1
|
Liang Y, Cheng Y, Ji J, Liu M, Wang X, Xu L, Wang W. Regulating Rheumatoid Arthritis From the Perspective of Metabolomics: A Comprehensive Review. Int J Rheum Dis 2025; 28:e70188. [PMID: 40123289 DOI: 10.1111/1756-185x.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Rheumatoid arthritis (RA) is a severe inflammatory autoimmune disease with metabolic changes. RA patients have abnormalities in glycolysis, amino acid metabolism, choline metabolism, and fatty acid synthesis. The differential metabolites in individuals of RA patients and animal models were explored to find the potential biomarkers for the risk prediction, diagnosis, and prognosis of RA in the perspective of metabolism. Moreover, we discussed the changes of related metabolites after treatment with anti-rheumatic drugs, Traditional Chinese Medicine (TCM) and potential metabolites for the treatment of RA to explore promising metabolites. In addition, the immunological mechanism of TCM in the treatment of RA from the perspective of metabolism was also clarified. For the perspectives of research and application of the beneficial metabolites in clinic, relevant technologies and focuses for the future studies in the field have been proposed accordingly.
Collapse
Affiliation(s)
- Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingxue Cheng
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinjun Ji
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- National Clinical key Specialty in Rheumatology, Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijie Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- National Clinical key Specialty in Rheumatology, Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Chen Y, Lin Q, Cheng H, Xiang Q, Zhou W, Wu J, Wang X. Immunometabolic shifts in autoimmune disease: Mechanisms and pathophysiological implications. Autoimmun Rev 2025; 24:103738. [PMID: 39743123 DOI: 10.1016/j.autrev.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune diseases occur when the immune system abnormally attacks the body's normal tissues, causing inflammation and damage. Each disease has unique immune and metabolic dysfunctions during pathogenesis. In rheumatoid arthritis (RA), immune cells have different metabolic patterns and mitochondrial/lysosomal dysfunctions at different disease stages. In systemic lupus erythematosus (SLE), type I interferon (IFN) causes immune cell metabolic dysregulation, linking activation to metabolic shifts that may worsen the disease. In systemic sclerosis (SSc), mitochondrial changes affect fibroblast metabolism and the immune response. Idiopathic inflammatory myopathies (IIMs) patients have mitochondrial and metabolic issues. In primary Sjögren's syndrome (pSS), immune cell metabolism is imbalanced and mitochondrial damage can lead to cell/tissue damage. Metabolic reprogramming links cellular energy needs and immune dysfunctions, causing inflammation, damage, and symptoms in these diseases. It also affects immune cell functions like differentiation, proliferation, and secretion. This review discusses the potential of targeting metabolic pathways to restore immune balance, offering directions for future autoimmune disease research and treatment.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Lin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Hui Cheng
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyu Xiang
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Mocholi E, Corrigan E, Chalkiadakis T, Gulersonmez C, Stigter E, Vastert B, van Loosdregt J, Prekovic S, Coffer PJ. Glycolytic reprogramming shapes the histone acetylation profile of activated CD4 + T cells in juvenile idiopathic arthritis. Cell Rep 2025; 44:115287. [PMID: 40009514 DOI: 10.1016/j.celrep.2025.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/11/2024] [Accepted: 01/17/2025] [Indexed: 02/28/2025] Open
Abstract
Juvenile idiopathic arthritis (JIA) is an autoimmune disease characterized by accumulation of activated CD4+ T cells in the synovial fluid (SF) of affected joints. JIA CD4+ T cells exhibit a unique inflammation-associated epigenomic signature, but the underlying mechanisms remain unclear. We demonstrate that CD4+ T cells from JIA SF display heightened glycolysis upon activation and JIA-specific H3K27 acetylation, driving transcriptional reprogramming. Pharmacological inhibition of glycolysis altered the expression of genes associated with these acetylated regions. Healthy CD4+ T cells exposed to JIA SF exhibited increased glycolytic activity and transcriptomic changes marked by heightened histone 3 lysine 27 acetylation (H3K27ac) at JIA-specific genes. Elevated H3K27ac was dependent on glycolytic flux, while inhibiting glycolysis or pyruvate dehydrogenase (PDH) impaired transcription of SF-driven genes. These findings demonstrate a key role of glycolysis in JIA-specific gene expression, offering potential therapeutic targets for modulating inflammation in JIA.
Collapse
Affiliation(s)
- Enric Mocholi
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Edward Corrigan
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Theo Chalkiadakis
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Can Gulersonmez
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edwin Stigter
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bas Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Weyand CM, Goronzy JJ. Metabolic checkpoints in rheumatoid arthritis. Semin Arthritis Rheum 2025; 70S:152586. [PMID: 39550308 PMCID: PMC11761375 DOI: 10.1016/j.semarthrit.2024.152586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Rheumatoid Arthritis is a systemic autoimmune disease affecting 0.5-1 % of the population. Despite a growing therapeutic armamentarium, RA remains incurable, and many patients suffer significant morbidity over time. The strongest genetic risk derives from HLA class II polymorphisms, implicating T cells as pathogenic drivers. Innate immune cells, e.g. monocytes and macrophages (Mⱷ) contribute to chronic tissue inflammation through an array of pro-inflammatory functions but also present antigen to autoreactive T cells. Differentiation, survival, and effector functions of both T cells and Mⱷ are ultimately controlled by their bioenergetic and biosynthetic programs, identifying cellular metabolism as a critical disease mechanism in RA. OBJECTIVES Summarize current knowledge about metabolic conditions in the RA joint and disease-relevant metabolic circuits shaping the effector repertoire of RA T cells and Mⱷ. RESULTS The rheumatoid joint is a glucose deplete tissue environment, selecting for invading immune cells that can survive on non-glucose fuel sources. Inflamed synovium instead offers the amino acid glutamine and RA CD4+ T cells and RA Mⱷ rely on glutamine and glutamate to support their pathogenic functions. The metabolic hallmark of RA T cells is their low mitochondrial performance, resulting in low ATP production, low generation of reactive oxygen species (ROS) and low availability of tricarboxylic acid (TCA) cycle intermediates, all shifting RA T cells towards autoreactivity. The underlying defect stems from insufficient repair of mitochondrial DNA (mtDNA). Functional consequences include reversal of the TCA cycle, accumulation of citrate and lack of malate production. Excessive citrate promotes cytoskeletal hyperacetylation, creating hypermigratory and tissue-invasive T cells. Surplus acetyl-CoA supports lipid droplet formation and lipotoxicity. Lack of malate production disrupts the malate-aspartate shuttle, restricts recovery of cytosolic NAD and drives the endoplasmic reticulum (ER) into expansion. The bioenergetically stressed ER accumulates TNF mRNA and turns RA T cells into TNF superproducers. ATP low production renders RA T cells susceptible to cell death, depositing highly inflammatory mtDNA in the tissue. Mitochondrial deficiency leads to a slowdown in glycolysis and pyruvate processing, such that RA CD4+ T cells shunt glucose towards the pentose phosphate pathway to support nucleotide synthesis and clonal proliferation. Metabolically deprived CD4+ T cells partner with Mⱷ that have highly functional mitochondria. A hallmark of RA Mⱷ is the high expression of the DNA binding protein RFX5, which co-ordinates adaptations to metabolic needs with function. RFX5 upregulates HLA-DR expression and induces the glutaminolytic enzyme glutamate dehydrogenase 1 (GLUD1), providing bioenergetic resources for antigen presentation and survival in the tissue. In essence, RA CD4+ T cells and Mⱷ function in a metabolically challenging environment and rewire their cellular metabolism to survive. Metabolic adaptations promote immunostimulation and tissue inflammation, triggering and sustaining rheumatoid synovitis.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Chin A, Small A, Wong SW, Wechalekar MD. T Cell Dysregulation in Rheumatoid Arthritis: from Genetic Susceptibility to Established Disease. Curr Rheumatol Rep 2025; 27:14. [PMID: 39862300 PMCID: PMC11762599 DOI: 10.1007/s11926-025-01180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation of the synovial tissue, where T cells play a central role in pathogenesis. Recent research has identified T peripheral helper (Tph) cells as critical mediators of local B cell activation in inflamed tissues. This review synthesizes the latest advancements in our understanding the of the role of T cells in RA, from initiation to established disease. RECENT FINDINGS We explore recent advances regarding the genetic and epigenetic factors that predispose individuals to RA, the mechanisms of T cell activation and differentiation, and the interactions between T cells and other immune and stromal cells within the synovial microenvironment. The emergence of Tph cells as key drivers of RA pathobiology is highlighted, along with their potential as therapeutic targets. We also discuss the heterogeneity of T cell responses and their interplay with synovial cells, while addressing critical research gaps such as the drivers of T cell recruitment and the plasticity of synovial phenotypes. A deeper understanding of T cell dynamics in RA will provide valuable insights for developing targeted therapies to modulate T cell-mediated inflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Athena Chin
- Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia
| | - Annabelle Small
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Soon Wei Wong
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Weyand CM, Goronzy JJ. Immune Aging in Rheumatoid Arthritis. Arthritis Rheumatol 2025. [PMID: 39800938 DOI: 10.1002/art.43105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 02/12/2025]
Abstract
Rheumatoid arthritis (RA) is a life-long autoimmune disease caused by the confluence of genetic and environmental variables that lead to loss of self-tolerance and persistent joint inflammation. RA occurs at the highest incidence in individuals >65 years old, implicating the aging process in disease susceptibility. Transformative approaches in molecular immunology and in functional genomics have paved the way for pathway paradigms underlying the replacement of immune homeostasis with autodestructive immunity in affected patients, including the process of immune aging. Patients with RA have a signature of premature immune aging, best understood for CD4+ T cells, which function as pathogenic effectors in this HLA class II-associated disease. Premature immune aging is present in healthy HLA-DRB1*04+ individuals, placing accelerated immune aging before joint inflammation. Aging-related molecular abnormalities directly implicated in turning RA CD4+ T cells into proinflammatory effector cells are linked to malfunction of subcellular organelles, such as mitochondria, lysosomes, lipid droplets, and the endoplasmic reticulum. Resulting changes in T cell behavior include cellular hypermobility, tissue invasiveness, unopposed mammalian target of rapamycin complex (mTORC)1 activation, excessive release of tumor necrosis factor, lysosomal failure, clonal expansion, and immunogenic cell death. Aged and metabolically reprogrammed T cells in patients with RA are accompanied by age-associated B cells, which specialize in autoantibody production. Clonal hematopoiesis drives myeloid cell aging by producing aged monocytes and hypermetabolic macrophages, which sustain the process of inflammaging. Here, we synthesize insights into the relationship of RA risk and immune aging and discuss mechanisms through which immune aging can cause autoimmunity.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, and Stanford University School of Medicine, Stanford, California
| | - Jörg J Goronzy
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, and Stanford University School of Medicine, Stanford, California
| |
Collapse
|
7
|
Wu T, Su D, Zhang L, Liu T, Wang Q, Yan C, Liu M, Ji H, Lei J, Zheng M, Wen Z. Mitochondrial Control of Proteasomal Psmb5 Drives the Differentiation of Tissue-Resident Memory T Cells in Patients with Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1743-1757. [PMID: 39037181 DOI: 10.1002/art.42954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To explore T cell-intrinsic mechanisms underpinning the mal-differentiation of tissue-resident memory T (Trm) cells in patients with rheumatoid arthritis (RA). METHODS Circulating T cells from patient with RA and healthy individuals were used for Trm cell differentiation. The role of Hobit in Trm differentiation was investigated through targeted silencing experiments. Psmb5 expression regulation was explored by identifying BRD2 as a key transcription factor, with the interaction validated through chromatin immunoprecipitation-quantitative polymerase chain reaction. The impact of BRD2 succinylation on Trm differentiation was examined by manipulating succinyl-CoA levels in T cells. Humanized NSG chimeras representing synovitis provided insights into Trm infiltration in RA synovitis and were used for translational experiments. RESULTS In patients with RA, a notable predisposition of CD4+ T cells toward differentiation into Trm cells was observed, demonstrating a positive correlation with the disease activity score 28. Remarkably, Hobit was a pivotal facilitator in the formation of RA CD4+ Trm cells. Mechanistic studies unveiled the dysregulation of proteasomal Psmb5 in T cells of patients with RA as the key factor contributing to elevated Hobit protein levels. The deficiency of proteasomal Psmb5 was intricately linked to BRD2, with succinylation exerting a significant impact on Psmb5 transcription and Trm cell differentiation. This heightened BRD2 succinylation was attributed to elevated levels of mitochondrial succinyl-CoA in RA T cells. Consequently, targeting succinyl-CoA within CD4+ T cells controlled the inflammation of synovial tissues in humanized chimeras. CONCLUSION Mitochondrial succinyl-CoA fosters the succinylation of BRD2, resulting in compromised transcription of proteasomal Psmb5 and the differentiation of Trm cells in RA.
Collapse
Affiliation(s)
- Tong Wu
- Soochow University, Suzhou, China
| | | | | | - Ting Liu
- Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
de Kivit S, Mensink M, Kostidis S, Derks RJE, Zaal EA, Heijink M, Verleng LJ, de Vries E, Schrama E, Blomberg N, Berkers CR, Giera M, Borst J. Immune suppression by human thymus-derived effector Tregs relies on glucose/lactate-fueled fatty acid synthesis. Cell Rep 2024; 43:114681. [PMID: 39180751 DOI: 10.1016/j.celrep.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Regulatory T cells (Tregs) suppress pro-inflammatory conventional T cell (Tconv) responses. As lipids impact cell signaling and function, we compare the lipid composition of CD4+ thymus-derived (t)Tregs and Tconvs. Lipidomics reveal constitutive enrichment of neutral lipids in Tconvs and phospholipids in tTregs. TNFR2-co-stimulated effector tTregs and Tconvs are both glycolytic, but only in tTregs are glycolysis and the tricarboxylic acid (TCA) cycle linked to a boost in fatty acid (FA) synthesis (FAS), supported by relevant gene expression. FA chains in tTregs are longer and more unsaturated than in Tconvs. In contrast to Tconvs, tTregs effectively use either lactate or glucose for FAS and rely on this process for proliferation. FASN and SCD1, enzymes responsible for FAS and FA desaturation, prove essential for the ability of tTregs to suppress Tconvs. These data illuminate how effector tTregs can thrive in inflamed or cancerous tissues with limiting glucose but abundant lactate levels.
Collapse
Affiliation(s)
- Sander de Kivit
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Mark Mensink
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Lotte J Verleng
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Evert de Vries
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ellen Schrama
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
9
|
Wang S, Yang N, Zhang H. Metabolic dysregulation of lymphocytes in autoimmune diseases. Trends Endocrinol Metab 2024; 35:624-637. [PMID: 38355391 DOI: 10.1016/j.tem.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Lymphocytes are crucial for protective immunity against infection and cancers; however, immune dysregulation can lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Metabolic adaptation controls lymphocyte fate; thus, metabolic reprogramming can contribute to the pathogenesis of autoimmune diseases. Here, we summarize recent advances on how metabolic reprogramming determines the autoreactive and proinflammatory nature of lymphocytes in SLE and RA, unraveling molecular mechanisms and providing therapeutic targets for human autoimmune diseases.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
Parab A, Bhatt LK. T-cell metabolism in rheumatoid arthritis: focus on mitochondrial and lysosomal dysfunction. Immunopharmacol Immunotoxicol 2024; 46:378-384. [PMID: 38478010 DOI: 10.1080/08923973.2024.2330645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by immune cell dysregulation, synovial hyperplasia, and progressive cartilage destruction. The loss of immunological self-tolerance against autoantigens is the crucial insult responsible for the pathogenesis of RA. These immune abnormalities are experienced many years before the onset of clinical arthritis. OBJECTIVE This review aims to discuss the metabolic status of T-cells in RA and focuses mainly on mitochondrial and lysosomal dysfunctions involved in altering the T-cell metabolism. DISCUSSION T-cells are identified as the primary initiators of immunological abnormalities in RA. These RA T-cells show a distinct metabolic pattern compared to the healthy individuals. Dampened glycolytic flux, poor ATP production, and shifting of glucose to the pentose phosphate pathway resulting in increased NADPH and decreased ROS levels are the common metabolic patterns observed in RA T-cells. Defective mtDNA due to lack of MRE11A gene, a key molecular actor for resection, and inefficient lysosomal function due to misplacement of AMPK on the lysosomal surface were found to be responsible for mitochondrial and lysosome dysfunction in RA. Targeting this mechanism in RA can alleviate aggressive T-cell phenotype and may control the severity of RA.
Collapse
Affiliation(s)
- Asmita Parab
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
11
|
Zhang Y, Zhang J, Liu Y, Ren S, Tao N, Meng F, Cao Q, Liu R. High fat diet increases the severity of collagen-induced arthritis in mice by altering the gut microbial community. Adv Rheumatol 2024; 64:44. [PMID: 38816873 DOI: 10.1186/s42358-024-00382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVES Research has demonstrated that obesity may be associated with rheumatoid arthritis (RA). In addition, gut microbiota and its metabolites contribute to the occurrence and development of RA and obesity. However, the mechanism by which obesity affects RA remains unclear. In this study, we aimed to investigate whether gut microbiota and their metabolites alter the effects of high fat diet (HFD) on the severity of collagen-induced arthritis (CIA) in mice. METHODS Briefly, mice were divided into normal group (N), CIA model group (C), HFD group (T), and HFD CIA group (CT). Hematoxylin and Eosin staining(HE) and Safranin O-fast green staining were conducted, and levels of blood lipid and inflammatory cytokines were measured. 16S rDNA sequencing technique and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were performed to explore changes in the microbiota structure to further reveal the pathomechanism of HFD on CIA. RESULTS HFD aggravated the severity of CIA in mice. The CT group had the highest proportion of microbial abundance of Blautia, Oscillibacter, Ruminiclostridium-9, and Lachnospiraceae UCG 006 at the genus level, but had a lower proportion of Alistipes. Additionally, the fecal metabolic phenotype of the combined CT group shows significant changes, with differential metabolites enriched in 9 metabolic pathways, including primary bile acid biosynthesis, arginine biosynthesis, sphingolipid metabolism, purine metabolism, linoleic acid metabolism, oxytocin signaling pathway, aminoacyl-tRNA biosynthesis, the pentose phosphate pathway, and sphingolipid signaling pathway. Correlation analysis revealed that some of the altered gut microbiota genera were strongly correlated with changes in fecal metabolites, total cholesterol (TC), triglyceride (TG), and inflammatory cytokine levels. CONCLUSIONS This study shows that HFD may aggravate inflammatory reaction in CIA mice by altering the gut microbiota and metabolic pathways.
Collapse
Affiliation(s)
- Yang Zhang
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Jie Zhang
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Yantong Liu
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Shuang Ren
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Ning Tao
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Fanyan Meng
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Qi Cao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110001, Liaoning, China
| | - Ruoshi Liu
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China.
| |
Collapse
|
12
|
Kumar A, Ye C, Nkansah A, Decoville T, Fogo GM, Sajjakulnukit P, Reynolds MB, Zhang L, Quaye O, Seo YA, Sanderson TH, Lyssiotis CA, Chang CH. Iron regulates the quiescence of naive CD4 T cells by controlling mitochondria and cellular metabolism. Proc Natl Acad Sci U S A 2024; 121:e2318420121. [PMID: 38621136 PMCID: PMC11047099 DOI: 10.1073/pnas.2318420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Chenxian Ye
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Afia Nkansah
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Thomas Decoville
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Garrett M. Fogo
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Peter Sajjakulnukit
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Li Zhang
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Young-Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI48109
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
13
|
Wang Z, Shang J, Qiu Y, Cheng H, Tao M, Xie E, Pei X, Li W, Zhang L, Wu A, Li G. Suppression of the METTL3-m 6A-integrin β1 axis by extracellular acidification impairs T cell infiltration and antitumor activity. Cell Rep 2024; 43:113796. [PMID: 38367240 DOI: 10.1016/j.celrep.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
The acidic metabolic byproducts within the tumor microenvironment (TME) hinder T cell effector functions. However, their effects on T cell infiltration remain largely unexplored. Leveraging the comprehensive The Cancer Genome Atlas dataset, we pinpoint 16 genes that correlate with extracellular acidification and establish a metric known as the "tumor acidity (TuAci) score" for individual patients. We consistently observe a negative association between the TuAci score and T lymphocyte score (T score) across various human cancer types. Mechanistically, extracellular acidification significantly impedes T cell motility by suppressing podosome formation. This phenomenon can be attributed to the reduced expression of methyltransferase-like 3 (METTL3) and the modification of RNA N6-methyladenosine (m6A), resulting in a subsequent decrease in the expression of integrin β1 (ITGB1). Importantly, enforced ITGB1 expression leads to enhanced T cell infiltration and improved antitumor activity. Our study suggests that modulating METTL3 activity or boosting ITGB1 expression could augment T cell infiltration within the acidic TME, thereby improving the efficacy of cell therapy.
Collapse
Affiliation(s)
- Zhe Wang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jingzhe Shang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Mengyuan Tao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Xin Pei
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Aiping Wu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
14
|
Joseph J, Mathew J, Alexander J. Scaffold Proteins in Autoimmune Disorders. Curr Rheumatol Rev 2024; 20:14-26. [PMID: 37670692 DOI: 10.2174/1573397119666230904151024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Cells transmit information to the external environment and within themselves through signaling molecules that modulate cellular activities. Aberrant cell signaling disturbs cellular homeostasis causing a number of different diseases, including autoimmunity. Scaffold proteins, as the name suggests, serve as the anchor for binding and stabilizing signaling proteins at a particular locale, allowing both intra and intercellular signal amplification and effective signal transmission. Scaffold proteins play a critical role in the functioning of tight junctions present at the intersection of two cells. In addition, they also participate in cleavage formation during cytokinesis, and in the organization of neural synapses, and modulate receptor management outcomes. In autoimmune settings such as lupus, scaffold proteins can lower the cell activation threshold resulting in uncontrolled signaling and hyperactivity. Scaffold proteins, through their binding domains, mediate protein- protein interaction and play numerous roles in cellular communication and homeostasis. This review presents an overview of scaffold proteins, their influence on the different signaling pathways, and their role in the pathogenesis of autoimmune and auto inflammatory diseases. Since these proteins participate in many roles and interact with several other signaling pathways, it is necessary to gain a thorough understanding of these proteins and their nuances to facilitate effective target identification and therapeutic design for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Josna Joseph
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - John Mathew
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - Jessy Alexander
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, New York, USA
| |
Collapse
|
15
|
Shen MY, Di YX, Wang X, Tian FX, Zhang MF, Qian FY, Jiang BP, Zhou XP, Zhou LL. Panax notoginseng saponins (PNS) attenuate Th17 cell differentiation in CIA mice via inhibition of nuclear PKM2-mediated STAT3 phosphorylation. PHARMACEUTICAL BIOLOGY 2023; 61:459-472. [PMID: 36794740 PMCID: PMC9936999 DOI: 10.1080/13880209.2023.2173248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Rheumatoid arthritis (RA) is an autoimmune disease with aberrant Th17 cell differentiation. Panax notoginseng (Burk.) F. H. Chen (Araliaceae) saponins (PNS) have an anti-inflammatory effect and can suppress Th17 cell differentiation. OBJECTIVE To investigate mechanisms of PNS on Th17 cell differentiation in RA, and the role of pyruvate kinase M2 (PKM2). MATERIALS AND METHODS Naive CD4+T cells were treated with IL-6, IL-23 and TGF-β to induce Th17 cell differentiation. Apart from the Control group, other cells were treated with PNS (5, 10, 20 μg/mL). After the treatment, Th17 cell differentiation, PKM2 expression, and STAT3 phosphorylation were measured via flow cytometry, western blots, or immunofluorescence. PKM2-specific allosteric activator (Tepp-46, 50, 100, 150 μM) and inhibitor (SAICAR, 2, 4, 8 μM) were used to verify the mechanisms. A CIA mouse model was established and divided into control, model, and PNS (100 mg/kg) groups to assess an anti-arthritis effect, Th17 cell differentiation, and PKM2/STAT3 expression. RESULTS PKM2 expression, dimerization, and nuclear accumulation were upregulated upon Th17 cell differentiation. PNS inhibited the Th17 cells, RORγt expression, IL-17A levels, PKM2 dimerization, and nuclear accumulation and Y705-STAT3 phosphorylation in Th17 cells. Using Tepp-46 (100 μM) and SAICAR (4 μM), we demonstrated that PNS (10 μg/mL) inhibited STAT3 phosphorylation and Th17 cell differentiation by suppressing nuclear PKM2 accumulation. In CIA mice, PNS attenuated CIA symptoms, reduced the number of splenic Th17 cells and nuclear PKM2/STAT3 signaling. DISCUSSION AND CONCLUSIONS PNS inhibited Th17 cell differentiation through the inhibition of nuclear PKM2-mediated STAT3 phosphorylation. PNS may be useful for treating RA.
Collapse
Affiliation(s)
- Mei-Yu Shen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Yu-Xi Di
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiang Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Feng-Xiang Tian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Ming-Fei Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Fei-Ya Qian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Bao-Ping Jiang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Xue-Ping Zhou
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Ling-Ling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
16
|
Zheng Y, Liu Q, Goronzy JJ, Weyand CM. Immune aging - A mechanism in autoimmune disease. Semin Immunol 2023; 69:101814. [PMID: 37542986 PMCID: PMC10663095 DOI: 10.1016/j.smim.2023.101814] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Evidence is emerging that the process of immune aging is a mechanism leading to autoimmunity. Over lifetime, the immune system adapts to profound changes in hematopoiesis and lymphogenesis, and progressively restructures in face of an ever-expanding exposome. Older adults fail to generate adequate immune responses against microbial infections and tumors, but accumulate aged T cells, B cells and myeloid cells. Age-associated B cells are highly efficient in autoantibody production. T-cell aging promotes the accrual of end-differentiated effector T cells with potent cytotoxic and pro-inflammatory abilities and myeloid cell aging supports a low grade, sterile and chronic inflammatory state (inflammaging). In pre-disposed individuals, immune aging can lead to frank autoimmune disease, manifesting with chronic inflammation and irreversible tissue damage. Emerging data support the concept that autoimmunity results from aging-induced failure of fundamental cellular processes in immune effector cells: genomic instability, loss of mitochondrial fitness, failing proteostasis, dwindling lysosomal degradation and inefficient autophagy. Here, we have reviewed the evidence that malfunctional mitochondria, disabled lysosomes and stressed endoplasmic reticula induce pathogenic T cells and macrophages that drive two autoimmune diseases, rheumatoid arthritis (RA) and giant cell arteritis (GCA). Recognizing immune aging as a risk factor for autoimmunity will open new avenues of immunomodulatory therapy, including the repair of malfunctioning mitochondria and lysosomes.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Qingxiang Liu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jorg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Straub RH, Pongratz G, Buttgereit F, Gaber T. [Energy metabolism of the immune system : Consequences in chronic inflammation]. Z Rheumatol 2023:10.1007/s00393-023-01389-4. [PMID: 37488246 DOI: 10.1007/s00393-023-01389-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Energy is the currency of life. The systemic and intracellular energy metabolism plays an essential role for the energy supply of the resting and activated immune system and this also applies to chronic inflammatory diseases. OBJECTIVE This presentation examines both components of the systemic and cellular energy metabolism in health and chronic inflammation. MATERIAL AND METHODS A literature search was conducted using PubMed, Embase and the Cochrane Library. The information is presented in the form of a narrative review. RESULTS A chronically activated immune system acquires large amounts of energy-rich substrates that are lost for other functions of the body. In particular, the immune system and the brain are in competition. The consequences of this competition are many known diseases, such as fatigue, anxiety, depression, anorexia, sleep problems, sarcopenia, osteoporosis, insulin resistance, hypertension and others. The permanent change in the brain causes long-term alterations that stimulate disease sequelae even after disease remission. In the intracellular energy supply, chronic inflammation typically involves a conversion to glycolysis (to lactate, which has its own regulatory functions) and the pentose phosphate pathway in disorders of mitochondrial function. The chronic changes in immune cells of patients with rheumatoid arthritis (RA) lead to a disruption of the citric acid cycle (Krebs cycle). The hypoxic situation in the inflamed tissue stimulates many alterations. A differentiation is made between effector functions and regulatory functions of immune cells. CONCLUSION Based on the energy changes mentioned, novel treatment suggestions can be made in addition to those already known in energy metabolism.
Collapse
Affiliation(s)
- Rainer H Straub
- Labor für Experimentelle Rheumatologie und Neuroendokrin-Immunologie, Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum Regensburg, 93042, Regensburg, Deutschland.
| | - Georg Pongratz
- Abteilung für Rheumatologie, Klinik für Gastroenterologie, Krankenhaus Barmherzige Brüder Regensburg, 93049, Regensburg, Deutschland
| | - Frank Buttgereit
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Timo Gaber
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| |
Collapse
|
18
|
Ye J, Fu J, Hou H, Wang Y, Deng W, Hao S, Pei Y, Xu J, Zheng M, Xiao Y. Cytoplasmic DNA sensing boosts CD4 + T cell metabolism for inflammatory induction. LIFE MEDICINE 2023; 2:lnad021. [PMID: 39872301 PMCID: PMC11749111 DOI: 10.1093/lifemedi/lnad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/09/2023] [Indexed: 01/30/2025]
Abstract
DNA accumulation is associated with the development of autoimmune inflammatory diseases. However, the pathological role and underlying mechanism of cytoplasmic DNA accumulation in CD4+ T cells have not been well established. Here, we show that Trex1 deficiency-induced endogenous DNA accumulation in CD4+ T cells greatly promoted their induction of autoimmune inflammation in a lupus-like mouse model. Mechanistically, the accumulated DNA in CD4+ T cells was sensed by the KU complex, then triggered the activation of DNA-PKcs and ZAK and further facilitated the activation of AKT, which exacerbated glycolysis, thereby promoting the inflammatory responses. Accordingly, blocking the DNA sensing pathway in CD4+ T cells by genetic knockout of Zak or using our newly developed ZAK inhibitor iZAK2 attenuated all pathogenic characteristics in a lupus-like inflammation mouse model induced with Trex1-deficient CD4+ T cells. Overall, our study demonstrated a causal link between DNA-sensing and metabolic reprogramming in CD4+ T cells for inflammatory induction and suggested inhibition of the DNA sensing pathway may be a potential therapy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiemeng Fu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shumeng Hao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
19
|
Lei Q, Yang J, Li L, Zhao N, Lu C, Lu A, He X. Lipid metabolism and rheumatoid arthritis. Front Immunol 2023; 14:1190607. [PMID: 37325667 PMCID: PMC10264672 DOI: 10.3389/fimmu.2023.1190607] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
As a chronic progressive autoimmune disease, rheumatoid arthritis (RA) is characterized by mainly damaging the synovium of peripheral joints and causing joint destruction and early disability. RA is also associated with a high incidence rate and mortality of cardiovascular disease. Recently, the relationship between lipid metabolism and RA has gradually attracted attention. Plasma lipid changes in RA patients are often detected in clinical tests, the systemic inflammatory status and drug treatment of RA patients can interact with the metabolic level of the body. With the development of lipid metabolomics, the changes of lipid small molecules and potential metabolic pathways have been gradually discovered, which makes the lipid metabolism of RA patients or the systemic changes of lipid metabolism after treatment more and more comprehensive. This article reviews the lipid level of RA patients, as well as the relationship between inflammation, joint destruction, cardiovascular disease, and lipid level. In addition, this review describes the effect of anti-rheumatic drugs or dietary intervention on the lipid profile of RA patients to better understand RA.
Collapse
Affiliation(s)
- Qian Lei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Weyand CM, Wu B, Huang T, Hu Z, Goronzy JJ. Mitochondria as disease-relevant organelles in rheumatoid arthritis. Clin Exp Immunol 2023; 211:208-223. [PMID: 36420636 PMCID: PMC10038327 DOI: 10.1093/cei/uxac107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the controllers of cell metabolism and are recognized as decision makers in cell death pathways, organizers of cytoplasmic signaling networks, managers of cellular stress responses, and regulators of nuclear gene expression. Cells of the immune system are particularly dependent on mitochondrial resources, as they must swiftly respond to danger signals with activation, trafficking, migration, and generation of daughter cells. Analogously, faulty immune responses that lead to autoimmunity and tissue inflammation rely on mitochondria to supply energy, cell building blocks and metabolic intermediates. Emerging data endorse the concept that mitochondrial fitness, and the lack of it, is of particular relevance in the autoimmune disease rheumatoid arthritis (RA) where deviations of bioenergetic and biosynthetic flux affect T cells during early and late stages of disease. During early stages of RA, mitochondrial deficiency allows naïve RA T cells to lose self-tolerance, biasing fundamental choices of the immune system toward immune-mediated tissue damage and away from host protection. During late stages of RA, mitochondrial abnormalities shape the response patterns of RA effector T cells engaged in the inflammatory lesions, enabling chronicity of tissue damage and tissue remodeling. In the inflamed joint, autoreactive T cells partner with metabolically reprogrammed tissue macrophages that specialize in antigen-presentation and survive by adapting to the glucose-deplete tissue microenvironment. Here, we summarize recent data on dysfunctional mitochondria and mitochondria-derived signals relevant in the RA disease process that offer novel opportunities to deter autoimmune tissue inflammation by metabolic interference.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bowen Wu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Tao Huang
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Zhaolan Hu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Liu T, Zheng M, Jia L, Wang M, Tang L, Wen Z, Zhang M, Yuan F. Deficient leptin receptor signaling in T cells of human SLE. Front Immunol 2023; 14:1157731. [PMID: 37006245 PMCID: PMC10063787 DOI: 10.3389/fimmu.2023.1157731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease mainly mediated by IgG autoantibody. While follicular helper T (Tfh) cells are crucial for supporting IgG autoantibody generation in human SLE, underlying mechanisms for Tfh cell mal-differentiation remain unclear. METHODS In total, 129 SLE patients and 37 healthy donors were recruited for this study. Circulating leptin was determined by ELISA from patients with SLE and healthy individuals. CD4 T cells isolated from SLE patients and healthy donors were activated with anti-CD3/CD28 beads under cytokine-unbiased conditions in the presence or absence of recombinant leptin protein, followed by detection for Tfh cell differentiation by quantifying intracellular transcription factor Bcl-6 and cytokine IL-21. AMPK activation was assessed by analyzing phosphor-AMPK using phosflow cytometry and immunoblots. Leptin receptor expression was determined using flow cytometry and its overexpression was achieved by transfection with an expression vector. Humanized SLE chimeras were induced by injecting patients' immune cells into immune-deficient NSG mice and used for translational studies. RESULTS Circulating leptin was elevated in patients with SLE, inversely associated with disease activity. In healthy individuals, leptin efficiently inhibited Tfh cell differentiation through inducing AMPK activation. Meanwhile, leptin receptor deficiency was a feature of CD4 T cells in SLE patients, impairing the inhibitory effect of leptin on the differentiation of Tfh cells. As a result, we observed the coexistence of high circulating leptin and increased Tfh cell frequencies in SLE patients. Accordingly, overexpression of leptin receptor in SLE CD4 T cells abrogated Tfh cell mal-differentiation and IgG anti-dsDNA generation in humanized lupus chimeras. CONCLUSION Leptin receptor deficiency blocks the inhibitory effect of leptin on SLE Tfh cell differentiation, serving as a promising therapeutic target for lupus management.
Collapse
Affiliation(s)
- Ting Liu
- Department of Rheumatology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Li Jia
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Mingyuan Wang
- Department of Research Center, Suzhou Blood Center, Suzhou, China
| | - Longhai Tang
- Department of Research Center, Suzhou Blood Center, Suzhou, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Miaojia Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fenghong Yuan
- Department of Rheumatology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
22
|
Liu Z, Shan S, Yuan Z, Wu F, Zheng M, Wang Y, Gui J, Xu W, Wang C, Ren T, Wen Z. Mitophagy bridges DNA sensing with metabolic adaption to expand lung cancer stem-like cells. EMBO Rep 2023; 24:e54006. [PMID: 36416244 PMCID: PMC9900345 DOI: 10.15252/embr.202154006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
While previous studies have identified cancer stem-like cells (CSCs) as a crucial driver for chemoresistance and tumor recurrence, the underlying mechanisms for populating the CSC pool remain unclear. Here, we identify hypermitophagy as a feature of human lung CSCs, promoting metabolic adaption via the Notch1-AMPK axis to drive CSC expansion. Specifically, mitophagy is highly active in CSCs, resulting in increased mitochondrial DNA (mtDNA) content in the lysosome. Lysosomal mtDNA acts as an endogenous ligand for Toll-like receptor 9 (TLR9) that promotes Notch1 activity. Notch1 interacts with AMPK to drive lysosomal AMPK activation by inducing metabolic stress and LKB1 phosphorylation. This TLR9-Notch1-AMPK axis supports mitochondrial metabolism to fuel CSC expansion. In patient-derived xenograft chimeras, targeting mitophagy and TLR9-dependent Notch1-AMPK pathway restricts tumor growth and CSC expansion. Taken together, mitochondrial hemostasis is interlinked with innate immune sensing and Notch1-AMPK activity to increase the CSC pool of human lung cancer.
Collapse
Affiliation(s)
- Zhen Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Shan Shan
- Department of Respiratory MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zixin Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Ying Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Jun Gui
- State Key Laboratory of Oncogenes and Related Genes; Renji‐Med X Clinical Stem Cell Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Chunhong Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Tao Ren
- Department of Respiratory MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Kay Laboratory of Sleep Disordered BreathingShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
23
|
Zhou X, Zhu X, Zeng H. Fatty acid metabolism in adaptive immunity. FEBS J 2023; 290:584-599. [PMID: 34822226 PMCID: PMC9130345 DOI: 10.1111/febs.16296] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Fatty acids (FAs) not only are a key component of cellular membrane structure, but also have diverse functions in biological processes. Recent years have seen great advances in understanding of how FA metabolism contributes to adaptive immune response. Here, we review three key processes, FA biosynthesis, FA oxidation and FA uptake, and how they direct T and B cell functions during immune challenges. Then, we will focus on the relationship between microbiota derived FAs, short-chain FAs, and adaptive immunity. Along the way, we will also discuss the outstanding controversies and challenges in the field.
Collapse
Affiliation(s)
- Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA,Department of Immunology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Role of T Cells in the Pathogenesis of Rheumatoid Arthritis: Focus on Immunometabolism Dysfunctions. Inflammation 2023; 46:88-102. [PMID: 36215002 DOI: 10.1007/s10753-022-01751-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Evidence demonstrated that metabolic-associated T cell abnormalities could be detected in the early stage of RA development. In this context, molecular evaluations have revealed changes in metabolic pathways, leading to the aggressive phenotype of RA T cells. A growing list of genes is downregulated or upregulated in RA T cells, and most of these genes with abnormal expression fall into the category of metabolic pathways. It has been shown that RA T cells shunt glucose towards the pentose phosphate pathway (PPP), which is associated with a high level of nicotinamide adenine dinucleotide phosphate (NADPH) and intermediate molecules. An increased level of NADPH inhibits ATM activation and thereby increases the proliferation capabilities of the RA T cells. Defects in the DNA repair nuclease MRE11A cause failures in repairing mitochondrial DNA, resulting in inhibiting the fatty acid oxidation pathway and further elevated cytoplasmic lipid droplets. Accumulated lipid droplets employ to generate lipid membranes for the cell building program and are also used to form the front-end membrane ruffles that are accomplices with invasive phenotypes of RA T cells. Metabolic pathway involvement in RA pathogenesis expands the pathogenic concept of the disease beyond the common view of autoimmunity triggered by autoantigen recognition. Increased knowledge about metabolic pathways' implications in RA pathogenesis paves the way to understand better the environment/gene interactions and host/microbiota interactions and introduce potential therapeutic approaches. This review summarized emerging data about the roles of T cells in RA pathogenesis with a focus on immunometabolism dysfunctions and how these metabolic alterations can affect the disease process.
Collapse
|
25
|
Rajendiran A, Subramanyam SH, Klemm P, Jankowski V, van Loosdregt J, Vastert B, Vollbach K, Wagner N, Tenbrock K, Ohl K. NRF2/Itaconate Axis Regulates Metabolism and Inflammatory Properties of T Cells in Children with JIA. Antioxidants (Basel) 2022; 11:antiox11122426. [PMID: 36552634 PMCID: PMC9774972 DOI: 10.3390/antiox11122426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CD4+ T cells critically contribute to the initiation and perturbation of inflammation. When CD4+ T cells enter inflamed tissues, they adapt to hypoxia and oxidative stress conditions, and to a reduction in nutrients. We aimed to investigate how this distinct environment regulates T cell responses within the inflamed joints of patients with childhood rheumatism (JIA) by analyzing the behavior of NRF2-the key regulator of the anti-oxidative stress response-and its signaling pathways. METHODS Flow cytometry and quantitative RT-PCR were used to perform metabolic profiling of T cells and to measure the production of inflammatory cytokines. Loss of function analyses were carried out by means of siRNA transfection experiments. NRF2 activation was induced by treatment with 4-octyl-Itaconate (4-OI). RESULTS Flow cytometry analyses revealed a high metabolic status in CD4+ T cells taken from synovial fluid (SF) with greater mitochondrial mass, and increased glucose and fatty acid uptake. This resulted in a heightened oxidative status of SF CD4+ T cells. Despite raised ROS levels, expression of NRF2 and its target gene NQO1 were lower in CD4+ T cells from SF than in those from blood. Indeed, NRF2 activation of CD4+ T cells downregulated oxidative stress markers, altered the metabolic phenotype and reduced secretion of IFN-γ. CONCLUSION NRF2 could be a potential regulator in CD4+ T cells during chronic inflammation and could instigate a drift toward disease progression or regression, depending on the inflammatory environment.
Collapse
Affiliation(s)
- Anandhi Rajendiran
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Sudheendra Hebbar Subramanyam
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
- Correspondence: (S.H.S.); (K.O.); Tel.: +49-0241-8089140 (K.O.)
| | - Patricia Klemm
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Jorg van Loosdregt
- Laboratory for Translational Medicine, Department of Pediatric Immunology & Rheumatology, University Medical Centre Utrecht, 3584 Utrecht, The Netherlands
| | - Bas Vastert
- Laboratory for Translational Medicine, Department of Pediatric Immunology & Rheumatology, University Medical Centre Utrecht, 3584 Utrecht, The Netherlands
| | - Kristina Vollbach
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
- Correspondence: (S.H.S.); (K.O.); Tel.: +49-0241-8089140 (K.O.)
| |
Collapse
|
26
|
Synovial gene signatures associated with the development of rheumatoid arthritis in at risk individuals: A prospective study. J Autoimmun 2022; 133:102923. [PMID: 36208493 DOI: 10.1016/j.jaut.2022.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/07/2022]
Abstract
OBJECTIVE To identify molecular changes in synovium before arthritis development in individuals at risk of developing rheumatoid arthritis (RA). MATERIALS AND METHODS We included 67 IgM rheumatoid factor and/or anti-citrullinated protein antibody positive individuals with arthralgia but without arthritis. Synovial biopsies were collected after which individuals were prospectively followed for at least 2 years during which 17 developed arthritis. An exploratory genome-wide transcriptional profiling study was performed in 13 preselected individuals to identify transcripts associated with arthritis development (n = 6). Findings were validated using quantitative real-time PCR and immunohistochemistry in the total cohort. RESULTS Microarray-based survival analyses identified 5588 transcripts whose expression levels in synovium were significantly associated with arthritis development. Pathway analysis revealed that synovial tissue of at risk individuals who later developed arthritis display higher expression of genes involved in adaptive immune response-related pathways compared to at risk individuals who did not develop arthritis. Lower expression was observed for genes involved in extracellular matrix receptor interaction, Wnt-mediated signal transduction and lipid metabolism. Two-way hierarchical clustering analyses of a 27-gene signature separated the total at risk cohort into two groups, where pre-RA individuals preferred to cluster together. Immunohistochemistry studies revealed more podoplanin positive cells and lower lipid droplet staining in synovial tissue from pre-RA individuals. CONCLUSION Synovial alterations in adaptive immune response and lipid metabolism are associated with future development of arthritis. Since this data show synovial changes without overt cellular infiltration, these may be attributed to preclinical changes in resident synovial tissue cells such as fibroblasts, macrophages and tissue resident T cells.
Collapse
|
27
|
Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res 2022; 71:1449-1462. [DOI: 10.1007/s00011-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
|
28
|
Sonigra A, Nel HJ, Wehr P, Ramnoruth N, Patel S, van Schie KA, Bladen MW, Mehdi AM, Tesiram J, Talekar M, Rossjohn J, Reid HH, Stuurman FE, Roberts H, Vecchio P, Gourley I, Rigby M, Becart S, Toes RE, Scherer HU, Lê Cao KA, Campbell K, Thomas R. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. JCI Insight 2022; 7:e160964. [PMID: 36278483 PMCID: PMC9714780 DOI: 10.1172/jci.insight.160964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 10/11/2023] Open
Abstract
BACKGROUNDAntigen-specific regulation of autoimmune disease is a major goal. In seropositive rheumatoid arthritis (RA), T cell help to autoreactive B cells matures the citrullinated (Cit) antigen-specific immune response, generating RA-specific V domain glycosylated anti-Cit protein antibodies (ACPA VDG) before arthritis onset. Low or escalating antigen administration under "sub-immunogenic" conditions favors tolerance. We explored safety, pharmacokinetics, and immunological and clinical effects of s.c. DEN-181, comprising liposomes encapsulating self-peptide collagen II259-273 (CII) and NF-κB inhibitor 1,25-dihydroxycholecalciferol.METHODSA double-blind, placebo-controlled, exploratory, single-ascending-dose, phase I trial assessed the impact of low, medium, and high DEN-181 doses on peripheral blood CII-specific and bystander Cit64vimentin59-71-specific (Cit-Vim-specific) autoreactive T cell responses, cytokines, and ACPA in 17 HLA-DRB1*04:01+ or *01:01+ ACPA+ RA patients on methotrexate.RESULTSDEN-181 was well tolerated. Relative to placebo and normalized to baseline values, Cit-Vim-specific T cells decreased in patients administered medium and high doses of DEN-181. Relative to placebo, percentage of CII-specific programmed cell death 1+ T cells increased within 28 days of DEN-181. Exploratory analysis in DEN-181-treated patients suggested improved RA disease activity was associated with expansion of CII-specific and Cit-Vim-specific T cells; reduction in ACPA VDG, memory B cells, and inflammatory myeloid populations; and enrichment in CCR7+ and naive T cells. Single-cell sequencing identified T cell transcripts associated with tolerogenic TCR signaling and exhaustion after low or medium doses of DEN-181.CONCLUSIONThe safety and immunomodulatory activity of low/medium DEN-181 doses provide rationale to further assess antigen-specific immunomodulatory therapy in ACPA+ RA.TRIAL REGISTRATIONAnzctr.org.au identifier ACTRN12617001482358, updated September 8, 2022.FUNDINGInnovative Medicines Initiative 2 Joint Undertaking (grant agreement 777357), supported by European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations; Arthritis Queensland; National Health and Medical Research Council (NHMRC) Senior Research Fellowship; and NHMRC grant 2008287.
Collapse
Affiliation(s)
- Amee Sonigra
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Hendrik J Nel
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Pascale Wehr
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Nishta Ramnoruth
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Swati Patel
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Karin A van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Maxwell W Bladen
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Ahmed M Mehdi
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Joanne Tesiram
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Meghna Talekar
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Hugh H Reid
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Frederik E Stuurman
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Helen Roberts
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
- Dendright Pty Ltd, Brisbane, Queensland, Australia
| | - Phillip Vecchio
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ian Gourley
- Immunology Clinical Development, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Mark Rigby
- Immunology Clinical Development, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Stephane Becart
- Discovery Immunology, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Rene Em Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Kim Campbell
- Immunology Translational Medicine, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
29
|
Cai T, Du P, Suo L, Jiang X, Qin Q, Song R, Yang X, Jiang Y, Zhang JA. High iodine promotes autoimmune thyroid disease by activating hexokinase 3 and inducing polarization of macrophages towards M1. Front Immunol 2022; 13:1009932. [PMID: 36325332 PMCID: PMC9618622 DOI: 10.3389/fimmu.2022.1009932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune thyroid disease (AITD), the most common autoimmune disease, includes Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). Currently, the pathogenesis of AITD is not fully understood. Our study aimed to examine the presence of macrophage polarization imbalance in AITD patients, to investigate whether high iodine can cause macrophage polarization imbalance, and to investigate the role of key genes of metabolic reprogramming in macrophage polarization imbalance caused by high iodine. We synergistically used various research strategies such as systems biology, clinical studies, cell culture and mouse disease models. Gene set enrichment analysis (GSEA) revealed that M1 macrophage hyperpolarization was involved in the pathogenesis of AITD. In vitro and in vivo experiments showed that high iodine can affect the polarization of M1 or M2 macrophages and their related cytokines. Robust rank aggregation (RRA) method revealed that hexokinase 3 (HK3) was the most aberrantly expressed metabolic gene in autoimmune diseases. In vitro and in vivo studies revealed HK3 could mediate macrophage polarization induced by high iodine. In summary, hyperpolarization of M1-type macrophages is closely related to the pathogenesis of AITD. High iodine can increase HK3 expression in macrophages and promote macrophage polarization towards M1. Targeting HK3 can inhibit M1 polarization induced by high iodine.
Collapse
Affiliation(s)
- Tiantian Cai
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lixia Suo
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Jiading District Central Hospital, Shanghai, China
| | - Xiaozhen Jiang
- Department of Endocrinology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Qiu Qin
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaorong Yang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yanfei Jiang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Yanfei Jiang, ; Jin-an Zhang,
| | - Jin-an Zhang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Yanfei Jiang, ; Jin-an Zhang,
| |
Collapse
|
30
|
Cui L, Weiyao J, Chenghong S, Limei L, Xinghua Z, Bo Y, Xiaozheng D, Haidong W. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front Med (Lausanne) 2022; 9:1017650. [PMID: 36213670 PMCID: PMC9542797 DOI: 10.3389/fmed.2022.1017650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by chronic symmetric synovial inflammation and erosive bone destruction. Mitochondria are the main site of cellular energy supply and play a key role in the process of energy metabolism. They possess certain self-regulatory and repair capabilities. Mitochondria maintain relative stability in number, morphology, and spatial structure through biological processes, such as biogenesis, fission, fusion, and autophagy, which are collectively called mitochondrial homeostasis. An imbalance in the mitochondrial homeostatic environment will affect immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling. These biological processes are involved in the onset and development of rheumatoid arthritis. In this review, we found that in rheumatoid arthritis, abnormal mitochondrial homeostasis can mediate various immune cell metabolic disorders, and the reprogramming of immune cell metabolism is closely related to their inflammatory activation. In turn, mitochondrial damage and homeostatic imbalance can lead to mtDNA leakage and increased mtROS production. mtDNA and mtROS are active substances mediating multiple inflammatory pathways. Several rheumatoid arthritis therapeutic agents regulate mitochondrial homeostasis and repair mitochondrial damage. Therefore, modulation of mitochondrial homeostasis would be one of the most attractive targets for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Liu Cui
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Weiyao
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Su Chenghong
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liu Limei
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhang Xinghua
- Acupuncture and Moxibustion Department, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Yuan Bo
- Acupuncture and Pain Department, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Du Xiaozheng
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Du Xiaozheng
| | - Wang Haidong
- Rheumatoid Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
- Wang Haidong
| |
Collapse
|
31
|
Lai Y, Zhao S, Chen B, Huang Y, Guo C, Li M, Ye B, Wang S, Zhang H, Yang N. Iron controls T helper cell pathogenicity by promoting glucose metabolism in autoimmune myopathy. Clin Transl Med 2022; 12:e999. [PMID: 35917405 PMCID: PMC9345506 DOI: 10.1002/ctm2.999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND T helper cells in patients with autoimmune disease of idiopathic inflammatory myopathies (IIM) are characterized with the proinflammatory phenotypes. The underlying mechanisms remain unknown. METHODS RNA sequencing was performed for differential expression genes. Gene expression in CD4+ T-cells was confirmed by quantitative real-time PCR. CD4+ T-cells from IIM patients or healthy controls were evaluated for metabolic activities by Seahorse assay. Glucose uptake, T-cell proliferation and differentiation were evaluated and measured by flow cytometry. Human CD4+ T-cells treated with iron chelators or Pfkfb4 siRNA were measured for glucose metabolism, proliferation and differentiation. Signalling pathway activation was evaluated by western blot and flow cytometry. Mouse model of experimental autoimmune myositis (EAM) were induced and treated with iron chelator or rapamycin. CD4+ T-cell differentiation and muscle inflammation in the EAM mice were evaluated. RESULTS RNA-sequencing analysis revealed that iron was involved with glucose metabolism and CD4+ T-cell differentiation. IIM patient-derived CD4+ T-cells showed enhanced glycolysis and mitochondrial respiration, which was inhibited by iron chelation. CD4+ T-cells from patients with IIM was proinflammatory and iron chelation suppressed the differentiation of interferon gamma (IFNγ)- and interleukin (IL)-17A-producing CD4+ T-cells, which resulted in an increased percentage of regulatory T (Treg) cells. Mechanistically, iron promoted glucose metabolism by an upregulation of PFKFB4 through AKT-mTOR signalling pathway. Notably, the knockdown of Pfkfb4 decreased glucose influx and thus suppressed the differentiation of IFNγ- and IL-17A-producing CD4+ T-cells. In vivo, iron chelation inhibited mTOR signalling pathway and reduced PFKFB4 expression in CD4+ T-cells, resulting in reduced proinflammatory IFNγ- and IL-17A-producing CD4+ T-cells and increased Foxp3+ Treg cells, leading to ameliorated muscle inflammation. CONCLUSIONS Iron directs CD4+ T-cells into a proinflammatory phenotype by enhancing glucose metabolism. Therapeutic targeting of iron metabolism should have the potential to normalize glucose metabolism in CD4+ T-cells and reverse their proinflammatory phenotype in IIM.
Collapse
Affiliation(s)
- Yimei Lai
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Siyuan Zhao
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Binfeng Chen
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yuefang Huang
- Department of PediatricsThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chaohuan Guo
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengyuan Li
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Baokui Ye
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shuyi Wang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hui Zhang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Niansheng Yang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
32
|
Yang W, Yu T, Cong Y. CD4+ T cell metabolism, gut microbiota, and autoimmune diseases: Implication in precision medicine of autoimmune diseases. PRECISION CLINICAL MEDICINE 2022; 5:pbac018. [PMID: 35990897 PMCID: PMC9384833 DOI: 10.1093/pcmedi/pbac018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/03/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells are critical to the development of autoimmune disorders. Glucose, fatty acids, and glutamine metabolisms are the primary metabolic pathways in immune cells, including CD4+ T cells. The distinct metabolic programs in CD4+ T cell subsets are recognized to reflect the bioenergetic requirements, which are compatible with their functional demands. Gut microbiota affects T cell responses by providing a series of antigens and metabolites. Accumulating data indicate that CD4+ T cell metabolic pathways underlie aberrant T cell functions, thereby regulating the pathogenesis of autoimmune disorders, including inflammatory bowel diseases, systemic lupus erythematosus, and rheumatoid arthritis. Here, we summarize the current progress of CD4+ T cell metabolic programs, gut microbiota regulation of T cell metabolism, and T cell metabolic adaptions to autoimmune disorders to shed light on potential metabolic therapeutics for autoimmune diseases.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, TX, 77555 , USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch , Galveston, TX, 77555 , USA
| | - Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, TX, 77555 , USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch , Galveston, TX, 77555 , USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, TX, 77555 , USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch , Galveston, TX, 77555 , USA
| |
Collapse
|
33
|
Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022; 11:antiox11061153. [PMID: 35740050 PMCID: PMC9220354 DOI: 10.3390/antiox11061153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Collapse
Affiliation(s)
- Xing Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qinbin Ye
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Qiong Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: or
| |
Collapse
|
34
|
Hu Z, Zhao TV, Huang T, Ohtsuki S, Jin K, Goronzy IN, Wu B, Abdel MP, Bettencourt JW, Berry GJ, Goronzy JJ, Weyand CM. The transcription factor RFX5 coordinates antigen-presenting function and resistance to nutrient stress in synovial macrophages. Nat Metab 2022; 4:759-774. [PMID: 35739396 PMCID: PMC9280866 DOI: 10.1038/s42255-022-00585-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Tissue macrophages (Mϕ) are essential effector cells in rheumatoid arthritis (RA), contributing to autoimmune tissue inflammation through diverse effector functions. Their arthritogenic potential depends on their proficiency to survive in the glucose-depleted environment of the inflamed joint. Here, we identify a mechanism that links metabolic adaptation to nutrient stress with the efficacy of tissue Mϕ to activate adaptive immunity by presenting antigen to tissue-invading T cells. Specifically, Mϕ populating the rheumatoid joint produce and respond to the small cytokine CCL18, which protects against cell death induced by glucose withdrawal. Mechanistically, CCL18 induces the transcription factor RFX5 that selectively upregulates glutamate dehydrogenase 1 (GLUD1), thus enabling glutamate utilization to support energy production. In parallel, RFX5 enhances surface expression of HLA-DR molecules, promoting Mϕ-dependent expansion of antigen-specific T cells. These data place CCL18 at the top of a RFX5-GLUD1 survival pathway and couple adaptability to nutrient conditions in the tissue environment to antigen-presenting function in autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Zhaolan Hu
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Tuantuan V Zhao
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Tao Huang
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Shozo Ohtsuki
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ke Jin
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bowen Wu
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jacob W Bettencourt
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Yi O, Lin Y, Hu M, Hu S, Su Z, Liao J, Liu B, Liu L, Cai X. Lactate metabolism in rheumatoid arthritis: Pathogenic mechanisms and therapeutic intervention with natural compounds. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154048. [PMID: 35316725 DOI: 10.1016/j.phymed.2022.154048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common chronic and systemic autoimmune disease characterized by persistent inflammation and hyperplasia of the synovial membrane, the degradation of cartilage, and the erosion of bones in diarthrodial joints. The inflamed joints of patients with RA have been recognized to be a site of hypoxic microenvironment which results in an imbalance of lactate metabolism and the accumulation of lactate. Lactate is no longer considered solely a metabolic waste product of glycolysis, but also a combustion aid in the progression of RA from the early stages of inflammation to the late stages of bone destruction. PURPOSE To review the pathogenic mechanisms of lactate metabolism in RA and investigate the potential of natural compounds for treating RA linked to the regulation of imbalance in lactate metabolism. METHODS Research advances in our understanding of lactate metabolism in the pathogenesis of RA and novel pharmacological approaches of natural compounds by targeting lactate metabolic signaling were comprehensively reviewed and deeply discussed. RESULTS Lactate produced by RA synovial fibroblasts (RASFs) acts on targeted cells such as T cells, macrophages, dendritic cells and osteoclasts, and affects their differentiation, activation and function to accelerate the development of RA. Many natural compounds show therapeutic potential for RA by regulating glycolytic rate-limiting enzymes to limit lactate production, and affecting monocarboxylate transporter and acetyl-CoA carboxylase to inhibit lactate transport and conversion. CONCLUSION Regulation of imbalance in lactate metabolism offers novel therapeutic approaches for RA, and natural compounds capable of targeting lactate metabolic signaling constitute potential candidates for development of drugs RA.
Collapse
Affiliation(s)
- Ouyang Yi
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Mingyue Hu
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jin Liao
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 030027, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
36
|
Huang Z, Luo R, Yang L, Chen H, Zhang X, Han J, Wang H, Zhou Z, Wang Z, Shao L. CPT1A-Mediated Fatty Acid Oxidation Promotes Precursor Osteoclast Fusion in Rheumatoid Arthritis. Front Immunol 2022; 13:838664. [PMID: 35273614 PMCID: PMC8902079 DOI: 10.3389/fimmu.2022.838664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/01/2022] [Indexed: 12/29/2022] Open
Abstract
The overproduction of osteoclasts, leading to bone destruction in patients with rheumatoid arthritis (RA), is well established. However, little is known about the metabolic dysfunction of osteoclast precursors (OCPs) in RA. Herein, we show that increasing fatty acid oxidation (FAO) induces OCP fusion. Carnitine palmitoyltransferase IA (CPT1A), which is important for carnitine transportation and is involved in FAO in the mitochondria, is upregulated in RA patients. This metabolic change further increases the expression of clathrin heavy chain (CLTC) and clathrin light chain A (CLTA) by enhancing the binding of the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) to the promoters of CLTA and CLTC. This drives clathrin-dependent endocytosis pathway, which attenuates fusion receptors in the cellular membrane and contributes to increased podosome structure formation. This study reveals a new mechanism through which FAO metabolism participates in joint destruction in RA and provides a novel therapeutic direction for the development of drugs against bone destruction in patients with RA.
Collapse
Affiliation(s)
- Zhaoyang Huang
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rong Luo
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liu Yang
- Department of Rheumatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiqi Chen
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinyao Zhang
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Han
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongxia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongyang Zhou
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhao Wang
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lan Shao
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Zhao TV, Sato Y, Goronzy JJ, Weyand CM. T-Cell Aging-Associated Phenotypes in Autoimmune Disease. FRONTIERS IN AGING 2022; 3:867950. [PMID: 35821833 PMCID: PMC9261367 DOI: 10.3389/fragi.2022.867950] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023]
Abstract
The aging process causes profound restructuring of the host immune system, typically associated with declining host protection against cancer and infection. In the case of T cells, aging leads to the accumulation of a diverse set of T-cell aging-associated phenotypes (TASP), some of which have been implicated in driving tissue inflammation in autoimmune diseases. T cell aging as a risk determinant for autoimmunity is exemplified in two classical autoimmune conditions: rheumatoid arthritis (RA), a disease predominantly affecting postmenopausal women, and giant cell arteritis (GCA), an inflammatory vasculopathy exclusively occurring during the 6th-9th decade of life. Pathogenic T cells in RA emerge as a consequence of premature immune aging. They have shortening and fragility of telomeric DNA ends and instability of mitochondrial DNA. As a result, they produce a distinct profile of metabolites, disproportionally expand their endoplasmic reticulum (ER) membranes and release excess amounts of pro-inflammatory effector cytokines. Characteristically, they are tissue invasive, activate the inflammasome and die a pyroptotic death. Patients with GCA expand pathogenic CD4+ T cells due to aberrant expression of the co-stimulatory receptor NOTCH1 and the failure of the PD-1/PD-L1 immune checkpoint. In addition, GCA patients lose anti-inflammatory Treg cells, promoting tissue-destructive granulomatous vasculitis. In summary, emerging data identify T cell aging as a risk factor for autoimmune disease and directly link TASPs to the breakdown of T cell tolerance and T-cell-induced tissue inflammation.
Collapse
Affiliation(s)
- Tuantuan V. Zhao
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
| | - Yuki Sato
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
| | - Jorg J. Goronzy
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
- School of Medicine, Stanford University, Stanford, CA, United States
| | - Cornelia M. Weyand
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
- School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
38
|
Fearon U, Hanlon MM, Floudas A, Veale DJ. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat Rev Rheumatol 2022; 18:398-414. [PMID: 35440762 DOI: 10.1038/s41584-022-00771-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Activation of endothelium and immune cells is fundamental to the initiation of autoimmune diseases such as rheumatoid arthritis (RA), and it results in trans-endothelial cell migration and synovial fibroblast proliferation, leading to joint destruction. In RA, the synovial microvasculature is highly dysregulated, resulting in inefficient oxygen perfusion to the synovium, which, along with the high metabolic demands of activated immune and stromal cells, leads to a profoundly hypoxic microenvironment. In inflamed joints, infiltrating immune cells and synovial resident cells have great requirements for energy and nutrients, and they adapt their metabolic profiles to generate sufficient energy to support their highly activated inflammatory states. This shift in metabolic capacity of synovial cells enables them to produce the essential building blocks to support their proliferation, activation and invasiveness. Furthermore, it results in the accumulation of metabolic intermediates and alteration of redox-sensitive pathways, affecting signalling pathways that further potentiate the inflammatory response. Importantly, the inflamed synovium is a multicellular tissue, with cells differing in their metabolic requirements depending on complex cell-cell interactions, nutrient supply, metabolic intermediates and transcriptional regulation. Therefore, understanding the complex interplay between metabolic and inflammatory pathways in synovial cells in RA will provide insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland. .,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland.
| | - Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
39
|
Abstract
T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.
Collapse
Affiliation(s)
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Qin Y, Gao C, Luo J. Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Front Immunol 2022; 13:828191. [PMID: 35281063 PMCID: PMC8913504 DOI: 10.3389/fimmu.2022.828191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
The abnormal number and functional deficiency of immune cells are the pathological basis of various diseases. Recent years, the imbalance of Th17/regulatory T (Treg) cell underlies the occurrence and development of inflammation in autoimmune diseases (AID). Currently, studies have shown that material and energy metabolism is essential for maintaining cell survival and normal functions and the altered metabolic state of immune cells exists in a variety of AID. This review summarizes the biology and functions of Th17 and Treg cells in AID, with emphasis on the advances of the roles and regulatory mechanisms of energy metabolism in activation, differentiation and physiological function of Th17 and Treg cells, which will facilitate to provide targets for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Yan Qin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
41
|
Jadhav RR, Hu B, Ye Z, Sheth K, Li X, Greenleaf WJ, Weyand CM, Goronzy JJ. Reduced chromatin accessibility to CD4 T cell super-enhancers encompassing susceptibility loci of rheumatoid arthritis. EBioMedicine 2022; 76:103825. [PMID: 35085847 PMCID: PMC8790491 DOI: 10.1016/j.ebiom.2022.103825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/21/2021] [Accepted: 01/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is an inflammatory disease that manifests as a preclinical stage of systemic autoimmunity followed by chronic progressive synovitis. Disease-associated genetic SNP variants predominantly map to non-coding, regulatory regions of functional importance in CD4 T cells, implicating these cells as key regulators. A better understanding of the epigenome of CD4 T cells holds the promise of providing information on the interaction between genetic susceptibility and exogenous factors. Methods We mapped regions of chromatin accessibility using ATAC-seq in peripheral CD4 T cell subsets of patients with RA (n=18) and compared them to T cells from patients with psoriatic arthritis (n=11) and age-matched healthy controls (n=10). Transcripts of selected genes were quantified using qPCR. Findings RA-associated epigenetic signatures were identified that in part overlapped between central and effector memory CD4 T cells and that were to a lesser extent already present in naïve cells. Sites more accessible in RA were highly enriched for the motif of the transcription factor (TF) CTCF suggesting differences in the three-dimensional chromatin structure. Unexpectedly, sites with reduced chromatin accessibility were enriched for motifs of TFs pertinent for T cell function. Most strikingly, super-enhancers encompassing RA-associated SNPs were less accessible. Analysis of selected transcripts and published DNA methylation patterns were consistent with this finding. The preferential loss in accessibility at these super-enhancers was seen in patients with high and low disease activity and on a variety of immunosuppressive treatment modalities. Interpretation Disease-associated genes are epigenetically less poised to respond in CD4 T cells from patients with established RA. Funding This work was supported by I01 BX001669 from the Veterans Administration.
Collapse
|
42
|
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 2022; 55:14-30. [PMID: 35021054 PMCID: PMC8842882 DOI: 10.1016/j.immuni.2021.12.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Adaptive immune responses mediated by T cells and B cells are crucial for protective immunity against pathogens and tumors. Differentiation and function of immune cells require dynamic reprogramming of cellular metabolism. Metabolic inputs, pathways, and enzymes display remarkable flexibility and heterogeneity, especially in vivo. How metabolic plasticity and adaptation dictate functional specialization of immune cells is fundamental to our understanding and therapeutic modulation of the immune system. Extensive progress has been made in characterizing the effects of metabolic networks on immune cell fate and function in discrete microenvironments or immunological contexts. In this review, we summarize how rewiring of cellular metabolism determines the outcome of adaptive immunity in vivo, with a focus on how metabolites, nutrients, and driver genes in immunometabolism instruct cellular programming and immune responses during infection, inflammation, and cancer in mice and humans. Understanding context-dependent metabolic remodeling will manifest legitimate opportunities for therapeutic intervention of human disease.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
43
|
Wu B, Zhao TV, Jin K, Hu Z, Abdel MP, Warrington KJ, Goronzy JJ, Weyand CM. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat Immunol 2021; 22. [PMID: 34811544 PMCID: PMC8756813 DOI: 10.1038/s41590-021-01065-2 10.1038/s41590-021-01065-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.
Collapse
Affiliation(s)
- Bowen Wu
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Tuantuan V. Zhao
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Ke Jin
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Zhaolan Hu
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Ken J. Warrington
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Jörg J. Goronzy
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Cornelia M. Weyand
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA,Corresponding author: Cornelia M. Weyand, Department of Medicine, Mayo College of Medicine and Sciences, Rochester, MN 55901;
| |
Collapse
|
44
|
Wu B, Zhao TV, Jin K, Hu Z, Abdel MP, Warrington KJ, Goronzy JJ, Weyand CM. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat Immunol 2021; 22:1551-1562. [PMID: 34811544 PMCID: PMC8756813 DOI: 10.1038/s41590-021-01065-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.
Collapse
Affiliation(s)
- Bowen Wu
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Tuantuan V Zhao
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ke Jin
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Zhaolan Hu
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ken J Warrington
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Umar S, Palasiewicz K, Volin MV, Romay B, Rahat R, Tetali C, Arami S, Guma M, Ascoli C, Sweiss N, Zomorrodi RK, O'Neill LAJ, Shahrara S. Metabolic regulation of RA macrophages is distinct from RA fibroblasts and blockade of glycolysis alleviates inflammatory phenotype in both cell types. Cell Mol Life Sci 2021; 78:7693-7707. [PMID: 34705053 PMCID: PMC8739866 DOI: 10.1007/s00018-021-03978-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have shown the significance of metabolic reprogramming in immune and stromal cell function. Yet, the metabolic reconfiguration of RA macrophages (MΦs) is incompletely understood during active disease and in crosstalk with other cell types in experimental arthritis. This study elucidates a distinct regulation of glycolysis and oxidative phosphorylation in RA MΦs compared to fibroblast (FLS), although PPP (Pentose Phosphate pathway) is similarly reconfigured in both cell types. 2-DG treatment showed a more robust impact on impairing the RA M1 MΦ-mediated inflammatory phenotype than IACS-010759 (IACS, complexli), by reversing ERK, AKT and STAT1 signaling, IRF8/3 transcription and CCL2 or CCL5 secretion. This broader inhibitory effect of 2-DG therapy on RA M1 MΦs was linked to dysregulation of glycolysis (GLUT1, PFKFB3, LDHA, lactate) and oxidative PPP (NADP conversion to NADPH), while both compounds were ineffective on oxidative phosphorylation. Distinctly, in RA FLS, 2-DG and IACS therapies constrained LPS/IFNγ-induced AKT and JNK signaling, IRF5/7 and fibrokine expression. Disruption of RA FLS metabolic rewiring by 2-DG or IACS therapy was accompanied by a reduction of glycolysis (HIF1α, PFKFB3) and suppression of citrate or succinate buildup. We found that 2-DG therapy mitigated CIA pathology by intercepting joint F480+iNOS+MΦ, Vimentin+ fibroblast and CD3+T cell trafficking along with downregulation of IRFs and glycolytic intermediates. Surprisingly, IACS treatment was inconsequential on CIA swelling, cell infiltration, M1 and Th1/Th17 cytokines (IFN-γ/IL-17) and joint glycolytic mediators. Collectively, our results indicate that blockade of glycolysis is more effective than inhibition of complex 1 in CIA, in part due to its effectiveness on the MΦ inflammatory phenotype.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Chandana Tetali
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, San Diego, School of Medicine, University of California, La Jolla, CA, USA
- VA Medical Center, San Diego, CA, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep, and Allergy, The University of Illinois at Chicago, Chicago, IL, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
46
|
Metabolomics in Autoimmune Diseases: Focus on Rheumatoid Arthritis, Systemic Lupus Erythematous, and Multiple Sclerosis. Metabolites 2021; 11:metabo11120812. [PMID: 34940570 PMCID: PMC8708401 DOI: 10.3390/metabo11120812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolomics approach represents the last downstream phenotype and is widely used in clinical studies and drug discovery. In this paper, we outline recent advances in the metabolomics research of autoimmune diseases (ADs) such as rheumatoid arthritis (RA), multiple sclerosis (MuS), and systemic lupus erythematosus (SLE). The newly discovered biomarkers and the metabolic mechanism studies for these ADs are described here. In addition, studies elucidating the metabolic mechanisms underlying these ADs are presented. Metabolomics has the potential to contribute to pharmacotherapy personalization; thus, we summarize the biomarker studies performed to predict the personalization of medicine and drug response.
Collapse
|
47
|
Mitochondrial signals regulate ER size and TNF production in rheumatoid arthritis. Nat Immunol 2021; 22:1477-1478. [PMID: 34837082 DOI: 10.1038/s41590-021-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Yuan Q, Lv Y, Ding H, Ke Q, Shi C, Luo J, Jiang L, Yang J, Zhou Y. CPT1α maintains phenotype of tubules via mitochondrial respiration during kidney injury and repair. Cell Death Dis 2021; 12:792. [PMID: 34392303 PMCID: PMC8364553 DOI: 10.1038/s41419-021-04085-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
Impaired energy metabolism in proximal tubular epithelial cells (PTECs) is strongly associated with various kidney diseases. Here, we characterized proximal tubular phenotype alternations during kidney injury and repair in a mouse model of folic acid nephropathy, in parallel, identified carnitine palmitoyltransferase 1α (CPT1α) as an energy stress response accompanied by renal tubular dedifferentiation. Genetic ablation of Cpt1α aggravated the tubular injury and interstitial fibrosis and hampered kidney repair indicate that CPT1α is vital for the preservation and recovery of tubular phenotype. Our data showed that the lipid accumulation and mitochondrial mass reduction induced by folic acid were persistent and became progressively more severe in PTECs without CPT1α. Interference of CPT1α reduced capacities of mitochondrial respiration and ATP production in PTECs, and further sensitized cells to folic acid-induced phenotypic changes. On the contrary, overexpression of CPT1α protected mitochondrial respiration and prevented against folic acid-induced tubular cell damage. These findings link CPT1α to intrinsic mechanisms regulating the mitochondrial respiration and phenotype of kidney tubules that may contribute to renal pathology during injury and repair.
Collapse
Affiliation(s)
- Qi Yuan
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yunhui Lv
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Ding
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingqing Ke
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caifeng Shi
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Luo
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
Iwata S, Tanaka Y. Therapeutic perspectives on the metabolism of lymphocytes in patients with rheumatoid arthritis and systemic lupus erythematosus. Expert Rev Clin Immunol 2021; 17:1121-1130. [PMID: 34351835 DOI: 10.1080/1744666x.2021.1964957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The activation of autoreactive T- and B-cells and production of autoantibodies by B cells are involved in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recently, the concept of 'immunometabolism' has attracted significant attention. Immune cells produce large amounts of energy in the form of ATP and biosynthesize biological components such as nucleic acids and lipids via metabolic reprogramming to activate, differentiate, and exert their functions. AREAS COVERED While the mechanisms underlying the metabolism of CD4+ T cells in SLE have been extensively studied, the metabolic changes underlying B cell activation, differentiation, and function remain unclear. Drugs targeting mTOR and AMPK, such as sirolimus, rapamycin, and metformin, have shown some efficacy and tolerability in clinical trials on patients with SLE, but have not led to breakthroughs. In this review, we summarize the current knowledge on the immunometabolic mechanisms involved in SLE and RA and discuss the potential novel therapeutic drugs. EXPERT OPINION The intensity of activation of different immune cells and their metabolic kinetics vary in different autoimmune diseases; thus, understanding the disease- and cell-specific metabolic mechanisms may help in the development of clinically effective immunometabolism-targeting drugs.
Collapse
Affiliation(s)
- Shigeru Iwata
- The First Department of Internal Medicine, Assistant Professor, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, Professor and Chairman, Deputy Director, University of Occupational and Environmental Health, Japan, the University Hospital, School of Medicine, Kitakyushu, Japan
| |
Collapse
|