTIVES Recently, IMPDH2 has been linked to dystonia. However, no replication study from other cohorts has been conducted to confirm the association. We aimed to systematically evaluate the genetic associations of IMPDH2 with dystonia in a large dystonia cohort. METHODS We analyzed rare variants (minor allele frequency < 0.01) of IMPDH2 in 688 Chinese dystonia patients with whole exome sequencing. The over-representation of rare variants in patients was examined with Fisher's exact test at allele and gene levels. RESULTS Four rare variants were detected in IMPDH2 in four patients with dystonia in our cohort, including three missense variants (p.Ser508Leu, p.Ala396Thr, and p.Phe24Val) and one splice acceptor variant (c.1296-1G>T). Two of them (c.1296-1G>T and p.Ser508Leu) were co-segregated in the family co-segregation analysis and were classified as pathogenic and likely pathogenic variant according to the American College of Medical Genetics and Genomics (ACMG) guidelines, respectively. Gene burden analysis revealed enrichment of rare variants in IMPDH2 in dystonia. CONCLUSIONS Our work supplemented the evidence on the role of IMPDH2 in autosomal dominant dystonia in Chinese population, and expanded the genetic and phenotypic spectrum of IMPDH2, paving way for future studies.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Yiyuan Cui
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Jing Yang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Fang Y, Gao J, Guo Y, Li X, Yuan E, Yuan E, Song L, Shi Q, Yu H, Zhao D, Zhang L. Allelic phenotype prediction of phenylketonuria based on the machine learning method. Hum Genomics 2023; 17:34. [PMID: 37004080 PMCID: PMC10064562 DOI: 10.1186/s40246-023-00481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Phenylketonuria (PKU) is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Our study aimed to predict the phenotype using the allelic genotype. METHODS A total of 1291 PKU patients with 623 various variants were used as the training dataset for predicting allelic phenotypes. We designed a common machine learning framework to predict allelic genotypes associated with the phenotype. RESULTS We identified 235 different mutations and 623 various allelic genotypes. The features extracted from the structure of mutations and graph properties of the PKU network to predict the phenotype of PKU were named PPML (PKU phenotype predicted by machine learning). The phenotype of PKU was classified into three different categories: classical PKU (cPKU), mild PKU (mPKU) and mild hyperphenylalaninemia (MHP). Three hub nodes (c.728G>A for cPKU, c.721 for mPKU and c.158G>A for HPA) were used as each classification center, and 5 node attributes were extracted from the network graph for machine learning training features. The area under the ROC curve was AUC = 0.832 for cPKU, AUC = 0.678 for mPKU and AUC = 0.874 for MHP. This suggests that PPML is a powerful method to predict allelic phenotypes in PKU and can be used for genetic counseling of PKU families. CONCLUSIONS The web version of PPML predicts PKU allele classification supported by applicable real cases and prediction results. It is an online database that can be used for PKU phenotype prediction http://www.bioinfogenetics.info/PPML/ .
Collapse
Affiliation(s)
- Yang Fang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Jinshuang Gao
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yaqing Guo
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaole Li
- Neonatal Screening Center, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Enwu Yuan
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Erfeng Yuan
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Liying Song
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qianqian Shi
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Haiyang Yu
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Dehua Zhao
- Neonatal Screening Center, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Linlin Zhang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
14
|
Mutation screening of AOPEP variants in a large dystonia cohort. J Neurol 2023; 270:3225-3233. [PMID: 36933031 DOI: 10.1007/s00415-023-11665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
STUDY OBJECTIVES Recently, AOPEP has been identified to be a novel causative gene of autosomal-recessive dystonia. However, no large cohort study has been conducted to confirm the association. We aimed to systematically evaluate the genetic associations of AOPEP with dystonia in a large Chinese dystonia cohort. METHODS We analyzed rare variants of AOPEP in 878 dystonia patients with whole-exome sequencing. The over-representation of rare variants in patients was examined with Fisher's exact test at allele and gene levels. RESULTS Among the 878 patients with dystonia, we found two patients with biallelic likely pathogenic variants in the AOPEP gene. One patient carried putative compound heterozygous variants (p.A212D and p.G216R) and presented with childhood-onset segmental dystonia involving the upper limbs and craniocervical muscles accompanied by myoclonus of the dystonia affected areas. One patient carried homozygote of p.M291Nfs*68 and presented with adult-onset isolated cervical dystonia. Another 15 patients were identified to carry heterozygous rare variants in AOPEP, including 2 loss-of-function variants (p.M291Nfs*68 and p.R493X) and 6 missense variants. One loss-of-function variant (p.R493X) was the same as previously reported. Nearly, all of the 15 patients carrying heterozygous variants in AOPEP presented with isolated dystonia with only craniocervical muscles affected, except for one patient who carried the p.R493X variant presented with segmental dystonia affecting the neck and right upper limb combined with parkinsonism. Gene-based burden analysis detected enrichment of rare variants and rare damaging variants of AOPEP in dystonia. CONCLUSIONS Our study supplemented the evidence on the role of AOPEP in autosomal-recessive dystonia in Chinese population, and expanded the genotypic and phenotypic spectrum of AOPEP.
Collapse
|
15
|
Salles PA. Heterozygous pathogenic variant in GCH1 associated with treatable severe spastic tetraplegia: Expert opinion. Parkinsonism Relat Disord 2023; 109:105370. [PMID: 36935320 DOI: 10.1016/j.parkreldis.2023.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Philippe A Salles
- Centro de Trastornos del Movimiento CETRAM, Santiago, Chile; Clínica Dávila, Santiago, Chile; Clínica Alemana, Santiago, Chile.
| |
Collapse
|
16
|
Mutation Screening of MED27 in a Large Dystonia Cohort. Acta Neurol Scand 2023. [DOI: 10.1155/2023/4967173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Objectives. Recently, biallelic variants in MED27 have been identified to correlate with complex dystonia. However, no replicative study has been conducted in larger dystonia cohorts. In this study, we aimed to systematically evaluate the genetic associations of MED27 with dystonia in a large dystonia cohort. Materials and Methods. We analyzed rare variants (minor allele
) of MED27 in a large Chinese dystonia cohort with whole exome sequencing. The overrepresentation of rare variants in patients was examined with Fisher’s exact test at allele and gene levels. Results. A total of 688 patients with dystonia were included in the study, including 483 isolated dystonia, 133 combined dystonia, and 72 complex dystonia. The average age at onset (SD) was 34.3 (19.1) years old. After applying filtering criteria, five rare variants, namely, p.R247H, p.P174A, p.P123A, p.L120F, and p.F56C, were identified in six individuals. All of them carried the variant in the heterozygous form, and no patients with compound heterozygous or homozygous alleles were identified. At allele level, no variant was associated with risk of dystonia. Gene-based burden analysis did not detect enrichment of rare variants of MED27 in dystonia either. Conclusion. Variants of MED27 were rare in Chinese dystonia patients, probably because that mutations in MED27 are more associated with more complex neurodevelopmental disorders that can also include dystonia among the various neurological features. Further studies are needed to confirm the role of MED27 in dystonia and other neurological disorders.
Collapse
|
17
|
Arabia G, De Martino A, Moro E. Sex and gender differences in movement disorders: Parkinson's disease, essential tremor, dystonia and chorea. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:101-128. [PMID: 36038202 DOI: 10.1016/bs.irn.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sex and gender-based differences in epidemiology, clinical features and therapeutical responses are emerging in several movement disorders, even though they are still not widely recognized. In this chapter, we summarize the most relevant evidence concerning these differences in Parkinson's disease, essential tremor, dystonia and chorea. Indeed, both sex-related biological (hormonal levels fluctuations) and gender-related variables (socio-cultural and environmental factors) may differently impact symptoms manifestation and severity, phenotype and disease progression of movement disorders on men and women. Moreover, sex differences in treatment responses should be taken into account in any therapeutical planning. Physicians need to be aware of these major differences between men and women that will eventually have a major impact on better tailoring prevention, treatment, or even delaying progression of the most common movement disorders.
Collapse
Affiliation(s)
- Gennarina Arabia
- Magna Graecia University, Movement Disorders Center, Neurology Unit, Catanzaro, Italy.
| | - Antonio De Martino
- Magna Graecia University, Movement Disorders Center, Neurology Unit, Catanzaro, Italy
| | - Elena Moro
- Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
18
|
di Biase L, Di Santo A, Caminiti ML, Pecoraro PM, Carbone SP, Di Lazzaro V. Dystonia Diagnosis: Clinical Neurophysiology and Genetics. J Clin Med 2022; 11:jcm11144184. [PMID: 35887948 PMCID: PMC9320296 DOI: 10.3390/jcm11144184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022] Open
Abstract
Dystonia diagnosis is based on clinical examination performed by a neurologist with expertise in movement disorders. Clues that indicate the diagnosis of a movement disorder such as dystonia are dystonic movements, dystonic postures, and three additional physical signs (mirror dystonia, overflow dystonia, and geste antagonists/sensory tricks). Despite advances in research, there is no diagnostic test with a high level of accuracy for the dystonia diagnosis. Clinical neurophysiology and genetics might support the clinician in the diagnostic process. Neurophysiology played a role in untangling dystonia pathophysiology, demonstrating characteristic reduction in inhibition of central motor circuits and alterations in the somatosensory system. The neurophysiologic measure with the greatest evidence in identifying patients affected by dystonia is the somatosensory temporal discrimination threshold (STDT). Other parameters need further confirmations and more solid evidence to be considered as support for the dystonia diagnosis. Genetic testing should be guided by characteristics such as age at onset, body distribution, associated features, and coexistence of other movement disorders (parkinsonism, myoclonus, and other hyperkinesia). The aim of the present review is to summarize the state of the art regarding dystonia diagnosis focusing on the role of neurophysiology and genetic testing.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Brain Innovations Lab., Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: or ; Tel.: +39-062-2541-1220
| | - Alessandro Di Santo
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Maria Letizia Caminiti
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Simona Paola Carbone
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
19
|
Xing H, Yokoi F, Walker AL, Torres-Medina R, Liu Y, Li Y. Electrophysiological characterization of the striatal cholinergic interneurons in Dyt1 ΔGAG knock-in mice. DYSTONIA 2022; 1:10557. [PMID: 36329866 PMCID: PMC9629210 DOI: 10.3389/dyst.2022.10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DYT1 dystonia is an inherited early-onset movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, and abnormal postures. Most DYT1 patients have a heterozygous trinucleotide GAG deletion mutation (ΔGAG) in DYT1/TOR1A, coding for torsinA. Dyt1 heterozygous ΔGAG knock-in (KI) mice show motor deficits and reduced striatal dopamine receptor 2 (D2R). Striatal cholinergic interneurons (ChIs) are essential in regulating striatal motor circuits. Multiple dystonia rodent models, including KI mice, show altered ChI firing and modulation. However, due to the errors in assigning KI mice, it is essential to replicate these findings in genetically confirmed KI mice. Here, we found irregular and decreased spontaneous firing frequency in the acute brain slices from Dyt1 KI mice. Quinpirole, a D2R agonist, showed less inhibitory effect on the spontaneous ChI firing in Dyt1 KI mice, suggesting decreased D2R function on the striatal ChIs. On the other hand, a muscarinic receptor agonist, muscarine, inhibited the ChI firing in both wild-type (WT) and Dyt1 KI mice. Trihexyphenidyl, a muscarinic acetylcholine receptor M1 antagonist, had no significant effect on the firing. Moreover, the resting membrane property and functions of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, μ-opioid receptors, and large-conductance calcium-activated potassium (BK) channels were unaffected in Dyt1 KI mice. The results suggest that the irregular and low-frequency firing and decreased D2R function are the main alterations of striatal ChIs in Dyt1 KI mice. These results appear consistent with the reduced dopamine release and high striatal acetylcholine tone in the previous reports.
Collapse
Affiliation(s)
- Hong Xing
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Ariel Luz Walker
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Rosemarie Torres-Medina
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuning Liu
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| |
Collapse
|
20
|
Nishioka K, Imai Y, Yoshino H, Li Y, Funayama M, Hattori N. Clinical Manifestations and Molecular Backgrounds of Parkinson's Disease Regarding Genes Identified From Familial and Population Studies. Front Neurol 2022; 13:764917. [PMID: 35720097 PMCID: PMC9201061 DOI: 10.3389/fneur.2022.764917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past 20 years, numerous robust analyses have identified over 20 genes related to familial Parkinson's disease (PD), thereby uncovering its molecular underpinnings and giving rise to more sophisticated approaches to investigate its pathogenesis. α-Synuclein is a major component of Lewy bodies (LBs) and behaves in a prion-like manner. The discovery of α-Synuclein enables an in-depth understanding of the pathology behind the generation of LBs and dopaminergic neuronal loss. Understanding the pathophysiological roles of genes identified from PD families is uncovering the molecular mechanisms, such as defects in dopamine biosynthesis and metabolism, excessive oxidative stress, dysfunction of mitochondrial maintenance, and abnormalities in the autophagy–lysosome pathway, involved in PD pathogenesis. This review summarizes the current knowledge on familial PD genes detected by both single-gene analyses obeying the Mendelian inheritance and meta-analyses of genome-wide association studies (GWAS) from genome libraries of PD. Studying the functional role of these genes might potentially elucidate the pathological mechanisms underlying familial PD and sporadic PD and stimulate future investigations to decipher the common pathways between the diseases.
Collapse
Affiliation(s)
- Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- *Correspondence: Kenya Nishioka
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Yuzuru Imai
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
21
|
Sumi-Ichinose C, Suganuma Y, Kano T, Ikemoto K, Ihira N, Ichinose H, Kondo K. Priapism caused by partial deficiency of tetrahydrobiopterin through hypofunction of the sympathetic neurons in sepiapterin reductase gene-disrupted mice. J Inherit Metab Dis 2022; 45:621-634. [PMID: 35192730 DOI: 10.1002/jimd.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for aromatic L-amino acid hydroxylases, including tyrosine hydroxylase (TH), alkylglycerol monooxygenase, and three types of nitric oxide (NO) synthases (NOS). Sepiapterin reductase (SPR) catalyzes the third step of BH4 biosynthesis. SPR gene-disrupted (Spr-/- ) mice exhibit a dystonic posture, low body weight, hyperphenylalaninemia, and unstable hypertension with endothelial dysfunction. In this study, we found that Spr-/- mice suffered from a high incidence of severe priapism. Their erections persisted for months. The biopterin, BH4, and norepinephrine contents, and TH protein levels in the penile tissue of Spr-/- mice without and with priapism were significantly reduced compared to those of Spr+/+ mice. In contrast, their neural NOS (nNOS) protein levels were increased, and the cyclic guanosine monophosphate (cGMP) levels were remarkably elevated in the penises of Spr-/- mice with priapism. The symptoms were relieved by repeated administration of BH4. The biopterin, BH4, and norepinephrine contents were increased in penile homogenates from BH4-supplemented Spr-/- mice, and the TH protein levels tended to increase, and their nitrite plus nitrate levels were significantly lower than those of vehicle-treated Spr-/- mice and were approximately the same as vehicle- and BH4-supplemented Spr+/+ mice. Thus, we deduced that the priapism of Spr-/- mice is primarily caused by hypofunction of the sympathetic neurons due to cofactor depletion and the loss of TH protein and, further, dysregulation of the NO/cGMP signaling pathway, which would be caused by disinhibition of nNOS-containing neurons and/or abnormal catabolism of cyclic nucleotides is suggested.
Collapse
Affiliation(s)
- Chiho Sumi-Ichinose
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yui Suganuma
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Taiki Kano
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kazuhisa Ikemoto
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Noriko Ihira
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Kazunao Kondo
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
22
|
Phillips RA, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, Day JJ. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Rep 2022; 39:110616. [PMID: 35385745 PMCID: PMC10888206 DOI: 10.1016/j.celrep.2022.110616] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/28/2021] [Accepted: 03/11/2022] [Indexed: 01/06/2023] Open
Abstract
The ventral tegmental area (VTA) is a complex brain region that is essential for reward function and frequently implicated in neuropsychiatric disease. While decades of research on VTA function have focused on dopamine neurons, recent evidence has identified critical roles for GABAergic and glutamatergic neurons in reward processes. Additionally, although subsets of VTA neurons express genes involved in the synthesis and transport of multiple neurotransmitters, characterization of these combinatorial populations has largely relied on low-throughput methods. To comprehensively define the molecular architecture of the VTA, we performed single-nucleus RNA sequencing on 21,600 cells from the rat VTA. Analysis of neuronal subclusters identifies selective markers for dopamine and combinatorial neurons, reveals expression profiles for receptors targeted by drugs of abuse, and demonstrates population-specific enrichment of gene sets linked to brain disorders. These results highlight the heterogeneity of the VTA and provide a resource for further exploration of VTA gene expression.
Collapse
Affiliation(s)
- Robert A Phillips
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J Tuscher
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samantha L Black
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emma Andraka
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N Dalton Fitzgerald
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
23
|
Larbalestier H, Keatinge M, Watson L, White E, Gowda S, Wei W, Koler K, Semenova SA, Elkin AM, Rimmer N, Sweeney ST, Mazzolini J, Sieger D, Hide W, McDearmid J, Panula P, MacDonald RB, Bandmann O. GCH1 Deficiency Activates Brain Innate Immune Response and Impairs Tyrosine Hydroxylase Homeostasis. J Neurosci 2022; 42:702-716. [PMID: 34876467 PMCID: PMC8805627 DOI: 10.1523/jneurosci.0653-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
The Parkinson's disease (PD) risk gene GTP cyclohydrolase 1 (GCH1) catalyzes the rate-limiting step in tetrahydrobiopterin (BH4) synthesis, an essential cofactor in the synthesis of monoaminergic neurotransmitters. To investigate the mechanisms by which GCH1 deficiency may contribute to PD, we generated a loss of function zebrafish gch1 mutant (gch1-/-), using CRISPR/Cas technology. gch1-/- zebrafish develop marked monoaminergic neurotransmitter deficiencies by 5 d postfertilization (dpf), movement deficits by 8 dpf and lethality by 12 dpf. Tyrosine hydroxylase (Th) protein levels were markedly reduced without loss of ascending dopaminergic (DAergic) neurons. L-DOPA treatment of gch1-/- larvae improved survival without ameliorating the motor phenotype. RNAseq of gch1-/- larval brain tissue identified highly upregulated transcripts involved in innate immune response. Subsequent experiments provided morphologic and functional evidence of microglial activation in gch1-/- The results of our study suggest that GCH1 deficiency may unmask early, subclinical parkinsonism and only indirectly contribute to neuronal cell death via immune-mediated mechanisms. Our work highlights the importance of functional validation for genome-wide association studies (GWAS) risk factors and further emphasizes the important role of inflammation in the pathogenesis of PD.SIGNIFICANCE STATEMENT Genome-wide association studies have now identified at least 90 genetic risk factors for sporadic Parkinson's disease (PD). Zebrafish are an ideal tool to determine the mechanistic role of genome-wide association studies (GWAS) risk genes in a vertebrate animal model. The discovery of GTP cyclohydrolase 1 (GCH1) as a genetic risk factor for PD was counterintuitive, GCH1 is the rate-limiting enzyme in the synthesis of dopamine (DA), mutations had previously been described in the non-neurodegenerative movement disorder dopa-responsive dystonia (DRD). Rather than causing DAergic cell death (as previously hypothesized by others), we now demonstrate that GCH1 impairs tyrosine hydroxylase (Th) homeostasis and activates innate immune mechanisms in the brain and provide evidence of microglial activation and phagocytic activity.
Collapse
Affiliation(s)
- Hannah Larbalestier
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Marcus Keatinge
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Lisa Watson
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Emma White
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Siri Gowda
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Wenbin Wei
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Katjusa Koler
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Svetlana A Semenova
- Department of Anatomy, University of Helsinki, Helsinki, Finland, 00014
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Adam M Elkin
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Neal Rimmer
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Julie Mazzolini
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Dirk Sieger
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Winston Hide
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
- Department of Pathology, Beth Israel Medical Center, Boston, Massachusetts 02215
- Harvard Medical School, Boston, Massachusetts 02115
| | - Jonathan McDearmid
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland, 00014
| | - Ryan B MacDonald
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
24
|
Salles PA, Terán-Jimenez M, Vidal-Santoro A, Chaná-Cuevas P, Kauffman M, Espay AJ. Recognizing Atypical Dopa-Responsive Dystonia and Its Mimics. Neurol Clin Pract 2022; 11:e876-e884. [PMID: 34992971 DOI: 10.1212/cpj.0000000000001125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/07/2021] [Indexed: 11/15/2022]
Abstract
Purpose of Review Dopa-responsive dystonia (DRD) encompasses a group of phenotypically and genetically heterogeneous neurochemical disorders. Classic GTP cyclohydrolase 1 (GCH-1)-associated DRD consists of early-onset lower limb asymmetrical dystonia, with sleep benefit, diurnal variation, and excellent and sustained response to low l-dopa doses. Recent Findings Unlike the classic phenotype, GCH-1-associated DRD may include features inconsistent with the original phenotype. We describe a GCH-1-associated late-onset DRD case with a family history of parkinsonism and cervical dystonia whose response to levodopa was poor and complicated with dyskinesia, blepharospasm, and severe nonmotor symptoms. We use this case as a springboard to review the spectrum of atypical DRD, DRD-plus, and DRD mimics. Summary GCH-1-related dystonia may exhibit wide intrafamilial phenotypic variability, no diurnal fluctuation, poor response to l-dopa, and such complications as dyskinesia, epilepsy, sleep disorders, autonomic dysfunction, oculogyric crisis, myoclonus, or tics. More recently, rare GCH-1 variants have been found to be associated with Parkinson disease. Clinicians should be aware of atypical DRD, DRD-plus, and DRD mimics.
Collapse
Affiliation(s)
- Philippe A Salles
- Center for the Study of Movement Disorders (CETRAM) (PAS, MT-J, PC-C), Santiago de Chile University, Santiago, Chile; Movement Disorders Section (PAS, MT-J), Neuroscience Department, Davila Clinic, Santiago, Chile; Movement Disorders Section (MT-J), Neurology Department, Felix Bulnes Hospital, Mayor University, Santiago, Chile; Neurology Department (AV-S), Fuérza Aérea de Chile Hospital, Mayor University, Santiago, Chile; Neurogenetics Unit (MK), Neurology Division, J.M. Ramos Mejía Hospital, University Center of Neurology "J.M. Ramos Mejia". Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurology (AJE); and UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (AZ, AJE), University of Cincinnati, OH
| | - Mérida Terán-Jimenez
- Center for the Study of Movement Disorders (CETRAM) (PAS, MT-J, PC-C), Santiago de Chile University, Santiago, Chile; Movement Disorders Section (PAS, MT-J), Neuroscience Department, Davila Clinic, Santiago, Chile; Movement Disorders Section (MT-J), Neurology Department, Felix Bulnes Hospital, Mayor University, Santiago, Chile; Neurology Department (AV-S), Fuérza Aérea de Chile Hospital, Mayor University, Santiago, Chile; Neurogenetics Unit (MK), Neurology Division, J.M. Ramos Mejía Hospital, University Center of Neurology "J.M. Ramos Mejia". Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurology (AJE); and UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (AZ, AJE), University of Cincinnati, OH
| | - Alvaro Vidal-Santoro
- Center for the Study of Movement Disorders (CETRAM) (PAS, MT-J, PC-C), Santiago de Chile University, Santiago, Chile; Movement Disorders Section (PAS, MT-J), Neuroscience Department, Davila Clinic, Santiago, Chile; Movement Disorders Section (MT-J), Neurology Department, Felix Bulnes Hospital, Mayor University, Santiago, Chile; Neurology Department (AV-S), Fuérza Aérea de Chile Hospital, Mayor University, Santiago, Chile; Neurogenetics Unit (MK), Neurology Division, J.M. Ramos Mejía Hospital, University Center of Neurology "J.M. Ramos Mejia". Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurology (AJE); and UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (AZ, AJE), University of Cincinnati, OH
| | - Pedro Chaná-Cuevas
- Center for the Study of Movement Disorders (CETRAM) (PAS, MT-J, PC-C), Santiago de Chile University, Santiago, Chile; Movement Disorders Section (PAS, MT-J), Neuroscience Department, Davila Clinic, Santiago, Chile; Movement Disorders Section (MT-J), Neurology Department, Felix Bulnes Hospital, Mayor University, Santiago, Chile; Neurology Department (AV-S), Fuérza Aérea de Chile Hospital, Mayor University, Santiago, Chile; Neurogenetics Unit (MK), Neurology Division, J.M. Ramos Mejía Hospital, University Center of Neurology "J.M. Ramos Mejia". Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurology (AJE); and UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (AZ, AJE), University of Cincinnati, OH
| | - Marcelo Kauffman
- Center for the Study of Movement Disorders (CETRAM) (PAS, MT-J, PC-C), Santiago de Chile University, Santiago, Chile; Movement Disorders Section (PAS, MT-J), Neuroscience Department, Davila Clinic, Santiago, Chile; Movement Disorders Section (MT-J), Neurology Department, Felix Bulnes Hospital, Mayor University, Santiago, Chile; Neurology Department (AV-S), Fuérza Aérea de Chile Hospital, Mayor University, Santiago, Chile; Neurogenetics Unit (MK), Neurology Division, J.M. Ramos Mejía Hospital, University Center of Neurology "J.M. Ramos Mejia". Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurology (AJE); and UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (AZ, AJE), University of Cincinnati, OH
| | - Alberto J Espay
- Center for the Study of Movement Disorders (CETRAM) (PAS, MT-J, PC-C), Santiago de Chile University, Santiago, Chile; Movement Disorders Section (PAS, MT-J), Neuroscience Department, Davila Clinic, Santiago, Chile; Movement Disorders Section (MT-J), Neurology Department, Felix Bulnes Hospital, Mayor University, Santiago, Chile; Neurology Department (AV-S), Fuérza Aérea de Chile Hospital, Mayor University, Santiago, Chile; Neurogenetics Unit (MK), Neurology Division, J.M. Ramos Mejía Hospital, University Center of Neurology "J.M. Ramos Mejia". Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurology (AJE); and UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (AZ, AJE), University of Cincinnati, OH
| |
Collapse
|
25
|
Bailey GA, Rawlings A, Torabi F, Pickrell O, Peall KJ. Adult-onset idiopathic dystonia: A national data-linkage study to determine epidemiological, social deprivation, and mortality characteristics. Eur J Neurol 2022; 29:91-104. [PMID: 34543508 PMCID: PMC9377012 DOI: 10.1111/ene.15114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Accurate epidemiological information is essential for the improved understanding of dystonia syndromes, as well as better provisioning of clinical services and providing context for diagnostic decision-making. Here, we determine epidemiological, social deprivation, and mortality characteristics of adult-onset idiopathic dystonia in the Welsh population. METHODS A retrospective population-based cohort study using anonymized electronic health care data in Wales was conducted to identify individuals with dystonia between 1 January 1994 and 31 December 2017. We developed a case-ascertainment algorithm to determine dystonia incidence and prevalence, as well as characterization of the dystonia cohort, based on social deprivation and mortality. RESULTS The case-ascertainment algorithm (79% sensitivity) identified 54,966 cases; of these cases, 41,660 had adult-onset idiopathic dystonia (≥20 years). Amongst the adult-onset form, the median age at diagnosis was 41 years, with males significantly older at time of diagnosis compared to females. Prevalence rates ranged from 0.02% in 1994 to 1.2% in 2017. The average annual incidence was 87.7/100,000/year, increasing from 49.9/100,000/year (1994) to 96.21/100,000/year (2017). In 2017, people with dystonia had a similar life expectancy to the Welsh population. CONCLUSIONS We have developed a case-ascertainment algorithm, supported by the introduction of a neurologist-reviewed validation cohort, providing a platform for future population-based dystonia studies. We have established robust population-level prevalence and incidence values for adult-onset idiopathic forms of dystonia, with this reflecting increasing clinical recognition and identification of causal genes. Underlying causes of death mirrored those of the general population, including circulatory disorders, respiratory disorders, cancers, and dementia.
Collapse
Affiliation(s)
- Grace A. Bailey
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
| | | | - Fatemeh Torabi
- Swansea University Medical SchoolSwanseaUK
- Health Data Research UKSwanseaUK
| | - Owen Pickrell
- Swansea University Medical SchoolSwanseaUK
- Department of NeurologyMorriston Hospital, Swansea Bay University Health BoardSwanseaUK
| | - Kathryn J. Peall
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
26
|
Weissbach A, Pauly MG, Herzog R, Hahn L, Halmans S, Hamami F, Bolte C, Camargos S, Jeon B, Kurian MA, Opladen T, Brüggemann N, Huppertz HJ, König IR, Klein C, Lohmann K. Relationship of Genotype, Phenotype, and Treatment in Dopa-Responsive Dystonia: MDSGene Review. Mov Disord 2021; 37:237-252. [PMID: 34908184 DOI: 10.1002/mds.28874] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pathogenic variants in 5 genes (GCH1, TH, PTS, SPR, and QDPR), involved in dopamine/tetrahydrobiopterin biosynthesis or recycling, have been linked to Dopa-responsive dystonia (DRD). Diagnosis and treatment are often delayed due to high between- and within-group variability. OBJECTIVES Comprehensively analyzed individual genotype, phenotype, treatment response, and biochemistry information. METHODS 734 DRD patients and 151 asymptomatic GCH1 mutation carriers were included using an MDSGene systematic literature review and an automated classification approach to distinguish between different forms of monogenic DRDs. RESULTS Whereas dystonia, L-Dopa responsiveness, early age at onset, and diurnal fluctuations were identified as red flags, parkinsonism without dystonia was rarely reported (11%) and combined with dystonia in only 18% of patients. While sex was equally distributed in autosomal recessive DRD, there was female predominance in autosomal dominant DYT/PARK-GCH1 patients accompanied by a lower median age at onset and more dystonia in females compared to males. Accordingly, the majority of asymptomatic heterozygous GCH1 mutation carriers (>8 years of age) were males. Multiple other subgroup-specific characteristics were identified, showing high accuracy in the automated classification approach: Seizures and microcephaly were mostly seen in DYT/PARK-PTS, autonomic symptoms appeared commonly in DYT/PARK-TH and DYT/PARK-PTS, and sleep disorders and oculogyric crises in DYT/PARK-SPR. Biochemically, homovanillic acid and 5-hydroxyindoleacetic acid in CSF were reduced in most DRDs, but neopterin and biopterin were increased only in DYT/PARK-PTS and DYT/PARK-SPR. Hyperphenylalaninemia was seen in DYT/PARK-PTS, DYT/PARK-QDPR, and rarely reported in autosomal recessive DYT/PARK-GCH1. CONCLUSIONS Our indicators will help to specify diagnosis and accelerate start of treatment. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anne Weissbach
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Martje G Pauly
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Rebecca Herzog
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Lisa Hahn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Sara Halmans
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Feline Hamami
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Sarah Camargos
- Department of Internal Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Beomseok Jeon
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital, Heidelberg, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
27
|
Ikezawa J, Yokochi F, Okiyama R, Kumada S, Tojima M, Kamiyama T, Hanakawa T, Matsuda H, Tanaka F, Nakata Y, Isozaki E. Is Generalized and Segmental Dystonia Accompanied by Impairments in the Dopaminergic System? Front Neurol 2021; 12:751434. [PMID: 34867735 PMCID: PMC8638468 DOI: 10.3389/fneur.2021.751434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022] Open
Abstract
Background: The pathogenesis of dystonia is remarkably diverse. Some types of dystonia, such as DYT5 (DYT-GCH1) and tardive dystonia, are related to dysfunction of the dopaminergic system. Furthermore, on pathological examination, cell loss in the substantia nigra (SN) of patients with dystonia has been reported, suggesting that impaired dopamine production may be involved in DYT5 and in other types of dystonia. Objectives: To investigate functional dopaminergic impairments, we compared patients with dystonia and those with Parkinson's disease (PD) with normal controls using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and dopamine transporter single photon emission computed tomography (DAT SPECT). Methods: A total of 18, 18, and 27 patients with generalized or segmental dystonia, patients with PD, and healthy controls, respectively, were examined using NM-MRI. The mean area corresponding to NM in the SN (NM-SN) was blindly quantified. DAT SPECT was performed on 17 and eight patients with dystonia and PD, respectively. The imaging data of DAT SPECT were harmonized with the Japanese database using striatum phantom calibration. These imaging data were compared between patients with dystonia or PD and controls from the Japanese database in 256 healthy volunteers using the calibrated specific binding ratio (cSBR). The symptoms of dystonia were evaluated using the Fahn–Marsden Dystonia Rating Scale (FMDRS), and the correlation between the results of imaging data and FMDRS was examined. Results: The mean areas corresponding to NM in the SN (NM-SN) were 31 ± 4.2, 28 ± 3.8, and 43 ± 3.8 pixels in patients with dystonia, PD, and in healthy controls, respectively. The mean cSBRs were 5 ± 0.2, 2.8 ± 0.2, 9.2 (predictive) in patients with dystonia, PD, and in healthy controls, respectively. The NM-SN area (r = −0.49, p < 0.05) and the cSBR (r = −0.54, p < 0.05) were inversely correlated with the FMDRS. There was no significant difference between the dystonia and PD groups regarding NM-SN (p = 0.28). In contrast, the cSBR was lower in patients with PD than in those with dystonia (p < 0.5 × 10−6). Conclusions: Impairments of the dopaminergic system may be involved in developing generalized and segmental dystonia. SN abnormalities in patients with dystonia were supposed to be different from degeneration in PD.
Collapse
Affiliation(s)
- Jun Ikezawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fusako Yokochi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Maya Tojima
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Kamiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Eiji Isozaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
28
|
Dopaminergic and serotonergic alterations in plasma in three groups of dystonia patients. Parkinsonism Relat Disord 2021; 91:48-54. [PMID: 34482194 DOI: 10.1016/j.parkreldis.2021.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION In dystonia, dopaminergic alterations are considered to be responsible for the motor symptoms. Recent attention for the highly prevalent non-motor symptoms suggest also a role for serotonin in the pathophysiology. In this study we investigated the dopaminergic, serotonergic and noradrenergic metabolism in blood samples of dystonia patients and its relation with (non-)motor manifestations. METHODS Concentrations of metabolites of dopaminergic, serotonergic and noradrenergic pathways were measured in platelet-rich plasma in 41 myoclonus-dystonia (M-D), 25 dopa-responsive dystonia (DRD), 50 cervical dystonia (CD) patients and 55 healthy individuals. (Non-)motor symptoms were assessed using validated instruments, and correlated with concentrations of metabolites. RESULTS A significantly higher concentration of 3-methoxytyramine (0.03 vs. 0.02 nmol/L, p < 0.01), a metabolite of dopamine, and a reduced concentration of tryptophan (50 vs. 53 μmol/L, p = 0.03), the precursor of serotonin was found in dystonia patients compared to controls. The dopamine/levodopa ratio was higher in CD patients compared to other dystonia groups (p < 0.01). Surprisingly, relatively high concentrations of levodopa were found in the untreated DRD patients. Low concentrations of levodopa were associated with severity of dystonia (rs = -0.3, p < 0.01), depression (rs = -0.3, p < 0.01) and fatigue (rs = -0.2, p = 0.04). CONCLUSION This study shows alterations in the dopaminergic and serotonergic metabolism of patients with dystonia, with dystonia subtype specific changes. Low concentrations of levodopa, but not of serotonergic metabolites, were associated with both motor and non-motor symptoms. Further insight into the dopaminergic and serotonergic systems in dystonia with a special attention to the kinetics of enzymes involved in these pathways, might lead to better treatment options.
Collapse
|
29
|
Gordevicius J, Li P, Marshall LL, Killinger BA, Lang S, Ensink E, Kuhn NC, Cui W, Maroof N, Lauria R, Rueb C, Siebourg-Polster J, Maliver P, Lamp J, Vega I, Manfredsson FP, Britschgi M, Labrie V. Epigenetic inactivation of the autophagy-lysosomal system in appendix in Parkinson's disease. Nat Commun 2021; 12:5134. [PMID: 34446734 PMCID: PMC8390554 DOI: 10.1038/s41467-021-25474-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract may be a site of origin for α-synuclein pathology in idiopathic Parkinson's disease (PD). Disruption of the autophagy-lysosome pathway (ALP) may contribute to α-synuclein aggregation. Here we examined epigenetic alterations in the ALP in the appendix by deep sequencing DNA methylation at 521 ALP genes. We identified aberrant methylation at 928 cytosines affecting 326 ALP genes in the appendix of individuals with PD and widespread hypermethylation that is also seen in the brain of individuals with PD. In mice, we find that DNA methylation changes at ALP genes induced by chronic gut inflammation are greatly exacerbated by α-synuclein pathology. DNA methylation changes at ALP genes induced by synucleinopathy are associated with the ALP abnormalities observed in the appendix of individuals with PD specifically involving lysosomal genes. Our work identifies epigenetic dysregulation of the ALP which may suggest a potential mechanism for accumulation of α-synuclein pathology in idiopathic PD.
Collapse
Affiliation(s)
- Juozas Gordevicius
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Peipei Li
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Lee L Marshall
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Bryan A Killinger
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Graduate College, Rush University Medical Center, Chicago, IL, USA
| | - Sean Lang
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Ensink
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Wei Cui
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Nazia Maroof
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center, Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roberta Lauria
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center, Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christina Rueb
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center, Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Juliane Siebourg-Polster
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pierre Maliver
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jared Lamp
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Irving Vega
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Fredric P Manfredsson
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center, Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
30
|
Scheffer DDL, Freitas FC, Aguiar AS, Ward C, Guglielmo LGA, Prediger RD, Cronin SJF, Walz R, Andrews NA, Latini A. Impaired dopamine metabolism is linked to fatigability in mice and fatigue in Parkinson's disease patients. Brain Commun 2021; 3:fcab116. [PMID: 34423297 PMCID: PMC8374980 DOI: 10.1093/braincomms/fcab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Fatigue is a common symptom of Parkinson’s disease that compromises significantly the patients’ quality of life. Despite that, fatigue has been under-recognized as symptom, its pathophysiology remains poorly understood, and there is no adequate treatment so far. Parkinson’s disease is characterized by the progressive loss of midbrain dopaminergic neurons, eliciting the classical motor symptoms including slowing of movements, muscular rigidity and resting tremor. The dopamine synthesis is mediated by the rate-limiting enzyme tyrosine hydroxylase, which requires tetrahydrobiopterin as a mandatory cofactor. Here, we showed that reserpine administration (1 mg/kg, two intraperitoneal injections with an interval of 48 h) in adult Swiss male mice (8–10 weeks; 35–45 g) provoked striatal depletion of dopamine and tetrahydrobiopterin, and intolerance to exercise. The poor exercise performance of reserpinized mice was not influenced by emotional or anhedonic factors, mechanical nociceptive thresholds, electrocardiogram pattern alterations or muscle-impaired bioenergetics. The administration of levodopa (100 mg/kg; i.p.) plus benserazide (50 mg/kg; i.p.) rescued reserpine-induced fatigability-like symptoms and restored striatal dopamine and tetrahydrobiopterin levels. Remarkably, it was observed, for the first time, that impaired blood dopamine metabolism inversely and idependently correlated with fatigue scores in eighteen idiopathic Parkinson’s disease patients (male n = 13; female n = 5; age 61.3 ± 9.59 years). Altogether, this study provides new experimental and clinical evidence that fatigue symptoms might be caused by the impaired striatal dopaminergic neurotransmission, pointing to a central origin of fatigue in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Fernando Cini Freitas
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Hospital Governador Celso Ramos, Florianópolis, SC 88015-270, Brazil
| | - Aderbal Silva Aguiar
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Catherine Ward
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Roger Walz
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Center for Applied Neuroscience, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Departament of Internal Medicine, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,The Salk in Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Hasegawa T, Hosaka T, Harada R, Kawahata I, Hoshino K, Sugeno N, Kikuchi A, Aoki M. Case Report: Guitarist's cramp as the initial manifestation of dopa-responsive dystonia with a novel heterozygous GCH1 mutation. F1000Res 2021; 10:361. [PMID: 34394914 PMCID: PMC8356262 DOI: 10.12688/f1000research.51433.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/01/2022] Open
Abstract
Dopa-responsive dystonia (DRD), also known as Segawa syndrome, is a phenotypically and genetically heterogeneous group of neurological disorders that typically presents as early-onset lower limb dystonia with diurnal fluctuation, and exhibits a marked, persistent response to levodopa. Heterozygous loss-of-function mutations in the guanosine triphosphate cyclohydrolase 1 (GCH1) are the most common cause of DRD. In addition to the classic form of the disease, there have been a number of studies addressing atypical clinical features of GCH1 related DRD with variable age of onset. This report describes a 37-year-old Japanese male patient with a 10-year history of focal upper limb dystonia that initially emerged as task-specific, guitarist’s cramp. The dystonic symptoms responded very well to levodopa treatment, and genetic analysis identified a novel heterozygous mutation in the C-terminal catalytic domain of GCH1. Insufficient recognition of this treatable condition often leads to misdiagnosis, which causes delays in the patient receiving adequate dopamine replenishing therapy. A diagnostic trial with levodopa should be considered in all patients with relatively young-onset dystonia, whether they have classic features of DRD or not.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Tatsuhiko Hosaka
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Ryuhei Harada
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Ichiro Kawahata
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Kyoko Hoshino
- Department of Pediatric Neurology, Segawa Memorial Neurological Clinic for Children, Kanda, Tokyo, 101-0062, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Akio Kikuchi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
32
|
Kim W, Cho JS, Shim YK, Ko YJ, Choi SA, Kim SY, Kim H, Lim BC, Hwang H, Choi J, Kim KJ, Kim MJ, Seong MW, Chae JH. Early-onset autosomal dominant GTP-cyclohydrolase I deficiency: Diagnostic delay and residual motor signs. Brain Dev 2021; 43:759-767. [PMID: 33875303 DOI: 10.1016/j.braindev.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Autosomal dominant (AD) guanosine triphosphate cyclohydrolase 1 (GCH1) deficiency is the most common cause of dopa-responsive dystonia (DRD). Patients with GCH1 deficiency are likely to experience diagnostic delay, but its consequences have not been described thoroughly in patients with early-onset disease. We describe the diagnostic delay and residual motor signs (RMS) observed in patients with early-onset (before 15 years of age) disease. METHODS Twelve patients with early-onset AD GCH1 deficiency from a single center were included in the case series analysis. For the meta-analysis, the PubMed database was searched for articles on early-onset AD GCH1 deficiency published from 1995 to 2019. RESULTS In the case series, the mean duration of diagnostic delay was 5.6 years. Two patients exhibited RMS, and four patients underwent orthopedic surgery. The literature search yielded 137 AD GCH1 deficiency cases for review; gait disturbance was reported in 92.7% of patients, diurnal fluctuation of symptoms in 91.9%, and RMS in 39%. The mean duration of diagnostic delay was 14.6 years overall: 12.0 years in RMS-negative patients and 21.2 years in RMS-positive patients. CONCLUSIONS Diagnostic delay in early-onset AD GCH1 deficiency is more closely associated with later RMS. Early clinical suspicion, timely diagnosis, and levodopa treatment may reduce the occurrence of RMS in patients with early-onset AD GCH1 deficiency.
Collapse
Affiliation(s)
- WooJoong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jae So Cho
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Kyu Shim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Jun Ko
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Sun Ah Choi
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jieun Choi
- Department of Pediatrics, SMG-SNU Boramae Hospital, Seoul, Republic of Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Man Jin Kim
- Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Briscione MA, Dinasarapu AR, Bagchi P, Donsante Y, Roman KM, Downs AM, Fan X, Hoehner J, Jinnah HA, Hess EJ. Differential expression of striatal proteins in a mouse model of DOPA-responsive dystonia reveals shared mechanisms among dystonic disorders. Mol Genet Metab 2021; 133:352-361. [PMID: 34092491 PMCID: PMC8292208 DOI: 10.1016/j.ymgme.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Dystonia is characterized by involuntary muscle contractions that cause debilitating twisting movements and postures. Although dysfunction of the basal ganglia, a brain region that mediates movement, is implicated in many forms of dystonia, the underlying mechanisms are unclear. The inherited metabolic disorder DOPA-responsive dystonia is considered a prototype for understanding basal ganglia dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of the neurotransmitter dopamine, which mediates the activity of the basal ganglia. Therefore, to reveal abnormal striatal cellular processes and pathways implicated in dystonia, we used an unbiased proteomic approach in a knockin mouse model of DOPA-responsive dystonia, a model in which the striatum is known to play a central role in the expression of dystonia. Fifty-seven of the 1805 proteins identified were differentially regulated in DOPA-responsive dystonia mice compared to control mice. Most differentially regulated proteins were associated with gene ontology terms that implicated either mitochondrial or synaptic dysfunction whereby proteins associated with mitochondrial function were generally over-represented and proteins associated with synaptic function were largely under-represented. Remarkably, nearly 20% of the differentially regulated striatal proteins identified in our screen are associated with pathogenic variants that cause inherited disorders with dystonia as a sign in humans suggesting shared mechanisms across many different forms of dystonia.
Collapse
Affiliation(s)
- Maria A Briscione
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Kaitlyn M Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jessica Hoehner
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - H A Jinnah
- Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Diez-Fairen M, Alvarez Jerez P, Berghausen J, Bandres-Ciga S. The Genetic Landscape of Parkinsonism-Related Dystonias and Atypical Parkinsonism-Related Syndromes. Int J Mol Sci 2021; 22:ijms22158100. [PMID: 34360863 PMCID: PMC8347917 DOI: 10.3390/ijms22158100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
In recent decades, genetic research has nominated promising pathways and biological insights contributing to the etiological landscape of parkinsonism-related dystonias and atypical parkinsonism-related syndromes. Several disease-causing mutations and genetic risk factors have been unraveled, providing a deeper molecular understanding of the complex genetic architecture underlying these conditions. These disorders are difficult to accurately diagnose and categorize, thus making genetics research challenging. On one hand, dystonia is an umbrella term linked to clinically heterogeneous forms of disease including dopa-responsive dystonia, myoclonus-dystonia, rapid-onset dystonia-parkinsonism and dystonia-parkinsonism, often viewed as a precursor to Parkinson’s disease. On the other hand, atypical parkinsonism disorders, such as progressive supranuclear palsy, multiple system atrophy and corticobasal degeneration, are rare in nature and represent a wide range of diverse and overlapping phenotypic variabilities, with genetic research limited by sample size availability. The current review summarizes the plethora of available genetic information for these diseases, outlining limits and future directions.
Collapse
|
35
|
IMPDH2: a new gene associated with dominant juvenile-onset dystonia-tremor disorder. Eur J Hum Genet 2021; 29:1833-1837. [PMID: 34305140 PMCID: PMC8633184 DOI: 10.1038/s41431-021-00939-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022] Open
Abstract
The aetiology of dystonia disorders is complex, and next-generation sequencing has become a useful tool in elucidating the variable genetic background of these diseases. Here we report a deleterious heterozygous truncating variant in the inosine monophosphate dehydrogenase gene (IMPDH2) by whole-exome sequencing, co-segregating with a dominantly inherited dystonia-tremor disease in a large Finnish family. We show that the defect results in degradation of the gene product, causing IMPDH2 deficiency in patient cells. IMPDH2 is the first and rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides, a dopamine synthetic pathway previously linked to childhood or adolescence-onset dystonia disorders. We report IMPDH2 as a new gene to the dystonia disease entity. The evidence underlines the important link between guanine metabolism, dopamine biosynthesis and dystonia.
Collapse
|
36
|
Weissbach A, Steinmeier A, Pauly MG, Al-Shorafat DM, Saranza G, Lang AE, Brüggemann N, Tadic V, Klein C, Lohmann K, Brown MJN, Beste C, Münchau A, Bäumer T. Multimodal Longitudinal Neurophysiological Investigations in Dopa-Responsive Dystonia. Mov Disord 2021; 36:1986-1987. [PMID: 34114668 DOI: 10.1002/mds.28679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Annika Steinmeier
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Martje G Pauly
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Duha M Al-Shorafat
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Neuroscience Department, Jordan University of Science and Technology, Irbid, Jordan
| | - Gerard Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Section of Neurology, Department of Medicine, Chong Hua Hospital, Cebu City, Philippines
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Norbert Brüggemann
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Vera Tadic
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Matt J N Brown
- Department of Kinesiology, California State University Sacramento, Sacramento, California, USA
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| |
Collapse
|
37
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
38
|
Cherian A, Paramasivan NK, Divya KP. Dopa-responsive dystonia, DRD-plus and DRD look-alike: a pragmatic review. Acta Neurol Belg 2021; 121:613-623. [PMID: 33453040 DOI: 10.1007/s13760-020-01574-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Dopa-responsive dystonia (DRD) and DRD plus are diseases of the dopamine pathway with sizeable genetic diversity and myriad presentations. DRD has onset in childhood or adolescence with focal dystonia, commonly affecting lower limb, diurnal fluctuations with evening worsening of symptoms and a demonstrable sleep benefit. DRD "plus" has "atypical features" which include infantile onset, psychomotor delay, cognitive abnormalities, oculogyric crisis, seizures, irritability, spasticity, hypotonia, ptosis, hyperthermia and cerebellar dysfunction. Neurodegeneration, however, is not a feature of either DRD or DRD-plus disorders. Tetrahydrobiopterin (BH4), a key cofactor, deficiency leads to inadequate dopamine and serotonin synthesis. Norepinephrine deficiency may coexist, depending on the enzyme defect. Hyperphenylalaninemia (HPA) is a clue for BH4 paucity. However, HPA is conspicuously absent in autosomal-dominant guanosine triphosphate cyclohydrolase 1 deficiency and sepiapterin reductase deficiency. DRD look-alike is a group of neurodegenerative disorders involving the nigrostriatal dopaminergic system, which could present with dystonia responsive to dopaminergic drugs or neurodegenerative or non-neurodegenerative disorders without involving the nigrostriatal dopaminergic system yet responsive to levodopa. Although levodopa is the mainstay of therapy, response to this drug can be unsatisfactory in DRD plus and DRD look-alike and other drugs are tried. Simultaneous management of HPA leads to remarkable improvement in both motor and cognitive functions. The aim of this review is to help neurology practitioners in treating patients with DRD, DRD-plus and DRD look-alike as many of them have excellent outcome with appropriate therapy.
Collapse
Affiliation(s)
- Ajith Cherian
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Naveen Kumar Paramasivan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - K P Divya
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
39
|
Himmelreich N, Blau N, Thöny B. Molecular and metabolic bases of tetrahydrobiopterin (BH 4) deficiencies. Mol Genet Metab 2021; 133:123-136. [PMID: 33903016 DOI: 10.1016/j.ymgme.2021.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023]
Abstract
Tetrahydrobiopterin (BH4) deficiency is caused by genetic variants in the three genes involved in de novo cofactor biosynthesis, GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), sepiapterin reductase (SR/SPR), and the two genes involved in cofactor recycling, carbinolamine-4α-dehydratase (PCD/PCBD1) and dihydropteridine reductase (DHPR/QDPR). Dysfunction in BH4 metabolism leads to reduced cofactor levels and may result in systemic hyperphenylalaninemia and/or neurological sequelae due to secondary deficiency in monoamine neurotransmitters in the central nervous system. More than 1100 patients with BH4 deficiency and 800 different allelic variants distributed throughout the individual genes are tabulated in database of pediatric neurotransmitter disorders PNDdb. Here we provide an update on the molecular-genetic analysis and structural considerations of these variants, including the clinical courses of the genotypes. From a total of 324 alleles, 11 are associated with the autosomal recessive form of GTPCH deficiency presenting with hyperphenylalaninemia (HPA) and neurotransmitter deficiency, 295 GCH1 variant alleles are detected in the dominant form of L-dopa-responsive dystonia (DRD or Segawa disease) while phenotypes of 18 alleles remained undefined. Autosomal recessive variants observed in the PTS (199 variants), PCBD1 (32 variants), and QDPR (141 variants) genes lead to HPA concomitant with central monoamine neurotransmitter deficiency, while SPR deficiency (104 variants) presents without hyperphenylalaninemia. The clinical impact of reported variants is essential for genetic counseling and important for development of precision medicine.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Dietmar-Hopp Metabolic Center, Division 1, Heidelberg, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Beat Thöny
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
40
|
Liao JY, Salles PA, Shuaib UA, Fernandez HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021; 128:447-471. [PMID: 33929620 DOI: 10.1007/s00702-021-02335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
The paroxysmal dyskinesias are a diverse group of genetic disorders that manifest as episodic movements, with specific triggers, attack frequency, and duration. With recent advances in genetic sequencing, the number of genetic variants associated with paroxysmal dyskinesia has dramatically increased, and it is now evident that there is significant genotype-phenotype overlap, reduced (or incomplete) penetrance, and phenotypic variability. In addition, a variety of genetic conditions can present with paroxysmal dyskinesia as the initial symptom. This review will cover the 34 genes implicated to date and propose a diagnostic workflow featuring judicious use of whole-exome or -genome sequencing. The goal of this review is to provide a common understanding of paroxysmal dyskinesias so basic scientists, geneticists, and clinicians can collaborate effectively to provide diagnoses and treatments for patients.
Collapse
Affiliation(s)
- James Y Liao
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philippe A Salles
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - Umar A Shuaib
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
41
|
The importance of genetic testing for dystonia patients and translational research. J Neural Transm (Vienna) 2021; 128:473-481. [PMID: 33876307 PMCID: PMC8099821 DOI: 10.1007/s00702-021-02329-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
Genetic testing through a variety of methods is a fundamental but underutilized approach for establishing the precise genetic diagnosis in patients with heritable forms of dystonia. Our knowledge of numerous dystonia-related genes, variants that they may contain, associated clinical presentations, and molecular disease mechanism may have significant translational potential for patients with genetically confirmed dystonia or their family members. Importantly, genetic testing permits the assembly of patient cohorts pertinent for dystonia-related research and developing therapeutics. Here we review the genetic testing approaches relevant to dystonia patients, and summarize and illustrate the multifold benefits of establishing an accurate molecular diagnosis for patients imminently or for translational research in the long run.
Collapse
|
42
|
Grütz K, Klein C. Dystonia updates: definition, nomenclature, clinical classification, and etiology. J Neural Transm (Vienna) 2021; 128:395-404. [PMID: 33604773 PMCID: PMC8099848 DOI: 10.1007/s00702-021-02314-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/23/2021] [Indexed: 12/17/2022]
Abstract
A plethora of heterogeneous movement disorders is grouped under the umbrella term dystonia. The clinical presentation ranges from isolated dystonia to multi-systemic disorders where dystonia is only a co-occurring sign. In the past, definitions, nomenclature, and classifications have been repeatedly refined, adapted, and extended to reflect novel findings and increasing knowledge about the clinical, etiologic, and scientific background of dystonia. Currently, dystonia is suggested to be classified according to two axes. The first axis offers precise categories for the clinical presentation grouped into age at onset, body distribution, temporal pattern and associated features. The second, etiologic, axis discriminates pathological findings, as well as inheritance patterns, mode of acquisition, or unknown causality. Furthermore, the recent recommendations regarding terminology and nomenclature of inherited forms of dystonia and related syndromes are illustrated in this article. Harmonized, specific, and internationally widely used classifications provide the basis for future systematic dystonia research, as well as for more personalized patient counseling and treatment approaches.
Collapse
Affiliation(s)
- Karen Grütz
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
43
|
Ferreira F, Azevedo L, Neiva R, Sousa C, Fonseca H, Marcão A, Rocha H, Carmona C, Ramos S, Bandeira A, Martins E, Campos T, Rodrigues E, Garcia P, Diogo L, Ferreira AC, Sequeira S, Silva F, Rodrigues L, Gaspar A, Janeiro P, Amorim A, Vilarinho L. Phenylketonuria in Portugal: Genotype-phenotype correlations using molecular, biochemical, and haplotypic analyses. Mol Genet Genomic Med 2021; 9:e1559. [PMID: 33465300 PMCID: PMC8104178 DOI: 10.1002/mgg3.1559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/29/2020] [Indexed: 11/12/2022] Open
Abstract
Background The impairment of the hepatic enzyme phenylalanine hydroxylase (PAH) causes elevation of phenylalanine levels in blood and other body fluids resulting in the most common inborn error of amino acid metabolism (phenylketonuria). Persistently high levels of phenylalanine lead to irreversible damage to the nervous system. Therefore, early diagnosis of the affected individuals is important, as it can prevent clinical manifestations of the disease. Methods In this report, the biochemical and genetic findings performed in 223 patients diagnosed through the Portuguese Neonatal Screening Program (PNSP) are presented. Results Overall, the results show that a high overlap exists between different types of variants and phenylalanine levels. Molecular analyses reveal a wide mutational spectrum in our population with a total of 56 previously reported variants, most of them found in compound heterozygosity (74% of the patients). Intragenic polymorphic markers were used to assess the haplotypic structure of mutated chromosomes for the most frequent variants found in homozygosity in our population (p.Ile65Thr, p.Arg158Gln, p.Leu249Phe, p.Arg261Gln, p.Val388Met, and c.1066‐11G>A). Conclusion Our data reveal high heterogeneity at the biochemical and molecular levels and are expected to provide a better understanding of the molecular basis of this disease and to provide clues to elucidate genotype–phenotype correlations.
Collapse
Affiliation(s)
- Filipa Ferreira
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | - Luísa Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,FCUP - Faculty of Sciences, University of Porto, Porto, Portugal
| | - Raquel Neiva
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | - Carmen Sousa
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | - Helena Fonseca
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | - Ana Marcão
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | - Célia Carmona
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | - Sónia Ramos
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | - Anabela Bandeira
- Inherited Metabolic Disease Reference Center, Pediatric Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Esmeralda Martins
- Inherited Metabolic Disease Reference Center, Pediatric Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Teresa Campos
- Metabolic Diseases Unit, Pediatric Department, University Center São João Hospital - HSJ, Porto, Portugal
| | - Esmeralda Rodrigues
- Metabolic Diseases Unit, Pediatric Department, University Center São João Hospital - HSJ, Porto, Portugal
| | - Paula Garcia
- Inherited Metabolic Disease Reference Center, Pediatric Hospital, Hospital and University Center of Coimbra, Coimbra, Portugal
| | - Luísa Diogo
- Inherited Metabolic Disease Reference Center, Pediatric Hospital, Hospital and University Center of Coimbra, Coimbra, Portugal
| | - Ana Cristina Ferreira
- Metabolic Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Silvia Sequeira
- Metabolic Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Francisco Silva
- Pediatric Department, Hospital Central of Funchal, Funchal, Portugal
| | - Luísa Rodrigues
- Pediatrics Department, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Ponta Delgada, Azores, Portugal
| | - Ana Gaspar
- Inherited Metabolic Disease Reference Center, Lisbon North University Hospital Center (CHULN), EPE, Lisboa, Portugal
| | - Patrícia Janeiro
- Inherited Metabolic Disease Reference Center, Lisbon North University Hospital Center (CHULN), EPE, Lisboa, Portugal
| | - António Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,FCUP - Faculty of Sciences, University of Porto, Porto, Portugal
| | - Laura Vilarinho
- Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal.,Research and Development Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| |
Collapse
|
44
|
In silico analysis of Single Nucleotide Polymorphisms in human GCH1 gene. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Ebenhoch R, Prinz S, Kaltwasser S, Mills DJ, Meinecke R, Rübbelke M, Reinert D, Bauer M, Weixler L, Zeeb M, Vonck J, Nar H. A hybrid approach reveals the allosteric regulation of GTP cyclohydrolase I. Proc Natl Acad Sci U S A 2020; 117:31838-31849. [PMID: 33229582 PMCID: PMC7750480 DOI: 10.1073/pnas.2013473117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1-GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.
Collapse
Affiliation(s)
- Rebecca Ebenhoch
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Simone Prinz
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Susann Kaltwasser
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Robert Meinecke
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Martin Rübbelke
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Dirk Reinert
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Margit Bauer
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Lisa Weixler
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Markus Zeeb
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Janet Vonck
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Herbert Nar
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
46
|
Weissbach A, Saranza G, Domingo A. Combined dystonias: clinical and genetic updates. J Neural Transm (Vienna) 2020; 128:417-429. [PMID: 33099685 DOI: 10.1007/s00702-020-02269-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022]
Abstract
The genetic combined dystonias are a clinically and genetically heterogeneous group of neurologic disorders defined by the overlap of dystonia and other movement disorders such as parkinsonism or myoclonus. The number of genes associated with combined dystonia syndromes has been increasing due to the wider recognition of clinical features and broader use of genetic testing. Nevertheless, these diseases are still rare and represent only a small subgroup among all dystonias. Dopa-responsive dystonia (DYT/PARK-GCH1), rapid-onset dystonia-parkinsonism (DYT/PARK-ATP1A3), X-linked dystonia-parkinsonism (XDP, DYT/PARK-TAF1), and young-onset dystonia-parkinsonism (DYT/PARK-PRKRA) are monogenic combined dystonias accompanied by parkinsonian features. Meanwhile, MYC/DYT-SGCE and MYC/DYT-KCTD17 are characterized by dystonia in combination with myoclonus. In the past, common molecular pathways between these syndromes were the center of interest. Although the encoded proteins rather affect diverse cellular functions, recent neurophysiological evidence suggests similarities in the underlying mechanism in a subset. This review summarizes recent developments in the combined dystonias, focusing on clinico-genetic features and neurophysiologic findings. Disease-modifying therapies remain unavailable to date; an overview of symptomatic therapies for these disorders is also presented.
Collapse
Affiliation(s)
- Anne Weissbach
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Gerard Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
47
|
Bledsoe IO, Viser AC, San Luciano M. Treatment of Dystonia: Medications, Neurotoxins, Neuromodulation, and Rehabilitation. Neurotherapeutics 2020; 17:1622-1644. [PMID: 33095402 PMCID: PMC7851280 DOI: 10.1007/s13311-020-00944-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/24/2023] Open
Abstract
Dystonia is a complex disorder with numerous presentations occurring in isolation or in combination with other neurologic symptoms. Its treatment has been significantly improved with the advent of botulinum toxin and deep brain stimulation in recent years, though additional investigation is needed to further refine these interventions. Medications are of critical importance in forms of dopa-responsive dystonia but can be beneficial in other forms of dystonia as well. Many different rehabilitative paradigms have been studied with variable benefit. There is growing interest in noninvasive stimulation as a potential treatment, but with limited long-term benefit shown to date, and additional research is needed. This article reviews existing evidence for treatments from each of these categories. To date, there are many examples of incomplete response to available treatments, and improved therapies are needed.
Collapse
Affiliation(s)
- Ian O. Bledsoe
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Aaron C. Viser
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Marta San Luciano
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| |
Collapse
|
48
|
Suntsov V, Jovanovic F, Knezevic E, Candido KD, Knezevic NN. Can Implementation of Genetics and Pharmacogenomics Improve Treatment of Chronic Low Back Pain? Pharmaceutics 2020; 12:pharmaceutics12090894. [PMID: 32967120 PMCID: PMC7558486 DOI: 10.3390/pharmaceutics12090894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Etiology of back pain is multifactorial and not completely understood, and for the majority of people who suffer from chronic low back pain (cLBP), the precise cause cannot be determined. We know that back pain is somewhat heritable, chronic pain more so than acute. The aim of this review is to compile the genes identified by numerous genetic association studies of chronic pain conditions, focusing on cLBP specifically. Higher-order neurologic processes involved in pain maintenance and generation may explain genetic contributions and functional predisposition to formation of cLBP that does not involve spine pathology. Several genes have been identified in genetic association studies of cLBP and roughly, these genes could be grouped into several categories, coding for: receptors, enzymes, cytokines and related molecules, and transcription factors. Treatment of cLBP should be multimodal. In this review, we discuss how an individual's genotype could affect their response to therapy, as well as how genetic polymorphisms in CYP450 and other enzymes are crucial for affecting the metabolic profile of drugs used for the treatment of cLBP. Implementation of gene-focused pharmacotherapy has the potential to deliver select, more efficacious drugs and avoid unnecessary, polypharmacy-related adverse events in many painful conditions, including cLBP.
Collapse
Affiliation(s)
- Vladislav Suntsov
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Filip Jovanovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Emilija Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Kenneth D. Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-773-296-5619; Fax: +1-773-296-5362
| |
Collapse
|
49
|
Dong HY, Feng JY, Yue XJ, Shan L, Jia FY. Dopa-responsive dystonia caused by tyrosine hydroxylase deficiency: Three cases report and literature review. Medicine (Baltimore) 2020; 99:e21753. [PMID: 32872068 PMCID: PMC7437766 DOI: 10.1097/md.0000000000021753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONAL Tyrosine hydroxylase deficiency (THD) is a rare cause of dopa-responsive dystonia (DRD). Although the symptoms of DRD may be improved by treatment with L-dopa, the low morbidity of THD can lead to its misdiagnosis. Thus, it is important for physicians to be aware of THD as a cause of DRD. PATIENT CONCERNS We report 3 cases of THD. A 5-year-old boy with DRD was diagnosed with THD and found to have compound heterozygous mutations of the TH gene, including TH:c.647G>C from his mother and TH:c.646G>A from his father. Two female siblings also were found to have TH:c.698G>A from their mother and TH:c.710T>C from their father. The younger daughter, at age 3.5 years, was diagnosed with DRD caused by THD, and then the diagnosis of the older daughter, at age 11 years, was changed from cerebral palsy to DRD caused by THD. DIAGNOSIS The diagnosis of dopa-responsive dystonia caused by tyrosine hydroxylase deficiency was determined by whole exome sequencing. INTERVENTION They all treated with low dose levodopa and benserazide tablets. OUTCOMES The boy had a very good therapeutic effect, and he could walk very well by the second day of treatment. The younger sister of the siblings had a partial therapeutic effect, but her elder sister was only little effective with a milder improvement of dystonia and improvement of myodynamia. CONCLUSION The characteristics of THD are heterogeneous, and its phenotypes are classified as type A or type B according to increasing severity. Generally, L-dopa has a good therapeutic effect in cases with type A phenotypes. We reviewed 87 cases of reported in the literature and found that c.698G>A and c.707T>C are hot spot mutations. Changes on cerebral magnetic resonance imaging were nonspecific. Analysis of neurotransmitter levels in cerebrospinal fluid is an invasive means of achieving a biochemical diagnosis.
Collapse
|
50
|
Nessler J, Hug P, Mandigers PJJ, Leegwater PAJ, Jagannathan V, Das AM, Rosati M, Matiasek K, Sewell AC, Kornberg M, Hoffmann M, Wolf P, Fischer A, Tipold A, Leeb T. Mitochondrial PCK2 Missense Variant in Shetland Sheepdogs with Paroxysmal Exercise-Induced Dyskinesia (PED). Genes (Basel) 2020; 11:genes11070774. [PMID: 32660061 PMCID: PMC7397061 DOI: 10.3390/genes11070774] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
Four female Shetland Sheepdogs with hypertonic paroxysmal dyskinesia, mainly triggered by exercise and stress, were investigated in a retrospective multi-center investigation aiming to characterize the clinical phenotype and its underlying molecular etiology. Three dogs were closely related and their pedigree suggested autosomal dominant inheritance. Laboratory diagnostic findings included mild lactic acidosis and lactaturia, mild intermittent serum creatine kinase (CK) elevation and hypoglycemia. Electrophysiological tests and magnetic resonance imaging of the brain were unremarkable. A muscle/nerve biopsy revealed a mild type II fiber predominant muscle atrophy. While treatment with phenobarbital, diazepam or levetiracetam did not alter the clinical course, treatment with a gluten-free, home-made fresh meat diet in three dogs or a tryptophan-rich, gluten-free, seafood-based diet, stress-reduction, and acetazolamide or zonisamide in the fourth dog correlated with a partial reduction in, or even a complete absence of, dystonic episodes. The genomes of two cases were sequenced and compared to 654 control genomes. The analysis revealed a case-specific missense variant, c.1658G>A or p.Arg553Gln, in the PCK2 gene encoding the mitochondrial phosphoenolpyruvate carboxykinase 2. Sanger sequencing confirmed that all four cases carried the mutant allele in a heterozygous state. The mutant allele was not found in 117 Shetland Sheepdog controls and more than 500 additionally genotyped dogs from various other breeds. The p.Arg553Gln substitution affects a highly conserved residue in close proximity to the GTP-binding site of PCK2. Taken together, we describe a new form of paroxysmal exercise-induced dyskinesia (PED) in dogs. The genetic findings suggest that PCK2:p.Arg553Gln should be further investigated as putative candidate causal variant.
Collapse
Affiliation(s)
- Jasmin Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany; (J.N.); (A.T.)
| | - Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
| | - Paul J. J. Mandigers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.J.L.)
| | - Peter A. J. Leegwater
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.J.L.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
| | - Anibh M. Das
- Department of Pediatrics, Hannover Medical School, 30625 Hannover, Germany;
| | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; (M.R.); (K.M.)
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; (M.R.); (K.M.)
| | - Adrian C. Sewell
- Biocontrol, Labor für Veterinärmedizinische Diagnostik, 55218 Ingelheim, Germany;
| | | | | | - Petra Wolf
- Nutritional Physiology and Animal Nutrition, University of Rostock, 18059 Rostock, Germany;
| | - Andrea Fischer
- Section of Neurology, Clinic of Small Animal Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany;
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany; (J.N.); (A.T.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
- Correspondence: ; Tel.: +41-316-312-326
| |
Collapse
|