1
|
Sims AC, Schäfer A, Okuda K, Leist SR, Kocher JF, Cockrell AS, Hawkins PE, Furusho M, Jensen KL, Kyle JE, Burnum-Johnson KE, Stratton KG, Lamar NC, Niccora CD, Weitz KK, Smith RD, Metz TO, Waters KM, Boucher RC, Montgomery SA, Baric RS, Sheahan TP. Dysregulation of lung epithelial cell homeostasis and immunity contributes to Middle East respiratory syndrome coronavirus disease severity. mSphere 2025:e0095124. [PMID: 39882872 DOI: 10.1128/msphere.00951-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses. To better understand the virus and host interactions driving lethal MERS-CoV infection, we performed a longitudinal multi-omics analysis of sublethal and lethal MERS-CoV infection in mice. Significant differences were observed in body weight loss, virus titers, and acute lung injury among lethal and sub-lethal virus doses. Virus-induced apoptosis of type I and II alveolar epithelial cells suggests that loss or dysregulation of these key cell populations was a major driver of severe disease. Omics analysis suggested differential pathogenesis was multi-factorial with clear differences among innate and adaptive immune pathways as well as those that regulate lung epithelial homeostasis. Infection of mice lacking functional T and B cells showed that adaptive immunity was important in controlling viral replication but also increased pathogenesis. In summary, we provide a high-resolution host response atlas for MERS-CoV infection and disease severity. Multi-omics studies of viral pathogenesis offer a unique opportunity to not only better understand the molecular mechanisms of disease but also to identify genes and pathways that can be exploited for therapeutic intervention all of which is important for our future pandemic preparedness.IMPORTANCEEmerging coronaviruses like SARS-CoV, SARS-CoV-2, and MERS-CoV cause a range of disease outcomes in humans from an asymptomatic, moderate, and severe respiratory disease that can progress to death but the factors causing these disparate outcomes remain unclear. Understanding host responses to mild and life-threatening infections provides insight into virus-host networks within and across organ systems that contribute to disease outcomes. We used multi-omics approaches to comprehensively define the host response to moderate and severe MERS-CoV infection. Severe respiratory disease was associated with dysregulation of the immune response. Key lung epithelial cell populations that are essential for lung function get infected and die. Mice lacking key immune cell populations experienced greater virus replication but decreased disease severity implicating the immune system in both protective and pathogenic roles in response to MERS-CoV. These data could be utilized to design new therapeutic strategies targeting specific pathways that contribute to severe disease.
Collapse
Affiliation(s)
- Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacob F Kocher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam S Cockrell
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Padraig E Hawkins
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Minako Furusho
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kara L Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Kristin E Burnum-Johnson
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Natalie C Lamar
- AI & Data Analytics Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Carrie D Niccora
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Xing L, Liu Z, Wang X, Liu Q, Xu W, Mao Q, Zhang X, Hao A, Xia S, Liu Z, Sun L, Zhang G, Wang Q, Chen Z, Jiang S, Sun L, Lu L. Early fusion intermediate of ACE2-using coronavirus spike acting as an antiviral target. Cell 2025:S0092-8674(25)00041-8. [PMID: 39889696 DOI: 10.1016/j.cell.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Coronavirus fusion with and entry into the host cell depends on viral spike, which acts as a crucial component of viral infection. However, the lack of receptor-activated spike intermediate conformation has hindered a comprehensive understanding of spike-induced membrane fusion. Here, we captured an angiotensin-converting enzyme 2 (ACE2)-induced early fusion intermediate conformation (E-FIC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in which heptad repeat 1 (HR1) in S2 has ejected while S1 remains attached. This E-FIC can transition to the late FIC after S2' cleavage. Leveraging this discovery, we designed an E-FIC-targeted dual-functional antiviral protein, AL5E. AL5E effectively inactivated ACE2-using coronaviruses and inhibited their infection, outperforming a mono-functional antiviral in protecting animals against these coronaviruses. This study has identified the E-FIC and used it as a target for the development of a dual-functional antiviral for the prevention and treatment of ACE2-using coronavirus infection.
Collapse
Affiliation(s)
- Lixiao Xing
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Zhimin Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Xinling Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Qianying Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Xu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Qiyu Mao
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Xiang Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Aihua Hao
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Shuai Xia
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Zezhong Liu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Lujia Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Guangxu Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Zhenguo Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China.
| | - Lei Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Halfmann PJ, Patel RS, Loeffler K, Yasuhara A, Van De Velde LA, Yang JE, Chervin J, Troxell C, Huang M, Zheng N, Wright ER, Thomas PG, Wilson PC, Kawaoka Y, Kane RS. Multivalent S2 subunit vaccines provide broad protection against Clade 1 sarbecoviruses in female mice. Nat Commun 2025; 16:462. [PMID: 39774966 PMCID: PMC11706982 DOI: 10.1038/s41467-025-55824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit. This vaccine alone, or as a cocktail with a SARS-CoV-2 S2 subunit vaccine, protects female transgenic K18-hACE2 mice from challenges with Omicron subvariant XBB as well as several sarbecoviruses identified as having pandemic potential including the bat sarbecovirus WIV1, BANAL-236, and a pangolin sarbecovirus. Challenge studies in female Fc-γ receptor knockout mice reveal that antibody-based cellular effector mechanisms play a role in protection elicited by these vaccines. These results demonstrate that our S2-based vaccines provide broad protection against clade 1 sarbecoviruses and offer insight into the mechanistic basis for protection.
Collapse
Affiliation(s)
- Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Raj S Patel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lee-Ann Van De Velde
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Jordan Chervin
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Chloe Troxell
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Min Huang
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Naiying Zheng
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan.
| | - Ravi S Kane
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Martin HJ, Melo-Filho CC, Zakharov AV, Muratov E, Tropsha A. On the importance of data curation for knowledge mining in antiviral research. Sci Prog 2025; 108:368504241301535. [PMID: 39840476 PMCID: PMC11752173 DOI: 10.1177/00368504241301535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The recent severe acute respiratory syndrome coronavirus 2 pandemic has clearly exemplified the need for broad-spectrum antiviral (BSA) medications. However, previous outbreaks show that about one year after an outbreak, interest in antiviral research diminishes and the work toward an effective medication is left unfinished. Martin et al. endeavored to support the early stages of focused BSA development by creating the Small Molecule Antiviral Compound Collection (SMACC), which is publicly available online at https://smacc.mml.unc.edu. SMACC is a highly curated database with over 32,500 entries of chemical compounds tested in both phenotypic and target-based assays across 13 viruses from the NIAID's list of emerging infectious diseases/pathogens. The authors advise judicious use of knowledge collections such as SMACC and recommend users critically evaluate retrieved data and resulting hypotheses prior to experimental testing. When used correctly, SMACC-like databases may serve as a reference for medicinal chemists and virologists working to develop novel BSA medications. To summarize, we emphasize the importance of data curation for both novel outbreak prediction and development of BSAs against these outbreaks.
Collapse
Affiliation(s)
- Holli-Joi Martin
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Cleber C. Melo-Filho
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Eugene Muratov
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Alexander Tropsha
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, McGowan J, Simmons B, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. Cell Rep 2024; 43:115036. [PMID: 39644492 DOI: 10.1016/j.celrep.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus that causes severe respiratory illness in humans. There are no licensed vaccines against MERS-CoV and only a few candidates in phase I clinical trials. Here, we develop MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two-component nanoparticles displaying spike (S)-derived antigens induce neutralizing responses and protect mice against challenge with mouse-adapted MERS-CoV. Epitope mapping reveals the dominant responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle elicits antibodies targeting multiple non-overlapping epitopes in the RBD. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jackson McGowan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Boston Simmons
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98115, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Mishra S, Jain D, Dey AA, Nagaraja S, Srivastava M, Khatun O, Balamurugan K, Anand M, Ashok AK, Tripathi S, Ganji M, Kesavardhana S. Bat RNA viruses employ viral RHIMs orchestrating species-specific cell death programs linked to Z-RNA sensing and ZBP1-RIPK3 signaling. iScience 2024; 27:111444. [PMID: 39697597 PMCID: PMC11652944 DOI: 10.1016/j.isci.2024.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/06/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
RHIM is a protein motif facilitating the assembly of large signaling complexes triggering regulated cell death. A few DNA viruses employ viral RHIMs mimicking host RHIMs and counteract cell death by interacting with host RHIM-proteins to alleviate antiviral defenses. Whether RNA viruses operate such viral RHIMs remains unknown. Here, we identified viral RHIMs in Nsp13 of SARS-CoV-2 and other bat RNA viruses, providing the basis for bats as the hosts for their evolution. Nsp13 promoted viral RHIM and RNA-binding channel-dependent cell death. However, Nsp13 viral RHIM is more critical for human cell death than in bat-derived Tb1 Lu cells, suggesting species-specific regulation. Nsp13 showed RHIM-dependent interactions with ZBP1 and RIPK3, forming large complexes and promoting ZBP1-RIPK3 signaling-mediated cell death. Intriguingly, the SARS-CoV-2 genome consisted of Z-RNA-forming segments promoting Nsp13-dependent cell death. Our findings reveal the functional viral RHIMs of bat-originated RNA viruses regulating host cell death associated with ZBP1-RIPK3 signaling, indicating possible mechanisms of cellular damage and cytokine storm in bat-originated RNA virus infections.
Collapse
Affiliation(s)
- Sanchita Mishra
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Disha Jain
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ayushi Amin Dey
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sahana Nagaraja
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Mansi Srivastava
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Oyahida Khatun
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India
| | - Keerthana Balamurugan
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Micky Anand
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Avinash Karkada Ashok
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shashank Tripathi
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India
| | - Mahipal Ganji
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sannula Kesavardhana
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
7
|
Latinne A, Hu B, Olival KJ, Zhu G, Zhang LB, Li H, Chmura AA, Field HE, Zambrana-Torrelio C, Epstein JH, Li B, Zhang W, Wang LF, Shi ZL, Daszak P. Origin and cross-species transmission of bat coronaviruses in China. Nat Commun 2024; 15:10705. [PMID: 39702450 DOI: 10.1038/s41467-024-55384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 589 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal. We find that host-switching occurs more frequently and across more distantly related host taxa in alpha- than beta-CoVs, and is more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.
Collapse
Affiliation(s)
- Alice Latinne
- EcoHealth Alliance, New York, New York, USA
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | - Ben Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Li-Biao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | - Bei Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | | |
Collapse
|
8
|
Stein SC, Hansen G, Ssebyatika G, Ströh LJ, Ochulor O, Herold E, Schwarzloh B, Mutschall D, Zischke J, Cordes AK, Schneider T, Hinrichs I, Blasczyk R, Kleine-Weber H, Hoffmann M, Klein F, Kaiser FK, Gonzalez-Hernandez M, Armando F, Ciurkiewicz M, Beythien G, Pöhlmann S, Baumgärtner W, Osterhaus A, Schulz TF, Krey T. A human monoclonal antibody neutralizing SARS-CoV-2 Omicron variants containing the L452R mutation. J Virol 2024; 98:e0122324. [PMID: 39494911 DOI: 10.1128/jvi.01223-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The effectiveness of SARS-CoV-2 therapeutic antibodies targeting the spike (S) receptor-binding domain (RBD) has been hampered by the emergence of variants of concern (VOCs), which have acquired mutations to escape neutralizing antibodies (nAbs). These mutations are not evenly distributed on the RBD surface but cluster on several distinct surfaces, suggesting an influence of the targeted epitope on the capacity to neutralize a broad range of VOCs. Here, we identified a potent nAb from convalescent patients targeting the receptor-binding domain of a broad range of SARS-CoV-2 VOCs. Except for the Lambda and BA.2.86 variants, this nAb efficiently inhibited the entry of most tested VOCs, including Omicron subvariants BA.1, BA.2, XBB.1.5, and EG.5.1 and to a limited extent also BA.4/5, BA.4.6, and BQ.1.1. It bound recombinant S protein with picomolar affinity, reduced the viral load in the lung of infected hamsters, and prevented the severe lung pathology typical for SARS-CoV-2 infections. An X-ray structure of the nAb-RBD complex revealed an epitope that does not fall into any of the conventional classes and provided insights into its broad neutralization properties. Our findings highlight a conserved epitope within the SARS-CoV-2 RBD that should be preferably targeted by therapeutic antibodies and inform rational vaccine development.IMPORTANCETherapeutic antibodies are effective in preventing severe disease from SARS-CoV-2 infection and constitute an important option in pandemic preparedness, but mutations within the S protein of virus variants (e.g., a mutation of L452) confer resistance to many of such antibodies. Here, we identify a human antibody targeting the S protein receptor-binding domain (RBD) with an elevated escape barrier and characterize its interaction with the RBD functionally and structurally at the atomic level. A direct comparison with reported antibodies targeting the same epitope illustrates important differences in the interface, providing insights into the breadth of antibody binding. These findings highlight the relevance of an extended neutralization profiling in combination with biochemical and structural characterization of the antibody-RBD interaction for the selection of future therapeutic antibodies, which may accelerate the control of potential future pandemics.
Collapse
Affiliation(s)
- Saskia C Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - George Ssebyatika
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Britta Schwarzloh
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Doris Mutschall
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
| | - Anne K Cordes
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Talia Schneider
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Imke Hinrichs
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Hannah Kleine-Weber
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mariana Gonzalez-Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Stefan Pöhlmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- Global Virus Network, Center of Excellence, University of Veterinary Medicine, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hannover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
9
|
Case JB, Sanapala S, Dillen C, Rhodes V, Zmasek C, Chicz TM, Switzer CE, Scheaffer SM, Georgiev G, Jacob-Dolan C, Hauser BM, Dos Anjos DCC, Adams LJ, Soudani N, Liang CY, Ying B, McNamara RP, Scheuermann RH, Boon ACM, Fremont DH, Whelan SPJ, Schmidt AG, Sette A, Grifoni A, Frieman MB, Diamond MS. A trivalent mucosal vaccine encoding phylogenetically inferred ancestral RBD sequences confers pan-Sarbecovirus protection in mice. Cell Host Microbe 2024; 32:2131-2147.e8. [PMID: 39561781 PMCID: PMC11637904 DOI: 10.1016/j.chom.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The continued emergence of SARS-CoV-2 variants and the threat of future Sarbecovirus zoonoses have spurred the design of vaccines that can induce broad immunity against multiple coronaviruses. Here, we use computational methods to infer ancestral phylogenetic reconstructions of receptor binding domain (RBD) sequences across multiple Sarbecovirus clades and incorporate them into a multivalent adenoviral-vectored vaccine. Mice immunized with this pan-Sarbecovirus vaccine are protected in the upper and lower respiratory tracts against infection by historical and contemporary SARS-CoV-2 variants, SARS-CoV, and pre-emergent SHC014 and Pangolin/GD coronavirus strains. Using genetic and immunological approaches, we demonstrate that vaccine-induced protection unexpectedly is conferred principally by CD4+ and CD8+ T cell-mediated anamnestic responses. Importantly, prior mRNA vaccination or SARS-CoV-2 respiratory infection does not alter the efficacy of the mucosally delivered pan-Sarbecovirus vaccine. These data highlight the promise of a phylogenetic approach for antigen and vaccine design against existing and pre-emergent Sarbecoviruses with pandemic potential.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victoria Rhodes
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christian Zmasek
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Charlotte E Switzer
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston 02115, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George Georgiev
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Jacob-Dolan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Blake M Hauser
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity against Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Rexhepaj M, Asarnow D, Perruzza L, Park YJ, Guarino B, Mccallum M, Culap K, Saliba C, Leoni G, Balmelli A, Yoshiyama CN, Dickinson MS, Quispe J, Brown JT, Tortorici MA, Sprouse KR, Taylor AL, Corti D, Starr TN, Benigni F, Veesler D. Isolation and escape mapping of broadly neutralizing antibodies against emerging delta-coronaviruses. Immunity 2024; 57:2914-2927.e7. [PMID: 39488210 DOI: 10.1016/j.immuni.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.
Collapse
Affiliation(s)
- Megi Rexhepaj
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lisa Perruzza
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Barbara Guarino
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Mathew Mccallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Katja Culap
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Giada Leoni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Alessio Balmelli
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Miles S Dickinson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Fabio Benigni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Simon AY, Badmalia MD, Paquette SJ, Manalaysay J, Czekay D, Kandel BS, Sultana A, Lung O, Babuadze GG, Shahhosseini N. Evolutionary Relationships of Unclassified Coronaviruses in Canadian Bat Species. Viruses 2024; 16:1878. [PMID: 39772188 PMCID: PMC11680298 DOI: 10.3390/v16121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 01/11/2025] Open
Abstract
Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada. Tissue samples from 500 bat specimens collected in Canada were analyzed using pan-coronavirus RT-PCR assays to detect the presence of CoVs from four genera: Alpha-CoVs, Beta-CoV, Gamma-CoV, and Delta-CoV. Phylogenetic analysis was performed targeting the RNA-dependent RNA polymerase (RdRP) gene. Our results showed an overall 1.4% CoV positivity rate in our bat sample size. Phylogenetic analysis based on the ~600 bp sequences led to the identification of an unclassified subgenus of Alpha-CoV, provisionally named Eptacovirus. The findings contribute to a better understanding of the diversity and evolution of CoVs found in the bat species of Canada. The current study underscores the significance of bats in the epidemiology of CoVs and enhances the knowledge of their genetic diversity and potential impact on global public health.
Collapse
Affiliation(s)
- Ayo Yila Simon
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Maulik D. Badmalia
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Sarah-Jo Paquette
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Jessica Manalaysay
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
- Departments of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dominic Czekay
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Bishnu Sharma Kandel
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Asma Sultana
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (A.S.); (O.L.)
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (A.S.); (O.L.)
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - George Giorgi Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Nariman Shahhosseini
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
12
|
Gong Q, Jiang R, Ji L, Lin H, Liu M, Tang X, Yang Y, Han W, Chen J, Guo Z, Wang Q, Li Q, Wang X, Jiang T, Xie S, Yang X, Zhou P, Shi Z, Lin X. Establishment of a human organoid-based evaluation system for assessing interspecies infection risk of animal-borne coronaviruses. Emerg Microbes Infect 2024; 13:2327368. [PMID: 38531008 DOI: 10.1080/22221751.2024.2327368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
The COVID-19 pandemic presents a major threat to global public health. Several lines of evidence have shown that the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), along with two other highly pathogenic coronaviruses, SARS-CoV and Middle East Respiratory Syndrome (MERS-CoV) originated from bats. To prevent and control future coronavirus outbreaks, it is necessary to investigate the interspecies infection and pathogenicity risks of animal-related coronaviruses. Currently used infection models, including in vitro cell lines and in vivo animal models, fail to fully mimic the primary infection in human tissues. Here, we employed organoid technology as a promising new model for studying emerging pathogens and their pathogenic mechanisms. We investigated the key host-virus interaction patterns of five human coronaviruses (SARS-CoV-2 original strain, Omicron BA.1, MERS-CoV, HCoV-229E, and HCoV-OC43) in different human respiratory organoids. Five indicators, including cell tropism, invasion preference, replication activity, host response and virus-induced cell death, were developed to establish a comprehensive evaluation system to predict coronavirus interspecies infection and pathogenicity risks. Using this system, we further examined the pathogenicity and interspecies infection risks of three SARS-related coronaviruses (SARSr-CoV), including WIV1 and rRsSHC014S from bats, and MpCoV-GX from pangolins. Moreover, we found that cannabidiol, a non-psychoactive plant extract, exhibits significant inhibitory effects on various coronaviruses in human lung organoid. Cannabidiol significantly enhanced interferon-stimulated gene expression but reduced levels of inflammatory cytokines. In summary, our study established a reliable comprehensive evaluation system to analyse infection and pathogenicity patterns of zoonotic coronaviruses, which could aid in prevention and control of potentially emerging coronavirus diseases.
Collapse
Affiliation(s)
- Qianchun Gong
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, People's Republic of China
| | - Rendi Jiang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lina Ji
- School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Haofeng Lin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meiqin Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaofang Tang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yong Yang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wei Han
- School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zishuo Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, People's Republic of China
| | - Qian Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Tingting Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Shizhe Xie
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Peng Zhou
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, People's Republic of China
| | - Zhengli Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, People's Republic of China
- School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| |
Collapse
|
13
|
Shum MHH, Lee Y, Tam L, Xia H, Chung OLW, Guo Z, Lam TTY. Binding affinity between coronavirus spike protein and human ACE2 receptor. Comput Struct Biotechnol J 2024; 23:759-770. [PMID: 38304547 PMCID: PMC10831124 DOI: 10.1016/j.csbj.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Coronaviruses (CoVs) pose a major risk to global public health due to their ability to infect diverse animal species and potential for emergence in humans. The CoV spike protein mediates viral entry into the cell and plays a crucial role in determining the binding affinity to host cell receptors. With particular emphasis on α- and β-coronaviruses that infect humans and domestic animals, current research on CoV receptor use suggests that the exploitation of the angiotensin-converting enzyme 2 (ACE2) receptor poses a significant threat for viral emergence with pandemic potential. This review summarizes the approaches used to study binding interactions between CoV spike proteins and the human ACE2 (hACE2) receptor. Solid-phase enzyme immunoassays and cell binding assays allow qualitative assessment of binding but lack quantitative evaluation of affinity. Surface plasmon resonance, Bio-layer interferometry, and Microscale Thermophoresis on the other hand, provide accurate affinity measurement through equilibrium dissociation constants (KD). In silico modeling predicts affinity through binding structure modeling, protein-protein docking simulations, and binding energy calculations but reveals inconsistent results due to the lack of a standardized approach. Machine learning and deep learning models utilize simulated and experimental protein-protein interaction data to elucidate the critical residues associated with CoV binding affinity to hACE2. Further optimization and standardization of existing approaches for studying binding affinity could aid pandemic preparedness. Specifically, prioritizing surveillance of CoVs that can bind to human receptors stands to mitigate the risk of zoonotic spillover.
Collapse
Affiliation(s)
- Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Yang Lee
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leighton Tam
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Hui Xia
- Department of Chemistry, South University of Science and Technology of China, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Oscar Lung-Wa Chung
- Department of Chemistry, South University of Science and Technology of China, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
14
|
Li R, Tendu A, Kane Y, Omondi V, Ying J, Mao L, Xu S, Xu R, Chen X, Chen Y, Descorps-Declère S, Bienes KM, Fassatoui M, Hughes AC, Berthet N, Wong G. Differential prevalence and risk factors for infection with coronaviruses in bats collected from Yunnan Province, China. One Health 2024; 19:100923. [PMID: 39605930 PMCID: PMC11600012 DOI: 10.1016/j.onehlt.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Coronaviruses (CoVs) pose a threat to human health globally, as highlighted by severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and the COVID-19 pandemic. Bats from the Greater Mekong Subregion (GMS) are an important natural reservoir for CoVs. Here we report the differential prevalence of CoVs in bats within Yunnan Province across biological and ecological variables. We also show the coexistence of CoVs in individual bats and identify an additional putative host for SARS-related CoV, with higher dispersal capacity than other known hosts. Notably, 11 SARS-related coronaviruses (SARSr-CoVs) were discovered in horseshoe bats (family Rhinolophidae) and a Chinese water myotis bat (Myotis laniger) by pan-CoV detection and Illumina sequencing. Our findings facilitate an understanding of the fundamental features of the distribution and circulation of CoVs in nature as well as zoonotic spillover risk in the One health framework.
Collapse
Affiliation(s)
- Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexander Tendu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Jiaxu Ying
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Lingjing Mao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Shiman Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Kathrina Mae Bienes
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Meriem Fassatoui
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Alice C. Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Nicolas Berthet
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
- Institut Pasteur, Unité Environnement et Risque Infectieux, Cellule d'Intervention Biologique d'Urgence, 75015 Paris, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Wu Y, Li L, Wang K, Zhang Y, Wang J, Feng TT, Li YT, Kong Q. COVID-AMD database for coronavirus-infected animal models with comparative analysis tools. Sci Rep 2024; 14:29567. [PMID: 39609461 PMCID: PMC11605124 DOI: 10.1038/s41598-024-80474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Respiratory infections caused by coronaviruses have posed serious and unpredictably public health threats; reliable animal models continue to be essential for advancing our understanding of the virus's transmission, pathophysiology, and immunological mechanisms. In response to the critical need for centralized resources in coronavirus research, the COVID-AMD database (Coronavirus Disease Animal Model Database, https://www.uc-med.net/CoV-AMD ) has been developed as an integrated platform. Data was gathered from public literature databases, refined and integrated using ETL (Extract, Transform, Load) methodology. After data conversion and cleaning, COVID-AMD was implemented using MySQL relational database with jQuery and JBoss. COVID-AMD database consolidates comprehensive data on animal models infected with various CoVs, including MERS-CoV, SARS-CoV, and SARS-CoV-2, featuring methodologies for establishing infection models, clinical features, and phenotypic data. It catalogs 869 animal models across 29 species and 312 virus strains, covering five diseases and ten infection routes. With global and advanced search capabilities, it facilitated data preprocessing, integration, analysis, and visualization, and provided tools for comparative analysis, model recommendation and omics analysis based on model and phenotype data. The open access to this rich repository aims to enable rapid identification of animal models for CoVs, thereby accelerating the development and clinical trial progression of prospective therapeutics and vaccines.
Collapse
Affiliation(s)
- Yue Wu
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China
| | - Lu Li
- Nutshell Therapeutics (Shanghai) Co., Ltd, 201210, Shanghai, China
| | - Kai Wang
- Nutshell Therapeutics (Shanghai) Co., Ltd, 201210, Shanghai, China
| | - Yang Zhang
- Nutshell Therapeutics (Shanghai) Co., Ltd, 201210, Shanghai, China
| | - Jue Wang
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China
| | - Ting-Ting Feng
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China
| | - Yi-Tong Li
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China
| | - Qi Kong
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China.
| |
Collapse
|
16
|
Zhou NE, Tang S, Bian X, Parai MK, Krieger IV, Flores A, Jaiswal PK, Bam R, Wood JL, Shi Z, Stevens LJ, Scobey T, Diefenbacher MV, Moreira FR, Baric TJ, Acharya A, Shin J, Rathi MM, Wolff KC, Riva L, Bakowski MA, McNamara CW, Catanzaro NJ, Graham RL, Schultz DC, Cherry S, Kawaoka Y, Halfmann PJ, Baric RS, Denison MR, Sheahan TP, Sacchettini JC. An oral non-covalent non-peptidic inhibitor of SARS-CoV-2 Mpro ameliorates viral replication and pathogenesis in vivo. Cell Rep 2024; 43:114929. [PMID: 39504242 DOI: 10.1016/j.celrep.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Safe, effective, and low-cost oral antiviral therapies are needed to treat those at high risk for developing severe COVID-19. To that end, we performed a high-throughput screen to identify non-peptidic, non-covalent inhibitors of the SARS-CoV-2 main protease (Mpro), an essential enzyme in viral replication. NZ-804 was developed from a screening hit through iterative rounds of structure-guided medicinal chemistry. NZ-804 potently inhibits SARS-CoV-2 Mpro (0.009 μM IC50) as well as SARS-CoV-2 replication in human lung cell lines (0.008 μM EC50) and primary human airway epithelial cell cultures. Antiviral activity is maintained against distantly related sarbecoviruses and endemic human CoV OC43. In SARS-CoV-2 mouse and hamster disease models, NZ-804 therapy given once or twice daily significantly diminished SARS-CoV-2 replication and pathogenesis. NZ-804 synthesis is low cost and uncomplicated, simplifying global production and access. These data support the exploration of NZ-804 as a therapy for COVID-19 and future emerging sarbecovirus infections.
Collapse
Affiliation(s)
- Nian E Zhou
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Su Tang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Xuelin Bian
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Maloy K Parai
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Inna V Krieger
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Armando Flores
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Pradeep K Jaiswal
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Radha Bam
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Jeremy L Wood
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Zhe Shi
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Laura J Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meghan V Diefenbacher
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando R Moreira
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas J Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arjun Acharya
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Joonyoung Shin
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Manish M Rathi
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Karen C Wolff
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Laura Riva
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Malina A Bakowski
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Case W McNamara
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel L Graham
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - James C Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
17
|
Schäfer A, Leist SR, Powers JM, Baric RS. Animal models of Long Covid: A hit-and-run disease. Sci Transl Med 2024; 16:eado2104. [PMID: 39536118 DOI: 10.1126/scitranslmed.ado2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) pandemic has caused more than 7 million deaths globally. Despite the presence of infection- and vaccine-induced immunity, SARS-CoV-2 infections remain a major global health concern because of the emergence of SARS-CoV-2 variants that can cause severe acute coronavirus disease 2019 (COVID-19) or enhance Long Covid disease phenotypes. About 5 to 10% of SARS-CoV-2-infected individuals develop Long Covid, which, similar to acute COVID 19, often affects the lung. However, Long Covid can also affect other peripheral organs, especially the brain. The causal relationships between acute disease phenotypes, long-term symptoms, and involvement of multiple organ systems remain elusive, and animal model systems mimicking both acute and post-acute phases are imperative. Here, we review the current state of Long Covid animal models, including current and possible future applications.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
19
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathways for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. PLoS Pathog 2024; 20:e1012704. [PMID: 39546542 PMCID: PMC11602109 DOI: 10.1371/journal.ppat.1012704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/27/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014-CoV, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the S1 N-terminal domain, uncovered through the rescue and serial passage of a virus bearing the FPPR substitution, further enhanced spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
Affiliation(s)
- Alexandra L. Tse
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Cory M. Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Jacob Berrigan
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gorka Lasso
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Toheeb Balogun
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Fiona L. Kearns
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Lorenzo Casalino
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Georgia L. McClain
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Amartya Mudry Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Charlotte Lemeunier
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Rommie E. Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Rohit K. Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Present address: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Emily Happy Miller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| |
Collapse
|
20
|
Bruun TJ, Do J, Weidenbacher PAB, Utz A, Kim PS. Engineering a SARS-CoV-2 Vaccine Targeting the Receptor-Binding Domain Cryptic-Face via Immunofocusing. ACS CENTRAL SCIENCE 2024; 10:1871-1884. [PMID: 39463836 PMCID: PMC11503491 DOI: 10.1021/acscentsci.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across Sarbecoviruses. Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response toward the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259. Immunization with PMD-RBD antigens induced robust binding titers and broad neutralizing activity against homologous and heterologous Sarbecovirus strains. A serum-depletion assay provided direct evidence that PMD successfully skewed the polyclonal antibody response toward the cryptic face of the RBD. Our work demonstrates the ability of PMD to overcome immunodominance and refocus humoral immunity, with implications for the development of broader and more resilient vaccines against current and emerging viruses with pandemic potential.
Collapse
Affiliation(s)
- Theodora
U. J. Bruun
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Jonathan Do
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Payton A.-B. Weidenbacher
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ashley Utz
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Stanford
Biophysics Program, Stanford University
School of Medicine, Stanford, California 94305, United States
- Stanford
Medical Scientist Training Program, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Peter S. Kim
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
- Chan Zuckerberg
Biohub, San Francisco, California 94158, United States
| |
Collapse
|
21
|
Hu Y, Wu Q, Chang F, Yang J, Zhang X, Wang Q, Chen J, Teng S, Liu Y, Zheng X, Wang Y, Lu R, Pan D, Liu Z, Liu F, Xie T, Wu C, Tang Y, Tang F, Qian J, Chen H, Liu W, Li YP, Qu X. Broad cross neutralizing antibodies against sarbecoviruses generated by SARS-CoV-2 infection and vaccination in humans. NPJ Vaccines 2024; 9:195. [PMID: 39438493 PMCID: PMC11496711 DOI: 10.1038/s41541-024-00997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
The outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 highlight the need for countermeasures to prevent future coronavirus pandemics. Given the unpredictable nature of spillover events, preparing antibodies with broad coronavirus-neutralizing activity is an ideal proactive strategy. Here, we investigated whether SARS-CoV-2 infection and vaccination could provide cross-neutralizing antibodies (nAbs) against zoonotic sarbecoviruses. We evaluated the cross-neutralizing profiles of plasma and monoclonal antibodies constructed from B cells from coronavirus disease 2019 (COVID-19) convalescents and vaccine recipients; against sarbecoviruses originating from bats, civets, and pangolins; and against SARS-CoV-1 and SARS-CoV-2. We found that the majority of individuals with natural infection and vaccination elicited broad nAb responses to most tested sarbecoviruses, particularly to clade 1b viruses, but exhibited very low cross-neutralization to SARS-CoV-1 in both natural infection and vaccination, and vaccination boosters significantly augmented the magnitude and breadth of nAbs to sarbecoviruses. Of the nAbs, several exhibited neutralization activity against multiple sarbecoviruses by targeting the spike receptor-binding domain (RBD) and competing with angiotensin-converting enzyme 2 (ACE2) binding. SCM12-61 demonstrated exceptional potency, with half-maximal inhibitory concentration (IC50) values of 0.001-0.091 μg/mL against tested sarbecoviruses; while VSM9-12 exhibited remarkable cross-neutralizing breadth against sarbecoviruses and SARS-CoV-2 Omicron subvariants, highlighting the potential of these two nAbs in combating sarbecoviruses and SARS-CoV-2 Omicron subvariants. Collectively, our findings suggest that vaccination with an ancestral SARS-CoV-2 vaccine, in combination with broad nAbs against sarbecoviruses, may provide a countermeasure for preventing further sarbecovirus outbreaks in humans.
Collapse
Affiliation(s)
- Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang, 422099, China
| | - Jun Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shishan Teng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Rui Lu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Dong Pan
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Zhanpeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Fen Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Tianyi Xie
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Chanfeng Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yinggen Tang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
| |
Collapse
|
22
|
Dixson JD, Vumma L, Azad RK. An Analysis of Combined Molecular Weight and Hydrophobicity Similarity between the Amino Acid Sequences of Spike Protein Receptor Binding Domains of Betacoronaviruses and Functionally Similar Sequences from Other Virus Families. Microorganisms 2024; 12:2021. [PMID: 39458330 PMCID: PMC11510113 DOI: 10.3390/microorganisms12102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Recently, we proposed a new method, based on protein profiles derived from physicochemical dynamic time warping (PCDTW), to functionally/structurally classify coronavirus spike protein receptor binding domains (RBD). Our method, as used herein, uses waveforms derived from two physicochemical properties of amino acids (molecular weight and hydrophobicity (MWHP)) and is designed to reach into the twilight zone of homology, and therefore, has the potential to reveal structural/functional relationships and potentially homologous relationships over greater evolutionary time spans than standard primary sequence alignment-based techniques. One potential application of our method is inferring deep evolutionary relationships such as those between the RBD of the spike protein of betacoronaviruses and functionally similar proteins found in other families of viruses, a task that is extremely difficult, if not impossible, using standard multiple alignment-based techniques. Here, we applied PCDTW to compare members of four divergent families of viruses to betacoronaviruses in terms of MWHP physicochemical similarity of their RBDs. We hypothesized that some members of the families Arteriviridae, Astroviridae, Reoviridae (both from the genera rotavirus and orthoreovirus considered separately), and Toroviridae would show greater physicochemical similarity to betacoronaviruses in protein regions similar to the RBD of the betacoronavirus spike protein than they do to other members of their respective taxonomic groups. This was confirmed to varying degrees in each of our analyses. Three arteriviruses (the glycoprotein-2 sequences) clustered more closely with ACE2-binding betacoronaviruses than to other arteriviruses, and a clade of 33 toroviruses was found embedded within a clade of non-ACE2-binding betacoronaviruses, indicating potentially shared structure/function of RBDs between betacoronaviruses and members of other virus clades.
Collapse
Affiliation(s)
- Jamie D. Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA;
| | - Lavanya Vumma
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA;
| |
Collapse
|
23
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PNP, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJC, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. Cell 2024; 187:5554-5571.e19. [PMID: 39197450 PMCID: PMC11460329 DOI: 10.1016/j.cell.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024]
Abstract
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sandra E Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Ellis Robb
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Ian G Fotheringham
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
24
|
Lu T, Zhang C, Li Z, Wei Y, Sadewasser A, Yan Y, Sun L, Li J, Wen Y, Lai S, Chen C, Zhong H, Jiménez MR, Klar R, Schell M, Raith S, Michel S, Ke B, Zheng H, Jaschinski F, Zhang N, Xiao H, Bachert C, Wen W. Human angiotensin-converting enzyme 2-specific antisense oligonucleotides reduce infection with SARS-CoV-2 variants. J Allergy Clin Immunol 2024; 154:1044-1059. [PMID: 38909634 DOI: 10.1016/j.jaci.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/16/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The Spike protein mutation severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to decreased protective effect of various vaccines and mAbs, suggesting that blocking SARS-CoV-2 infection by targeting host factors would make the therapy more resilient against virus mutations. Angiotensin-converting enzyme 2 (ACE2) is the host receptor of SARS-CoV-2 and its variants, as well as many other coronaviruses. Downregulation of ACE2 expression in the respiratory tract may prevent viral infection. Antisense oligonucleotides (ASOs) can be rationally designed on the basis of sequence data, require no delivery system, and can be administered locally. OBJECTIVE We sought to design ASOs that can block SARS-CoV-2 by downregulating ACE2 in human airway. METHODS ACE2-targeting ASOs were designed using a bioinformatic method and screened in cell lines. Human primary nasal epithelial cells cultured at the air-liquid interface and humanized ACE2 mice were used to detect the ACE2 reduction levels and the safety of ASOs. ASO-pretreated nasal epithelial cells and mice were infected and then used to detect the viral infection levels. RESULTS ASOs reduced ACE2 expression on mRNA and protein level in cell lines and in human nasal epithelial cells. Furthermore, they efficiently suppressed virus replication of 3 different SARS-CoV-2 variants in human nasal epithelial cells. In vivo, ASOs also downregulated human ACE2 in humanized ACE2 mice and thereby reduced viral load, histopathologic changes in lungs, and increased survival of mice. CONCLUSIONS ACE2-targeting ASOs can effectively block SARS-CoV-2 infection. Our study provides a new approach for blocking SARS-CoV-2 and other ACE2-targeting virus in high-risk populations.
Collapse
Affiliation(s)
- Tong Lu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Chengcheng Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Zhengqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | | | - Yan Yan
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Lin Sun
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Shimin Lai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Changhui Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Hua Zhong
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Richard Klar
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Monika Schell
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Stefanie Raith
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | | | - Nan Zhang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Claus Bachert
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany; Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Weiping Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Ruiz F, Foreman WB, Lilly M, Baharani VA, Depierreux DM, Chohan V, Taylor AL, Guenthoer J, Ralph D, Matsen IV FA, Chu HY, Bieniasz PD, Côté M, Starr TN, Overbaugh J. Delineating the functional activity of antibodies with cross-reactivity to SARS-CoV-2, SARS-CoV-1 and related sarbecoviruses. PLoS Pathog 2024; 20:e1012650. [PMID: 39466880 PMCID: PMC11542851 DOI: 10.1371/journal.ppat.1012650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The recurring spillover of pathogenic coronaviruses and demonstrated capacity of sarbecoviruses, such SARS-CoV-2, to rapidly evolve in humans underscores the need to better understand immune responses to this virus family. For this purpose, we characterized the functional breadth and potency of antibodies targeting the receptor binding domain (RBD) of the spike glycoprotein that exhibited cross-reactivity against SARS-CoV-2 variants, SARS-CoV-1 and sarbecoviruses from diverse clades and animal origins with spillover potential. One neutralizing antibody, C68.61, showed remarkable neutralization breadth against both SARS-CoV-2 variants and viruses from different sarbecovirus clades. C68.61, which targets a conserved RBD class 5 epitope, did not select for escape variants of SARS-CoV-2 or SARS-CoV-1 in culture nor have predicted escape variants among circulating SARS-CoV-2 strains, suggesting this epitope is functionally constrained. We identified 11 additional SARS-CoV-2/SARS-CoV-1 cross-reactive antibodies that target the more sequence conserved class 4 and class 5 epitopes within RBD that show activity against a subset of diverse sarbecoviruses with one antibody binding every single sarbecovirus RBD tested. A subset of these antibodies exhibited Fc-mediated effector functions as potent as antibodies that impact infection outcome in animal models. Thus, our study identified antibodies targeting conserved regions across SARS-CoV-2 variants and sarbecoviruses that may serve as therapeutics for pandemic preparedness as well as blueprints for the design of immunogens capable of eliciting cross-neutralizing responses.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - William B. Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen IV
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Berche P. The dangerous biology of pathogenic germs. C R Biol 2024; 347:77-86. [PMID: 39297602 DOI: 10.5802/crbiol.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 10/11/2024]
|
27
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
28
|
Su C, He J, Wang L, Hu Y, Cao J, Bai B, Qi J, Gao GF, Yang M, Wang Q. Structural characteristics of BtKY72 RBD bound to bat ACE2 reveal multiple key residues affecting ACE2 usage of sarbecoviruses. mBio 2024; 15:e0140424. [PMID: 39082798 PMCID: PMC11389363 DOI: 10.1128/mbio.01404-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 09/12/2024] Open
Abstract
Two different sarbecoviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2, have caused serious challenges to public health. Certain sarbecoviruses utilize angiotensin-converting enzyme 2 (ACE2) as their cellular receptor, whereas some do not, speculatively due to the two deletions in their receptor-binding domain (RBD). However, it remains unclear whether sarbecoviruses with one deletion in the RBD can still bind to ACE2. Here, we showed that two phylogenetically related sarbecoviruses with one deletion, BtKY72 and BM48-31, displayed a different ACE2-usage range. The cryo-electron microscopy structure of BtKY72 RBD bound to bat ACE2 identified a key residue important for the interaction between RBD and ACE2. In addition, we demonstrated that the mutations involving four types of core residues enabled the sarbecoviruses with deletion(s) to bind to human ACE2 (hACE2) and broadened the ACE2 usage of SARS-CoV-2. Our findings help predict the potential hACE2-binding ability to emerge sarbecoviruses and develop pan-sarbecovirus therapeutic agents. IMPORTANCE Many sarbecoviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), possess the ability to bind to receptor angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD). However, certain sarbecoviruses with deletion(s) in the RBD lack this capability. In this study, we investigated two closely related short-deletion sarbecoviruses, BtKY72 and BM48-31, and revealed that BtKY72 exhibited a broader ACE2-binding spectrum compared to BM48-31. Structural analysis of the BtKY72 RBD-bat ACE2 complex identifies a critical residue at position 493 contributing to these differences. Furthermore, we demonstrated that the mutations involving four core residues in the RBD enabled the sarbecoviruses with deletion(s) to bind to human ACE2 and expanded the ACE2 usage spectra of SARS-CoV-2. These findings offer crucial insights for accurately predicting the potential threat of newly emerging sarbecoviruses to human health.
Collapse
Affiliation(s)
- Chao Su
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Juanhua He
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Liang Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Yu Hu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Cao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
29
|
Qiao S, Wang X. Structural determinants of spike infectivity in bat SARS-like coronaviruses RsSHC014 and WIV1. J Virol 2024; 98:e0034224. [PMID: 39028202 PMCID: PMC11334503 DOI: 10.1128/jvi.00342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The recurrent spillovers of coronaviruses (CoVs) have posed severe threats to public health and the global economy. Bat severe acute respiratory syndrome (SARS)-like CoVs RsSHC014 and WIV1, currently circulating in bat populations, are poised for human emergence. The trimeric spike (S) glycoprotein, responsible for receptor recognition and membrane fusion, plays a critical role in cross-species transmission and infection. Here, we determined the cryo-electron microscopy (EM) structures of the RsSHC014 S protein in the closed state at 2.9 Å, the WIV1 S protein in the closed state at 2.8 Å, and the intermediate state at 4.0 Å. In the intermediate state, one receptor-binding domain (RBD) is in the "down" position, while the other two RBDs exhibit poor density. We also resolved the complex structure of the WIV1 S protein bound to human ACE2 (hACE2) at 4.5 Å, which provides structural basis for the future emergence of WIV1 in humans. Through biochemical experiments, we found that despite strong binding affinities between the RBDs and both human and civet ACE2, the pseudoviruses of RsSHC014, but not WIV1, failed to infect 293T cells overexpressing either human or civet ACE2. Mutagenesis analysis revealed that the Y623H substitution, located in the SD2 region, significantly improved the cell entry efficiency of RsSHC014 pseudoviruses, which is likely accomplished by promoting the open conformation of spike glycoproteins. Our findings emphasize the necessity of both efficient RBD lifting and tight RBD-hACE2 binding for viral infection and underscore the significance of the 623 site of the spike glycoprotein for the infectivity of bat SARS-like CoVs. IMPORTANCE The bat SARS-like CoVs RsSHC014 and WIV1 can use hACE2 for cell entry without further adaptation, indicating their potential risk of emergence in human populations. The S glycoprotein, responsible for receptor recognition and membrane fusion, plays a crucial role in cross-species transmission and infection. In this study, we determined the cryo-EM structures of the S glycoproteins of RsSHC014 and WIV1. Detailed comparisons revealed dynamic structural variations within spike proteins. We also elucidated the complex structure of WIV1 S-hACE2, providing structural evidence for the potential emergence of WIV1 in humans. Although RsSHC014 and WIV1 had similar hACE2-binding affinities, they exhibited distinct pseudovirus cell entry behavior. Through mutagenesis and cryo-EM analysis, we revealed that besides the structural variations, the 623 site in the SD2 region is another important structural determinant of spike infectivity.
Collapse
Affiliation(s)
- Shuyuan Qiao
- The Ministry of Education Key Laboratory of Protein Science, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep Med 2024; 5:101668. [PMID: 39094579 PMCID: PMC11384961 DOI: 10.1016/j.xcrm.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Mallory
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Marchioni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sean A Knudson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John M Powers
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer E Munt
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Seeger
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
31
|
Xia J, Wang Z, Becker R, Li F, Wei F, Yang S, Rich J, Li K, Rufo J, Qian J, Yang K, Chen C, Gu Y, Zhong R, Lee PJ, Wong DTW, Lee LP, Huang TJ. Acoustofluidic Virus Isolation via Bessel Beam Excitation Separation Technology. ACS NANO 2024; 18:22596-22607. [PMID: 39132820 DOI: 10.1021/acsnano.4c09692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The isolation of viruses from complex biological samples is essential for creating sensitive bioassays that assess the efficacy and safety of viral therapeutics and vaccines, which have played a critical role during the COVID-19 pandemic. However, existing methods of viral isolation are time-consuming and labor-intensive due to the multiple processing steps required, resulting in low yields. Here, we introduce the rapid, efficient, and high-resolution acoustofluidic isolation of viruses from complex biological samples via Bessel beam excitation separation technology (BEST). BEST isolates viruses by utilizing the nondiffractive and self-healing properties of 2D, in-plane acoustic Bessel beams to continuously separate cell-free viruses from biofluids, with high throughput and high viral RNA yield. By tuning the acoustic parameters, the cutoff size of isolated viruses can be easily adjusted to perform dynamic, size-selective virus isolation while simultaneously trapping larger particles and separating smaller particles and contaminants from the sample, achieving high-precision isolation of the target virus. BEST was used to isolate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from human saliva samples and Moloney Murine Leukemia Virus from cell culture media, demonstrating its potential use in both practical diagnostic applications and fundamental virology research. With high separation resolution, high yield, and high purity, BEST is a powerful tool for rapidly and efficiently isolating viruses. It has the potential to play an important role in the development of next-generation viral diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Jianping Xia
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Zeyu Wang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Shujie Yang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ke Li
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rufo
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Jiao Qian
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Kaichun Yang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Chuyi Chen
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Yuyang Gu
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Patty J Lee
- Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Tony Jun Huang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
32
|
Leist SR, Schäfer A, Risemberg EL, Bell TA, Hock P, Zweigart MR, Linnertz CL, Miller DR, Shaw GD, de Villena FPM, Ferris MT, Valdar W, Baric RS. Sarbecovirus disease susceptibility is conserved across viral and host models. Virus Res 2024; 346:199399. [PMID: 38823688 PMCID: PMC11225686 DOI: 10.1016/j.virusres.2024.199399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Coronaviruses have caused three severe epidemics since the start of the 21st century: SARS, MERS and COVID-19. The severity of the ongoing COVID-19 pandemic and increasing likelihood of future coronavirus outbreaks motivates greater understanding of factors leading to severe coronavirus disease. We screened ten strains from the Collaborative Cross mouse genetic reference panel and identified strains CC006/TauUnc (CC006) and CC044/Unc (CC044) as coronavirus-susceptible and resistant, respectively, as indicated by variable weight loss and lung congestion scores four days post-infection. We generated a genetic mapping population of 755 CC006xCC044 F2 mice and exposed the mice to one of three genetically distinct mouse-adapted coronaviruses: clade 1a SARS-CoV MA15 (n=391), clade 1b SARS-CoV-2 MA10 (n=274), and clade 2 HKU3-CoV MA (n=90). Quantitative trait loci (QTL) mapping in SARS-CoV MA15- and SARS-CoV-2 MA10-infected F2 mice identified genetic loci associated with disease severity. Specifically, we identified seven loci associated with variation in outcome following infection with either virus, including one, HrS43, that is present in both groups. Three of these QTL, including HrS43, were also associated with HKU3-CoV MA outcome. HrS43 overlaps with a QTL previously reported by our lab that is associated with SARS-CoV MA15 outcome in CC011xCC074 F2 mice and is also syntenic with a human chromosomal region associated with severe COVID-19 outcomes in humans GWAS. The results reported here provide: (a) additional support for the involvement of this locus in SARS-CoV MA15 infection, (b) the first conclusive evidence that this locus is associated with susceptibility across the Sarbecovirus subgenus, and (c) demonstration of the relevance of mouse models in the study of coronavirus disease susceptibility in humans.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, United States
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, United States
| | - Ellen L Risemberg
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, United States; Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Timothy A Bell
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Mark R Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, United States
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, United States.
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
33
|
Peña-Hernández MA, Alfajaro MM, Filler RB, Moriyama M, Keeler EL, Ranglin ZE, Kong Y, Mao T, Menasche BL, Mankowski MC, Zhao Z, Vogels CBF, Hahn AM, Kalinich CC, Zhang S, Huston N, Wan H, Araujo-Tavares R, Lindenbach BD, Homer R, Pyle AM, Martinez DR, Grubaugh ND, Israelow B, Iwasaki A, Wilen CB. SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity. Nat Microbiol 2024; 9:2038-2050. [PMID: 39075235 DOI: 10.1038/s41564-024-01765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Circulating bat coronaviruses represent a pandemic threat. However, our understanding of bat coronavirus pathogenesis and transmission potential is limited by the lack of phenotypically characterized strains. We created molecular clones for the two closest known relatives of SARS-CoV-2, BANAL-52 and BANAL-236. We demonstrated that BANAL-CoVs and SARS-CoV-2 have similar replication kinetics in human bronchial epithelial cells. However, BANAL-CoVs have impaired replication in human nasal epithelial cells and in the upper airway of mice. We also observed reduced pathogenesis in mice and diminished transmission in hamsters. Further, we observed that diverse bat coronaviruses evade interferon and downregulate major histocompatibility complex class I. Collectively, our study demonstrates that despite high genetic similarity across bat coronaviruses, prediction of pandemic potential of a virus necessitates functional characterization. Finally, the restriction of bat coronavirus replication in the upper airway highlights that transmission potential and innate immune restriction can be uncoupled in this high-risk family of emerging viruses.
Collapse
Affiliation(s)
- Mario A Peña-Hernández
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Miyu Moriyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emma L Keeler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zara E Ranglin
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yong Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Madeleine C Mankowski
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Shuo Zhang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Nicholas Huston
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Rafael Araujo-Tavares
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David R Martinez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Cheng L, Rui Y, Wang Y, Chen S, Su J, Yu XF. A glimpse into viral warfare: decoding the intriguing role of highly pathogenic coronavirus proteins in apoptosis regulation. J Biomed Sci 2024; 31:70. [PMID: 39003473 PMCID: PMC11245872 DOI: 10.1186/s12929-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.
Collapse
Affiliation(s)
- Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
35
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathway for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600393. [PMID: 38979151 PMCID: PMC11230278 DOI: 10.1101/2024.06.24.600393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the spike N-terminal domain, uncovered through forward-genetic selection, interacted epistatically with the FPPR substitution to synergistically enhance spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
|
36
|
Heo CK, Lim WH, Moon KB, Yang J, Kim SJ, Kim HS, Kim DJ, Cho EW. S2 Peptide-Conjugated SARS-CoV-2 Virus-like Particles Provide Broad Protection against SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2024; 12:676. [PMID: 38932406 PMCID: PMC11209314 DOI: 10.3390/vaccines12060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Approved COVID-19 vaccines primarily induce neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the emergence of variants of concern with RBD mutations poses challenges to vaccine efficacy. This study aimed to design a next-generation vaccine that provides broader protection against diverse coronaviruses, focusing on glycan-free S2 peptides as vaccine candidates to overcome the low immunogenicity of the S2 domain due to the N-linked glycans on the S antigen stalk, which can mask S2 antibody responses. Glycan-free S2 peptides were synthesized and attached to SARS-CoV-2 virus-like particles (VLPs) lacking the S antigen. Humoral and cellular immune responses were analyzed after the second booster immunization in BALB/c mice. Enzyme-linked immunosorbent assay revealed the reactivity of sera against SARS-CoV-2 variants, and pseudovirus neutralization assay confirmed neutralizing activities. Among the S2 peptide-conjugated VLPs, the S2.3 (N1135-K1157) and S2.5 (A1174-L1193) peptide-VLP conjugates effectively induced S2-specific serum immunoglobulins. These antisera showed high reactivity against SARS-CoV-2 variant S proteins and effectively inhibited pseudoviral infections. S2 peptide-conjugated VLPs activated SARS-CoV-2 VLP-specific T-cells. The SARS-CoV-2 vaccine incorporating conserved S2 peptides and CoV-2 VLPs shows promise as a universal vaccine capable of generating neutralizing antibodies and T-cell responses against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Doo-Jin Kim
- Chungbuk National University College of Medicine, 194-15 Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Republic of Korea;
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Bruun TU, Do J, Weidenbacher PAB, Kim PS. Engineering a SARS-CoV-2 vaccine targeting the RBD cryptic-face via immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597541. [PMID: 38895327 PMCID: PMC11185595 DOI: 10.1101/2024.06.05.597541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across Sarbecoviruses. Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response towards the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259. Immunization with PMD-RBD antigens induced robust binding titers and broad neutralizing activity against homologous and heterologous Sarbecovirus strains. A serum-depletion assay provided direct evidence that PMD successfully skewed the polyclonal antibody response towards the cryptic face of the RBD. Our work demonstrates the ability of PMD to overcome immunodominance and refocus humoral immunity, with implications for the development of broader and more resilient vaccines against current and emerging viruses with pandemic potential.
Collapse
Affiliation(s)
- Theodora U.J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Payton A.-B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
38
|
Schäfer A, Gralinski LE, Leist SR, Hampton BK, Mooney MA, Jensen KL, Graham RL, Agnihothram S, Jeng S, Chamberlin S, Bell TA, Scobey DT, Linnertz CL, VanBlargan LA, Thackray LB, Hock P, Miller DR, Shaw GD, Diamond MS, de Villena FPM, McWeeney SK, Heise MT, Menachery VD, Ferris MT, Baric RS. Genetic loci regulate Sarbecovirus pathogenesis: A comparison across mice and humans. Virus Res 2024; 344:199357. [PMID: 38508400 PMCID: PMC10981091 DOI: 10.1016/j.virusres.2024.199357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Mooney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Kara L Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sudhakar Agnihothram
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Steven Chamberlin
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology2, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology3, Washington University School of Medicine, St. Louis, MO, USA
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina, Chapel Hill NC, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina, Chapel Hill NC, USA.
| |
Collapse
|
39
|
Resnik DB. Biosafety, biosecurity, and bioethics. Monash Bioeth Rev 2024; 42:137-167. [PMID: 39078602 PMCID: PMC11368980 DOI: 10.1007/s40592-024-00204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
The COVID-19 pandemic has highlighted the importance of biosafety in the biomedical sciences. While it is often assumed that biosafety is a purely technical matter that has little to do with philosophy or the humanities, biosafety raises important ethical issues that have not been adequately examined in the scientific or bioethics literature. This article reviews some pivotal events in the history of biosafety and biosecurity and explores three different biosafety topics that generate significant ethical concerns, i.e., risk assessment, risk management, and risk distribution. The article also discusses the role of democratic governance in the oversight of biosafety and offers some suggestions for incorporating bioethics into biosafety practice, education, and policy.
Collapse
Affiliation(s)
- David B Resnik
- National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
40
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PN, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJ, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.576722. [PMID: 38370696 PMCID: PMC10871317 DOI: 10.1101/2024.02.08.576722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Sandra E. Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J. Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D. Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY, 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Martina Quintanar-Audelo
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
- Present address: Centre for Inflammation Research and Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ellis Robb
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Ian G. Fotheringham
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
41
|
Martinez DR, Moreira FR, Catanzaro NJ, Diefenbacher MV, Zweigart MR, Gully KL, De la Cruz G, Brown AJ, Adams LE, Yount B, Baric TJ, Mallory ML, Conrad H, May SR, Dong S, Scobey DT, Nguyen C, Montgomery SA, Perry J, Babusis D, Barrett KT, Nguyen AH, Nguyen AQ, Kalla R, Bannister R, Feng JY, Cihlar T, Baric RS, Mackman RL, Bilello JP, Schäfer A, Sheahan TP. The oral nucleoside prodrug GS-5245 is efficacious against SARS-CoV-2 and other endemic, epidemic, and enzootic coronaviruses. Sci Transl Med 2024; 16:eadj4504. [PMID: 38776389 PMCID: PMC11333937 DOI: 10.1126/scitranslmed.adj4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Meghan V. Diefenbacher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - D. Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jason Perry
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | | | | | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
42
|
Dillard JA, Taft-Benz SA, Knight AC, Anderson EJ, Pressey KD, Parotti B, Martinez SA, Diaz JL, Sarkar S, Madden EA, De la Cruz G, Adams LE, Dinnon KH, Leist SR, Martinez DR, Schäfer A, Powers JM, Yount BL, Castillo IN, Morales NL, Burdick J, Evangelista MKD, Ralph LM, Pankow NC, Linnertz CL, Lakshmanane P, Montgomery SA, Ferris MT, Baric RS, Baxter VK, Heise MT. Adjuvant-dependent impact of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. Nat Commun 2024; 15:3738. [PMID: 38702297 PMCID: PMC11068739 DOI: 10.1038/s41467-024-47450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.
Collapse
Affiliation(s)
- Jacob A Dillard
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Audrey C Knight
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katia D Pressey
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Breantié Parotti
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sabian A Martinez
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer L Diaz
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E Adams
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah L Morales
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jane Burdick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Lauren M Ralph
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas C Pankow
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Premkumar Lakshmanane
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Dallas Tissue Research, Farmers Branch, TX, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria K Baxter
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Mark T Heise
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Rexhepaj M, Park YJ, Perruzza L, Asarnow D, Mccallum M, Culap K, Saliba C, Leoni G, Balmelli A, Yoshiyama CN, Dickinson MS, Quispe J, Brown JT, Tortorici MA, Sprouse KR, Taylor AL, Starr TN, Corti D, Benigni F, Veesler D. Broadly neutralizing antibodies against emerging delta-coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586411. [PMID: 38617231 PMCID: PMC11014491 DOI: 10.1101/2024.03.27.586411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Porcine deltacoronavirus (PDCoV) spillovers were recently detected in children with acute undifferentiated febrile illness, underscoring recurrent zoonoses of divergent coronaviruses. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated human spike (S)-directed monoclonal antibodies from transgenic mice and found that two of them, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryo-electron microscopy structures of PD33 and PD41 in complex with the PDCoV receptor-binding domain and S ectodomain trimer provide a blueprint of the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs inhibit PDCoV by competitively interfering with host APN binding to the PDCoV receptor-binding loops, explaining the mechanism of viral neutralization. PD33 and PD41 are candidates for clinical advancement, which could be stockpiled to prepare for possible future PDCoV outbreaks.
Collapse
Affiliation(s)
- Megi Rexhepaj
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lisa Perruzza
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Mathew Mccallum
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Katja Culap
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Giada Leoni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Alessio Balmelli
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Miles S. Dickinson
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jack Taylor Brown
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - M. Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584735. [PMID: 38558973 PMCID: PMC10979991 DOI: 10.1101/2024.03.13.584735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
45
|
Wang CY, Kuo BS, Lee YH, Ho YH, Pan YH, Yang YT, Chang HC, Fu LF, Peng WJ. UB-612 pan-SARS-CoV-2 T cell immunity-promoting vaccine protects against COVID-19 moderate-severe disease. iScience 2024; 27:108887. [PMID: 38318376 PMCID: PMC10839960 DOI: 10.1016/j.isci.2024.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
UB-612 pan-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine targets the monomeric Spike S1-receptor binding domain (RBD) subunit protein along with five sequence-conserved T cell epitopes found on Spike S2 and non-Spike M and N proteins. UB-612 vaccination safely induces potent, broad, and long-lasting immunity against SARS-CoV-2. A phase-2 trial-extended observational study during the Omicron BA.2-/BA.5-dominated outbreak was conducted to investigate UB-612's protective effect against COVID-19 hospitalization and intensive care unit (ICU) admission (H-ICU). Additionally, memory viral-neutralizing titer and T cell immunity behind disease protection were explored. No cases of H-ICU were reported beyond 14 months post-second dose or beyond 10 months post-booster (third dose). The positive outcome correlates with strong cytotoxic CD8 T cell immunity, in line with the results of an ongoing phase-3 heterologous booster trial showing that UB-612 can enhance anti-BA.5 seroconversion rate and viral-neutralizing titer for mRNA, adeno-vectored, and virus-inactivated vaccine platforms. The UB-612 multitope vaccine may serve as an effective primer and booster for those at risk of SARS-CoV-2 infection.
Collapse
|
46
|
Halfmann PJ, Loeffler K, Duffy A, Kuroda M, Yang JE, Wright ER, Kawaoka Y, Kane RS. Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spike-protein-nanoparticle vaccine. Nat Commun 2024; 15:1284. [PMID: 38346966 PMCID: PMC10861510 DOI: 10.1038/s41467-024-45495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protect female hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicit highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protects human ACE2-transgenic female hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.
Collapse
Affiliation(s)
- Peter J Halfmann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Augustine Duffy
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Makoto Kuroda
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, 53706, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, 53706, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, 162-8655, Japan.
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
47
|
Sankhala RS, Dussupt V, Chen WH, Bai H, Martinez EJ, Jensen JL, Rees PA, Hajduczki A, Chang WC, Choe M, Yan L, Sterling SL, Swafford I, Kuklis C, Soman S, King J, Corbitt C, Zemil M, Peterson CE, Mendez-Rivera L, Townsley SM, Donofrio GC, Lal KG, Tran U, Green EC, Smith C, de Val N, Laing ED, Broder CC, Currier JR, Gromowski GD, Wieczorek L, Rolland M, Paquin-Proulx D, van Dyk D, Britton Z, Rajan S, Loo YM, McTamney PM, Esser MT, Polonis VR, Michael NL, Krebs SJ, Modjarrad K, Joyce MG. Antibody targeting of conserved sites of vulnerability on the SARS-CoV-2 spike receptor-binding domain. Structure 2024; 32:131-147.e7. [PMID: 38157856 PMCID: PMC11145656 DOI: 10.1016/j.str.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Spencer L Sterling
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Isabella Swafford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Courtney Corbitt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Samantha M Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ethan C Green
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Clayton Smith
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dewald van Dyk
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Zachary Britton
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Saravanan Rajan
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yueh Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Patrick M McTamney
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
48
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576742. [PMID: 38545622 PMCID: PMC10970720 DOI: 10.1101/2024.01.22.576742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.
Collapse
|
49
|
Essaidi-Laziosi M, Pérez-Rodríguez FJ, Alvarez C, Sattonnet-Roche P, Torriani G, Bekliz M, Adea K, Lenk M, Suliman T, Preiser W, Müller MA, Drosten C, Kaiser L, Eckerle I. Distinct phenotype of SARS-CoV-2 Omicron BA.1 in human primary cells but no increased host range in cell lines of putative mammalian reservoir species. Virus Res 2024; 339:199255. [PMID: 38389324 PMCID: PMC10652112 DOI: 10.1016/j.virusres.2023.199255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range, and may be relevant to the search for the putative intermediate host and reservoirs prior to the pandemic.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Francisco J Pérez-Rodríguez
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Catia Alvarez
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Pascale Sattonnet-Roche
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Matthias Lenk
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tasnim Suliman
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Medical Virology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Marcel A Müller
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland.
| |
Collapse
|
50
|
Krammer F. The role of vaccines in the COVID-19 pandemic: what have we learned? Semin Immunopathol 2024; 45:451-468. [PMID: 37436465 PMCID: PMC11136744 DOI: 10.1007/s00281-023-00996-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged late in 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic that has so far claimed approximately 20 million lives. Vaccines were developed quickly, became available in the end of 2020, and had a tremendous impact on protection from SARS-CoV-2 mortality but with emerging variants the impact on morbidity was diminished. Here I review what we learned from COVID-19 from a vaccinologist's perspective.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|