1
|
Zhang Y, Gao Y, Li N, Xu L, Wang Y, Liu H. Polypropylene sulfide methotrexate nanoparticles target the synovial lymphatic system to restore immune tolerance in rheumatoid arthritis. Int J Pharm 2024; 665:124713. [PMID: 39284426 DOI: 10.1016/j.ijpharm.2024.124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Around 40 % of patients fail to achieve primary clinical outcomes for rheumatoid arthritis (RA). The growth of lymphatic system in the synovial membrane, is a primary response during RA inflammation. It is suggested that a delivery strategy targeting immunosuppressive agents to the synovial lymph nodes and then to the immune cells is beneficial for resolving arthritis. This study introduced a synthetic polypropylene sulfide methotrexate nano-delivery system (PPS-MTX), which was prepared by covalently bonding methotrexate to polypropylene sulfide, with a diameter size range of 36 nm. It enhanced joint accumulation and retention, which can be selectively uptake by antigen-presenting cells in the synovial lymphatic system. The results indicated that PPS-MTX nanoparticles effectively improved arthritis disease progression and restored the immune tolerance microenvironment in the synovial lymphatic system, promoting peripheral tolerance in collagen-induced arthritis mice. Additionally, no systemic toxicity was observed. This study presents a promising targeted strategy for inducing immune tolerance in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yingxi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Linyi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
2
|
Branchett WJ, Saraiva M, O'Garra A. Regulation of inflammation by Interleukin-10 in the intestinal and respiratory mucosa. Curr Opin Immunol 2024; 91:102495. [PMID: 39357078 DOI: 10.1016/j.coi.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Intricate immune regulation is required at mucosal surfaces to allow tolerance to microbiota and harmless allergens and to prevent overexuberant inflammatory responses to pathogens. The cytokine Interleukin-10 (IL-10) is a key mediator of mucosal immune regulation. While IL-10 can be produced by virtually all cells of the immune system, many of its in vivo functions depend upon its production by regulatory or effector T cell populations and its signalling to macrophages, dendritic cells and specific T cell subsets. In this review, we discuss our current understanding of the role of IL-10 in regulation of immune responses, with a focus on its context-specific roles in intestinal homeostasis, respiratory infection and asthma. We highlight the importance of appropriate production and function of IL-10 for balancing pathogen clearance, control of microbiota and host tissue damage, and that precise modulation of IL-10 functions in vivo could present therapeutic opportunities.
Collapse
Affiliation(s)
- William J Branchett
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, United Kingdom.
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Qi L, Wang Z, Huang X, Gao X. Biological function of type 1 regulatory cells and their role in type 1 diabetes. Heliyon 2024; 10:e36524. [PMID: 39286070 PMCID: PMC11402939 DOI: 10.1016/j.heliyon.2024.e36524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The collapse of immune homeostasis induces type 1 diabetes (T1D). In T1D, uncontrolled immune attacks against islet β cells reduce insulin secretion, resulting in hyperglycaemia and various complications. Type 1 regulatory (Tr1) cell therapy is a promising approach for the treatment of T1D. Tr1 cells are a subset of regulatory T (Treg) cells that are characterised by high interleukin-10 secretion and forkhead box protein P3 non-expression. Tr1 cells are reduced and have impaired function in patients with T1D. Immunotherapy is used to treat various diseases, and Treg cells have been applied to treat T1D in animal models and clinical trials. However, the safety and efficacy of Tr1 cells in treating diabetes and other diseases remain unclear. In this review, we aim to investigate the identification and biological function of Tr1 cells and related studies on immune diseases; additionally, we discuss the feasibility, limitations, and possible solutions of Tr1 cell therapy in T1D. This review shows that T1D is caused by an immune imbalance where defective Tr1 cells fail to control effector T cells, leading to the destruction of islet β cells. However, Tr1 cell therapy is safe and effective for other immune diseases, suggesting its potential for treating T1D.
Collapse
Affiliation(s)
- Lingli Qi
- Department of Gastroenterology, Children's Medical Center, The First Hospital of Jilin University, China
| | - Zhichao Wang
- Department of Surgery, Children's Medical Center, The First Hospital of Jilin University, China
| | - Xinxing Huang
- Department of Gastroenterology, Children's Medical Center, The First Hospital of Jilin University, China
| | - Xiuzhu Gao
- Department of Public Laboratory Platform, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Cui Y, Hackett RG, Ascue J, Muralidaran V, Patil D, Kang J, Kaufman SS, Khan K, Kroemer A. Innate and Adaptive Immune Responses in Intestinal Transplant Rejection: Through the Lens of Inflammatory Bowel and Intestinal Graft-Versus-Host Diseases. Gastroenterol Clin North Am 2024; 53:359-382. [PMID: 39068000 DOI: 10.1016/j.gtc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal transplantation is a life-saving procedure utilized for patients failing total parenteral nutrition. However, intestinal transplantattion remains plagued with low survival rates and high risk of allograft rejection. The authors explore roles of innate (macrophages, natural killer cells, innate lymphoid cells) and adaptive immune cells (Th1, Th2, Th17, Tregs) in inflammatory responses, particularly inflammatory bowel disease and graft versus host disease, and correlate these findings to intestinal allograft rejection, highlighting which effectors exacerbate or suppress intestinal rejection. Better understanding of this immunology can open further investigation into potential biomolecular targets to develop improved therapeutic treatment options and immunomonitoring techniques to combat allograft rejection and enhance patient lives.
Collapse
Affiliation(s)
- Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan G Hackett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jhalen Ascue
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
5
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Ten-Caten F, Joseph F Urban, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2 in mice. Sci Transl Med 2024; 16:eado1941. [PMID: 39167662 DOI: 10.1126/scitranslmed.ado1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Although vaccines have reduced the burden of COVID-19, their efficacy in helminth infection-endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal roundworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA-vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared with animals immunized without Hpb infection. Helminth-mediated suppression of spike protein-specific CD8+ T cell responses occurred independently of signal transducer and activator of transcription 6 (STAT6) signaling, whereas blockade of interleukin-10 (IL-10) rescued vaccine-induced CD8+ T cell responses. Together, these data show that, in mice, intestinal helminth infection impaired vaccine-induced T cell responses through an IL-10 pathway, which compromised protection against antigenically drifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Courtney E Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Garcia-Salum
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ana Carolina Santana
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Felipe Ten-Caten
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | | | | | - Susan P Ribeiro
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Rafick P Sekaly
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Meza-Perez S, Liu M, Silva-Sanchez A, Morrow CD, Eipers PG, Lefkowitz EJ, Ptacek T, Scharer CD, Rosenberg AF, Hill DD, Arend RC, Gray MJ, Randall TD. Proteobacteria impair anti-tumor immunity in the omentum by consuming arginine. Cell Host Microbe 2024; 32:1177-1191.e7. [PMID: 38942027 PMCID: PMC11245731 DOI: 10.1016/j.chom.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter G Eipers
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Travis Ptacek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander F Rosenberg
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dave D Hill
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Hendrix SV, Mreyoud Y, McNehlan ME, Smirnov A, Chavez SM, Hie B, Chamberland MM, Bradstreet TR, Webber AM, Kreamalmeyer D, Taneja R, Bryson BD, Edelson BT, Stallings CL. BHLHE40 Regulates Myeloid Cell Polarization through IL-10-Dependent and -Independent Mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1766-1781. [PMID: 38683120 PMCID: PMC11105981 DOI: 10.4049/jimmunol.2200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/16/2024] [Indexed: 05/01/2024]
Abstract
Better understanding of the host responses to Mycobacterium tuberculosis infections is required to prevent tuberculosis and develop new therapeutic interventions. The host transcription factor BHLHE40 is essential for controlling M. tuberculosis infection, in part by repressing Il10 expression, where excess IL-10 contributes to the early susceptibility of Bhlhe40-/- mice to M. tuberculosis infection. Deletion of Bhlhe40 in lung macrophages and dendritic cells is sufficient to increase the susceptibility of mice to M. tuberculosis infection, but how BHLHE40 impacts macrophage and dendritic cell responses to M. tuberculosis is unknown. In this study, we report that BHLHE40 is required in myeloid cells exposed to GM-CSF, an abundant cytokine in the lung, to promote the expression of genes associated with a proinflammatory state and better control of M. tuberculosis infection. Loss of Bhlhe40 expression in murine bone marrow-derived myeloid cells cultured in the presence of GM-CSF results in lower levels of proinflammatory associated signaling molecules IL-1β, IL-6, IL-12, TNF-α, inducible NO synthase, IL-2, KC, and RANTES, as well as higher levels of the anti-inflammatory-associated molecules MCP-1 and IL-10 following exposure to heat-killed M. tuberculosis. Deletion of Il10 in Bhlhe40-/- myeloid cells restored some, but not all, proinflammatory signals, demonstrating that BHLHE40 promotes proinflammatory responses via both IL-10-dependent and -independent mechanisms. In addition, we show that macrophages and neutrophils within the lungs of M. tuberculosis-infected Bhlhe40-/- mice exhibit defects in inducible NO synthase production compared with infected wild-type mice, supporting that BHLHE40 promotes proinflammatory responses in innate immune cells, which may contribute to the essential role for BHLHE40 during M. tuberculosis infection in vivo.
Collapse
Affiliation(s)
- Skyler V. Hendrix
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E. McNehlan
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sthefany M. Chavez
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Hie
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan M. Chamberland
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan D. Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Martínez-Shio EB, Marín-Jáuregui LS, Rodríguez-Ortega AC, Doníz-Padilla LM, González-Amaro R, Escobedo-Uribe CD, Monsiváis-Urenda AE. Regulatory T-cell frequency and function in acute myocardial infarction patients and its correlation with ventricular dysfunction. Clin Exp Immunol 2024; 216:262-271. [PMID: 38386899 PMCID: PMC11097913 DOI: 10.1093/cei/uxae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
A high percentage of patients with acute coronary syndrome develop heart failure due to the ischemic event. Regulatory T (Treg) cells are lymphocytes with suppressive capacity that control the immune response and include the conventional CD4+ CD25hi Foxp3+ cells and the CD4+ CD25var CD69+ LAP+ Foxp3- IL-10+ cells. No human follow-up studies focus on Treg cells' behavior after infarction and their possible relationship with ventricular function as a sign of postischemic cardiac remodeling. This study aimed to analyze, by flow cytometry, the circulating levels of CD69+ Treg cells and CD4+ CD25hi Foxp3+ cells, their IL-10+ production as well as their function in patients with acute myocardial infarction (AMI), and its possible relation with ventricular dysfunction. We found a significant difference in the percentage of CD4+ CD25hi Foxp3+ cells and IL-10+ MFI in patients with AMI at 72 hours compared with the healthy control group, and the levels of these cells were reduced 6 months post-AMI. Regarding the suppressive function of CD4+ CD25+ regulatory cells, they were dysfunctional at 3 and 6 months post-AMI. The frequency of CD69+ Treg cells was similar between patients with AMI at 72 hours postinfarction and the control groups. Moreover, the frequency of CD69+ Treg cells at 3 and 6 months postischemic event did not vary over time. Treg cells play a role in regulating inflammation after an AMI, and its function may be compromised in this pathology. This work is the first report to evaluate CD69+ Foxp3- Treg cells in AMI patients.
Collapse
Affiliation(s)
- Elena Berenice Martínez-Shio
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Laura Sherell Marín-Jáuregui
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Alma Celeste Rodríguez-Ortega
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Lesly Marsol Doníz-Padilla
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Roberto González-Amaro
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Adriana Elizabeth Monsiváis-Urenda
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
9
|
Martinez HA, Koliesnik I, Kaber G, Reid JK, Nagy N, Barlow G, Falk BA, Medina CO, Hargil A, Zihsler S, Vlodavsky I, Li JP, Pérez-Cruz M, Tang SW, Meyer EH, Wrenshall LE, Lord JD, Garcia KC, Palmer TD, Steinman L, Nepom GT, Wight TN, Bollyky PL, Kuipers HF. Regulatory T cells use heparanase to access IL-2 bound to extracellular matrix in inflamed tissue. Nat Commun 2024; 15:1564. [PMID: 38378682 PMCID: PMC10879116 DOI: 10.1038/s41467-024-45012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
Although FOXP3+ regulatory T cells (Treg) depend on IL-2 produced by other cells for their survival and function, the levels of IL-2 in inflamed tissue are low, making it unclear how Treg access this critical resource. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing monoclonal antibody-directed chimeric antigen receptor (mAbCAR) Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their ability to suppress neuroinflammation in vivo. Together, these data identify a role for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.
Collapse
Affiliation(s)
- Hunter A Martinez
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ievgen Koliesnik
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacqueline K Reid
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nadine Nagy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham Barlow
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ben A Falk
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Carlos O Medina
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aviv Hargil
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Svenja Zihsler
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Magdiel Pérez-Cruz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sai-Wen Tang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Everett H Meyer
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucile E Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - James D Lord
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald T Nepom
- Immune Tolerance Network, Benaroya Research Institute, Seattle, WA, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Paul L Bollyky
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hedwich F Kuipers
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
10
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Caten FT, Urban JF, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575588. [PMID: 38293221 PMCID: PMC10827110 DOI: 10.1101/2024.01.14.575588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Although vaccines have reduced COVID-19 disease burden, their efficacy in helminth infection endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal hookworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of SARS-CoV-2. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared to animals immunized without Hpb infection. Helminth mediated suppression of spike-specific CD8+ T cell responses occurred independently of STAT6 signaling, whereas blockade of IL-10 rescued vaccine-induced CD8+ T cell responses. In mice, intestinal helminth infection impairs vaccine induced T cell responses via an IL-10 pathway and compromises protection against antigenically shifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Courtney E. Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Tamara Garcia-Salum
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ana Carolina Santana
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Felipe Ten Caten
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F. Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | | | | | - Susan P. Ribeiro
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Larissa B. Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Rafick P. Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
12
|
Caparon M, Xu W, Bradstreet T, Zou Z, Hickerson S, Zhou Y, He H, Edelson B. Reprogramming Short-Chain Fatty Acid Metabolism Mitigates Tissue Damage for Streptococcus pyogenes Necrotizing Skin Infection. RESEARCH SQUARE 2023:rs.3.rs-3689163. [PMID: 38196634 PMCID: PMC10775361 DOI: 10.21203/rs.3.rs-3689163/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Disease Tolerance (DT) is a host response to infection that limits collateral damage to host tissues while having a neutral effect on pathogen fitness. Previously, we found that the pathogenic lactic acid bacterium Streptococcus pyogenes manipulates DT using its aerobic mixed-acid fermentation (ARMAF) pathway via the enzyme pyruvate dehydrogenase (PDH) to alter expression of the immunosuppressive cytokine IL-10. However, the microbe-derived molecules that mediate communication with the host's DT pathways remain elusive. Here, we show that ARMAF inhibits accumulation of IL-10-producing inflammatory cells including neutrophils and macrophages, leading to delayed bacterial clearance and wound healing. Expression of IL-10 is inhibited through streptococcal production of the short chain fermentation end-products acetate and formate, via manipulation of host acetyl-CoA metabolism, altering non-histone regulatory lysine acetylation. A bacterial-specific PDH inhibitor reduced tissue damage during murine infection, suggesting that reprogramming carbon flow provides a novel therapeutic strategy to mitigate tissue damage during infection.
Collapse
Affiliation(s)
| | - Wei Xu
- Washington University School of Medicine
| | | | | | | | | | | | | |
Collapse
|
13
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
14
|
Sharifinejad N, Mahmoudi E. Dual function of fungi-derived cytokines in inflammatory bowel diseases: protection or inflammation. Gastroenterol Rep (Oxf) 2023; 11:goad068. [PMID: 38058517 PMCID: PMC10697736 DOI: 10.1093/gastro/goad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition involving both the innate and adaptive immune systems. Recently, the role of intestinal fungal flora and their downstream immune pathways has been highlighted in the pathogenesis of IBD. Cytokines as primary immune mediators require a delicate balance for maintaining intestinal homeostasis. Although most cytokines have a predictable role in either amplifying or attenuating inflammation in IBD, a few cytokines have shown a dual function in the inflammatory state of the intestine. Some of these dual-faced cytokines are also involved in mucosal anti-microbial defense pathways, particularly against intestinal fungal residents. Here, we reviewed the role of these cytokines in IBD pathogenesis to achieve a better understanding of the fungal interactions in the development of IBD.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elaheh Mahmoudi
- Department of Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
15
|
Chen K, Gu X, Yang S, Tao R, Fan M, Bao W, Wang X. Research progress on intestinal tissue-resident memory T cells in inflammatory bowel disease. Scand J Immunol 2023; 98:e13332. [PMID: 38441381 DOI: 10.1111/sji.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 03/07/2024]
Abstract
Tissue-resident memory T (TRM) cells are a recently discovered subpopulation of memory T cells that reside in non-lymphoid tissues such as the intestine and skin and do not enter the bloodstream. The intestine encounters numerous pathogens daily. Intestinal mucosal immunity requires a balance between immune responses to pathogens and tolerance to food antigens and symbiotic microbiota. Therefore, intestinal TRM cells exhibit unique characteristics. In healthy intestines, TRM cells induce necessary inflammation to strengthen the intestinal barrier and inhibit bacterial translocation. During intestinal infections, TRM cells rapidly eliminate pathogens by proliferating, releasing cytokines, and recruiting other immune cells. Moreover, certain TRM cell subsets may have regulatory functions. The involvement of TRM cells in inflammatory bowel disease (IBD) is increasingly recognized as a critical factor. In IBD, the number of pro-inflammatory TRM cells increases, whereas the number of regulatory subgroups decreases. Additionally, the classic markers, CD69 and CD103, are not ideal for intestinal TRM cells. Here, we review the phenotype, development, maintenance, and function of intestinal TRM cells, as well as the latest findings in the context of IBD. Further understanding of the function of intestinal TRM cells and distinguishing their subgroups is crucial for developing therapeutic strategies to target these cells.
Collapse
Affiliation(s)
- Ke Chen
- Nanjing Medical University, Nanjing, China
| | - Xin Gu
- Nanjing Medical University, Nanjing, China
| | | | - Rui Tao
- Nanjing Medical University, Nanjing, China
| | | | | | - Xiaoyun Wang
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
16
|
Cox LS, Alvarez-Martinez M, Wu X, Gabryšová L, Luisier R, Briscoe J, Luscombe NM, O'Garra A. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells. Wellcome Open Res 2023; 8:403. [PMID: 38074197 PMCID: PMC10709690 DOI: 10.12688/wellcomeopenres.19680.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Background CD4 + Th1 cells producing IFN-γ are required to eradicate intracellular pathogens, however if uncontrolled these cells can cause immunopathology. The cytokine IL-10 is produced by multiple immune cells including Th1 cells during infection and regulates the immune response to minimise collateral host damage. In this study we aimed to elucidate the transcriptional network of genes controlling the expression of Il10 and proinflammatory cytokines, including Ifng in Th1 cells differentiated from mouse naive CD4 + T cells. Methods We applied computational analysis of gene regulation derived from temporal profiling of gene expression clusters obtained from bulk RNA sequencing (RNA-seq) of flow cytometry sorted naïve CD4 + T cells from mouse spleens differentiated in vitro into Th1 effector cells with IL-12 and IL-27 to produce Ifng and Il10, compared to IL-27 alone which express Il10 only , or IL-12 alone which express Ifng and no Il10, or medium control driven-CD4 + T cells which do not express effector cytokines . Data were integrated with analysis of active genomic regions from these T cells using an assay for transposase-accessible chromatin with sequencing (ATAC)-seq, integrated with literature derived-Chromatin-immunoprecipitation (ChIP)-seq data and the RNA-seq data, to elucidate the transcriptional network of genes controlling expression of Il10 and pro-inflammatory effector genes in Th1 cells. The co-dominant role for the transcription factors, Prdm1 (encoding Blimp-1) and Maf (encoding c-Maf) , in cytokine gene regulation in Th1 cells, was confirmed using T cells obtained from mice with T-cell specific deletion of these transcription factors. Results We show that the transcription factors Blimp-1 and c-Maf each have unique and common effects on cytokine gene regulation and not only co-operate to induce Il10 gene expression in IL-12 plus IL-27 differentiated mouse Th1 cells, but additionally directly negatively regulate key proinflammatory cytokines including Ifng, thus providing mechanisms for reinforcement of regulated Th1 cell responses. Conclusions These data show that Blimp-1 and c-Maf positively and negatively regulate a network of both unique and common anti-inflammatory and pro-inflammatory genes to reinforce a Th1 response in mice that will eradicate pathogens with minimum immunopathology.
Collapse
Affiliation(s)
- Luke S. Cox
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Marisol Alvarez-Martinez
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Xuemei Wu
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Leona Gabryšová
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Raphaëlle Luisier
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - James Briscoe
- Developmental Dynamics Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Nicholas M. Luscombe
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, England, UK
| |
Collapse
|
17
|
Shao TY, Jiang TT, Stevens J, Russi AE, Troutman TD, Bernieh A, Pham G, Erickson JJ, Eshleman EM, Alenghat T, Jameson SC, Hogquist KA, Weaver CT, Haslam DB, Deshmukh H, Way SS. Kruppel-like factor 2+ CD4 T cells avert microbiota-induced intestinal inflammation. Cell Rep 2023; 42:113323. [PMID: 37889750 PMCID: PMC10822050 DOI: 10.1016/j.celrep.2023.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intestinal colonization by antigenically foreign microbes necessitates expanded peripheral immune tolerance. Here we show commensal microbiota prime expansion of CD4 T cells unified by the Kruppel-like factor 2 (KLF2) transcriptional regulator and an essential role for KLF2+ CD4 cells in averting microbiota-driven intestinal inflammation. CD4 cells with commensal specificity in secondary lymphoid organs and intestinal tissues are enriched for KLF2 expression, and distinct from FOXP3+ regulatory T cells or other differentiation lineages. Mice with conditional KLF2 deficiency in T cells develop spontaneous rectal prolapse and intestinal inflammation, phenotypes overturned by eliminating microbiota or reconstituting with donor KLF2+ cells. Activated KLF2+ cells selectively produce IL-10, and eliminating IL-10 overrides their suppressive function in vitro and protection against intestinal inflammation in vivo. Together with reduced KLF2+ CD4 cell accumulation in Crohn's disease, a necessity for the KLF2+ subpopulation of T regulatory type 1 (Tr1) cells in sustaining commensal tolerance is demonstrated.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Tony T Jiang
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Joseph Stevens
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Abigail E Russi
- Division of Gastroenterology, Hepatology and Advanced Nutrition, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Ty D Troutman
- Division of Allergy and Immunology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Anas Bernieh
- Division of Pathology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - John J Erickson
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kristin A Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Casey T Weaver
- Program in Immunology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - David B Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Bunde TT, de Oliveira NR, Santos FDS, Pedra ACK, Maia MAC, Dellagostin OA, Oliveira Bohn TL. Characterization of cellular immune response in hamsters immunized with recombinant vaccines against leptospirosis based on LipL32:LemA:LigAni chimeric protein. Microb Pathog 2023; 184:106378. [PMID: 37802158 DOI: 10.1016/j.micpath.2023.106378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
In the last 20 years, various research groups have endeavored to develop recombinant vaccines against leptospirosis to overcome the limitations of commercially available bacterins. Numerous antigens and vaccine formulations have been tested thus far. However, the analysis of cellular response in these vaccine formulations is not commonly conducted, primarily due to the scarcity of supplies and kits for the hamster animal model. Our research group has already tested the Q1 antigen, a chimeric protein combining the immunogenic regions of LipL32, LemA, and LigANI, in recombinant subunit and BCG-vectored vaccines. In both strategies, 100 % of the hamsters were protected against clinical signs of leptospirosis. However, only the recombinant BCG-vectored vaccine provided protection against renal colonization. Thus, the objective of this study is to characterize the cellular immune response in hamsters immunized with different vaccine formulations based on the Q1 antigen through transcriptional analysis of cytokines. The hamsters were allocated into groups and vaccinated as follows: recombinant subunit (rQ1), recombinant BCG (rBCG:Q1), and saline and BCG Pasteur control vaccines. To assess the cellular response induced by the vaccines, we cultured and stimulated splenocytes, followed by RNA extraction from the cells and analysis of cytokines using real-time PCR. The results revealed that the recombinant subunit vaccine elicited a Th2-type response, characterized by the expression of cytokines IL-10, IL-1α, and TNF-α. This pattern closely resembles the cytokines expressed in severe cases of leptospirosis. On the other hand, the rBCG-vectored vaccine induced a Th1-type response with significant up-regulation of IFN-γ. These findings suggest the involvement of the cellular response and the IFN-γ mediated inflammatory response in the sterilizing immunity mediated by rBCG. Therefore, this study may assist future investigations in characterizing the cellular response in hamsters, aiming to elucidate the mechanisms of efficacy and establish potential correlates of protection.
Collapse
Affiliation(s)
- Tiffany Thurow Bunde
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natasha Rodrigues de Oliveira
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francisco Denis Souza Santos
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana Carolina Kurz Pedra
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mara Andrade Colares Maia
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís Larré Oliveira Bohn
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
19
|
Dean EC, Ditoro DF, Pham D, Gao M, Zindl CL, Frey B, Harbour SN, Figge DA, Miller AT, Glassman CR, Garcia KC, Hatton RD, Weaver CT. IL-2-induced Stat3 Signaling is Critical for Effector Treg Cell Programming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559434. [PMID: 37808649 PMCID: PMC10557704 DOI: 10.1101/2023.09.26.559434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Maintenance of immune homeostasis to the intestinal mictrobiota is dependent on a population of effector regulatory T (eTreg) cells that develop from microbiota-reactive induced (i)Treg cells. A cardinal feature of eTreg cells is their production of IL-10, which plays a non-redundant role in immune tolerance of commensal microbes. Here, we identify an unexpected role for IL-2-induced Stat3 signaling to program iTreg cells for eTreg cell differentiation and Il10 transcriptional competency. IL-2 proved to be both necessary and sufficient for eTreg cell development - contingent on Stat3 output of the IL-2 receptor coordinate with IL-2 signaling during early Treg cell commitment. Induction of iTreg cell programming in absence of IL-2-induced Stat3 signaling resulted in impaired eTreg cell differentiation and a failure to produce IL-10. An IL-2 mutein with reduced affinity for the IL-2Rγ (γ c ) chain was found to have blunted IL-2R Stat3 output, resulting in a deficiency of Il10 transcriptional programming that could not be fully rescued by Stat3 signaling subsequent to an initial window of iTreg cell differentiation. These findings expose a heretofore unappreciated role of IL-2 signaling that acts early to program subsequent production of IL-10 by developing eTreg cells, with broad implications for IL-2-based therapeutic interventions in immune-mediated diseases.
Collapse
|
20
|
Poto R, Pecoraro A, Ferrara AL, Punziano A, Lagnese G, Messuri C, Loffredo S, Spadaro G, Varricchi G. Cytokine dysregulation despite immunoglobulin replacement therapy in common variable immunodeficiency (CVID). Front Immunol 2023; 14:1257398. [PMID: 37841257 PMCID: PMC10568625 DOI: 10.3389/fimmu.2023.1257398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1β, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results Our results showed increased serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1β, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Unità Operativa (UO) Medicina Trasfusionale, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Carla Messuri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| |
Collapse
|
21
|
Angelats E, Santamaria P. Lineage origin and transcriptional control of autoantigen-specific T-regulatory type 1 cells. Front Immunol 2023; 14:1267697. [PMID: 37818381 PMCID: PMC10560755 DOI: 10.3389/fimmu.2023.1267697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
T Regulatory type-1 (TR1) cells represent an immunosuppressive T cell subset, discovered over 25 years ago, that produces high levels of interleukin-10 (IL-10) but, unlike its FoxP3+ T regulatory (Treg) cell counterpart, does not express FoxP3 or CD25. Experimental evidence generated over the last few years has exposed a promising role for TR1 cells as targets of therapeutic intervention in immune-mediated diseases. The discovery of cell surface markers capable of distinguishing these cells from related T cell types and the application of next generation sequencing techniques to defining their transcriptional make-up have enabled a more accurate description of this T cell population. However, the developmental biology of TR1 cells has long remained elusive, in particular the identity of the cell type(s) giving rise to bona fide TR1 cells in vivo. Here, we review the fundamental phenotypic, transcriptional and functional properties of this T cell subset, and summarize recent lines of evidence shedding light into its ontogeny.
Collapse
Affiliation(s)
- Edgar Angelats
- Pathogenesis and Treatment of Autoimmunity Group, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Pathogenesis and Treatment of Autoimmunity Group, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Yuan X, Jiang H, Fu D, Rech JC, Robida A, Rajanayake K, Yuan H, He M, Wen B, Sun D, Liu C, Chinnaswamy K, Stuckey JA, Paczesny S, Yang CY. Prophylactic Mitigation of Acute Graft versus Host Disease by Novel 2-(Pyrrolidin-1-ylmethyl)pyrrole-Based Stimulation-2 (ST2) Inhibitors. ACS Pharmacol Transl Sci 2023; 6:1275-1287. [PMID: 37705593 PMCID: PMC10496145 DOI: 10.1021/acsptsci.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/15/2023]
Abstract
Hematopoietic cell transplantation (HCT) is a proven and potentially curable therapy for hematological malignancies and inherited hematological disease. The main risk of HCT is the development of graft versus host disease (GVHD) acquired in up to 50% of patients. Upregulation of soluble ST2 (sST2) is a key clinical biomarker for GVHD prognosis and was shown to be a potential therapeutic target for GVHD. Agents targeting sST2 to reduce the sST2 level after HCT have the potential to mitigate GVHD progression. Here, we report 32 (or XY52) as the lead ST2 inhibitor from our optimization campaign. XY52 had improved inhibitory activity and metabolic stability in vitro and in vivo. XY52 suppressed proinflammatory T-cell proliferation while increasing regulatory T cells in vitro. In a clinically relevant GVHD model, a 21-day prophylactic regimen of XY52 reduced plasma sST2 and IFN-γ levels and GVHD score and extended survival in mice. XY52 represented a significant improvement over our previous compound, iST2-1, and further optimization of XY52 is warranted. The small-molecule ST2 inhibitors can potentially be used as a biomarker-guided therapy for mitigating GVHD in future clinical applications.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Hua Jiang
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Denggang Fu
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Jason C. Rech
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron Robida
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Krishani Rajanayake
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hebao Yuan
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Miao He
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chen Liu
- Department
of Pathology, Yale University, New Haven, Connecticut 06520, United States
| | - Krishnapriya Chinnaswamy
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A. Stuckey
- Michigan Center for Therapeutic Innovation, Department
of Internal
Medicine, Life Sciences Institute, Department of Pharmaceutical Sciences, College of
Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sophie Paczesny
- Department
of Microbiology & Immunology, Medical
University of South Carolina, Charleston, South Carolina 29425-2503, United States
| | - Chao-Yie Yang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
23
|
Shin DS, Ratnapriya S, Cashin CN, Kuhn LF, Rahimi RA, Anthony RM, Moon JJ. Lung injury induces a polarized immune response by self-antigen-specific CD4 + Foxp3 + regulatory T cells. Cell Rep 2023; 42:112839. [PMID: 37471223 PMCID: PMC10529088 DOI: 10.1016/j.celrep.2023.112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Self-antigen-specific T cells are prevalent in the mature adaptive immune system but are regulated through multiple mechanisms of tolerance. However, inflammatory conditions such as tissue injury may allow these T cells to break tolerance and trigger autoimmunity. To understand how the T cell repertoire responds to the presentation of self-antigen under highly stimulatory conditions, we use peptide:major histocompatibility complex (MHC) class II tetramers to track the behavior of endogenous CD4+ T cells with specificity to a lung-expressed self-antigen in mouse models of immune-mediated lung injury. Acute injury results in the exclusive expansion of CD4+ regulatory T cells (Tregs) that is dependent on self-antigen recognition and interleukin-2 (IL-2). Conversely, conventional CD4+ T cells of the same self-antigen specificity remain unresponsive even following Treg ablation. Thus, the self-antigen-specific CD4+ T cell repertoire is poised to serve a regulatory function during acute tissue damage to limit further damage and the possibility of autoimmunity.
Collapse
Affiliation(s)
- Daniel S Shin
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Sneha Ratnapriya
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Creel Ng Cashin
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lucy F Kuhn
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Venkatesh H, Tracy SI, Farrar MA. Cytotoxic CD4 T cells in the mucosa and in cancer. Front Immunol 2023; 14:1233261. [PMID: 37654482 PMCID: PMC10466411 DOI: 10.3389/fimmu.2023.1233261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
CD4 T cells were initially described as helper cells that promote either the cellular immune response (Th1 cells) or the humoral immune response (Th2 cells). Since then, a plethora of functionally distinct helper and regulatory CD4 T cell subsets have been described. CD4 T cells with cytotoxic function were first described in the setting of viral infections and autoimmunity, and more recently in cancer and gut dysbiosis. Regulatory CD4 T cell subsets such as Tregs and T-regulatory type 1 (Tr1) cells have also been shown to have cytotoxic potential. Indeed, Tr1 cells have been shown to be important for maintenance of stem cell niches in the bone marrow and the gut. This review will provide an overview of cytotoxic CD4 T cell development, and discuss the role of inflammatory and Tr1-like cytotoxic CD4 T cells in maintenance of intestinal stem cells and in anti-cancer immune responses.
Collapse
Affiliation(s)
- Hrishi Venkatesh
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| | - Sean I. Tracy
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Michael A. Farrar
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| |
Collapse
|
25
|
Clement M, Ladell K, Miners KL, Marsden M, Chapman L, Cardus Figueras A, Scott J, Andrews R, Clare S, Kriukova VV, Lupyr KR, Britanova OV, Withers DR, Jones SA, Chudakov DM, Price DA, Humphreys IR. Inhibitory IL-10-producing CD4 + T cells are T-bet-dependent and facilitate cytomegalovirus persistence via coexpression of arginase-1. eLife 2023; 12:e79165. [PMID: 37440306 PMCID: PMC10344424 DOI: 10.7554/elife.79165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2023] [Indexed: 07/14/2023] Open
Abstract
Inhibitory CD4+ T cells have been linked with suboptimal immune responses against cancer and pathogen chronicity. However, the mechanisms that underpin the development of these regulatory cells, especially in the context of ongoing antigen exposure, have remained obscure. To address this knowledge gap, we undertook a comprehensive functional, phenotypic, and transcriptomic analysis of interleukin (IL)-10-producing CD4+ T cells induced by chronic infection with murine cytomegalovirus (MCMV). We identified these cells as clonally expanded and highly differentiated TH1-like cells that developed in a T-bet-dependent manner and coexpressed arginase-1 (Arg1), which promotes the catalytic breakdown of L-arginine. Mice lacking Arg1-expressing CD4+ T cells exhibited more robust antiviral immunity and were better able to control MCMV. Conditional deletion of T-bet in the CD4+ lineage suppressed the development of these inhibitory cells and also enhanced immune control of MCMV. Collectively, these data elucidated the ontogeny of IL-10-producing CD4+ T cells and revealed a previously unappreciated mechanism of immune regulation, whereby viral persistence was facilitated by the site-specific delivery of Arg1.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Morgan Marsden
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Lucy Chapman
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Anna Cardus Figueras
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Jake Scott
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Robert Andrews
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Valeriia V Kriukova
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of KielKielGermany
| | - Ksenia R Lupyr
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Olga V Britanova
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of KielKielGermany
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - David R Withers
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Dmitriy M Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Abu Dhabi Stem Cell CenterAl MuntazahUnited Arab Emirates
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
26
|
He K, Wan T, Wang D, Hu J, Zhou T, Tao W, Wei Z, Lu Q, Zhou R, Tian Z, Flavell RA, Zhu S. Gasdermin D licenses MHCII induction to maintain food tolerance in small intestine. Cell 2023; 186:3033-3048.e20. [PMID: 37327784 DOI: 10.1016/j.cell.2023.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/03/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.
Collapse
Affiliation(s)
- Kaixin He
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingting Wan
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Decai Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ji Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingyue Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wanyin Tao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China; School of Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
27
|
Yura Y, Hamada M. Outline of Salivary Gland Pathogenesis of Sjögren's Syndrome and Current Therapeutic Approaches. Int J Mol Sci 2023; 24:11179. [PMID: 37446355 DOI: 10.3390/ijms241311179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by the involvement of exocrine glands such as the salivary and lacrimal glands. The minor salivary glands, from which tissue samples may be obtained, are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of SS. In the onset of SS, autoantigens derived from the salivary glands are recognized by antigen-presenting dendritic cells, leading to the activation of T and B cells, cytokine production, autoantibody production by plasma cells, the formation of ectopic germinal centers, and the destruction of salivary gland epithelial cells. A recent therapeutic approach with immune checkpoint inhibitors for malignant tumors enhances the anti-tumor activity of cytotoxic effector T cells, but also induces SS-like autoimmune disease as an adverse event. In the treatment of xerostomia, muscarinic agonists and salivary gland duct cleansing procedure, as well as sialendoscopy, are expected to ameliorate symptoms. Clinical trials on biological therapy to attenuate the hyperresponsiveness of B cells in SS patients with systemic organ involvement have progressed. The efficacy of treatment with mesenchymal stem cells and chimeric antigen receptor T cells for SS has also been investigated. In this review, we will provide an overview of the pathogenesis of salivary gland lesions and recent trends in therapeutic approaches for SS.
Collapse
Affiliation(s)
- Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Piper M, Kluger H, Ruppin E, Hu-Lieskovan S. Immune Resistance Mechanisms and the Road to Personalized Immunotherapy. Am Soc Clin Oncol Educ Book 2023; 43:e390290. [PMID: 37459578 DOI: 10.1200/edbk_390290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
What does the future of cancer immunotherapy look like and how do we get there? Find out where we've been and where we're headed in A Report on Resistance: The Road to personalized immunotherapy.
Collapse
Affiliation(s)
- Miles Piper
- School of Medicine, University of Utah, Salt Lake City, UT
| | | | - Eytan Ruppin
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Siwen Hu-Lieskovan
- School of Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
29
|
Zhou JY, Glendenning LM, Cavanaugh JM, McNeer SK, Goodman WA, Cobb BA. Intestinal Tr1 Cells Confer Protection against Colitis in the Absence of Foxp3+ Regulatory T Cell-Derived IL-10. Immunohorizons 2023; 7:456-466. [PMID: 37314833 PMCID: PMC10580124 DOI: 10.4049/immunohorizons.2200071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
The intestinal mucosa is continually exposed to diverse microbial and dietary Ags, requiring coordinated efforts by specialized populations of regulatory T cells (Tregs) to maintain homeostasis. Suppressive mechanisms used by intestinal Tregs include the secretion of anti-inflammatory cytokines such as IL-10 and TGF-β. Defects in IL-10 signaling are associated with severe infantile enterocolitis in humans, and mice deficient in IL-10 or its receptors develop spontaneous colitis. To determine the requirement of Foxp3+ Treg-specific IL-10 for protection against colitis, we generated Foxp3-specific IL-10 knockout (KO) mice (IL-10 conditional KO [cKO] mice). Colonic Foxp3+ Tregs isolated from IL-10cKO mice showed impaired ex vivo suppressive function, although IL-10cKO mice maintained normal body weights and developed only mild inflammation over 30 wk of age (in contrast to severe colitis in global IL-10KO mice). Protection from colitis in IL-10cKO mice was associated with an expanded population of IL-10-producing type 1 Tregs (Tr1, CD4+Foxp3-) in the colonic lamina propria that produced more IL-10 on a per-cell basis compared with wild-type intestinal Tr1 cells. Collectively, our findings reveal a role for Tr1 cells in the gut, as they expand to fill a tolerogenic niche in conditions of suboptimal Foxp3+ Treg-mediated suppression and provide functional protection against experimental colitis.
Collapse
Affiliation(s)
- Julie Y. Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Leandre M. Glendenning
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Jill M. Cavanaugh
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Sarah K. McNeer
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Wendy A. Goodman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
30
|
Muir RQ, Klocke BJ, Jennings MS, Molina PA, Hsu JS, Kellum CE, Alexander KL, Lee G, Foote JB, Lorenz RG, Pollock JS, Maynard CL. Early Life Stress in Mice Leads to Impaired Colonic Corticosterone Production and Prolonged Inflammation Following Induction of Colitis. Inflamm Bowel Dis 2023; 29:960-972. [PMID: 36661889 PMCID: PMC10233396 DOI: 10.1093/ibd/izac280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Early life stress (ELS) is an environmental trigger believed to promote increased risk of IBD. Our goal was to identify mechanisms whereby ELS in mice affects susceptibility to and/or severity of gut inflammation. METHODS We utilized 2 published animal models of ELS. In the first model, newborn mice were separated from the dam daily for 4 to 8 hours starting on postnatal day 2 and then weaned early on postnatal day 17. Control mice were left undisturbed with the dams until weaning on postnatal day 21. In the second model, dams were fed dexamethasone or vehicle ad libitum in drinking water on postpartum days 1 to 14. Plasma and colonic corticosterone were measured in juvenile and adult mice. Colitis was induced in 4-week-old mice via intraperitoneal injection of interleukin (IL)-10 receptor blocking antibody every 5 days for 15 days. Five or 15 days later, colitis scores and transcripts for Tnf, glucocorticoid receptors, and steroidogenic enzymes were measured. RESULTS Mice exposed to ELS displayed reduced plasma and colonic corticosterone. Control animals showed improvements in indices of inflammation following cessation of interleukin-10 receptor blockade, whereas ELS-exposed animals maintained high levels of Tnf and histological signs of colitis. In colitic animals, prior exposure to ELS was associated with significantly lower expression of genes associated with corticosterone synthesis and responsiveness. Finally, TNF stimulation of colonic crypt cells from ELS mice led to increased inhibition of corticosterone synthesis. CONCLUSIONS Our study identifies impaired local glucocorticoid production and responsiveness as a potential mechanism whereby ELS predisposes to chronic colitis in susceptible hosts.
Collapse
Affiliation(s)
- Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Barbara J Klocke
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Patrick A Molina
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Jung-Shan Hsu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Cailin E Kellum
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Goo Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin G Lorenz
- Department of Research Pathology, Genentech, San Francisco, CAUSA
| | - Jennifer S Pollock
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| |
Collapse
|
31
|
Seal R, Schwab LSU, Chiarolla CM, Hundhausen N, Klose GH, Reu-Hofer S, Rosenwald A, Wiest J, Berberich-Siebelt F. Delayed and limited administration of the JAKinib tofacitinib mitigates chronic DSS-induced colitis. Front Immunol 2023; 14:1179311. [PMID: 37275854 PMCID: PMC10235777 DOI: 10.3389/fimmu.2023.1179311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
In inflammatory bowel disease, dysregulated T cells express pro-inflammatory cytokines. Using a chronic azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis model resembling ulcerative colitis, we evaluated whether and when treatment with the Janus kinase (JAK) inhibitor tofacitinib could be curative. Comparing the treatment with two and three cycles of tofacitinib medication in drinking water - intermittently with DSS induction - revealed that two cycles were not only sufficient but also superior over the 3-x regimen. The two cycles of the 2-x protocol paralleled the second and third cycles of the longer protocol. T cells were less able to express interferon gamma (IFN-γ) and the serum levels of IFN-γ, interleukin (IL)-2, IL-6, IL-17, and tumor necrosis factor (TNF) were significantly reduced in sera, while those of IL-10 and IL-22 increased under the 2-x protocol. Likewise, the frequency and effector phenotype of regulatory T cells (Tregs) increased. This was accompanied by normal weight gain, controlled clinical scores, and restored stool consistency. The general and histologic appearance of the colons revealed healing and tissue intactness. Importantly, two phases of tofacitinib medication completely prevented AOM-incited pseudopolyps and the hyper-proliferation of epithelia, which was in contrast to the 3-x regimen. This implies that the initial IBD-induced cytokine expression is not necessarily harmful as long as inflammatory signaling can later be suppressed and that time-restricted treatment allows for anti-inflammatory and tissue-healing cytokine activities.
Collapse
Affiliation(s)
- Rishav Seal
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lara S. U. Schwab
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Nadine Hundhausen
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Georg Heinrich Klose
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Simone Reu-Hofer
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Johannes Wiest
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | |
Collapse
|
32
|
Gu S, Yang D, Liu C, Xue W. The role of probiotics in prevention and treatment of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Hoffman K, Brownell Z, Doyle WJ, Ochoa-Repáraz J. The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. J Autoimmun 2023; 137:102957. [PMID: 36435700 PMCID: PMC10203067 DOI: 10.1016/j.jaut.2022.102957] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.
Collapse
Affiliation(s)
- Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Zackariah Brownell
- Department of Biological Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
34
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
35
|
Shin DS, Ratnapriya S, Cashin CN, Kuhn LF, Rahimi RA, Anthony RM, Moon JJ. Lung injury induces a polarized immune response by self antigen-specific Foxp3 + regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527896. [PMID: 36798259 PMCID: PMC9934659 DOI: 10.1101/2023.02.09.527896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Self antigen-specific T cells are prevalent in the mature adaptive immune system, but are regulated through multiple mechanisms of tolerance. However, inflammatory conditions such as tissue injury may provide these T cells with an opportunity to break tolerance and trigger autoimmunity. To understand how the T cell repertoire responds to the presentation of self antigen under highly stimulatory conditions, we used peptide:MHCII tetramers to track the behavior of endogenous CD4 + T cells with specificity to a lung-expressed self antigen in mouse models of immune-mediated lung injury. Acute injury resulted in the exclusive expansion of regulatory T cells (Tregs) that was dependent on self antigen recognition and IL-2. Conversely, conventional T cells of the same self antigen specificity remained unresponsive, even following Treg ablation. Thus, the self antigen-specific T cell repertoire is poised to serve a regulatory function during acute tissue damage to limit further damage and the possibility of autoimmunity.
Collapse
|
36
|
Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
37
|
Song M, Zhang X, Hao G, Lin H, Sun S. Clostridium butyricum Can Promote Bone Development by Regulating Lymphocyte Function in Layer Pullets. Int J Mol Sci 2023; 24:ijms24021457. [PMID: 36674973 PMCID: PMC9867449 DOI: 10.3390/ijms24021457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Bone health problems are a serious threat to laying hens; microbiome-based therapies, which are harmless and inexpensive, may be an effective solution for bone health problems. Here, we examined the impacts of supplementation with Clostridium butyricum (CB) on bone and immune homeostasis in pullets. The results of in vivo experiments showed that feeding the pullets CB was beneficial to the development of the tibia and upregulated the levels of the bone formation marker alkaline phosphatase and the marker gene runt-related transcription factor 2 (RUNX2). For the immune system, CB treatment significantly upregulated IL-10 expression and significantly increased the proportion of T regulatory (Treg) cells in the spleen and peripheral blood lymphocytes. In the in vitro test, adding CB culture supernatant or butyrate to the osteoblast culture system showed no significant effects on osteoblast bone formation, while adding lymphocyte culture supernatant significantly promoted bone formation. In addition, culture supernatants supplemented with treated lymphocytes (pretreated with CB culture supernatants) stimulated higher levels of bone formation. In sum, the addition of CB improved bone health by modulating cytokine expression and the ratio of Treg cells in the immune systems of layer pullets. Additionally, in vitro CB could promote the bone formation of laying hen osteoblasts through the mediation of lymphocytes.
Collapse
Affiliation(s)
- Mengze Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Xuesong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (H.L.); (S.S.)
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (H.L.); (S.S.)
| |
Collapse
|
38
|
Arteaga-Cruz S, Cortés-Hernández A, Alvarez-Salazar EK, Rosas-Cortina K, Aguilera-Sandoval C, Morales-Buenrostro LE, Alberú-Gómez JM, Soldevila G. Highly purified and functionally stable in vitro expanded allospecific Tr1 cells expressing immunosuppressive graft-homing receptors as new candidates for cell therapy in solid organ transplantation. Front Immunol 2023; 14:1062456. [PMID: 36911743 PMCID: PMC9998667 DOI: 10.3389/fimmu.2023.1062456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
The development of new strategies based on the use of Tr1 cells has taken relevance to induce long-term tolerance, especially in the context of allogeneic stem cell transplantation. Although Tr1 cells are currently identified by the co-expression of CD49b and LAG-3 and high production of interleukin 10 (IL-10), recent studies have shown the need for a more exhaustive characterization, including co-inhibitory and chemokines receptors expression, to ensure bona fide Tr1 cells to be used as cell therapy in solid organ transplantation. Moreover, the proinflammatory environment induced by the allograft could affect the suppressive function of Treg cells, therefore stability of Tr1 cells needs to be further investigated. Here, we establish a new protocol that allows long-term in vitro expansion of highly purified expanded allospecific Tr1 (Exp-allo Tr1). Our expanded Tr1 cell population becomes highly enriched in IL-10 producers (> 90%) and maintains high expression of CD49b and LAG-3, as well as the co-inhibitory receptors PD-1, CTLA-4, TIM-3, TIGIT and CD39. Most importantly, high dimensional analysis of Exp-allo Tr1 demonstrated a specific expression profile that distinguishes them from activated conventional T cells (T conv), showing overexpression of IL-10, CD39, CTLA-4 and LAG-3. On the other hand, Exp-allo Tr1 expressed a chemokine receptor profile relevant for allograft homing and tolerance induction including CCR2, CCR4, CCR5 and CXCR3, but lower levels of CCR7. Interestingly, Exp-allo Tr1 efficiently suppressed allospecific but not third-party T cell responses even after being expanded in the presence of proinflammatory cytokines for two extra weeks, supporting their functional stability. In summary, we demonstrate for the first time that highly purified allospecific Tr1 (Allo Tr1) cells can be efficiently expanded maintaining a stable phenotype and suppressive function with homing potential to the allograft, so they may be considered as promising therapeutic tools for solid organ transplantation.
Collapse
Affiliation(s)
- Saúl Arteaga-Cruz
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Evelyn Katy Alvarez-Salazar
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Katya Rosas-Cortina
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico
| | | | - Luis E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | - Gloria Soldevila
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
39
|
Wang K, Guo Y, Liu Y, Cui X, Gu X, Li L, Li Y, Li M. Pyruvate: Ferredoxin oxidoreductase is involved in IgA-related microbiota dysbiosis and intestinal inflammation. Front Immunol 2022; 13:1040774. [PMID: 36569858 PMCID: PMC9782971 DOI: 10.3389/fimmu.2022.1040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Inflammatory bowel diseases (IBDs) are associated with both immune abnormalities and dysbiosis, characterized by a loss of Faecalibacterium prausnitzii (F. prausnitzii). However, the reason for F. prausnitzii deficiency remains unclear. Methods 16S rDNA seque-ncing and IgA enzyme-linked immunosorbent assay (ELISA) were applied to identify bacterial community and IgA changes in ulcerative colitis (UC) patients. Forced immunization with F. prausnitzii in rabbits was conducted. To screen for potential IgA-reactive proteins in F. prausnitzii lysates, we performed western blotting and mass spectrometry analyses. Pyruvate: ferredoxin oxidoreductase (PFOR) was cloned and purified, then the immunoreactivity of PFOR was verified in peripheral blood mononuclear cells (PBMCs) through PCR, ELISpot assay and single-cell sequencing (scRNA-seq). Finally, the UC fecal dysbiosis was re-analyzed in the context of the phylogenetic tree of PFOR. Results F. prausnitzii was underrepresented in UC patients with elevated F. prausnitzii-reactive IgA in the fecal supernatant. Forced immunization with F. prausnitzii in rabbits led to high interferon-γ (IFN-γ) transcription in the colon, along with beta diversity disturbance and intestinal inflammation. PFOR was identified as an IgA-binding antigen of F. prausnitzii and the immunoreactivity was validated in PBMCs, which showed elevated expression of inflammatory cytokines. The scRNA-seq revealed enhanced signals in both T regulatory cells (Tregs) and monocytes after PFOR incubation. Furthermore, phylogenetic analysis revealed that PFOR was a common but conserved protein among the gut bacteria. Discussion Our results collectively suggest that PFOR is a bioactive protein in the immune system and may contribute to host-microbial crosstalk. Conserved but bioactive microbial proteins, such as PFOR, warrant more attention in future host-microbial interaction studies.
Collapse
Affiliation(s)
- Kairuo Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yixuan Guo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yuanyuan Liu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao Cui
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiang Gu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for digestive disease, Qilu Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Ming Li,
| |
Collapse
|
40
|
Ollerton MT, Folkvord JM, La Mantia A, Parry DA, Meditz AL, McCarter MD, D’Aquila R, Connick E. Follicular regulatory T cells eliminate HIV-1-infected follicular helper T cells in an IL-2 concentration dependent manner. Front Immunol 2022; 13:878273. [PMID: 36420277 PMCID: PMC9676968 DOI: 10.3389/fimmu.2022.878273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Follicular helper CD4+ T cells (TFH) are highly permissive to HIV and major foci of virus expression in both untreated and treated infection. Follicular regulatory CD4+ T cells (TFR) limit TFH numbers and function in vitro and in vivo. We evaluated the hypothesis that TFR suppress HIV replication in TFH using a well-established model of ex vivo HIV infection that employs tonsil cells from HIV uninfected individuals spinoculated with CXCR4- and CCR5-tropic HIV-GFP reporter viruses. Both CXCR4 and CCR5-tropic HIV replication were reduced in TFH cultured with TFR as compared to controls. Blocking antibodies to CD39, CTLA-4, IL-10, and TGF-beta failed to reverse suppression of HIV replication by TFR, and there were no sex differences in TFR suppressive activity. TFR reduced viability of TFH and even more so reduced HIV infected TFH as assessed by total and integrated HIV DNA. Exogenous IL-2 enhanced TFH viability and particularly numbers of GFP+ TFH in a concentration dependent manner. TFR reduced productively infected TFH at low and moderate IL-2 concentrations, and this was associated with decreases in extracellular IL-2. Both IL-2 expressing cells and larger numbers of FoxP3+CD4+ cells were detected in follicles and germinal centers of lymph nodes of people living with HIV. TFR may deplete TFH in vivo through restriction of IL-2 and thereby contribute to decay of HIV expressing cells in B cell follicles during HIV infection.
Collapse
Affiliation(s)
- Matthew T. Ollerton
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | - Joy M. Folkvord
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | | | - David A. Parry
- Department of Otolaryngology, University of Arizona, Tucson, AZ, United States
| | - Amie L. Meditz
- Department of Medicine, Division of Infectious Diseases, University of Colorado, Aurora, CO, United States
| | - Martin D. McCarter
- Department of Surgery, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, United States
| | - Richard T. D’Aquila
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elizabeth Connick
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
41
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
42
|
Kabat AM, Hackl A, Sanin DE, Zeis P, Grzes KM, Baixauli F, Kyle R, Caputa G, Edwards-Hicks J, Villa M, Rana N, Curtis JD, Castoldi A, Cupovic J, Dreesen L, Sibilia M, Pospisilik JA, Urban JF, Grün D, Pearce EL, Pearce EJ. Resident T H2 cells orchestrate adipose tissue remodeling at a site adjacent to infection. Sci Immunol 2022; 7:eadd3263. [PMID: 36240286 DOI: 10.1126/sciimmunol.add3263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 immunity is associated with adipose tissue (AT) homeostasis and infection with parasitic helminths, but whether AT participates in immunity to these parasites is unknown. We found that the fat content of mesenteric AT (mAT) declined in mice during infection with a gut-restricted helminth. This was associated with the accumulation of metabolically activated, interleukin-33 (IL-33), thymic stromal lymphopoietin (TSLP), and extracellular matrix (ECM)-producing stromal cells. These cells shared transcriptional features, including the expression of Dpp4 and Pi16, with multipotent progenitor cells (MPC) that have been identified in numerous tissues and are reported to be capable of differentiating into fibroblasts and adipocytes. Concomitantly, mAT became infiltrated with resident T helper 2 (TH2) cells that responded to TSLP and IL-33 by producing stromal cell-stimulating cytokines, including transforming growth factor β1 (TGFβ1) and amphiregulin. These TH2 cells expressed genes previously associated with type 2 innate lymphoid cells (ILC2), including Nmur1, Calca, Klrg1, and Arg1, and persisted in mAT for at least 11 months after anthelmintic drug-mediated clearance of infection. We found that MPC and TH2 cells localized to ECM-rich interstitial spaces that appeared shared between mesenteric lymph node, mAT, and intestine. Stromal cell expression of epidermal growth factor receptor (EGFR), the receptor for amphiregulin, was required for immunity to infection. Our findings point to the importance of MPC and TH2 cell interactions within the interstitium in orchestrating AT remodeling and immunity to an intestinal infection.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexandra Hackl
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - David E Sanin
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrice Zeis
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Katarzyna M Grzes
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Francesc Baixauli
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ryan Kyle
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - George Caputa
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Matteo Villa
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Nisha Rana
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Jonathan D Curtis
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Angela Castoldi
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Jovana Cupovic
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Leentje Dreesen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria Sibilia
- Institute of Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Borschkegasse 8a, Vienna A-1090, Austria
| | - J Andrew Pospisilik
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Joseph F Urban
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Belstville Agricultural Research Service, Animal Parasitic Disease Laboratory, Beltsville, MD 20705, USA
| | - Dominic Grün
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany.,Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität, Würzburg 97078, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg 97080, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.,Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| |
Collapse
|
43
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
44
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
45
|
Külp M, Diehl L, Bonig H, Marschalek R. Co-culture of primary human T cells with leukemia cells to measure regulatory T cell expansion. STAR Protoc 2022; 3:101661. [PMID: 36097388 PMCID: PMC9471457 DOI: 10.1016/j.xpro.2022.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
The expansion of regulatory T cells (Tregs) is known to be mediated by cytokines including IL-10 and TGFβ but has additionally been shown to depend on the interaction of the immune receptors ICOSLG and ICOS. Here, we describe a co-culture system which enables quantification of the ability of leukemia cells to induce Treg expansion through secreted cytokines and direct receptor interactions. The protocol is applicable for MHC-matched and -unmatched experiments and allows assessment of Treg expansion without using a mouse model. For complete details on the use and execution of this protocol, please refer to Külp et al. (2022). MHC-unmatched co-culture of primary T cells with leukemia cells Quantification of the ability of leukemia cells to induce regulatory T-cell expansion Investigation of ICOSLG-mediated regulatory T-cell induction Regulatory T-cell characterization using flow cytometry and ELISA
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
46
|
Lopatina T, Sarcinella A, Brizzi MF. Tumour Derived Extracellular Vesicles: Challenging Target to Blunt Tumour Immune Evasion. Cancers (Basel) 2022; 14:cancers14164020. [PMID: 36011012 PMCID: PMC9406972 DOI: 10.3390/cancers14164020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumour onset and development occur because of specific immune support. The immune system, which is originally able to perceive and eliminate incipient cancer cells, becomes suppressed and hijacked by cancer. For these purposes, tumour cells use extracellular vesicles (TEVs). Specific molecular composition allows TEVs to reprogram immune cells towards tumour tolerance. Circulating TEVs move from their site of origin to other organs, preparing “a fertile soil” for metastasis formation. This implies that TEV molecular content can provide a valuable tool for cancer biomarker discovery and potential targets to reshape the immune system into tumour recognition and eradication. Abstract Control of the immune response is crucial for tumour onset and progression. Tumour cells handle the immune reaction by means of secreted factors and extracellular vesicles (EV). Tumour-derived extracellular vesicles (TEV) play key roles in immune reprogramming by delivering their cargo to different immune cells. Tumour-surrounding tissues also contribute to tumour immune editing and evasion, tumour progression, and drug resistance via locally released TEV. Moreover, the increase in circulating TEV has suggested their underpinning role in tumour dissemination. This review brings together data referring to TEV-driven immune regulation and antitumour immune suppression. Attention was also dedicated to TEV-mediated drug resistance.
Collapse
|
47
|
Alteration of interleukin-10-producing Type 1 regulatory cells in autoimmune diseases. Curr Opin Hematol 2022; 29:218-224. [PMID: 35787550 DOI: 10.1097/moh.0000000000000720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights findings describing the role of interleukin (IL)-10-producing Type 1 regulatory T (Tr1) cells in controlling autoimmune diseases and possible approaches to restore their function and number. RECENT FINDINGS Reduced frequency and/or function of cell subsets playing a role in Tr1 cell induction (e.g., DC-10 and Bregs), was found in patients with autoimmunity and may impact on Tr1 cell frequency. SUMMARY IL-10 is a pleiotropic cytokine with fundamental anti-inflammatory functions acting as negative regulator of immune responses. IL-10 is critically involved in the induction and functions of Tr1 cells, a subset of memory CD4+ T cells induced in the periphery to suppress immune responses to a variety of antigens (Ags), including self-, allogeneic, and dietary Ags. Alterations in IL-10-related pathways and/or in the frequency and activities of Tr1 cells have been associated to several autoimmune diseases. We will give an overview of the alterations of IL-10 and IL-10-producing Tr1 cells in Multiple Sclerosis, Type 1 Diabetes, and Celiac Disease, in which similarities in the role of these tolerogenic mechanisms are present. Current and future approaches to overcome Tr1 cell defects and restore tolerance in these diseases will also be discussed.
Collapse
|
48
|
Pfenninger P, Yerly L, Abe J. Naïve Primary Mouse CD8+ T Cells Retain In Vivo Immune Responsiveness After Electroporation-Based CRISPR/Cas9 Genetic Engineering. Front Immunol 2022; 13:777113. [PMID: 35844563 PMCID: PMC9280190 DOI: 10.3389/fimmu.2022.777113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
CRISPR/Cas9 technology has revolutionized genetic engineering of primary cells. Although its use is gaining momentum in studies on CD8+ T cell biology, it remains elusive to what extent CRISPR/Cas9 affects in vivo function of CD8+ T cells. Here, we optimized nucleofection-based CRISPR/Cas9 genetic engineering of naïve and in vitro-activated primary mouse CD8+ T cells and tested their in vivo immune responses. Nucleofection of naïve CD8+ T cells preserved their in vivo antiviral immune responsiveness to an extent that is indistinguishable from non-nucleofected cells, whereas nucleofection of in vitro-activated CD8+ T cells led to slightly impaired expansion/survival at early time point after adoptive transfer and more pronounced contraction. Of note, different target proteins displayed distinct decay rates after gene editing. This is in stark contrast to a comparable period of time required to complete gene inactivation. Thus, for optimal experimental design, it is crucial to determine the kinetics of the loss of target gene product to adapt incubation period after gene editing. In sum, nucleofection-based CRISPR/Cas9 genome editing achieves efficient and rapid generation of mutant CD8+ T cells without imposing detrimental constraints on their in vivo functions.
Collapse
|
49
|
Touch S, Godefroy E, Rolhion N, Danne C, Oeuvray C, Straube M, Galbert C, Brot L, Alonso Salgueiro I, Chadi S, Ledent T, Chatel JM, Langella P, Jotereau F, Altare F, Sokol H. Human CD4+/CD8α+ regulatory T cells induced by Faecalibacterium prausnitzii protect against intestinal inflammation. JCI Insight 2022; 7:154722. [PMID: 35536673 DOI: 10.1172/jci.insight.154722] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Faecalibacterium prausnitzii (F. prausnitzii), a dominant bacterium of the human microbiota, is decreased in patients with inflammatory bowel diseases (IBD) and exhibits anti-inflammatory effects. In human, colonic lamina propria contains IL-10-secreting, Foxp3-negative regulatory T cells (Treg) characterized by a double expression of CD4 and CD8α (DP8α) and a specificity for F. prausnitzii. This Treg subset is decreased in IBD. The in vivo effect of DP8α cells has not been evaluated yet. Here, using a humanized model of NOD.Prkcscid IL2rγ-/- (NSG) immunodeficient mouse strain that expresses the human leucocyte antigen D-related allele HLA-DR*0401 but not murine class II (NSG-Ab° DR4) molecules, we demonstrated a protective effect of a HLA-DR*0401-restricted DP8α Treg clone combined with F. prausnitzii administration in a colitis model. In a cohort of patients with IBD, we showed an independent association between the frequency of circulating DP8α cells and disease activity. Finally, we pointed out a positive correlation between F. prausnitzii-specific DP8α Tregs and the amount of F. prausnitzii in fecal microbiota in healthy individuals and patients with ileal Crohn's disease.
Collapse
Affiliation(s)
- Sothea Touch
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
| | | | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
| | | | - Cyriane Oeuvray
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
| | - Marjolène Straube
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
| | - Chloé Galbert
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
| | - Loïc Brot
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
| | | | - Sead Chadi
- UMR1319 Micalis & AgroParisTech, INRAE, Jouy en Josas, France
| | - Tatiana Ledent
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
| | | | | | - Francine Jotereau
- CRCINA, INSERM, University of Nantes, University of Angers, Nantes, France
| | - Frédéric Altare
- CRCINA, INSERM, University of Nantes, University of Angers, Nantes, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
| |
Collapse
|
50
|
Nair VS, Heredia M, Samsom J, Huehn J. Impact of gut microenvironment on epigenetic signatures of intestinal T helper cell subsets. Immunol Lett 2022; 246:27-36. [DOI: 10.1016/j.imlet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|