1
|
Jensen M, Heinl ES, Federlein A, Schwartz U, Lund L, Madsen K, Jensen BL, Schweda F. Identification of natriuretic peptide receptor A-related gene expression signatures in podocytes in vivo reveals baseline control of protective pathways. Am J Physiol Renal Physiol 2024; 327:F806-F821. [PMID: 39298549 DOI: 10.1152/ajprenal.00394.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Natriuretic peptide receptor-A (NPR-A) is the principal receptor for the natriuretic peptides atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Targeted deletion of NPR-A in mouse glomerular podocytes significantly enhances renal injury in vivo in the DOCA-salt experimental model. It was therefore hypothesized that natriuretic peptides exert a direct protective effect on glomerular barrier integrity through activation of NPR-A and modulation of gene expression patterns in podocytes. Green fluorescence-positive podocytes from mice with a conditional deletion of Npr1 encoding NPR-A were isolated by fluorescence-activated cell sorting (FACS). Differentially expressed genes (DEGs) in podocytes were identified by RNA sequencing of podocytes from wild-type and NPR-A-deleted mice. Enrichment analysis was performed on the DEGs using Gene Ontology (GO) terms. Identified transcripts were validated by real-time PCR and ELISA of cultured isolated human and mouse glomeruli. In addition, the effect of natriuretic peptides on podocyte migration was investigated by measuring the outgrowth of podocytes from cultured glomeruli. A total of 158 DEGs were identified with 81 downregulated DEGs and 77 upregulated DEGs in Npr1-deficient podocytes. Among the downregulated genes were protein S and semaphorin 3G, which are known to have protective effects in podocytes. Protein S was also expressed in and secreted from isolated human glomeruli. GO enrichment analysis revealed that the upregulated DEGs in NPR-A deficient podocytes were associated with cell migration and motility. In line, BNP significantly decreased podocyte outgrowth from cultured glomeruli. In conclusion, endogenous levels of natriuretic peptides in mice support baseline protective pathways at glomerular podocytes such as protein S and suppress podocyte migration.NEW & NOTEWORTHY A combination of fluorescence-activated cell sorting and RNA sequencing identified 158 changed gene products in adult mouse kidneys with and without podocyte-specific deletion of the natriuretic peptide receptor A. Downregulated products included protein S and semaphorin 3G, both with proven renoprotective impact, whereas upregulated products were related to mobility of podocytes. Protein S was produced and released from human and murine isolated glomeruli, and atrial natriuretic peptide (ANP) led to decreased migration of podocytes.
Collapse
Affiliation(s)
- Mia Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Elena-Sofia Heinl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Anna Federlein
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center, Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Gyarmati G, Shroff UN, Izuhara A, Deepak S, Komers R, Bedard PW, Peti-Peterdi J. Sparsentan improves glomerular hemodynamics, cell functions, and tissue repair in a mouse model of FSGS. JCI Insight 2024; 9:e177775. [PMID: 39226116 PMCID: PMC11466195 DOI: 10.1172/jci.insight.177775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Dual endothelin-1 (ET-1) and angiotensin II (AngII) receptor antagonism with sparsentan has strong antiproteinuric actions via multiple potential mechanisms that are more pronounced, or additive, compared with current standard of care using angiotensin receptor blockers (ARBs). Considering the many actions of ET-1 and AngII on multiple cell types, this study aimed to determine glomeruloprotective mechanisms of sparsentan compared to the ARB losartan by direct visualization of its effects in the intact kidney in focal segmental glomerulosclerosis (FSGS) using intravital multiphoton microscopy. In both healthy and FSGS models, sparsentan treatment increased afferent/efferent arteriole diameters; increased or preserved blood flow and single-nephron glomerular filtration rate; attenuated acute ET-1 and AngII-induced increases in podocyte calcium; reduced proteinuria; preserved podocyte number; increased both endothelial and renin lineage cells and clones in vasculature, glomeruli, and tubules; restored glomerular endothelial glycocalyx; and attenuated mitochondrial stress and immune cell homing. These effects were either not observed or of smaller magnitude with losartan. The pleiotropic nephroprotective effects of sparsentan included improved hemodynamics, podocyte and endothelial cell functions, and tissue repair. Compared with losartan, sparsentan was more effective in the sustained preservation of kidney structure and function, which underscores the importance of the ET-1 component in FSGS pathogenesis and therapy.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Urvi Nikhil Shroff
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Audrey Izuhara
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Sachin Deepak
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Radko Komers
- Travere Therapeutics, San Diego, California, USA
| | | | - Janos Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Folts L, Martinez AS, McKey J. Tissue clearing and imaging approaches for in toto analysis of the reproductive system†. Biol Reprod 2024; 110:1041-1054. [PMID: 38159104 PMCID: PMC11180619 DOI: 10.1093/biolre/ioad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
New microscopy techniques in combination with tissue clearing protocols and emerging analytical approaches have presented researchers with the tools to understand dynamic biological processes in a three-dimensional context. This paves the road for the exploration of new research questions in reproductive biology, for which previous techniques have provided only approximate resolution. These new methodologies now allow for contextualized analysis of far-larger volumes than was previously possible. Tissue optical clearing and three-dimensional imaging techniques posit the bridging of molecular mechanisms, macroscopic morphogenic development, and maintenance of reproductive function into one cohesive and comprehensive understanding of the biology of the reproductive system. In this review, we present a survey of the various tissue clearing techniques and imaging systems, as they have been applied to the developing and adult reproductive system. We provide an overview of tools available for analysis of experimental data, giving particular attention to the emergence of artificial intelligence-assisted methods and their applicability to image analysis. We conclude with an evaluation of how novel image analysis approaches that have been applied to other organ systems could be incorporated into future experimental evaluation of reproductive biology.
Collapse
Affiliation(s)
- Lillian Folts
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Anthony S Martinez
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Jennifer McKey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
4
|
Becerra Calderon A, Shroff UN, Deepak S, Izuhara A, Trogen G, McDonough AA, Gurley SB, Nelson JW, Peti‐Peterdi J, Gyarmati G. Angiotensin II Directly Increases Endothelial Calcium and Nitric Oxide in Kidney and Brain Microvessels In Vivo With Reduced Efficacy in Hypertension. J Am Heart Assoc 2024; 13:e033998. [PMID: 38726925 PMCID: PMC11179802 DOI: 10.1161/jaha.123.033998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.
Collapse
Affiliation(s)
- Alejandra Becerra Calderon
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Urvi Nikhil Shroff
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Sachin Deepak
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Audrey Izuhara
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Greta Trogen
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Alicia A. McDonough
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
| | - Susan B. Gurley
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | | | - János Peti‐Peterdi
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Georgina Gyarmati
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| |
Collapse
|
5
|
Gyarmati G, Shroff UN, Riquier-Brison A, Desposito D, Ju W, Stocker SD, Izuhara A, Deepak S, Becerra Calderon A, Burford JL, Kadoya H, Moon JY, Chen Y, Rinschen MM, Ahmadi N, Lau L, Biemesderfer D, James AW, Minichiello L, Zlokovic BV, Gill IS, Kretzler M, Peti-Peterdi J. Neuronally differentiated macula densa cells regulate tissue remodeling and regeneration in the kidney. J Clin Invest 2024; 134:e174558. [PMID: 38598837 PMCID: PMC11142747 DOI: 10.1172/jci174558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/09/2024] [Indexed: 04/12/2024] Open
Abstract
Tissue regeneration is limited in several organs, including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest an existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD). Here, we identified neuronal differentiation features of MD cells that sense the local and systemic environment and secrete angiogenic, growth, and extracellular matrix remodeling factors, cytokines and chemokines, and control resident progenitor cells. Serial intravital imaging, MD nerve growth factor receptor and Wnt mouse models, and transcriptome analysis revealed cellular and molecular mechanisms of these MD functions. Human and therapeutic translation studies illustrated the clinical potential of MD factors, including CCN1, as a urinary biomarker and therapeutic target in chronic kidney disease. The concept that a neuronally differentiated key sensory and regulatory cell type responding to organ-specific physiological inputs controls local progenitors to remodel or repair tissues may be applicable to other organs and diverse tissue-regenerative therapeutic strategies.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Urvi Nikhil Shroff
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Anne Riquier-Brison
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Dorinne Desposito
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sean D. Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Audrey Izuhara
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Sachin Deepak
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Alejandra Becerra Calderon
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - James L. Burford
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Hiroyuki Kadoya
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Ju-Young Moon
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Yibu Chen
- USC Libraries Bioinformatics Service, University of Southern California, Los Angeles, California, USA
| | - Markus M. Rinschen
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nariman Ahmadi
- Institute of Urology, Catherine and Joseph Aresty Department of Urology, University of Southern California, Los Angeles, California, USA
| | - Lester Lau
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel Biemesderfer
- Section of Nephrology and Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Inderbir S. Gill
- Institute of Urology, Catherine and Joseph Aresty Department of Urology, University of Southern California, Los Angeles, California, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Zheng L, Mei W, Zhou J, Wei X, Huang Z, Lin X, Zhang L, Liu W, Wu Q, Li J, Yan Y. Fluorofenidone attenuates renal fibrosis by inhibiting lysosomal cathepsin‑mediated NLRP3 inflammasome activation. Exp Ther Med 2024; 27:142. [PMID: 38476910 PMCID: PMC10928820 DOI: 10.3892/etm.2024.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, no antifibrotic drug in clinical use can effectively treat renal fibrosis. Fluorofenidone (AKFPD), a novel pyridone agent, significantly reduces renal fibrosis by inhibiting the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome; however, the underlying mechanism of this inhibition is not fully understood. The present study aimed to reveal the molecular mechanism underlying the suppression of NLRP3 inflammasome activation by AKFPD. It investigated the effect of AKFPD on NLRP3 activation and lysosomal cathepsins in a unilateral ureteral obstruction (UUO) rat model, and hypoxia/reoxygenation (H/R)-treated HK-2 cells and murine peritoneal-derived macrophages (PDMs) stimulated with lipopolysaccharide (LPS) and ATP. The results confirmed that AKFPD suppressed renal interstitial fibrosis and inflammation by inhibiting NLRP3 inflammasome activation in UUO rat kidney tissues. In addition, AKFPD reduced the production of activated caspase-1 and maturation of IL-1β by suppressing NLRP3 inflammasome activation in H/R-treated HK-2 cells and murine PDMs stimulated with LPS and ATP. AKFPD also decreased the activities of cathepsins B, L and S both in vivo and in vitro. Notably, AKFPD downregulated cathepsin B expression and NLRP3 colocalization in the cytoplasm after lysosomal disruptions. Overall, the results suggested that AKFPD attenuates renal fibrosis by inhibiting lysosomal cathepsin-mediated activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Linfeng Zheng
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Mei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Wei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhijuan Huang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaozhen Lin
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Zhang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Liu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Wu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinhong Li
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Song Z, Jin M, Wang S, Wu Y, Huang Q, Xu W, Fan Y, Tian F. Reciprocal regulation of SIRT1 and AMPK by Ginsenoside compound K impedes the conversion from plasma cells to mitigate for podocyte injury in MRL/ lpr mice in a B cell-specific manner. J Ginseng Res 2024; 48:190-201. [PMID: 38465215 PMCID: PMC10920007 DOI: 10.1016/j.jgr.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 03/12/2024] Open
Abstract
Background Deposition of immune complexes drives podocyte injury acting in the initial phase of lupus nephritis (LN), a process mediated by B cell involvement. Accordingly, targeting B cell subsets represents a potential therapeutic approach for LN. Ginsenoside compound K (CK), a bioavailable component of ginseng, possesses nephritis benefits in lupus-prone mice; however, the underlying mechanisms involving B cell subpopulations remain elusive. Methods Female MRL/lpr mice were administered CK (40 mg/kg) intragastrically for 10 weeks, followed by measurements of anti-dsDNA antibodies, inflammatory chemokines, and metabolite profiles on renal samples. Podocyte function and ultrastructure were detected. Publicly available single-cell RNA sequencing data and flow cytometry analysis were employed to investigate B cell subpopulations. Metabolomics analysis was adopted. SIRT1 and AMPK expression were analyzed by immunoblotting and immunofluorescence assays. Results CK reduced proteinuria and protected podocyte ultrastructure in MRL/lpr mice by suppressing circulating anti-dsDNA antibodies and mitigating systemic inflammation. It activated B cell-specific SIRT1 and AMPK with Rhamnose accumulation, hindering the conversion of renal B cells into plasma cells. This cascade facilitated the resolution of local renal inflammation. CK facilitated the clearance of deposited immune complexes, thus reinstating podocyte morphology and mobility by normalizing the expression of nephrin and SYNPO. Conclusions Our study reveals the synergistic interplay between SIRT1 and AMPK, orchestrating the restoration of renal B cell subsets. This process effectively mitigates immune complex deposition and preserves podocyte function. Accordingly, CK emerges as a promising therapeutic agent, potentially alleviating the hyperactivity of renal B cell subsets during LN.
Collapse
Affiliation(s)
- Ziyu Song
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Jin
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shenglong Wang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanzuo Wu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Huang
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wangda Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- College of Basic Medical Science, Institute of Basic Research in Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengyuan Tian
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Mitrofanova A, Merscher S, Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol 2023; 19:629-645. [PMID: 37500941 DOI: 10.1038/s41581-023-00741-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Chronic kidney disease (CKD) is a global health problem with rising incidence and prevalence. Among several pathogenetic mechanisms responsible for disease progression, lipid accumulation in the kidney parenchyma might drive inflammation and fibrosis, as has been described in fatty liver diseases. Lipids and their metabolites have several important structural and functional roles, as they are constituents of cell and organelle membranes, serve as signalling molecules and are used for energy production. However, although lipids can be stored in lipid droplets to maintain lipid homeostasis, lipid accumulation can become pathogenic. Understanding the mechanisms linking kidney parenchymal lipid accumulation to CKD of metabolic or non-metabolic origin is challenging, owing to the tremendous variety of lipid species and their functional diversity across different parenchymal cells. Nonetheless, multiple research reports have begun to emphasize the effect of dysregulated kidney lipid metabolism in CKD progression. For example, altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury. Newly developed lipid-targeting agents are being tested in clinical trials in CKD, raising expectations for further therapeutic development in this field.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
10
|
Bronstein R, Pace J, Gowthaman Y, Salant DJ, Mallipattu SK. Podocyte-Parietal Epithelial Cell Interdependence in Glomerular Development and Disease. J Am Soc Nephrol 2023; 34:737-750. [PMID: 36800545 PMCID: PMC10125654 DOI: 10.1681/asn.0000000000000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Podocytes and parietal epithelial cells (PECs) are among the few principal cell types within the kidney glomerulus, the former serving as a crucial constituent of the kidney filtration barrier and the latter representing a supporting epithelial layer that adorns the inner wall of Bowman's capsule. Podocytes and PECs share a circumscript developmental lineage that only begins to diverge during the S-shaped body stage of nephron formation-occurring immediately before the emergence of the fully mature nephron. These two cell types, therefore, share a highly conserved gene expression program, evidenced by recently discovered intermediate cell types occupying a distinct spatiotemporal gene expression zone between podocytes and PECs. In addition to their homeostatic functions, podocytes and PECs also have roles in kidney pathogenesis. Rapid podocyte loss in diseases, such as rapidly progressive GN and collapsing and cellular subtypes of FSGS, is closely allied with PEC proliferation and migration toward the capillary tuft, resulting in the formation of crescents and pseudocrescents. PECs are thought to contribute to disease progression and severity, and the interdependence between these two cell types during development and in various manifestations of kidney pathology is the primary focus of this review.
Collapse
Affiliation(s)
- Robert Bronstein
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Jesse Pace
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Yogesh Gowthaman
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - David J. Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Sandeep K. Mallipattu
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Renal Section, Northport VA Medical Center, Northport, New York
| |
Collapse
|
11
|
Tian F, Huang S, Xu W, Xie G, Gan Y, Huang F, Fan Y, Bao J. Fasudil compensates podocyte injury via CaMK4/Rho GTPases signal and actin cytoskeleton-dependent activation of YAP in MRL/lpr mice. Int Immunopharmacol 2023; 119:110199. [PMID: 37094544 DOI: 10.1016/j.intimp.2023.110199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Deposition of immune complexes in the glomerulus leads to irreversible renal damage in lupus nephritis (LN), of which podocyte malfunction arises earlier. Fasudil, the only Rho GTPases inhibitor approved in clinical settings, possesses well-established renoprotective actions; yet, no studies addressed the amelioration derived from fasudil in LN. To clarify, we investigated whether fasudil exerted renal remission in lupus-prone mice. In this study, fasudil (20 mg/kg) was intraperitoneally administered to female MRL/lpr mice for 10 weeks. We report that fasudil administration swept antibodies (anti-dsDNA) and attenuated systemic inflammatory response in MRL/lpr mice, accompanied by preserving podocyte ultrastructure and averting immune complex deposition. Mechanistically, it repressed the expression of CaMK4 in glomerulopathy by preserving nephrin and synaptopodin expression. And fasudil further blocked cytoskeletal breakage in the Rho GTPases-dependent action. Further analyses showed that beneficial actions of fasudil on the podocytes required intra-nuclear YAP activation underlying actin dynamics. In addition, in vitro assays revealed that fasudil normalized the motile imbalance by suppressing intracellular calcium enrichment, thereby contributing to the resistance of apoptosis in podocytes. Altogether, our findings suggest that the precise manners of crosstalks between cytoskeletal assembly and YAP activation underlying the upstream CaMK4/Rho GTPases signal in podocytes is a reliable target for podocytopathies treatment, and fasudil might serve as a promising therapeutic agent to compensate for the podocyte injury in LN.
Collapse
Affiliation(s)
- Fengyuan Tian
- General Practice, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, PR China
| | - Shuo Huang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wangda Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Guanqun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yihong Gan
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Fugang Huang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yongsheng Fan
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Jie Bao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
12
|
Barutta F, Bellini S, Kimura S, Hase K, Corbetta B, Corbelli A, Fiordaliso F, Bruno S, Biancone L, Barreca A, Papotti M, Hirsh E, Martini M, Gambino R, Durazzo M, Ohno H, Gruden G. Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy. Autophagy 2023; 19:505-524. [PMID: 35659195 PMCID: PMC9851239 DOI: 10.1080/15548627.2022.2080382] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Podocyte injury leading to albuminuria is a characteristic feature of diabetic nephropathy (DN). Hyperglycemia and advanced glycation end products (AGEs) are major determinants of DN. However, the underlying mechanisms of podocyte injury remain poorly understood. The cytosolic protein TNFAIP2/M-Sec is required for tunneling nanotubes (TNTs) formation, which are membrane channels that transiently connect cells, allowing organelle transfer. Podocytes express TNFAIP2 and form TNTs, but the potential relevance of the TNFAIP2-TNT system in DN is unknown. We studied TNFAIP2 expression in both human and experimental DN and the renal effect of tnfaip2 deletion in streptozotocin-induced DN. Moreover, we explored the role of the TNFAIP2-TNT system in podocytes exposed to diabetes-related insults. TNFAIP2 was overexpressed by podocytes in both human and experimental DN and exposre of podocytes to high glucose and AGEs induced the TNFAIP2-TNT system. In diabetic mice, tnfaip2 deletion exacerbated albuminuria, renal function loss, podocyte injury, and mesangial expansion. Moreover, blockade of the autophagic flux due to lysosomal dysfunction was observed in diabetes-injured podocytes both in vitro and in vivo and exacerbated by tnfaip2 deletion. TNTs allowed autophagosome and lysosome exchange between podocytes, thereby ameliorating AGE-induced lysosomal dysfunction and apoptosis. This protective effect was abolished by tnfaip2 deletion, TNT inhibition, and donor cell lysosome damage. By contrast, Tnfaip2 overexpression enhanced TNT-mediated transfer and prevented AGE-induced autophagy and lysosome dysfunction and apoptosis. In conclusion, TNFAIP2 plays an important protective role in podocytes in the context of DN by allowing TNT-mediated autophagosome and lysosome exchange and may represent a novel druggable target.Abbreviations: AGEs: advanced glycation end products; AKT1: AKT serine/threonine kinase 1; AO: acridine orange; ALs: autolysosomes; APs: autophagosomes; BM: bone marrow; BSA: bovine serum albumin; CTSD: cathepsin D; DIC: differential interference contrast; DN: diabetic nephropathy; FSGS: focal segmental glomerulosclerosis; HG: high glucose; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PI3K: phosphoinositide 3-kinase; STZ: streptozotocin; TNF: tumor necrosis factor; TNFAIP2: tumor necrosis factor, alpha-induced protein 2; TNTs: tunneling nanotubes; WT: wild type.
Collapse
Affiliation(s)
- F. Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy,CONTACT F. Barutta Department of Medical Sciences, Corso Dogliotti 1410126, Turin, Italy
| | - S. Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - S. Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - K. Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - B. Corbetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - A. Corbelli
- Unit of Bioimaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - F. Fiordaliso
- Unit of Bioimaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - S. Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - L. Biancone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - A. Barreca
- Division of Pathology, Città della Salute e della Scienza Hospital, Turin, Italy
| | - M.G. Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - E. Hirsh
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - M. Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - R. Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - M. Durazzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - H. Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - G. Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
14
|
Arndt P, Sradnick J, Kroeger H, Holtzhausen S, Kessel F, Gerlach M, Todorov V, Hugo C. A quantitative 3D intravital look at the juxtaglomerular renin-cell-niche reveals an individual intra/extraglomerular feedback system. Front Physiol 2022; 13:980787. [PMID: 36237522 PMCID: PMC9550881 DOI: 10.3389/fphys.2022.980787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The juxtaglomerular niche occupied by renin cells (RCN) plays an important role in glomerular repair but the precise temporal and spatial interrelations remain unclear. This study proposes the hypothesis of a local intra-extraglomerular regenerative feedback system and establishes a new quantifiable system for RCN responses in individual glomeruli in vivo. A strictly intraglomerular two-photon laser-induced injury model was established. Labeled renin cells (RC) in transgenic renin reporter mice were fate-traced in healthy and injured glomeruli over several days by intravital microscopy and quantified via new three-dimensional image processing algorithms based on ray tracing. RC in healthy glomeruli demonstrated dynamic extraglomerular protrusions. Upon intraglomerular injury the corresponding RCN first increased in volume and then increased in area of dynamic migration up to threefold compared to their RCN. RC started migration reaching the site of injury within 3 hours and acquired a mesangial cell phenotype without losing physical RCN-contact. During intraglomerular repair only the corresponding RCN responded via stimulated neogenesis, a process of de novo differentiation of RC to replenish the RCN. Repeated continuous intravital microscopy provides a state-of-the-art tool to prove and further study the local intraglomerular RCN repair feedback system in individual glomeruli in vivo in a quantifiable manner.
Collapse
Affiliation(s)
- Patrick Arndt
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Jan Sradnick
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Hannah Kroeger
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Stefan Holtzhausen
- Institute of Machine Elements and Machine Design, Chair of Virtual Product Development, Dresden University of Technology, Dresden, Germany
| | - Friederike Kessel
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Michael Gerlach
- Core Facility Cellular Imaging, Experimental Center, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Vladimir Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- *Correspondence: Christian Hugo,
| |
Collapse
|
15
|
Abstract
Fluorescence microscopy has represented a crucial technique to explore the cellular and molecular mechanisms in the field of biomedicine. However, the conventional one-photon microscopy exhibits many limitations when living samples are imaged. The new technologies, including two-photon microscopy (2PM), have considerably improved the in vivo study of pathophysiological processes, allowing the investigators to overcome the limits displayed by previous techniques. 2PM enables the real-time intravital imaging of the biological functions in different organs at cellular and subcellular resolution thanks to its improved laser penetration and less phototoxicity. The development of more sensitive detectors and long-wavelength fluorescent dyes as well as the implementation of semi-automatic software for data analysis allowed to gain insights in essential physiological functions, expanding the frontiers of cellular and molecular imaging. The future applications of 2PM are promising to push the intravital microscopy beyond the existing limits. In this review, we provide an overview of the current state-of-the-art methods of intravital microscopy, focusing on the most recent applications of 2PM in kidney physiology.
Collapse
|
16
|
Molitoris BA, Sandoval RM, Wagner MC. Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics. Front Physiol 2022; 13:827280. [PMID: 35399274 PMCID: PMC8988037 DOI: 10.3389/fphys.2022.827280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.
Collapse
|
17
|
Xie J, Tian S, Liu J, Cao R, Yue P, Cai X, Shang Q, Yang M, Han L, Zhang DK. Dual role of the nasal microbiota in neurological diseases—An unignorable risk factor or a potential therapy carrier. Pharmacol Res 2022; 179:106189. [DOI: 10.1016/j.phrs.2022.106189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
|
18
|
The Calcium-Sensing Receptor Stabilizes Podocyte Function in Proteinuric Humans and Mice. Kidney Int 2022; 101:1186-1199. [DOI: 10.1016/j.kint.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
|
19
|
Shembrey C, Smith J, Grandin M, Williams N, Cho HJ, Mølck C, Behrenbruch C, Thomson BNJ, Heriot AG, Merino D, Hollande F. Longitudinal Monitoring of Intra-Tumoural Heterogeneity Using Optical Barcoding of Patient-Derived Colorectal Tumour Models. Cancers (Basel) 2022; 14:581. [PMID: 35158849 PMCID: PMC8833441 DOI: 10.3390/cancers14030581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Geno- and phenotypic heterogeneity amongst cancer cell subpopulations are established drivers of treatment resistance and tumour recurrence. However, due to the technical difficulty associated with studying such intra-tumoural heterogeneity, this phenomenon is seldom interrogated in conventional cell culture models. Here, we employ a fluorescent lineage technique termed "optical barcoding" (OBC) to perform simultaneous longitudinal tracking of spatio-temporal fate in 64 patient-derived colorectal cancer subclones. To do so, patient-derived cancer cell lines and organoids were labelled with discrete combinations of reporter constructs, stably integrated into the genome and thus passed on from the founder cell to all its clonal descendants. This strategy enables the longitudinal monitoring of individual cell lineages based upon their unique optical barcodes. By designing a novel panel of six fluorescent proteins, the maximum theoretical subpopulation resolution of 64 discriminable subpopulations was achieved, greatly improving throughput compared with previous studies. We demonstrate that all subpopulations can be purified from complex clonal mixtures via flow cytometry, permitting the downstream isolation and analysis of any lineages of interest. Moreover, we outline an optimized imaging protocol that can be used to image optical barcodes in real-time, allowing for clonal dynamics to be resolved in live cells. In contrast with the limited intra-tumour heterogeneity observed in conventional 2D cell lines, the OBC technique was successfully used to quantify dynamic clonal expansions and contractions in 3D patient-derived organoids, which were previously demonstrated to better recapitulate the heterogeneity of their parental tumour material. In summary, we present OBC as a user-friendly, inexpensive, and high-throughput technique for monitoring intra-tumoural heterogeneity in in vitro cell culture models.
Collapse
Affiliation(s)
- Carolyn Shembrey
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Jai Smith
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Mélodie Grandin
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Nathalia Williams
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Hyun-Jung Cho
- Biological Optical Microscopy Platform, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Christina Mølck
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Corina Behrenbruch
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of General Surgical Specialties, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia;
| | - Benjamin NJ. Thomson
- Department of General Surgical Specialties, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia;
- Department of Surgery, the Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Alexander G. Heriot
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Surgery, St Vincent’s Hospital, Melbourne, VIC 3065, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| |
Collapse
|
20
|
Kitching AR, Hickey MJ. Immune cell behaviour and dynamics in the kidney - insights from in vivo imaging. Nat Rev Nephrol 2022; 18:22-37. [PMID: 34556836 DOI: 10.1038/s41581-021-00481-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The actions of immune cells within the kidney are of fundamental importance in kidney homeostasis and disease. In disease settings such as acute kidney injury, anti-neutrophil cytoplasmic antibody-associated vasculitis, lupus nephritis and renal transplant rejection, immune cells resident within the kidney and those recruited from the circulation propagate inflammatory responses with deleterious effects on the kidney. As in most forms of inflammation, intravital imaging - particularly two-photon microscopy - has been critical to our understanding of immune cell responses in the renal microvasculature and interstitium, enabling visualization of immune cell dynamics over time rather than statically. These studies have demonstrated differences in the recruitment and function of these cells from those in more conventional vascular beds, and provided a wealth of information on the actions of blood-borne immune cells such as neutrophils, monocytes and T cells, as well as kidney-resident mononuclear phagocytes, in a range of diseases affecting different kidney compartments. In particular, in vivo imaging has furthered our understanding of leukocyte function within the glomerulus in acute glomerulonephritis, and in the tubulointerstitium and interstitial microvasculature during acute kidney injury and following transplantation, revealing mechanisms of immune surveillance, antigen presentation and inflammation in the kidney.
Collapse
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia. .,Departments of Nephrology and Paediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Little MH, Humphreys BD. Regrow or Repair: An Update on Potential Regenerative Therapies for the Kidney. J Am Soc Nephrol 2022; 33:15-32. [PMID: 34789545 PMCID: PMC8763179 DOI: 10.1681/asn.2021081073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.
Collapse
Affiliation(s)
- Melissa H. Little
- Murdoch Children’s Research Institute, Parkville, Melbourne, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, Missouri,Department of Developmental Biology, Washington University in St. Louis School of Medicine, Missouri
| |
Collapse
|
22
|
GYARMATI GEORGINA, TOMA ILDIKÓ, IZUHARA AUDREY, BURFORD JAMESL, SHROFF URVINIKHIL, PAPADOURI STELLA, DEEPAK SACHIN, PETI-PETERDI JÁNOS. The role of TRPC6 calcium channels and P2 purinergic receptors in podocyte mechanical and metabolic sensing. Physiol Int 2021; 109:2021.00205. [PMID: 34978536 PMCID: PMC9200898 DOI: 10.1556/2060.2021.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Podocyte calcium (Ca2+) signaling plays important roles in the (patho)physiology of the glomerular filtration barrier. Overactivation of podocyte transient receptor potential canonical (TRPC) channels including TRPC6 and purinergic signaling via P2 receptors that are known mechanosensors can increase podocyte intracellular Ca2+ levels ([Ca2+]i) and cause cell injury, proteinuria and glomerular disease including in diabetes. However, important mechanistic details of the trigger and activation of these pathways in vivo in the intact glomerular environment are lacking. Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2. Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli. Single-nephron intra-glomerular capillary pressure elevations induced by obstructing the efferent arteriole lumen with laser-induced microthrombus in vivo and by a micropipette in vitro triggered >2-fold increases in podocyte [Ca2+]i. These responses were blocked in TRPC6 and P2Y2 KO mice. Acute elevations of plasma glucose caused >4-fold increases in podocyte [Ca2+]i that were abolished by pharmacological inhibition of TRPC6 or P2 receptors using SAR7334 or suramin treatment, respectively. This study established the role of Ca2+ signaling via TRPC6 channels and P2 receptors in mechanical and metabolic sensing of podocytes in vivo, which are promising therapeutic targets in conditions with high intra-glomerular capillary pressure and plasma glucose, such as diabetic and hypertensive nephropathy.
Collapse
Affiliation(s)
- GEORGINA GYARMATI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - ILDIKÓ TOMA
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - AUDREY IZUHARA
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - JAMES L. BURFORD
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - URVI NIKHIL SHROFF
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - STELLA PAPADOURI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - SACHIN DEEPAK
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - JÁNOS PETI-PETERDI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Chung H, Komada T, Lau A, Chappellaz M, Platnich JM, de Koning HD, Petri B, Luque Y, Walker S, Benediktsson H, Mesnard L, Chun J, Muruve DA. AIM2 Suppresses Inflammation and Epithelial Cell Proliferation during Glomerulonephritis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2799-2812. [PMID: 34740957 DOI: 10.4049/jimmunol.2100483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
Absent in melanoma-2 (AIM2) is an inflammasome-forming innate immune sensor for dsDNA but also exhibits inflammasome-independent functions such as restricting cellular proliferation. AIM2 is expressed in the kidney, but its localization and function are not fully characterized. In normal human glomeruli, AIM2 localized to podocytes. In patients with glomerulonephritis, AIM2 expression increased in CD44+-activated parietal epithelial cells within glomerular crescents. To explore AIM2 effects in glomerular disease, studies in Aim2 -/- mice were performed. Aim2-/- glomeruli showed reduced expression of Wilm tumor gene-1 (WT1), WT1-driven podocyte genes, and increased proliferation in outgrowth assays. In a nephrotoxic serum (NTS)-induced glomerulonephritis model, Aim2-/- (B6) mice exhibited more severe glomerular crescent formation, tubular injury, inflammation, and proteinuria compared with wild-type controls. Inflammasome activation markers were absent in both Aim2 -/- and wild-type kidneys, despite an increased inflammatory transcriptomic signature in Aim2 -/- mice. Aim2 -/- mice also demonstrated dysregulated cellular proliferation and an increase in CD44+ parietal epithelial cells during glomerulonephritis. The augmented inflammation and epithelial cell proliferation in Aim2 -/- (B6) mice was not due to genetic background, as Aim2 -/- (B6.129) mice demonstrated a similar phenotype during NTS glomerulonephritis. The AIM2-like receptor (ALR) locus was necessary for the inflammatory glomerulonephritis phenotype observed in Aim2 -/- mice, as NTS-treated ALR -/- mice displayed equal levels of injury as wild-type controls. Podocyte outgrowth from ALR -/- glomeruli was still increased, however, confirming that the ALR locus is dispensable for AIM2 effects on epithelial cell proliferation. These results identify a noncanonical role for AIM2 in suppressing inflammation and epithelial cell proliferation during glomerulonephritis.
Collapse
Affiliation(s)
- Hyunjae Chung
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Takanori Komada
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Lau
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mona Chappellaz
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jaye M Platnich
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Heleen D de Koning
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Björn Petri
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yosu Luque
- Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Département de Néphrologie, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Inserm UMR_S1155, Sorbonne Université, Paris, France; and
| | - Simon Walker
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hallgrimur Benediktsson
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Laurent Mesnard
- Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Département de Néphrologie, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Inserm UMR_S1155, Sorbonne Université, Paris, France; and
| | - Justin Chun
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel A Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
24
|
Gyarmati G, Shroff UN, Izuhara A, Hou X, Da Sacco S, Sedrakyan S, Lemley KV, Amann K, Perin L, Peti-Peterdi J. Intravital imaging reveals glomerular capillary distension and endothelial and immune cell activation early in Alport syndrome. JCI Insight 2021; 7:152676. [PMID: 34793332 PMCID: PMC8765042 DOI: 10.1172/jci.insight.152676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Alport syndrome (AS) is a genetic disorder caused by mutations in type IV collagen that lead to defective glomerular basement membrane, glomerular filtration barrier (GFB) damage, and progressive chronic kidney disease. While the genetic basis of AS is well known, the molecular and cellular mechanistic details of disease pathogenesis have been elusive, hindering the development of mechanism-based therapies. Here, we performed intravital multiphoton imaging of the local kidney tissue microenvironment in a X-linked AS mouse model to directly visualize the major drivers of AS pathology. Severely distended glomerular capillaries and aneurysms were found accompanied by numerous microthrombi, increased glomerular endothelial surface layer (glycocalyx) and immune cell homing, GFB albumin leakage, glomerulosclerosis, and interstitial fibrosis by 5 months of age, with an intermediate phenotype at 2 months. Renal histology in mouse or patient tissues largely failed to detect capillary aberrations. Treatment of AS mice with hyaluronidase or the ACE inhibitor enalapril reduced the excess glomerular endothelial glycocalyx and blocked immune cell homing and GFB albumin leakage. This study identified central roles of glomerular mechanical forces and endothelial and immune cell activation early in AS, which could be therapeutically targeted to reduce mechanical strain and local tissue inflammation and improve kidney function.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, United States of America
| | - Urvi Nikhil Shroff
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, United States of America
| | - Audrey Izuhara
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, United States of America
| | - Xiaogang Hou
- Division of Urology, Children's Hospital Los Angeles, Los Angeles, United States of America
| | - Stefano Da Sacco
- Division of Urology, Children's Hospital Los Angeles, Los Angeles, United States of America
| | - Sargis Sedrakyan
- Division of Urology, Children's Hospital Los Angeles, Los Angeles, United States of America
| | - Kevin V Lemley
- Department of Pediatics, Children's Hospital Los Angeles, Los angeles, United States of America
| | - Kerstin Amann
- Department of Nephropathology, Friedrich Alexander University, Erlangen, Germany
| | - Laura Perin
- Division of Urology, Children's Hospital Los Angeles, Los Angeles, United States of America
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, United States of America
| |
Collapse
|
25
|
Gyarmati G, Jacob CO, Peti-Peterdi J. New Endothelial Mechanisms in Glomerular (Patho)biology and Proteinuria Development Captured by Intravital Multiphoton Imaging. Front Med (Lausanne) 2021; 8:765356. [PMID: 34722598 PMCID: PMC8548465 DOI: 10.3389/fmed.2021.765356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
In the past two decades, intravital imaging using multiphoton microscopy has provided numerous new visual and mechanistic insights into glomerular biology and disease processes including the function of glomerular endothelial cells (GEnC), podocytes, and the development of proteinuria. Although glomerular endothelial injury is known to precede podocyte damage in several renal diseases, the primary role of GEnCs in proteinuria development received much less attention compared to the vast field of podocyte pathobiology. Consequently, our knowledge of GEnC mechanisms in glomerular diseases is still emerging. This review highlights new visual clues on molecular and cellular mechanisms of GEnCs and their crosstalk with podocytes and immune cells that were acquired recently by the application of multiphoton imaging of the intact glomerular microenvironment in various proteinuric disease models. New mechanisms of glomerular tissue remodeling and regeneration are discussed based on results of tracking the fate and function of individual GEnCs using serial intravital multiphoton imaging over several days and weeks. The three main topics of this review include (i) the role of endothelial injury and microthrombi in podocyte detachment and albumin leakage via hemodynamic and mechanical forces, (ii) the alterations of the endothelial surface layer (glycocalyx) and its interactions with circulating immune cells in lupus nephritis, and (iii) the structural and functional remodeling and regeneration of GEnCs in hypertension, diabetes, and other experimental injury conditions. By the comprehensive visual portrayal of GEnCs and the many other contributing glomerular cell types, this review emphasizes the complexity of pathogenic mechanisms that result in proteinuria development.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Chaim O Jacob
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - János Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Ardalan M, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Bastami M, Nariman-Saleh-Fam Z, Abediazar S, Khalilov R, Zununi Vahed S. Migrasomes and exosomes; different types of messaging vesicles in podocytes. Cell Biol Int 2021; 46:52-62. [PMID: 34647672 DOI: 10.1002/cbin.11711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023]
Abstract
Podocytes, highly specified kidney epithelial cells, live under several pathological stimuli and stresses during which they adapt themselves to keep homeostasis. Nevertheless, under extreme stress, a complex scenario of podocyte damage and its consequences occur. Podocyte damage causes foot process effacement and their detachment from the glomerular basement membrane, leading to proteinuria. Podocyte-derived extracellular vesicles (pEVs), mainly microparticles and exosomes are considered as signaling mediators of intercellular communication. Recently, it has been shown that throughout the injury-related migration procedure, podocytes are capable of releasing the injury-related migrasomes. Evidence indicates that at the early stages of glomerular disorders, increased levels of pEVs are observed in urine. At the early stage of nephropathy, pEVs especially migrasomes seem to be more sensitive and reliable indicators of podocyte stress and/or damage than proteinuria. This review highlights the current knowledge of pEVs and their values for the diagnosis of different kidney diseases.
Collapse
Affiliation(s)
| | | | | | - Milad Bastami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine
| | | |
Collapse
|
27
|
Liu W, Peng L, Tian W, Li Y, Zhang P, Sun K, Yang Y, Li X, Li G, Zhu X. Loss of phosphatidylserine flippase β-subunit Tmem30a in podocytes leads to albuminuria and glomerulosclerosis. Dis Model Mech 2021; 14:268980. [PMID: 34080006 PMCID: PMC8246268 DOI: 10.1242/dmm.048777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
The asymmetric distribution of phosphatidylserine (PS) in the cytoplasmic leaflet of eukaryotic cell plasma membranes is regulated by a group of P4-ATPases (named PS flippases) and the β-subunit TMEM30A. Podocytes in the glomerulus form a filtration barrier to prevent the traversing of large cellular elements and macromolecules from the blood into the urinary space. Damage to podocytes can disrupt the filtration barrier and lead to proteinuria and podocytopathy. We observed reduced TMEM30A expression in patients with minimal change disease and membranous nephropathy, indicating potential roles of TMEM30A in podocytopathy. To investigate the role of Tmem30a in the kidney, we generated a podocyte-specific Tmem30a knockout (KO) mouse model using the NPHS2-Cre line. Tmem30a KO mice displayed albuminuria, podocyte degeneration, mesangial cell proliferation with prominent extracellular matrix accumulation and eventual progression to focal segmental glomerulosclerosis. Our data demonstrate a critical role of Tmem30a in maintaining podocyte survival and glomerular filtration barrier integrity. Understanding the dynamic regulation of the PS distribution in the glomerulus provides a unique perspective to pinpointing the mechanism of podocyte damage and potential therapeutic targets.
Collapse
Affiliation(s)
- Wenjing Liu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lei Peng
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan Clinical Research Center for Kidney Diseases, Sichuan 610072, China
| | - Wanli Tian
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yi Li
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan Clinical Research Center for Kidney Diseases, Sichuan 610072, China
| | - Ping Zhang
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan Clinical Research Center for Kidney Diseases, Sichuan 610072, China
| | - Kuanxiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yeming Yang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiao Li
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Guisen Li
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan Clinical Research Center for Kidney Diseases, Sichuan 610072, China
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Department of Ophthalmology, Shangqiu First People's Hospital, Shangqiu, Henan 476000, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China
| |
Collapse
|
28
|
Ebefors K, Lassén E, Anandakrishnan N, Azeloglu EU, Daehn IS. Modeling the Glomerular Filtration Barrier and Intercellular Crosstalk. Front Physiol 2021; 12:689083. [PMID: 34149462 PMCID: PMC8206562 DOI: 10.3389/fphys.2021.689083] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
The glomerulus is a compact cluster of capillaries responsible for blood filtration and initiating urine production in the renal nephrons. A trilaminar structure in the capillary wall forms the glomerular filtration barrier (GFB), composed of glycocalyx-enriched and fenestrated endothelial cells adhering to the glomerular basement membrane and specialized visceral epithelial cells, podocytes, forming the outermost layer with a molecular slit diaphragm between their interdigitating foot processes. The unique dynamic and selective nature of blood filtration to produce urine requires the functionality of each of the GFB components, and hence, mimicking the glomerular filter in vitro has been challenging, though critical for various research applications and drug screening. Research efforts in the past few years have transformed our understanding of the structure and multifaceted roles of the cells and their intricate crosstalk in development and disease pathogenesis. In this review, we present a new wave of technologies that include glomerulus-on-a-chip, three-dimensional microfluidic models, and organoids all promising to improve our understanding of glomerular biology and to enable the development of GFB-targeted therapies. Here, we also outline the challenges and the opportunities of these emerging biomimetic systems that aim to recapitulate the complex glomerular filter, and the evolving perspectives on the sophisticated repertoire of cellular signaling that comprise the glomerular milieu.
Collapse
Affiliation(s)
- Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Lassén
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
29
|
Desposito D, Schiessl IM, Gyarmati G, Riquier-Brison A, Izuhara AK, Kadoya H, Der B, Shroff UN, Hong YK, Peti-Peterdi J. Serial intravital imaging captures dynamic and functional endothelial remodeling with single-cell resolution. JCI Insight 2021; 6:123392. [PMID: 33848265 PMCID: PMC8262275 DOI: 10.1172/jci.insight.123392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells are important in the maintenance of healthy blood vessels and in the development of vascular diseases. However, the origin and dynamics of endothelial precursors and remodeling at the single-cell level have been difficult to study in vivo owing to technical limitations. Therefore, we aimed to develop a direct visual approach to track the fate and function of single endothelial cells over several days and weeks in the same vascular bed in vivo using multiphoton microscopy (MPM) of transgenic Cdh5-Confetti mice and the kidney glomerulus as a model. Individual cells of the vascular endothelial lineage were identified and tracked owing to their unique color combination, based on the random expression of cyan/green/yellow/red fluorescent proteins. Experimental hypertension, hyperglycemia, and laser-induced endothelial cell ablation rapidly increased the number of new glomerular endothelial cells that appeared in clusters of the same color, suggesting clonal cell remodeling by local precursors at the vascular pole. Furthermore, intravital MPM allowed the detection of distinct structural and functional alterations of proliferating endothelial cells. No circulating Cdh5-Confetti+ cells were found in the renal cortex. Moreover, the heart, lung, and kidneys showed more significant clonal endothelial cell expansion compared with the brain, pancreas, liver, and spleen. In summary, we have demonstrated that serial MPM of Cdh5-Confetti mice in vivo is a powerful technical advance to study endothelial remodeling and repair in the kidney and other organs under physiological and disease conditions.
Collapse
Affiliation(s)
- Dorinne Desposito
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Ina Maria Schiessl
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Anne Riquier-Brison
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Audrey K Izuhara
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Hiroyuki Kadoya
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Balint Der
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Urvi Nikhil Shroff
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| |
Collapse
|
30
|
Martins JR, Haenni D, Bugarski M, Polesel M, Schuh C, Hall AM. Intravital kidney microscopy: entering a new era. Kidney Int 2021; 100:527-535. [PMID: 34015315 DOI: 10.1016/j.kint.2021.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
The development of intravital imaging with multiphoton microscopy has had a major impact on kidney research. It provides the unique opportunity to visualize dynamic behavior of cells and organelles in their native environment and to relate this to the complex 3-dimensional structure of the organ. Moreover, changes in cell/organelle function can be followed in real time in response to physiological interventions or disease-causing insults. However, realizing the enormous potential of this exciting approach has necessitated overcoming several substantial practical hurdles. In this article, we outline the nature of these challenges and how a variety of technical advances have provided effective solutions. In particular, improvements in laser/microscope technology, fluorescent probes, transgenic animals, and abdominal windows are collectively making previously opaque processes visible. Meanwhile, the rise of machine learning-based image analysis is facilitating the rapid generation of large amounts of quantitative data, amenable to deeper statistical interrogation. Taken together, the increased capabilities of multiphoton imaging are opening up huge new possibilities to study structure-function relationships in the kidney in unprecedented detail. In addition, they are yielding important new insights into cellular mechanisms of tissue damage, repair, and adaptive remodeling during disease states. Thus, intravital microscopy is truly entering an exciting new era in translational kidney research.
Collapse
Affiliation(s)
- Joana R Martins
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland; Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Claus Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
31
|
Abstract
AbstractAcute kidney injury (AKI) is a common clinical symptom, which is mainly manifested by elevated serum creatinine and blood urea nitrogen levels. When AKI is not repaired in time, the patient is prone to develop chronic kidney disease (CKD). The kidney is composed of more than 30 different cells, and its structure is complex. It is extremely challenging to understand the lineage relationships and cell fate of these cells in the process of kidney injury and regeneration. Since the 20th century, lineage tracing technology has provided an important mean for studying organ development, tissue damage repair, and the differentiation and fate of single cells. However, traditional lineage tracing methods rely on sacrificing animals to make tissue slices and then take snapshots with conventional imaging tools to obtain interesting information. This method cannot achieve dynamic and continuous monitoring of cell actions on living animals. As a kind of intravital microscopy (IVM), two-photon microscopy (TPM) has successfully solved the above problems. Because TPM has the ability to penetrate deep tissues and can achieve imaging at the single cell level, lineage tracing technology with TPM is gradually becoming popular. In this review, we provided the key technical elements of lineage tracing, and how to use intravital imaging technology to visualize and quantify the fate of renal cells.
Collapse
|
32
|
Abstract
Renal epithelial cells show remarkable regenerative capacity to recover from acute injury, which involves specific phenotypic changes, but also significant profibrotic tubule-interstitial crosstalk. Tubule-derived profibrotic stimuli and subsequent myofibroblast activation and extracellular matrix deposition have been linked closely with decline of renal function and nephron loss. However, recent data have questioned the view of purely detrimental effects of myofibroblast activation in the injured kidney and even suggested its beneficial role for epithelial regeneration. This article reviews the current understanding of the underlying mechanisms of tubular cell turnover, new suggested pathways of proregenerative tubular-interstitial crosstalk, and relevant insights of proliferation-enhancing effects of myofibroblasts on epithelial cells in nonrenal tissues.
Collapse
|
33
|
Barutta F, Kimura S, Hase K, Bellini S, Corbetta B, Corbelli A, Fiordaliso F, Barreca A, Papotti MG, Ghiggeri GM, Salvidio G, Roccatello D, Audrito V, Deaglio S, Gambino R, Bruno S, Camussi G, Martini M, Hirsch E, Durazzo M, Ohno H, Gruden G. Protective Role of the M-Sec-Tunneling Nanotube System in Podocytes. J Am Soc Nephrol 2021; 32:1114-1130. [PMID: 33722931 PMCID: PMC8259684 DOI: 10.1681/asn.2020071076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte dysfunction and loss are major determinants in the development of proteinuria. FSGS is one of the most common causes of proteinuria, but the mechanisms leading to podocyte injury or conferring protection against FSGS remain poorly understood. The cytosolic protein M-Sec has been involved in the formation of tunneling nanotubes (TNTs), membrane channels that transiently connect cells and allow intercellular organelle transfer. Whether podocytes express M-Sec is unknown and the potential relevance of the M-Sec-TNT system in FSGS has not been explored. METHODS We studied the role of the M-Sec-TNT system in cultured podocytes exposed to Adriamycin and in BALB/c M-Sec knockout mice. We also assessed M-Sec expression in both kidney biopsies from patients with FSGS and in experimental FSGS (Adriamycin-induced nephropathy). RESULTS Podocytes can form TNTs in a M-Sec-dependent manner. Consistent with the notion that the M-Sec-TNT system is cytoprotective, podocytes overexpressed M-Sec in both human and experimental FSGS. Moreover, M-Sec deletion resulted in podocyte injury, with mitochondrial abnormalities and development of progressive FSGS. In vitro, M-Sec deletion abolished TNT-mediated mitochondria transfer between podocytes and altered mitochondrial bioenergetics. Re-expression of M-Sec reestablishes TNT formation and mitochondria exchange, rescued mitochondrial function, and partially reverted podocyte injury. CONCLUSIONS These findings indicate that the M-Sec-TNT system plays an important protective role in the glomeruli by rescuing podocytes via mitochondrial horizontal transfer. M-Sec may represent a promising therapeutic target in FSGS, and evidence that podocytes can be rescued via TNT-mediated horizontal transfer may open new avenues of research.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Stefania Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Alessandro Corbelli
- Department of Cardiovascular Medicine, Institute of Pharmacological Research Mario Negri, Scientific Institute for Hospitalization and Care (IRCCS), Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Medicine, Institute of Pharmacological Research Mario Negri, Scientific Institute for Hospitalization and Care (IRCCS), Milan, Italy
| | | | | | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, Gaslini Children’s Hospital, Genoa, Italy
| | - Gennaro Salvidio
- Scientific Institute for Hospitalization and Care (IRCCS), San Martino University Hospital Clinic, Genoa, Italy
| | - Dario Roccatello
- Center of Research of Immunopathology and Rare Diseases, Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy,Nephrology and Dialysis, Department of Clinical and Biological Sciences, S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | | | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
34
|
Angelotti ML, Antonelli G, Conte C, Romagnani P. Imaging the kidney: from light to super-resolution microscopy. Nephrol Dial Transplant 2021; 36:19-28. [PMID: 31325314 PMCID: PMC7771978 DOI: 10.1093/ndt/gfz136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
The important achievements in kidney physiological and pathophysiological mechanisms can largely be ascribed to progress in the technology of microscopy. Much of what we know about the architecture of the kidney is based on the fundamental descriptions of anatomic microscopists using light microscopy and later by ultrastructural analysis provided by electron microscopy. These two techniques were used for the first classification systems of kidney diseases and for their constant updates. More recently, a series of novel imaging techniques added the analysis in further dimensions of time and space. Confocal microscopy allowed us to sequentially visualize optical sections along the z-axis and the availability of specific analysis software provided a three-dimensional rendering of thicker tissue specimens. Multiphoton microscopy permitted us to simultaneously investigate kidney function and structure in real time. Fluorescence-lifetime imaging microscopy allowed to study the spatial distribution of metabolites. Super-resolution microscopy increased sensitivity and resolution up to nanoscale levels. With cryo-electron microscopy, researchers could visualize the individual biomolecules at atomic levels directly in the tissues and understand their interaction at subcellular levels. Finally, matrix-assisted laser desorption/ionization imaging mass spectrometry permitted the measuring of hundreds of different molecules at the same time on tissue sections at high resolution. This review provides an overview of available kidney imaging strategies, with a focus on the possible impact of the most recent technical improvements.
Collapse
Affiliation(s)
- Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Giulia Antonelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Carolina Conte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| |
Collapse
|
35
|
Koike Y, Li B, Chen Y, Ganji N, Alganabi M, Miyake H, Lee C, Hock A, Wu R, Uchida K, Inoue M, Delgado-Olguin P, Pierro A. Live Intravital Intestine with Blood Flow Visualization in Neonatal Mice Using Two-photon Laser Scanning Microscopy. Bio Protoc 2021; 11:e3937. [PMID: 33796611 DOI: 10.21769/bioprotoc.3937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/02/2022] Open
Abstract
This protocol describes a novel technique to investigate the microcirculation dynamics underlying the pathology in the small intestine of neonatal mice using two-photon laser-scanning microscopy (TPLSM). Recent technological advances in multi-photon microscopy allow intravital analysis of different organs such as the liver, brain and intestine. Despite these advances, live visualization and analysis of the small intestine in neonatal rodents remain technically challenging. We herein provide a detailed description of a novel method to capture high resolution and stable images of the small intestine in neonatal mice as early as postnatal day 0. This imaging technique allows a comprehensive understanding of the development and blood flow dynamics in small intestine microcirculation.
Collapse
Affiliation(s)
- Yuhki Koike
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Bo Li
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yong Chen
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Niloofar Ganji
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mashriq Alganabi
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hiromu Miyake
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alison Hock
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Richard Wu
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Paul Delgado-Olguin
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart & Stroke Richard Lewar Centre of Excellence, Toronto, Ontario, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
36
|
Vaghela R, Arkudas A, Horch RE, Hessenauer M. Actually Seeing What Is Going on - Intravital Microscopy in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:627462. [PMID: 33681162 PMCID: PMC7925911 DOI: 10.3389/fbioe.2021.627462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Intravital microscopy (IVM) study approach offers several advantages over in vitro, ex vivo, and 3D models. IVM provides real-time imaging of cellular events, which provides us a comprehensive picture of dynamic processes. Rapid improvement in microscopy techniques has permitted deep tissue imaging at a higher resolution. Advances in fluorescence tagging methods enable tracking of specific cell types. Moreover, IVM can serve as an important tool to study different stages of tissue regeneration processes. Furthermore, the compatibility of different tissue engineered constructs can be analyzed. IVM is also a promising approach to investigate host reactions on implanted biomaterials. IVM can provide instant feedback for improvising tissue engineering strategies. In this review, we aim to provide an overview of the requirements and applications of different IVM approaches. First, we will discuss the history of IVM development, and then we will provide an overview of available optical modalities including the pros and cons. Later, we will summarize different fluorescence labeling methods. In the final section, we will discuss well-established chronic and acute IVM models for different organs.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
37
|
Glomerular filtrate affects the dynamics of podocyte detachment in a model of diffuse toxic podocytopathy. Kidney Int 2021; 99:1149-1161. [PMID: 33582108 DOI: 10.1016/j.kint.2020.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022]
Abstract
Podocyte injury and subsequent detachment are hallmarks of progressive glomerulosclerosis. In addition to cell injury, unknown mechanical forces on the injured podocyte may promote detachment. To identify the nature of these mechanical forces, we studied the dynamics of podocyte detachment using sequential ultrastructural geometry analysis by transmission electron microscopy in NEP25, a mouse model of podocytopathy induced by anti-Tac(Fv)-PE38 (LMB2), a fusion protein attached to Pseudomonas exotoxin A, targeting CD25 on podocytes. After LMB2 injection, foot process effacement occurred on day three but detachment commenced on day eight and extended to day ten, reaching toward the urinary pole in clusters. Podocyte detachment was associated with foot process effacement covering over 60% of the glomerular basement membrane length. However, approximately 25% of glomeruli with diffuse (over 80%) foot process effacement showed no detachment. Blocking glomerular filtration via unilateral ureteral obstruction resulted in diffuse foot process effacement but no pseudocysts or detachment, whereas uninephrectomy increased pseudocysts and accelerated detachment, indicating that glomerular filtrate drives podocyte detachment via pseudocyst formation as a forerunner. Additionally, more detachment was observed in juxtamedullary glomeruli than in superficial glomeruli. Thus, glomerular filtrate drives the dynamics of podocyte detachment in this model of podocytopathy. Hence, foot process effacement may be a prerequisite allowing filtrate to generate local mechanical forces that expand the subpodocyte space forming pseudocysts, promote podocyte detachment and subsequent segmental sclerosis.
Collapse
|
38
|
Parietal epithelial cells role in repair versus scarring after glomerular injury. Curr Opin Nephrol Hypertens 2021; 29:293-301. [PMID: 32235272 DOI: 10.1097/mnh.0000000000000600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW The recent years have been marked by the publication of several articles highlighting the pathophysiological role of glomerular parietal epithelial cells (PEC) and refining their phenotypic heterogeneity. RECENT FINDINGS The present review synthetizes recent findings on (i) the potential regenerative role of PEC in glomerular diseases, and (ii) the mechanisms and signaling of leading to PEC pathogenic involvement in crescentic glomerulonephritis (CGN) and focal segmental glomerulosclerosis (FSGS). SUMMARY The debate is still open regarding the podocyte regenerative properties of PEC in glomerular disease, whereas the pathogenic involvement of PEC activation in glomerular disease is increasingly admitted. Recent highlights on the podocyte regenerative role of PEC, on one hand, and on their pathological function, on the other hand, for sure will feed the debate in the kidney community for the next years. Nevertheless, from a therapeutic perspective, the two options, boosting cellular regeneration and blocking PECs pathogenicity, should not be seen as antagonistic but, rather, complementary.
Collapse
|
39
|
Mahwish UN, Pasha M, Heera B, Raju SB, Jahan P. Implication of podocin promoter variant haplotype in south Indian diabetic kidney patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Gyarmati G, Shroff UN, Riquier-Brison A, Kriz W, Kaissling B, Neal CR, Arkill KP, Ahmadi N, Gill IS, Moon JY, Desposito D, Peti-Peterdi J. A new view of macula densa cell microanatomy. Am J Physiol Renal Physiol 2021; 320:F492-F504. [PMID: 33491562 DOI: 10.1152/ajprenal.00546.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation, and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells, were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy of the rat, rabbit, and human kidney. An elaborate network of major and minor cell processes, here named maculapodia, were found at the cell base, projecting toward other MD cells and the glomerular vascular pole. The extent of maculapodia showed upregulation by low dietary salt intake and the female sex. Time-lapse imaging of maculapodia revealed highly dynamic features including rapid outgrowth and an extensive vesicular transport system. Electron microscopy of rat, rabbit, and human kidneys and three-dimensional volume reconstruction in optically cleared whole-mount MD-GFP mouse kidneys further confirmed the presence and projections of maculapodia into the extraglomerular mesangium and afferent and efferent arterioles. The newly identified dynamic and secretory features of MD cells suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD cells and between MD and other target cells.NEW & NOTEWORTHY This study illuminated a physiologically regulated dense network of basal cell major and minor processes (maculapodia) in macula densa (MD) cells. The newly identified dynamic and secretory features of these microanatomical structures suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD and other target cells. Detailed characterization of the function and molecular details of MD cell intercellular communications and their role in physiology and disease warrant further studies.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Urvi Nikhil Shroff
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Anne Riquier-Brison
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Wilhelm Kriz
- Centre for Biomedicine and Medical Technology Mannheim, Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Christopher R Neal
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kenton P Arkill
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, United Kingdom
| | - Nariman Ahmadi
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Inderbir S Gill
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ju-Young Moon
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Dorinne Desposito
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - János Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
41
|
Farinella DM, Roy A, Liu CJ, Kara P. Improving laser standards for three-photon microscopy. NEUROPHOTONICS 2021; 8:015009. [PMID: 33693052 PMCID: PMC7937945 DOI: 10.1117/1.nph.8.1.015009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Significance: Three-photon excitation microscopy has double-to-triple the penetration depth in biological tissue over two-photon imaging and thus has the potential to revolutionize the visualization of biological processes in vivo. However, unlike the plug-and-play operation and performance of lasers used in two-photon imaging, three-photon microscopy presents new technological challenges that require a closer look at the fidelity of laser pulses. Aim: We implemented state-of-the-art pulse measurements and developed innovative techniques for examining the performance of lasers used in three-photon microscopy. We then demonstrated how these techniques can be used to provide precise measurements of pulse shape, pulse energy, and pulse-to-pulse intensity variability, all of which ultimately impact imaging. Approach: We built inexpensive tools, e.g., a second harmonic generation frequency-resolved optical gating (SHG-FROG) device and a deep-memory diode imaging (DMDI) apparatus to examine laser pulse fidelity. Results: First, SHG-FROG revealed very large third-order dispersion (TOD). This extent of phase distortion prevents the efficient temporal compression of laser pulses to their theoretical limit. Furthermore, TOD cannot be quantified when using a conventional method of obtaining the laser pulse duration, e.g., when using an autocorrelator. Finally, DMDI showed the effectiveness of detecting pulse-to-pulse intensity fluctuations on timescales relevant to three-photon imaging, which were otherwise not captured using conventional instruments and statistics. Conclusions: The distortion of individual laser pulses caused by TOD poses significant challenges to three-photon imaging by preventing effective compression of laser pulses and decreasing the efficiency of nonlinear excitation. Moreover, an acceptably low pulse-to-pulse amplitude variability should not be assumed. Particularly for low repetition rate laser sources used in three-photon microscopy, pulse-to-pulse variability also degrades image quality. If three-photon imaging is to become mainstream, our diagnostics may be used by laser manufacturers to improve system design and by end-users to validate the performance of their current and future imaging systems.
Collapse
Affiliation(s)
- Deano M. Farinella
- University of Minnesota, Department of Neuroscience and Center for Magnetic Resonance Research, Minneapolis, Minnesota, United States
| | - Arani Roy
- University of Minnesota, Department of Neuroscience and Center for Magnetic Resonance Research, Minneapolis, Minnesota, United States
| | - Chao J. Liu
- University of Minnesota, Department of Neuroscience and Center for Magnetic Resonance Research, Minneapolis, Minnesota, United States
| | - Prakash Kara
- University of Minnesota, Department of Neuroscience and Center for Magnetic Resonance Research, Minneapolis, Minnesota, United States
| |
Collapse
|
42
|
Liang Y, Walczak P. Long term intravital single cell tracking under multiphoton microscopy. J Neurosci Methods 2020; 349:109042. [PMID: 33340557 DOI: 10.1016/j.jneumeth.2020.109042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Visualizing and tracking cells over time in a living organism has been a much-coveted dream before the invention of intravital microscopy. The opaque nature of tissue was a major hurdle that was remedied by the multiphoton microscopy. With the advancement of optical imaging and fluorescent labeling tools, intravital high resolution imaging has become increasingly accessible over the past few years. Long-term intravital tracking of single cells (LIST) under multiphoton microscopy provides a unique opportunity to gain insight into the longitudinal changes in the morphology, migration, or function of cells or subcellular structures. It is particularly suitable for studying slow-evolving cellular and molecular events during normal development or disease progression, without losing the opportunity of catching fast events such as calcium signals. Here, we review the application of LIST under 2-photon microscopy in various fields of neurobiology and discuss challenges and new directions in labeling and imaging methods for LIST. Overall, this review provides an overview of current applications of LIST in mammals, which is an emerging field that will contribute to a better understanding of essential molecular and cellular events in health and disease.
Collapse
Affiliation(s)
- Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Liu Y, Li S, Rong W, Zeng C, Zhu X, Chen Q, Li L, Liu ZH, Zen K. Podocyte-Released Migrasomes in Urine Serve as an Indicator for Early Podocyte Injury. KIDNEY DISEASES 2020; 6:422-433. [PMID: 33313063 DOI: 10.1159/000511504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
Background Levels of urinary microvesicles, which are increased during various kidney injuries, have diagnostic potential for renal diseases. However, the significance of urinary microvesicles as a renal disease indicator is dampened by the difficulty to ascertain their cell source. Objectives The aim of this study was to demonstrate that podocytes can release migrasomes, a unique class of microvesicle with size ranging between 400 and 2,000 nm, and the urine level of migrasomes may serve as novel non-invasive biomarker for early podocyte injury. Method In this study, immunofluorescence labeling, electronic microscopy, nanosite, and sequential centrifugation were used to purify and analyze migrasomes. Results Migrasomes released by podocytes differ from exosomes as they have different content and mechanism of release. Compared to podocytes, renal tubular cells secrete markedly less migrasomes. Moreover, secretion of migrasomes by human or murine podocytes was strongly augmented during podocyte injuries induced by LPS, puromycin amino nucleoside (PAN), or a high concentration of glucose (HG). LPS, PAN, or HG-induced podocyte migrasome release, however, was blocked by Rac-1 inhibitor. Strikingly, a higher level of podocyte migrasomes in urine was detected in mice with PAN-nephropathy than in control mice. In fact, increased urinary migrasome number was detected earlier than elevated proteinuria during PAN-nephropathy, suggesting that urinary migrasomes are a more sensitive podocyte injury indicator than proteinuria. Increased urinary migrasome number was also detected in diabetic nephropathy patients with proteinuria level <5.5 g/day. Conclusions Our findings reveal that podocytes release the "injury-related" migrasomes during migration and provide urinary podocyte migrasome as a potential diagnostic marker for early podocyte injury.
Collapse
Affiliation(s)
- Ying Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Shan Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Weiwei Rong
- Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qilin Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Limin Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Zhi-Hong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| |
Collapse
|
44
|
Kadoya H, Yu N, Schiessl IM, Riquier-Brison A, Gyarmati G, Desposito D, Kidokoro K, Butler MJ, Jacob CO, Peti-Peterdi J. Essential role and therapeutic targeting of the glomerular endothelial glycocalyx in lupus nephritis. JCI Insight 2020; 5:131252. [PMID: 32870819 PMCID: PMC7566710 DOI: 10.1172/jci.insight.131252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2020] [Indexed: 01/11/2023] Open
Abstract
Lupus nephritis (LN) is a major organ complication and cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). There is an unmet medical need for developing more efficient and specific, mechanism-based therapies, which depends on improved understanding of the underlying LN pathogenesis. Here we present direct visual evidence from high-power intravital imaging of the local kidney tissue microenvironment in mouse models showing that activated memory T cells originated in immune organs and the LN-specific robust accumulation of the glomerular endothelial glycocalyx played central roles in LN development. The glomerular homing of T cells was mediated via the direct binding of their CD44 to the hyaluronic acid (HA) component of the endothelial glycocalyx, and glycocalyx-degrading enzymes efficiently disrupted homing. Short-course treatment with either hyaluronidase or heparinase III provided long-term organ protection as evidenced by vastly improved albuminuria and survival rate. This glycocalyx/HA/memory T cell interaction is present in multiple SLE-affected organs and may be therapeutically targeted for SLE complications, including LN. A combined immunology and renal pathophysiology study of the local kidney tissue microenvironment in lupus identifies a key role of glomerular endothelial glycocalyx in disease development.
Collapse
Affiliation(s)
- Hiroyuki Kadoya
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Nephrology/Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Ning Yu
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ina Maria Schiessl
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anne Riquier-Brison
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dorinne Desposito
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kengo Kidokoro
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Nephrology/Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Matthew J Butler
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Chaim O Jacob
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
45
|
Ranjit S, Lanzanò L, Libby AE, Gratton E, Levi M. Advances in fluorescence microscopy techniques to study kidney function. Nat Rev Nephrol 2020; 17:128-144. [PMID: 32948857 DOI: 10.1038/s41581-020-00337-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Fluorescence microscopy, in particular immunofluorescence microscopy, has been used extensively for the assessment of kidney function and pathology for both research and diagnostic purposes. The development of confocal microscopy in the 1950s enabled imaging of live cells and intravital imaging of the kidney; however, confocal microscopy is limited by its maximal spatial resolution and depth. More recent advances in fluorescence microscopy techniques have enabled increasingly detailed assessment of kidney structure and provided extraordinary insights into kidney function. For example, nanoscale precise imaging by rapid beam oscillation (nSPIRO) is a super-resolution microscopy technique that was originally developed for functional imaging of kidney microvilli and enables detection of dynamic physiological events in the kidney. A variety of techniques such as fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) enable assessment of interaction between proteins. The emergence of other super-resolution techniques, including super-resolution stimulated emission depletion (STED), photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (SIM), has enabled functional imaging of cellular and subcellular organelles at ≤50 nm resolution. The deep imaging via emission recovery (DIVER) detector allows deep, label-free and high-sensitivity imaging of second harmonics, enabling assessment of processes such as fibrosis, whereas fluorescence lifetime imaging microscopy (FLIM) enables assessment of metabolic processes.
Collapse
Affiliation(s)
- Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA. .,Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
46
|
Wang Q, Tian X, Zhou W, Wang Y, Zhao H, Li J, Zhou X, Zhang H, Zhao T, Li P. Protective Role of Tangshen Formula on the Progression of Renal Damage in db/db Mice by TRPC6/Talin1 Pathway in Podocytes. J Diabetes Res 2020; 2020:3634974. [PMID: 33015191 PMCID: PMC7519445 DOI: 10.1155/2020/3634974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/11/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Tangshen Formula (TSF) is a Chinese Medicine formula that has been reported to alleviate proteinuria and protect renal function in humans and animals with diabetic kidney disease (DKD). However, little is known about its mechanism in improving proteinuria. The dysregulation of podocyte cell-matrix adhesion has been demonstrated to play an important role in the pathogenesis and progression of proteinuric kidney diseases including DKD. In the present study, the underlying protective mechanism of TSF on podocytes was investigated using the murine model of type 2 DKD db/db mice in vivo and advanced glycation end products (AGEs)-stimulated primary mice podocytes in vitro. Results revealed that TSF treatment could significantly mitigate reduction of podocyte numbers and foot process effacement, reduce proteinuria, and protect renal function in db/db mice. There was a significant increase in expression of transient receptor potential canonical channel 6 (TRPC6) and a decrease in expression of talin1 in podocytes of db/db mice. The results of AGEs-stimulated primary mice podocytes showed increased cell migration and actin-cytoskeleton rearrangement. Moreover, primary mice podocytes stimulated by AGEs displayed an increase in TRPC6-dependent Ca2+ influx, a loss of talin1, and translocation of nuclear factor of activated T cell (NFATC) 2. These dysregulations in mice primary podocytes stimulated by AGEs could be significantly attenuated after TSF treatment. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC6 agonist, blocked the protective role of TSF on podocyte cell-matrix adherence. In conclusion, TSF could protect podocytes from injury and reduce proteinuria in DKD, which may be mediated by the regulation of the TRPC6/Talin1 pathway in podocytes.
Collapse
Affiliation(s)
- Qian Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wei'e Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing 101149, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jialin Li
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuefeng Zhou
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tingting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
47
|
Wrede C, Hegermann J, Mühlfeld C. Novel cell contact between podocyte microprojections and parietal epithelial cells analyzed by volume electron microscopy. Am J Physiol Renal Physiol 2020; 318:F1246-F1251. [PMID: 32249613 DOI: 10.1152/ajprenal.00097.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Podocytes are highly specialized cells with a clear cell polarity. It is known that in health and disease, microvilli protrude from the apical surface of the podocytes into the urinary space. As a basis to better understand the podocyte microprojections/microvilli, the present study analyzed their spatial localization, extension, and contact site with parietal epithelial cells (PECs). Using different electron microscopic (EM) techniques, we analyzed renal corpuscles of healthy young adult male C57BL/6 mice fixed by vascular perfusion. Serial block-face scanning EM was used to visualize entire corpuscles, focused ion beam scanning EM was performed to characterize microprojection/microvilli-rich regions at higher magnification, and transmission EM of serial sections was used to analyze the contact zone between podocyte microprojections and PECs. Numerous microprojections originating from the primary processes of podocytes were present in the urinary space in all regions of the corpuscle. They often reached the apical surface of the PEC but did not make junctional contacts. At high resolution, it was observed that the glycocalyx of both cells was in contact. Depending on the distance between podocytes and PECs, these microprojections had a stretched or coiled state. The present study shows that microprojections/microvilli of podocytes are a physiological feature of healthy mouse kidneys and are frequently in contact with the apical surface of PECs, thus spanning the urinary space. It is proposed that podocyte microprojections serve mechanosensory or communicative functions between podocytes and PECs.
Collapse
Affiliation(s)
- Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
Tran T, Lindström NO, Ransick A, De Sena Brandine G, Guo Q, Kim AD, Der B, Peti-Peterdi J, Smith AD, Thornton M, Grubbs B, McMahon JA, McMahon AP. In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes. Dev Cell 2020; 50:102-116.e6. [PMID: 31265809 DOI: 10.1016/j.devcel.2019.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022]
Abstract
The renal corpuscle of the kidney comprises a glomerular vasculature embraced by podocytes and supported by mesangial myofibroblasts, which ensure plasma filtration at the podocyte-generated slit diaphragm. With a spectrum of podocyte-expressed gene mutations causing chronic disease, an enhanced understanding of podocyte development and function to create relevant in vitro podocyte models is a clinical imperative. To characterize podocyte development, scRNA-seq was performed on human fetal kidneys, identifying distinct transcriptional signatures accompanying the differentiation of functional podocytes from progenitors. Interestingly, organoid-generated podocytes exhibited highly similar, progressive transcriptional profiles despite an absence of the vasculature, although abnormal gene expression was pinpointed in late podocytes. On transplantation into mice, organoid-derived podocytes recruited the host vasculature and partially corrected transcriptional profiles. Thus, human podocyte development is mostly intrinsically regulated and vascular interactions refine maturation. These studies support the application of organoid-derived podocytes to model disease and to restore or replace normal kidney functions.
Collapse
Affiliation(s)
- Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Guilherme De Sena Brandine
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Balint Der
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew D Smith
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
49
|
BENZING THOMAS. MOLECULAR DESIGN OF THE KIDNEY FILTRATION BARRIER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:125-139. [PMID: 32675853 PMCID: PMC7358502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Kidneys are the central regulators of organismal homeostasis. These organs filter enormous amounts of fluid from plasma; excrete toxic waste products; maintain salt, water, and volume balance; coordinate blood pressure regulation; and maintain the acid-base equilibrium essential for life. Although it has been known for decades that renal glomeruli serve as the site of plasma ultrafiltration and urine production, both the molecular design and function of the kidney filtration barrier have remained elusive. Indeed, the past two decades have witnessed enormous breakthroughs in our fundamental understanding of kidney filtration and the critical role that podocytes, specialized terminally differentiated epithelial cells at the glomerular capillaries, fulfill in the function of the kidney filtration barrier. Here we discuss recent advances in this field that will change the way we think about plasma ultrafiltration in health and proteinuria as a manifestation of glomerular diseases.
Collapse
Affiliation(s)
- THOMAS BENZING
- Correspondence and reprint requests: Thomas Benzing, MD, Department II of Internal Medicine, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany+ 49 221 4784480, 49 221 4785959
| |
Collapse
|
50
|
Wang Q, Tian X, Wang Y, Wang Y, Li J, Zhao T, Li P. Role of Transient Receptor Potential Canonical Channel 6 (TRPC6) in Diabetic Kidney Disease by Regulating Podocyte Actin Cytoskeleton Rearrangement. J Diabetes Res 2020; 2020:6897390. [PMID: 31998809 PMCID: PMC6964719 DOI: 10.1155/2020/6897390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023] Open
Abstract
Podocyte injury is an important pathogenesis step causing proteinuric kidney diseases such as diabetic kidney disease (DKD). Actin cytoskeleton rearrangement in podocyte induced by multiple pathogenic factors is believed to be the key process resulting in glomerular injury. Many studies have recently shown that transient receptor potential canonical channel 6 (TRPC6) in podocyte plays a critical role in the development and progression of proteinuric kidney disease by regulating its actin cytoskeleton rearrangement. This review is aimed at summarizing the role of TRPC6 on DKD by regulating the podocyte actin cytoskeleton rearrangement, thereby help further broaden our views and understanding on the mechanism of DKD and provide a theoretic basis for exploring new therapeutic targets for DKD patients.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuyang Wang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Jialin Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tingting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|