1
|
Sivasubramanian K, Bharath R R, Vajravelu LK, Kumar D M, Banerjee A. Key Laboratory Markers for Early Detection of Severe Dengue. Viruses 2025; 17:661. [PMID: 40431672 PMCID: PMC12115923 DOI: 10.3390/v17050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/29/2025] Open
Abstract
Dengue virus is the most prevalent arthropod-borne viral disease in humans. Severe dengue, defined by hemorrhagic fever and dengue shock syndrome, can develop quickly in people who have warning indications such as abdominal pain, mucosal bleeding, and a significant decrease in platelet count. Laboratory markers such as hematocrit, platelet count, liver enzymes, and coagulation tests are critical for early diagnosis and prognosis. This retrospective study was carried out from January 2023 to December 2024 at a super-specialty tertiary care hospital. There were 283 adult patients with dengue with warning signs, who were categorized into 102 with platelet transfusion and 181 with no platelet transfusion. Data on patient demographics, clinical history, laboratory values, and radiological findings were systematically obtained from hospital records at the time of admission. Laboratory parameters such as white blood cell (OR = 2.137), hemoglobin (OR = 2.15), aPTT (OR = 5.815), AST2/ALT (OR = 2.431), platelet count (OR = 26.261) and NS1 (OR = 4.279) were found to be significantly associated (p < 0.01) with platelet transfusion. Similarly, an increased prothrombin time (OR = 2.432) contributed to prolonged hospital stays and the presence of ascites (OR = 5.059), gallbladder wall thickening (OR = 4.212), and pleural effusion (OR = 2.917), contributing to the severity of the dengue infection. These significant laboratory markers help with identifying patients with dengue who may develop severe dengue, requiring platelet transfusion, thereby prioritizing patient care and enabling the implementation of targeted interventions.
Collapse
Affiliation(s)
- Kumar Sivasubramanian
- Department of Microbiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India; (K.S.); (L.K.V.); (M.K.D.); (A.B.)
| | - Raj Bharath R
- Department of Transfusion Medicine & Blood Centre, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India
| | - Leela Kakithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India; (K.S.); (L.K.V.); (M.K.D.); (A.B.)
| | - Madan Kumar D
- Department of Microbiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India; (K.S.); (L.K.V.); (M.K.D.); (A.B.)
| | - Aritra Banerjee
- Department of Microbiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India; (K.S.); (L.K.V.); (M.K.D.); (A.B.)
| |
Collapse
|
2
|
Nanda JD, Yeh TM, Satria RD, Jhan MK, Wang YT, Lin YL, Sufriyana H, Su ECY, Lin CF, Ho TS. Dengue virus non-structural protein 1 binding to thrombin as a dengue severity marker: Comprehensive patient analysis in south Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:198-208. [PMID: 39730269 DOI: 10.1016/j.jmii.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/26/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Previously we identified a complex of non-structural protein (NS) 1 - Thrombin (NST) in dengue infected patients. Here, we investigated how the concentration of NS1 and NST differ in various dengue severity levels as well as their demographic and clinical features. Several comorbid (hypertension, diabetes, and chronic renal failure) often found in dengue patients were also measured and analyzed. METHODS A total of 86 dengue patients (52 not severe and 34 severe), were enrolled and had their blood taken. Blood samples were further verified for clinical blood parameters, including liver and renal function tests and serologic assays (NS1 and NST). Patients' severity was grouped based on WHO 2009 classification, which separates patients into dengue without warning signs (DNWS), dengue with warning signs (DWWS), and severe dengue (SD). DWWS is explained as DNWS with warning signs (persistent abdominal pain, persistent vomiting, liver enlargement, bleeding (any kind), fatigue, and restlessness). SD are those with severe plasma leakage, severe bleeding, or severe organ impairment. Multivariate regression analysis was used to predict the role of NST on the dengue severity development and receiver operating characteristic (AUROC) test was utilized to evaluate separability. RESULTS The analysis revealed that NS1 significantly impacts the disease outcome (p 0.018, OR = 2.467 (1.171-5.197)) but not beyond the effect through NST (p 0.108, OR = 0.085 (0.004-1.719)). We also prove that NST was a better severity biomarker compared to NS1, as it can predict progression from DNWS to DWWS (AUC: NS1 = 0.771∗∗, NST = 0.81∗∗) and SD (AUC: NS1 = 0.607, NST = 0.754∗) significantly. CONCLUSIONS This finding suggests the importance of NST in mediating the NS1 effect to promote dengue severity progression and its promising capability as an acute stage dengue severity biomarker.
Collapse
Affiliation(s)
- Josephine Diony Nanda
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Departement of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Rahmat Dani Satria
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta, 55281, Indonesia
| | - Ming-Kai Jhan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yung-Ting Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Ya-Lan Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Herdiantri Sufriyana
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Medical Physiology, Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 110, Taiwan.
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan.
| |
Collapse
|
3
|
Qiu M, Zhao L, Li X, Fan Y, Liu M, Hua D, Zhu Y, Liang Y, Zhang Y, Xiao W, Xu X, Li J. Decoding dengue's neurological assault: insights from single-cell CNS analysis in an immunocompromised mouse model. J Neuroinflammation 2025; 22:62. [PMID: 40038739 PMCID: PMC11877810 DOI: 10.1186/s12974-025-03383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Dengue encephalitis, a severe neurological complication of dengue virus infection, is increasingly recognized for its rising incidence and significant public health burden. Despite its growing prevalence, the underlying mechanisms and effective therapeutic strategies remain poorly understood. METHODS Cellular atlas of dengue encephalitis was determined by single-nucleus RNA sequencing. Viral load of dengue virus and the level of cytokines expression was detected by RT-qPCR. The target cells of dengue virus were verified by immunofluorescence. The cytotoxic effect of CD8+ T cell was determined by flow cytometry, immunofluorescence, in vivo CD8+ T cell depletion, adoptive transfer and CCK-8-based cell viability assay. Axonal and synaptic reduction induced by dengue virus infection was demonstrated by RT-qPCR, Western blot, transmission electron microscope and immunofluorescence. Finally, motor and sensory functions of mice were detected by open field test and hot plate test, respectively. RESULTS In this study, we utilized single-nucleus RNA sequencing on brain tissues from a dengue-infected murine model to construct a comprehensive cellular atlas of dengue encephalitis. Our findings identify neurons, particularly inhibitory GABAergic subtypes, as the primary targets of dengue virus. Additionally, immune cell infiltration was observed, contributing to significant neurological damage. Comprehensive analyses of cell-cell communication, combined with CD8+ T cell depletion and transfer restoration experiments, have elucidated the critical role of CD8+ T cells in triggering encephalitis through their interaction with neurons. These cells infiltrate the brain from peripheral circulation, interact with neurons, and induce damage of synapse and axon, accompanied by neurological dysfunction. CONCLUSION We defined cellular atlas of dengue encephalitis in mouse model and identified the primary target neuron of dengue virus. In addition, we demonstrated the significant cytotoxic effect of CD8+ T cell, which leads to apoptosis of neuron and neurological dysfunction of mice. Our study provides a molecular and cellular framework for understanding dengue encephalitis through advanced sequencing technologies. The insights gained serve as a foundation for future investigations into its pathogenesis and the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Minyue Qiu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Lixin Zhao
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Xiaojia Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yipei Fan
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yunkai Zhu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yinyin Liang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Wen Xiao
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China.
- Institute of Immunology, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Shaikh S, Chary PS, Mehra NK. Nano-interventions for dengue: a comprehensive review of control, detection and treatment strategies. Inflammopharmacology 2025; 33:979-1011. [PMID: 39976669 DOI: 10.1007/s10787-025-01655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025]
Abstract
Dengue, a formidable life-threatening malady, currently exerts a profound impact upon the Western Pacific and Southeast-Asian developing and underdeveloped nations. The intricacies inherent in addressing dengue are manifold, requiring a concerted effort not only towards vector control but also the implementation of efficacious host treatments to forestall the progression of the disease into severe manifestations, such as hemorrhage and shock. The only vaccine available for dengue in the market is DENGVAXIA, with several other vaccine candidates which are currently in the clinical developmental stages. However, DENGVAXIA, owing to incidences of adverse events in among children, was withdrawn in Philippines. This warrants the development of new safer vaccine candidates. The existent control strategies, regrettably, demonstrate inadequacy in effectively mitigating the rampant dissemination of this ailment. Moreover, the diagnostic and therapeutic modalities exhibit potential for refinement, specifically through precision diagnostics and tailored therapeutic interventions, to enhance the precision and efficacy of dengue management. This comprehensive review endeavors to provide an in-depth elucidation of the utilization of nanotechnology-based approaches synergistically integrated with conventional methodologies in the overarching domains of dengue control, diagnosis, and treatment.
Collapse
Affiliation(s)
- Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
5
|
Gálvez RI, Martínez-Pérez A, Escarrega EA, Singh T, Zambrana JV, Balmaseda Á, Harris E, Weiskopf D. Frequency of dengue virus-specific T cells is related to infection outcome in endemic settings. JCI Insight 2025; 10:e179771. [PMID: 39989460 PMCID: PMC11949061 DOI: 10.1172/jci.insight.179771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Dengue is widespread in tropical and subtropical regions globally and imposes a considerable disease burden. Annually, dengue virus (DENV) causes up to 400 million infections, of which approximately 25% present with clinical manifestations ranging from mild to fatal. Despite its significance as a growing public health concern, developing effective DENV vaccines has been challenging. One reason is the lack of comprehensive understanding of the influence exerted by prior DENV infections and immune responses with cross-reactive properties. To investigate this, we collected samples from a pediatric cohort study in dengue-endemic Managua, Nicaragua. We characterized T cell responses in 71 healthy children who had previously experienced 1 or more natural DENV infections and who, within 1 year after sample collection, had a subsequent DENV infection that was either symptomatic or inapparent. Our study investigated the effect of preexisting DENV-specific T cell responses on clinical outcomes of subsequent DENV infection. We assessed DENV-specific T cell responses using an activation-induced marker assay. Children with only 1 prior DENV infection displayed heterogeneous DENV-specific CD4+ and CD8+ T cell frequencies. In contrast, children with 2 or more prior DENV infections showed significantly higher DENV-specific CD4+ and CD8+ T cell frequencies associated with inapparent rather than symptomatic outcomes in subsequent infection. These findings demonstrate the protective role of DENV-specific T cells against symptomatic DENV infection and advance efforts to identify protective immune correlates against dengue.
Collapse
Affiliation(s)
- Rosa Isela Gálvez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Amparo Martínez-Pérez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - E. Alexandar Escarrega
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Tulika Singh
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - José Victor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Ángel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Wang SH, Chuang YE, Tan SS, Ho TC, Perng OGC, Chen PL. Comparative monocyte and T cell responses in DENV-exposed subjects from South-East Asia and DENV-naïve residents in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:17-26. [PMID: 39551633 DOI: 10.1016/j.jmii.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND/PURPOSE(S) Dengue virus (DENV) is one of the most troublesome mosquito-borne infectious viruses in tropical and subtropical zones. People with secondary/multiple DENV infections are at an increased risk of developing severe dengue. Both monocytes and T cells are known to play important roles in the immune response against DENV. However, the function of monocytes and T cells in individuals with potentially multiple exposures to DENV is rarely reported. METHOD In the present study, we performed a functional analysis of monocytes and T cells from people with previous DENV infection and DENV-naïve people that stimulated with DENV2 ex vivo. RESULTS Our preliminary analysis indicated that the response of monocytes and T cells to DENV2 restimulation was comparable between DENV-exposed and DENV-naïve individuals. Furthermore, the cytokine expression profiles in monocytes from both naïve individuals and previously DENV-exposed subjects were similar after DENV2 stimulation. In addition, it was observed that the function of T cells was also equivalent when monocytes were present as antigen-presenting cells for dengue antigen, NS3, in terms of cell proliferation, interferon-gamma (IFNγ) secretion, and memory response. CONCLUSIONS Based on the results, it was observed that previously DENV-exposed monocytes and T cells seemed to be anergic during DENV reinfection. However, whether the impaired response of monocytes and T cells against DENV in people with a history of previous DENV infection leads to severe dengue upon secondary infection in endemic areas requires further investigation.
Collapse
Affiliation(s)
- Sheng-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yun-Erh Chuang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Sia-Seng Tan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tzu-Chuan Ho
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Oscar Guey Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Lin Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Lee MF, Long CM, Poh CL. Current status of the development of dengue vaccines. Vaccine X 2025; 22:100604. [PMID: 39830640 PMCID: PMC11741033 DOI: 10.1016/j.jvacx.2024.100604] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
Dengue fever is caused by the mosquito-borne dengue virus (DENV), which is endemic in more than 100 countries. Annually, there are approximately 390 million dengue cases, with a small subset manifesting into severe illnesses, such as dengue haemorrhagic fever or dengue shock syndrome. Current treatment options for dengue infections remain supportive management due to the lack of an effective vaccine and clinically approved antiviral. Although the CYD-TDV (Dengvaxia®) vaccine with an overall vaccine efficacy of 60 % has been licensed for clinical use since 2015, it poses an elevated risk of severe dengue infections especially in dengue-naïve children below 9 years of age. The newly approved Qdenga vaccine was able to achieve an overall vaccine efficacy of 80 % after 12 months, but it was not able to provide a protective effect against DENV-3 in dengue naïve individuals. The Butantan-DV vaccine candidate is still undergoing phase 3 clinical trials for safety and efficacy evaluations in humans. Apart from live-attenuated vaccines, various other vaccine types are also currently being studied in preclinical and clinical studies. This review discusses the current status of dengue vaccine development.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chiau Ming Long
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chit Laa Poh
- ALPS Global Holding Berhad, The ICON, East Wing Tower, No. 1, Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia
| |
Collapse
|
8
|
Praneechit H, Thiemmeca S, Prayongkul D, Kongmanas K, Mairiang D, Punyadee N, Songjaeng A, Tangthawornchaikul N, Angkasekwinai N, Sriruksa K, Suputtamongkol Y, Limpitikul W, Atkinson JP, Avirutnan P. Whole-blood model reveals granulocytes as key sites of dengue virus propagation, expanding understanding of disease pathogenesis. mBio 2024; 15:e0150524. [PMID: 39540772 PMCID: PMC11633123 DOI: 10.1128/mbio.01505-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Dengue virus (DENV) infection poses a significant global health threat, yet our understanding of its immunopathogenesis remains incomplete due to limitations of existing models. Here, we establish an in vitro whole-blood model using hirudin, an anticoagulant that preserves complement activity and cellular interactions, to study DENV infection. Our model reveals the susceptibility of all major leukocyte populations to DENV infection, with monocytes and granulocytes demonstrating high permissiveness and production of infectious virus progeny. Notably, granulocytes emerge as previously unrecognized targets of DENV infection, highlighting the importance of studying viral tropism within a physiologically relevant context. We also observed efficient DENV binding to B cells, but limited production of infectious virus, suggesting a potential role in viral sequestration or immune dysregulation. Interestingly, both NK and T cells, while less permissive, were also found to be susceptible to DENV infection. Our ex vivo analysis of whole blood from DENV-infected patients confirms the susceptibility of granulocytes, monocytes, B cells, natural killer cells, and T cells to infection, further validating the clinical relevance of our model. Additionally, we observed dynamic changes in circulating blood cell populations during acute dengue, potentially reflecting both direct virus-mediated effects and immune responses. This whole-blood model offers a valuable tool for investigating the complex interplay between DENV and host factors, facilitating a deeper understanding of dengue pathogenesis and ultimately contributing to the development of novel therapeutic strategies.IMPORTANCEDengue virus (DENV) infection is a significant global health threat, with increasing incidence in endemic regions and expanding geographic range due to factors like global warming. Current models for studying DENV pathogenesis often lack the complexity of the human immune system, hindering the development of effective therapies and vaccines. To address this, we have established the first in vitro whole-blood model using hirudin, preserving critical immune components and cellular interactions. This model reveals granulocytes as previously unrecognized targets of productive DENV infection, challenging existing paradigms of viral tropism. Our ex vivo analysis of patient blood samples confirms the clinical relevance of this finding and validates our model's utility. This unique model offers a powerful platform for future studies to dissect the complex interactions between DENV and the host immune system, including the roles of different leukocyte populations, ultimately informing the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Hansa Praneechit
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Thiemmeca
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dararat Prayongkul
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dumrong Mairiang
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Nasikarn Angkasekwinai
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokwan Sriruksa
- Pediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand
| | - Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannee Limpitikul
- Pediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Sann S, Kleinewietfeld M, Cantaert T. Balancing functions of regulatory T cells in mosquito-borne viral infections. Emerg Microbes Infect 2024; 13:2304061. [PMID: 38192073 PMCID: PMC10812859 DOI: 10.1080/22221751.2024.2304061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2024] [Indexed: 01/10/2024]
Abstract
Mosquito-borne viral infections are on the rise worldwide and can lead to severe symptoms such as haemorrhage, encephalitis, arthritis or microcephaly. A protective immune response following mosquito-borne viral infections requires the generation of a controlled and balanced immune response leading to viral clearance without immunopathology. Here, regulatory T cells play a central role in restoring immune homeostasis. In current review, we aim to provide an overview and summary of the phenotypes of FOXP3+ Tregs in various mosquito-borne arboviral disease, their association with disease severity and their functional characteristics. Furthermore, we discuss the role of cytokines and Tregs in the immunopathogenesis of mosquito-borne infections. Lastly, we discuss possible novel lines of research which could provide additional insight into the role of Tregs in mosquito-borne viral infections in order to develop novel therapeutic approaches or vaccination strategies.
Collapse
Affiliation(s)
- Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
10
|
Roth C, Pitard B, Levillayer L, Lay S, Vo HTM, Cantaert T, Sakuntabhai A. Zika virus T-cell based 704/DNA vaccine promotes protection from Zika virus infection in the absence of neutralizing antibodies. PLoS Negl Trop Dis 2024; 18:e0012601. [PMID: 39418312 PMCID: PMC11521268 DOI: 10.1371/journal.pntd.0012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/29/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are closely related flaviviruses co-circulating in the same endemic areas. Infection can raise cross-reactive antibodies that can be either protective or increase risk of severe disease, depending on the infection sequence, DENV serotype and elapsed time between infection. On the contrast, T cell-mediated immunity against DENV and ZIKV is considered protective. Therefore, we have developed a T cell vaccine enriched in immunodominant T cell epitopes derived from ZIKV and evaluated its immunogenicity and efficacy against ZIKV and DENV infection. Mice were vaccinated using DNA vaccine platform using the tetrafunctional amphiphilic block copolymer 704. We show that vaccination of 2 different HLA class I transgenic mice with the ZIKV non-structural (NS) poly-epitope elicits T cell response against numerous ZIKV epitopes. Moreover, vaccination induces a significant protection against ZIKV infection, in the absence of neutralizing or enhancing antibodies against ZIKV. However, vaccination does not induce a significant protection against DENV2. In contrast, immunization with a DENV1-NS poly-epitope induces a significant protection against both DENV1 and DENV2, in the absence of humoral immunity. Taken together, we have shown that T-cell based vaccination could protect against multiple flavivirus infections and could overcome the complexity of antibody-mediated enhancement.
Collapse
Affiliation(s)
- Claude Roth
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Bruno Pitard
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in Immunotherapy, INCIT UMR1232/EMR6001, F-44000 Nantes, France
| | - Laurine Levillayer
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Oxford University Clinical Research Unit, Ho Chi Minh, Vietnam
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| |
Collapse
|
11
|
Dash MK, Samal S, Rout S, Behera CK, Sahu MC, Das B. Immunomodulation in dengue: towards deciphering dengue severity markers. Cell Commun Signal 2024; 22:451. [PMID: 39327552 PMCID: PMC11425918 DOI: 10.1186/s12964-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Dengue is a vector-borne debilitating disease that is manifested as mild dengue fever, dengue with warning signs, and severe dengue. Dengue infection provokes a collective immune response; in particular, the innate immune response plays a key role in primary infection and adaptive immunity during secondary infection. In this review, we comprehensively walk through the various markers of immune response against dengue pathogenesis and outcome. MAIN BODY Innate immune response against dengue involves a collective response through the expression of proinflammatory cytokines, such as tumor necrosis factors (TNFs), interferons (IFNs), and interleukins (ILs), in addition to anti-inflammatory cytokines and toll-like receptors (TLRs) in modulating viral pathogenesis. Monocytes, dendritic cells (DCs), and mast cells are the primary innate immune cells initially infected by DENV. Such immune cells modulate the expression of various markers, which can influence disease severity by aiding virus entry and proinflammatory responses. Adaptive immune response is mainly aided by B and T lymphocytes, which stimulate the formation of germinal centers for plasmablast development and antibody production. Such antibodies are serotype-dependent and can aid in virus entry during secondary infection, mediated through a different serotype, such as in antibody-dependent enhancement (ADE), leading to DENV severity. The entire immunological repertoire is exhibited differently depending on the immune status of the individual. SHORT CONCLUSION Dengue fever through severe dengue proceeds along with the modulated expression of several immune markers. In particular, TLR2, TNF-α, IFN-I, IL-6, IL-8, IL-17 and IL-10, in addition to intermediate monocytes (CD14+CD16+) and Th17 (CD4+IL-17+) cells are highly expressed during severe dengue. Such markers could assist greatly in severity assessment, prompt diagnosis, and treatment.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Shailesh Rout
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Kumar Behera
- Department of Pediatrics, Kalinga Institute of Medical Sciences, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | | | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
12
|
Palmal S, Kundu S, Ganguly S, Dey JB, Sandhukhan S, Pattanayak AK. Immunologic Crosstalk and Host-Specific Immune Signature Associated with Dengue. ACS OMEGA 2024; 9:37418-37429. [PMID: 39281909 PMCID: PMC11391553 DOI: 10.1021/acsomega.4c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
In tropical and subtropical regions, dengue fever is a common febrile illness that is mostly spread by Aedes mosquitoes. Urban population migration, inadequate water storage facilities, and high mosquito density are features associated with this disease. The severity of the illness ranges from mild to deadly dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), often with severe cases causing profound shock from extensive plasma leakage, and may result in demise. The symptoms of the illness include headache, myalgia, retro-orbital pain, and hemorrhagic signs. There may also be an intermittent shift in blood vessel integrity and coagulation, but recovery is typically complete and rapid. In this review, we emphasize the immunological aspects of this illness. The intricate interactions among the virus, host genes, and host immune systems impact the pathophysiology of dengue. Postinfection antibody-dependent enhancement is prominent, which significantly influences the etiology and virulence of the disease. Whereas the severe form only manifests when the host immune system is actively working to eradicate the infection by secreting several inflammatory cytokines, chemokines, and lipid mediators, for example, early dengue virus infection (DVI) resulted in the production of Interleukin 2 (IL-2), IL-6, and later infection, IL-4, IL-5, and IL-10. Higher concentrations of interferons gamma (IFN-gamma), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage migration inhibitory factor (MIF), IL-1, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, and IL-13 were found in DHF patients. These are significantly more prevalent in severe infections than in mild ones. Numerous immunopathogenic processes involving both virus and host variables influence the severity of dengue. There is growing evidence that a compromised immune system limits viral clearance and causes severe inflammation, which in turn causes dengue hemorrhagic fever and dengue shock syndrome. Furthermore, the capacity of DENV to infect a broad range of immune cells, such as macrophages, dendritic cells, mast cells, T and B cells, and monocytes, further dysregulates these cells' antiviral activities, leading to the spread of the virus. Even though a number of risk factors linked to the advancement of the disease have been suggested, further research and evaluation of novel technologies are necessary to understand the complicated etiology and develop reliable and effective vaccines to fight against this febrile illness.
Collapse
Affiliation(s)
- Shreemoyee Palmal
- Department of Microbiology, Lady Brabourne College, University of Calcutta, Kolkata, West Bengal 700 017, India
- Department of Microbiology, NRS Medical College, Kolkata, West Bengal 700 014, India
| | - Suman Kundu
- Department of Microbiology, NRS Medical College, Kolkata, West Bengal 700 014, India
| | - Swagata Ganguly
- Department of Microbiology, NRS Medical College, Kolkata, West Bengal 700 014, India
| | - Jayanta Bikash Dey
- Department of Microbiology, NRS Medical College, Kolkata, West Bengal 700 014, India
| | - Susanta Sandhukhan
- Bijoy Krishna Girl's College, Howrah, West Bengal 711 101, India
- Department of Zoology, University of Calcutta, Kolkata-19, West Bengal 700 073, India
| | - Arup Kumar Pattanayak
- Department of Microbiology, NRS Medical College, Kolkata, West Bengal 700 014, India
- Department of Zoology, University of Calcutta, Kolkata-19, West Bengal 700 073, India
| |
Collapse
|
13
|
Ding X, Zhao F, Liu Z, Yao J, Yu H, Zhang X. Original antigenic sin: A potential double-edged effect for vaccine improvement. Biomed Pharmacother 2024; 178:117187. [PMID: 39084082 DOI: 10.1016/j.biopha.2024.117187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Original antigenic sin (OAS) influences the immune response to subsequent infections with related variants following initial pathogen exposure. This phenomenon is characterized by cross-reactivity, which, although it may worsen infections, also provides a degree of protection against immune evasion caused by variations. This paradox complicates the development of creating universal vaccinations, as they frequently show diminished effectiveness against these emerging variants. This review aims to elucidate the diverse impacts of OAS on the immune response to various infections, emphasizing the complicated balance between beneficial and harmful outcomes. Moreover, we evaluate the influence of adjuvants and other variables on the extent of OAS, hence affecting the effectiveness of vaccines. Understanding the mechanisms of OAS that cause persistent infections and evasion of the immune system is crucial for the developing innovative vaccines. And it has significant potential for clinical applications.
Collapse
Affiliation(s)
- Xuan Ding
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Feijun Zhao
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China; Laboratory Medicine Center, the First Affiliated Hospital of University of South ChinaHengyang 421001, PR China
| | - Zhaoping Liu
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Jiangchen Yao
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Han Yu
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Xiaohong Zhang
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
14
|
Taechasan N, Scherwitzl I, Supasa P, Dejnirattisai W, Sriruksa K, Limpitikul W, Malasit P, Screaton GR, Mongkolsapaya J, Duangchinda T. The alteration of NK cells phenotypes related to the functions and dengue disease outcomes. Virus Res 2024; 345:199382. [PMID: 38697295 PMCID: PMC11101892 DOI: 10.1016/j.virusres.2024.199382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Natural killer cells (NK cells) are the front line of immune cells to combat pathogens and able to influence the subsequent adaptive immune responses. One of the factors contributing to pathogenesis in dengue hemorrhagic fever (DHF) disease is aberrant immune activation during early phase of infection. This study explored the profile of NK cells in dengue infected pediatric patients with different degrees of disease severity. DHF patients contained higher frequency of activated NK cells but lower ratio of CD56dim:CD56bright NK subsets. Activated NK cells exhibited alterations in several NK receptors. Interestingly, the frequencies of NKp30 expressing activated NK cells were more pronounced in dengue fever (DF) than in DHF pediatric patients. In vitro functional analysis indicated that degranulation of NK cells in responding to dengue infected dendritic cells (DCs) required cell-cell contact and type I IFNs. Meanwhile, Interferon gamma (IFN-γ) production initially required cell-cell contact and type I IFNs followed by Interleukin-12 (IL-12), Interleukin-15 (IL-15) and Interleukin-18 (IL-18) resulting in the amplification of IFN-γ producing NK cells over time. This study highlighted the complexity and the factors influencing NK cells responses to dengue virus. Degree of activation, phenotypes of activated cells and the crosstalk between NK cells and other immune cells, could modulate the outcome of NK cells function in the dengue disease.
Collapse
Affiliation(s)
- Napas Taechasan
- Department of Immunology, Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Research and Development, Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok 10700, Thailand
| | - Iris Scherwitzl
- Department of Medicine, Faculty of Medicine, Imperial College, Hammersmith Campus, London W12 0NN, UK
| | - Piyada Supasa
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok 10700, Thailand
| | - Kanokwan Sriruksa
- Pediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen 40000, Thailand
| | - Wannee Limpitikul
- Pediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla 90100, Thailand
| | - Prida Malasit
- Department of Research and Development, Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok 10700, Thailand; Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Gavin R Screaton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand; Department of Medicine, University of Oxford, Oxford, UK
| | - Thaneeya Duangchinda
- Department of Research and Development, Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok 10700, Thailand; Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand.
| |
Collapse
|
15
|
Chaudhuri D, Majumder S, Datta J, Giri K. Repurposing of therapeutic antibodies against dengue virus envelope protein receptor binding domain. Arch Microbiol 2024; 206:312. [PMID: 38900285 DOI: 10.1007/s00203-024-04039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Dengue virus (DENV) is the leading cause of numerous deaths every year due to its high infectivity. In this study we have tried to target the DENV envelope protein receptor binding domain, the region crucial for binding to host receptors which leads to membrane fusion and entry of the viral genome into the human host cell. We have taken 13 known FDA approved antiviral therapeutic antibodies from therapeutic antibody database and tried to repurpose them against the DENV envelope protein. Based on the humanness analysis, 10 antibodies were selected against the DENV envelope protein. Computational affinity maturation of the 10 selected antibodies was performed to increase their binding affinity and specificity against the DENV envelope protein which ultimately led to 8 mutant antibodies having better binding affinity than the native ones. Molecular Dynamics (MD) simulation shows that, the stability of the complexes involving both the native and mutant antibodies were found to be the same although the binding energy between the protein and the respective antibodies was seen to improve upon computational affinity maturation. Contact analyses show similar robustness of the interaction for both the mutant and native antibodies during complex formation with the DENV envelope protein. This has led to the selection of total 18 antibodies including 10 natural and 8 affinity matured mutants which have a high probability of interacting with the DENV envelope protein. Finally, based on all these analyses along with heated MD simulation, Bamlanivimab, Etesivimab and Tixagevimab with a mutation of residue 100 of the heavy chain from serine to tyrosine were selected as prospective therapeutic antibodies to combat DENV infection. This study may open a new avenue in designing therapeutics to combat Dengue viral infection.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
16
|
Sann S, Heng B, Vo HTM, Arroyo Hornero R, Lay S, Sorn S, Ken S, Ou TP, Laurent D, Yay C, Ly S, Dussart P, Duong V, Sakuntabhai A, Kleinewietfeld M, Cantaert T. Increased frequencies of highly activated regulatory T cells skewed to a T helper 1-like phenotype with reduced suppressive capacity in dengue patients. mBio 2024; 15:e0006324. [PMID: 38752787 PMCID: PMC11237415 DOI: 10.1128/mbio.00063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024] Open
Abstract
The pathogenesis of dengue involves a complex interplay between the viral factor and the host immune response. A mismatch between the infecting serotype and the adaptive memory response is hypothesized to lead to exacerbated immune responses resulting in severe dengue. Here, we aim to define in detail the phenotype and function of different regulatory T cell (Treg) subsets and their association with disease severity in a cohort of acute dengue virus (DENV)-infected Cambodian children. Treg frequencies and proliferation of Tregs are increased in dengue patients compared to age-matched controls. Tregs from dengue patients are skewed to a Th1-type Treg phenotype. Interestingly, Tregs from severe dengue patients produce more interleukin-10 after in vitro stimulation compared to Tregs from classical dengue fever patients. Functionally, Tregs from dengue patients have reduced suppressive capacity, irrespective of disease severity. Taken together, these data suggest that even though Treg frequencies are increased in the blood of acute DENV-infected patients, Tregs fail to resolve inflammation and thereby could contribute to the immunopathology of dengue. IMPORTANCE According to the World Health Organization, dengue is the fastest-spreading, epidemic-prone infectious disease. The extent of dengue virus infections increased over the years, mainly driven by globalization-including travel and trade-and environmental changes. Dengue is an immunopathology caused by an imbalanced immune response to a secondary heterotypic infection. As regulatory T cells (Tregs) are essential in maintaining immune homeostasis and dampening excessive immune activation, this study addressed the role of Tregs in dengue immunopathology. We show that Tregs from dengue patients are highly activated, skewed to a Th1-like Treg phenotype and less suppressive compared to healthy donor Tregs. Our data suggest that Tregs fail to resolve ongoing inflammation during dengue infection and hence contribute to the immunopathology of severe dengue disease. These data clarify the role of Tregs in dengue immunopathogenesis, emphasizing the need to develop T cell-based vaccines for dengue.
Collapse
Affiliation(s)
- Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- VIB Laboratory of Translational Immunomodulation, Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Hasselt University, Diepenbeek, Belgium
- University Multiple Sclerosis Center, Hasselt University, Diepenbeek, Belgium
| | - Borita Heng
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Rebeca Arroyo Hornero
- VIB Laboratory of Translational Immunomodulation, Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Hasselt University, Diepenbeek, Belgium
- University Multiple Sclerosis Center, Hasselt University, Diepenbeek, Belgium
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sreymom Ken
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Denis Laurent
- Kantha Bopha Children's Hospital, Phnom Penh, Cambodia
| | | | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Department of Global Health, Ecology and Emergence of Arthropod-borne Pathogens, Institut Pasteur, Université de Paris, Paris, France
- Université de Paris-Cité, CNRS UMR 2000, Paris, France
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE) USC 1510, Paris, France
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Hasselt University, Diepenbeek, Belgium
- University Multiple Sclerosis Center, Hasselt University, Diepenbeek, Belgium
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
17
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
18
|
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024; 16:730. [PMID: 38793612 PMCID: PMC11126086 DOI: 10.3390/v16050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.
Collapse
Affiliation(s)
- Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| |
Collapse
|
19
|
Paz-Bailey G, Adams LE, Deen J, Anderson KB, Katzelnick LC. Dengue. Lancet 2024; 403:667-682. [PMID: 38280388 DOI: 10.1016/s0140-6736(23)02576-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 01/29/2024]
Abstract
Dengue, caused by four closely related viruses, is a growing global public health concern, with outbreaks capable of overwhelming health-care systems and disrupting economies. Dengue is endemic in more than 100 countries across tropical and subtropical regions worldwide, and the expanding range of the mosquito vector, affected in part by climate change, increases risk in new areas such as Spain, Portugal, and the southern USA, while emerging evidence points to silent epidemics in Africa. Substantial advances in our understanding of the virus, immune responses, and disease progression have been made within the past decade. Novel interventions have emerged, including partially effective vaccines and innovative mosquito control strategies, although a reliable immune correlate of protection remains a challenge for the assessment of vaccines. These developments mark the beginning of a new era in dengue prevention and control, offering promise in addressing this pressing global health issue.
Collapse
Affiliation(s)
| | - Laura E Adams
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines, Manila, Philippines
| | - Kathryn B Anderson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Gálvez RI, Martínez-Pérez A, Escarrega EA, Singh T, Zambrana JV, Balmaseda Á, Harris E, Weiskopf D. Frequency of Dengue Virus-Specific T Cells is related to Infection Outcome in Endemic Settings. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302330. [PMID: 38370822 PMCID: PMC10871461 DOI: 10.1101/2024.02.05.24302330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dengue is widespread in tropical and subtropical regions globally and leads to a considerable burden of disease. Annually, dengue virus (DENV) causes up to 400 million infections, of which ~25% present with clinical symptoms ranging from mild to fatal. Despite its significance as a growing public health concern, the development of effective DENV vaccines has been highly challenging. One of the reasons is the lack of comprehensive understanding of the influence exerted by prior DENV infections and immune responses with cross-reactive properties. To investigate this, we collected samples from a pediatric cohort study in dengue-endemic Managua, Nicaragua. We characterized T cell responses in a group of 71 healthy children who had previously experienced one or more natural DENV infections and who, within one year after sample collection, had a subsequent DENV infection that was either symptomatic (n=25) or inapparent (n=46, absence of clinical disease). Thus, our study was designed to investigate the impact of pre-existing DENV specific T cell responses on the clinical outcomes of subsequent DENV infection. We assessed the DENV specific T cell responses using an activation-induced marker assay (AIM). Children who had experienced only one prior DENV infection displayed heterogeneous DENV specific CD4+ and CD8+ T cell frequencies. In contrast, children who had experienced two or more DENV infections showed significantly higher frequencies of DENV specific CD4+ and CD8+ T cells that were associated with inapparent as opposed to symptomatic outcomes in the subsequent DENV infection. Taken together, these findings demonstrate the protective role of DENV specific T cells against symptomatic DENV infection and constitute an advancement toward identifying protective immune correlates against dengue fever and clinical disease.
Collapse
Affiliation(s)
- Rosa Isela Gálvez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Amparo Martínez-Pérez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - E. Alexandar Escarrega
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tulika Singh
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - José Víctor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Ángel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Radwan J, Kohi C, Ejsmond M, Paganini J, Pontarotti P. Integration of the immune memory into the pathogen-driven MHC polymorphism hypothesis. HLA 2023; 102:653-659. [PMID: 37688391 DOI: 10.1111/tan.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/01/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Major histocompatibility complex (MHC) genes (referred to as human leukocyte antigen or HLA in humans) are a key component of vertebrate immune systems, coding for proteins which present antigens to T-cells. These genes are outstanding in their degree of polymorphism, with important consequences for human and animal health. The polymorphism is thought to arise from selection pressures imposed by pathogens on MHC allomorphs, which differ in their antigen-binding capacity. However, the existing theory has not considered MHC selection in relation to the formation of immune memory. In this paper, we argue that this omission limits our understanding of the evolution of MHC polymorphism and its role in disease. We review recent evidence that has emerged from the massive research effort related to the SARS-CoV-2 pandemics, and which provides new evidence for the role of MHC in shaping immune memory. We then discuss why the inclusion of immune memory within the existing theory may have non-trivial consequence for our understanding of the evolution of MHC polymorphism. Finally, we will argue that neglecting immune memory hinders our interpretation of empirical findings, and postulate that future studies focusing on pathogen-driven MHC selection would benefit from stratifying the available data according to the history of infection (and vaccination, if relevant).
Collapse
Affiliation(s)
- Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Chirine Kohi
- MEPHI, Aix Marseille Université, Marseille, France
| | - Maciej Ejsmond
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | | | - Pierre Pontarotti
- MEPHI, Aix Marseille Université, Marseille, France
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
- SNC 5039 CNRS, Marseille, France
| |
Collapse
|
22
|
Singh P, Bajpai P, Maheshwari D, Chawla YM, Saini K, Reddy ES, Gottimukkala K, Nayak K, Gunisetty S, Aggarwal C, Jain S, Verma C, Singla P, Soneja M, Wig N, Murali-Krishna K, Chandele A. Functional and transcriptional heterogeneity within the massively expanding HLADR +CD38 + CD8 T cell population in acute febrile dengue patients. J Virol 2023; 97:e0074623. [PMID: 37855600 PMCID: PMC10688317 DOI: 10.1128/jvi.00746-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.
Collapse
Affiliation(s)
- Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chaitanya Verma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Paras Singla
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
23
|
de Arruda TB, Bavia L, Mosimann ALP, Aoki MN, Sarzi ML, Conchon-Costa I, Wowk PF, Duarte dos Santos CN, Pavanelli WR, Silveira GF, Bordignon J. Viremia and Inflammatory Cytokines in Dengue: Interleukin-2 as a Biomarker of Infection, and Interferon-α and -γ as Markers of Primary versus Secondary Infection. Pathogens 2023; 12:1362. [PMID: 38003826 PMCID: PMC10675515 DOI: 10.3390/pathogens12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The pathogenesis of Dengue virus (DENV) infection is complex and involves viral replication that may trigger an inflammatory response leading to severe disease. Here, we investigated the correlation between viremia and cytokine levels in the serum of DENV-infected patients. Between 2013 and 2014, 138 patients with a diagnosis of acute-phase DENV infection and 22 patients with a non-dengue acute febrile illness (AFI) were enrolled. Through a focus-forming assay (FFU), we determined the viremia levels in DENV-infected patients and observed a peak in the first two days after the onset of symptoms. A higher level of viremia was observed in primary versus secondary DENV-infected patients. Furthermore, no correlation was observed between viremia and inflammatory cytokine levels in DENV-infected patients. Receiver operating characteristic (ROC) curve analysis revealed that IL-2 has the potential to act as a marker to distinguish dengue from other febrile illnesses and is positively correlated with Th1 cytokines. IFN-α and IFN-γ appear to be potential markers of primary versus secondary infection in DENV-infected patients, respectively. The results also indicate that viremia levels are not the main driving force behind inflammation in dengue and that cytokines could be used as infection biomarkers and for differentiation between primary versus secondary infection.
Collapse
Affiliation(s)
- Thaís Bonato de Arruda
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Mateus Nobrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Laboratório de Ciências & Tecnologias Aplicadas a Saúde, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil
| | - Maria Lo Sarzi
- Secretaria Municipal de Saúde de Cambé, Cambé 86057-970, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Claudia Nunes Duarte dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Wander Rogério Pavanelli
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | | | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| |
Collapse
|
24
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
25
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
26
|
Ooi EE, Kalimuddin S. Insights into dengue immunity from vaccine trials. Sci Transl Med 2023; 15:eadh3067. [PMID: 37437017 DOI: 10.1126/scitranslmed.adh3067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The quest for an effective dengue vaccine has culminated in two approved vaccines and another that has completed phase 3 clinical trials. However, shortcomings exist in each, suggesting that the knowledge on dengue immunity used to develop these vaccines was incomplete. Vaccine trial findings could refine our understanding of dengue immunity, because these are experimentally derived, placebo-controlled data. Results from these trials suggest that neutralizing antibody titers alone are insufficient to inform protection against symptomatic infection, implicating a role for cellular immunity in protection. These findings have relevance for both future dengue vaccine development and application of current vaccines for maximal public health benefit.
Collapse
Affiliation(s)
- Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Shirin Kalimuddin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
27
|
Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, Ogbe A. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2023; 23:304-316. [PMID: 36539527 PMCID: PMC9765363 DOI: 10.1038/s41577-022-00809-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Pre-existing cross-reactive immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in infection-naive subjects have been described by several studies. In particular, regions of high homology between SARS-CoV-2 and common cold coronaviruses have been highlighted as a likely source of this cross-reactivity. However, the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination is currently unclear. Here, we review evidence regarding the impact of pre-existing humoral and T cell immune responses to outcomes of SARS-CoV-2 infection and vaccination. Furthermore, we discuss the importance of conserved coronavirus epitopes for the rational design of pan-coronavirus vaccines and consider cross-reactivity of immune responses to ancestral SARS-CoV-2 and SARS-CoV-2 variants, as well as their impact on COVID-19 vaccination.
Collapse
Affiliation(s)
- Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Azim M Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Ioannidis LJ, Studniberg SI, Eriksson EM, Suwarto S, Denis D, Liao Y, Shi W, Garnham AL, Sasmono RT, Hansen DS. Integrated systems immunology approach identifies impaired effector T cell memory responses as a feature of progression to severe dengue fever. J Biomed Sci 2023; 30:24. [PMID: 37055751 PMCID: PMC10103532 DOI: 10.1186/s12929-023-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems. METHODS To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia. RESULTS After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS+CD4+ and CD8+ effector memory T cells. These responses were virtually absent in cases progressing to severe DHF, that instead mounted an innate-like response, characterised by inflammatory transcriptional profiles, high circulating levels of inflammatory chemokines and with high frequencies of CD4low non-classical monocytes predicting increased odds of severe disease. CONCLUSIONS Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.
Collapse
Affiliation(s)
- Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Suhendro Suwarto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital (RSCM), Jakarta, Indonesia
| | - Dionisius Denis
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Diana S Hansen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
29
|
Jeong AY, Lee P, Lee MS, Kim DJ. Pre-existing Immunity to Endemic Human Coronaviruses Does Not Affect the Immune Response to SARS-CoV-2 Spike in a Murine Vaccination Model. Immune Netw 2023; 23:e19. [PMID: 37179748 PMCID: PMC10166660 DOI: 10.4110/in.2023.23.e19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 05/15/2023] Open
Abstract
Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.
Collapse
Affiliation(s)
- Ahn Young Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Moo-Seung Lee
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
30
|
Lentiviral Vectors as a Vaccine Platform against Infectious Diseases. Pharmaceutics 2023; 15:pharmaceutics15030846. [PMID: 36986707 PMCID: PMC10053212 DOI: 10.3390/pharmaceutics15030846] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Lentiviral vectors are among the most effective viral vectors for vaccination. In clear contrast to the reference adenoviral vectors, lentiviral vectors have a high potential for transducing dendritic cells in vivo. Within these cells, which are the most efficient at activating naive T cells, lentiviral vectors induce endogenous expression of transgenic antigens that directly access antigen presentation pathways without the need for external antigen capture or cross-presentation. Lentiviral vectors induce strong, robust, and long-lasting humoral, CD8+ T-cell immunity and effective protection against several infectious diseases. There is no pre-existing immunity to lentiviral vectors in the human population and the very low pro-inflammatory properties of these vectors pave the way for their use in mucosal vaccination. In this review, we have mainly summarized the immunological aspects of lentiviral vectors, their recent optimization to induce CD4+ T cells, and our recent data on lentiviral vector-based vaccination in preclinical models, including prophylaxis against flaviviruses, SARS-CoV-2, and Mycobacterium tuberculosis.
Collapse
|
31
|
Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res 2023; 324:199018. [PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
Collapse
|
32
|
Aguilar-Bretones M, Fouchier RA, Koopmans MP, van Nierop GP. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J Clin Invest 2023; 133:e162192. [PMID: 36594464 PMCID: PMC9797340 DOI: 10.1172/jci162192] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and vaccinations targeting the spike protein (S) offer protective immunity against coronavirus disease 2019 (COVID-19). This immunity may further be shaped by cross-reactivity with common cold coronaviruses. Mutations arising in S that are associated with altered intrinsic virus properties and immune escape result in the continued circulation of SARS-CoV-2 variants. Potentially, vaccine updates will be required to protect against future variants of concern, as for influenza. To offer potent protection against future variants, these second-generation vaccines may need to redirect immunity to epitopes associated with immune escape and not merely boost immunity toward conserved domains in preimmune individuals. For influenza, efficacy of repeated vaccination is hampered by original antigenic sin, an attribute of immune memory that leads to greater induction of antibodies specific to the first-encountered variant of an immunogen compared with subsequent variants. In this Review, recent findings on original antigenic sin are discussed in the context of SARS-CoV-2 evolution. Unanswered questions and future directions are highlighted, with an emphasis on the impact on disease outcome and vaccine design.
Collapse
|
33
|
Karuppiah B, Chinniah R, Pandi S, Sevak V, Ravi PM, Thadakanathan D. Immunogenetic landscape of COVID-19 infections related neurological complications. COVID-19 IN ALZHEIMER'S DISEASE AND DEMENTIA 2023:133-146. [DOI: 10.1016/b978-0-443-15256-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
34
|
Nainggolan L, Dewi BE, Hakiki A, Pranata AJ, Sudiro TM, Martina B, van Gorp E. Association of viral kinetics, infection history, NS1 protein with plasma leakage among Indonesian dengue infected patients. PLoS One 2023; 18:e0285087. [PMID: 37130105 PMCID: PMC10153689 DOI: 10.1371/journal.pone.0285087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
OBJECTIVES Plasma leakage, a hallmark of disease in Dengue virus (DENV) infection, is an important clinical manifestation and is often associated with numerous factors such as viral factors. The aim of this study is to investigate the association of virus serotype, viral load kinetics, history of infection, and NS1 protein with plasma leakage. METHODS Subjects with fever ≤ 48 hours and positive DENV infection were included. Serial laboratory tests, viral load measurements, and ultrasonography examination to assess plasma leakage were performed. RESULTS DENV-3 was the most common serotype found in the plasma leakage group (35%). Patients with plasma leakage demonstrated a trend of higher viral load and a longer duration of viremia compared to those without. This was significantly observed on the fourth day of fever (p = 0.037). We found higher viral loads on specific days in patients with plasma leakage in both primary and secondary infections compared to those without. In addition, we also observed more rapid viral clearance in patients with secondary infection. NS1 protein, especially after 4 days of fever, was associated with higher peak viral load level, even though it was not statistically significant (p = 0.470). However, pairwise comparison demonstrated that peak viral load level in the group of patients with circulating NS1 detected for 7 days was significantly higher than the 5-day group (p = 0.037). CONCLUSION DENV-3 was the most common serotype to cause plasma leakage. Patients with plasma leakage showed a trend of higher viral load and a longer duration of viremia. Higher level of viral load was observed significantly on day 5 in patients with primary infection and more rapid viral clearance was observed in patients with secondary infection. Longer duration of circulating NS1 protein was also seen to be positively correlated with higher peak viral load level although not statistically significant.
Collapse
Affiliation(s)
- Leonard Nainggolan
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Beti Ernawati Dewi
- Department of Microbiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Arif Hakiki
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Antony Joseph Pranata
- Department of Microbiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - Byron Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
McCarthy MW. Original antigen sin and COVID-19: implications for seasonal vaccination. Expert Opin Biol Ther 2022; 22:1353-1358. [PMID: 36243027 DOI: 10.1080/14712598.2022.2137402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Original antigenic sin describes the phenomenon in which immunity against pathogens or antigens is shaped by the host's first exposure to a related pathogen or antigen. AREAS COVERED When primary immunity is boosted not by the homologous but by a cross-reacting vaccine, the newly formed antibodies may react better with the primary antigen than with the antigen actually eliciting the response. This form of immune imprinting, which has been observed with influenza, dengue, human immunodeficiency virus, and other pathogens, has profound implications for the approach to seasonal vaccination against a variety of diseases, including COVID-19. EXPERT OPINION Public health agencies and regulatory bodies have consistently recommended repeated vaccination every few months as a way to protect against COVID-19. However, the risks and benefits of this approach requires scrutiny given the concern for original antigenic sin in response to SARS-CoV-2. This manuscript examines what is known about immune imprinting and looks ahead to explore how this phenomenon may impact seasonal vaccination against emerging SARS-CoV-2 subvariants such as BA.4, BA.5, and BA.5.1, which have been associated increased transmissibility due to enhanced immune escape.
Collapse
|
36
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
37
|
Marzan-Rivera N, Serrano-Collazo C, Cruz L, Pantoja P, Ortiz-Rosa A, Arana T, Martinez MI, Burgos AG, Roman C, Mendez LB, Geerling E, Pinto AK, Brien JD, Sariol CA. Infection order outweighs the role of CD4 + T cells in tertiary flavivirus exposure. iScience 2022; 25:104764. [PMID: 35982798 PMCID: PMC9379573 DOI: 10.1016/j.isci.2022.104764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
The link between CD4+ T and B cells during immune responses to DENV and ZIKV and their roles in cross-protection during heterologous infection is an active area of research. Here we used CD4+ lymphocyte depletions to dissect the impact of cellular immunity on humoral responses during a tertiary flavivirus infection in macaques. We show that CD4+ depletion in DENV/ZIKV-primed animals followed by DENV resulted in dysregulated adaptive immune responses. We show a delay in DENV-specific IgM/IgG antibody titers and binding and neutralization in the DENV/ZIKV-primed CD4-depleted animals but not in ZIKV/DENV-primed CD4-depleted animals. This study confirms the critical role of CD4+ cells in priming an early effective humoral response during sequential flavivirus infections. Our work here suggests that the order of flavivirus exposure affects the outcome of a tertiary infection. Our findings have implications for understanding the complex flavivirus immune responses and for the development of effective flavivirus vaccines.
Collapse
Affiliation(s)
- Nicole Marzan-Rivera
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Crisanta Serrano-Collazo
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Lorna Cruz
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Alexandra Ortiz-Rosa
- Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, PR 00931, USA
| | - Teresa Arana
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Melween I. Martinez
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Caribbean Primate Research Center, School of Medicine, University of Puerto Rico-Medical Sciences Campus, Toa Baja, PR 00952, USA
| | - Armando G. Burgos
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Caribbean Primate Research Center, School of Medicine, University of Puerto Rico-Medical Sciences Campus, Toa Baja, PR 00952, USA
| | - Chiara Roman
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Loyda B. Mendez
- Department of Science & Technology, Universidad Ana G. Mendez, Recinto de Carolina, Carolina, PR 00985, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 631204, USA
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 631204, USA
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 631204, USA
| | - Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, PR 00931, USA
- Department of Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
38
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
39
|
McNaughton AL, Paton RS, Edmans M, Youngs J, Wellens J, Phalora P, Fyfe A, Belij-Rammerstorfer S, Bolton JS, Ball J, Carnell GW, Dejnirattisai W, Dold C, Eyre DW, Hopkins P, Howarth A, Kooblall K, Klim H, Leaver S, Lee LN, López-Camacho C, Lumley SF, Macallan DC, Mentzer AJ, Provine NM, Ratcliff J, Slon-Compos J, Skelly D, Stolle L, Supasa P, Temperton N, Walker C, Wang B, Wyncoll D, Oxford Protective T Cell Immunology for COVID-19 (OPTIC) consortium, Scottish National Blood Transfusion Service (SNBTS) consortium, Simmonds P, Lambe T, Baillie JK, Semple MG, Openshaw PJ, International Severe Acute Respiratory and emerging Infection Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) investigators, Obolski U, Turner M, Carroll M, Mongkolsapaya J, Screaton G, Kennedy SH, Jarvis L, Barnes E, Dunachie S, Lourenço J, Matthews PC, Bicanic T, Klenerman P, Gupta S, Thompson CP. Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight 2022; 7:156372. [PMID: 35608920 PMCID: PMC9310533 DOI: 10.1172/jci.insight.156372] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal outcomes with coronavirus disease 2019 (COVID-19) is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to an intensive care unit (ICU) with fatal COVID-19 outcomes, but not in individuals with nonfatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to an ICU with fatal and nonfatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an "original antigenic sin" type response.
Collapse
Affiliation(s)
- Anna L. McNaughton
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Robert S. Paton
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Matthew Edmans
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Youngs
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | - Judith Wellens
- Peter Medawar Building for Pathogen Research
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
- Translational Research for Gastrointestinal Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Prabhjeet Phalora
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Alex Fyfe
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Jai S. Bolton
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Ball
- General Intensive Care service, St George’s University Hospital National Health Service (NHS) Trust, London, United Kingdom
| | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | - David W. Eyre
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Philip Hopkins
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College, London, United Kingdom
| | - Alison Howarth
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kreepa Kooblall
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, and
| | - Hannah Klim
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Future of Humanity Institute, Department of Philosophy, and
| | - Susannah Leaver
- General Intensive Care service, St George’s University Hospital National Health Service (NHS) Trust, London, United Kingdom
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | | | - Sheila F. Lumley
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Derek C. Macallan
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | | | - Nicholas M. Provine
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jeremy Ratcliff
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Jose Slon-Compos
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Donal Skelly
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lucas Stolle
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Chris Walker
- Meso Scale Diagnostics, Rockville, Maryland, USA
| | - Beibei Wang
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Duncan Wyncoll
- Intensive Care Medicine, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Peter Simmonds
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Teresa Lambe
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | | | - Malcolm G. Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Uri Obolski
- School of Public Health, Faculty of Medicine, and
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Marc Turner
- National Microbiology Reference Unit, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- National Infection Service, Public Health England (PHE), Salisbury, United Kingdom
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- Siriraj Center of Research for Excellence in Dengue & Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Stephen H. Kennedy
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lisa Jarvis
- National Microbiology Reference Unit, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - José Lourenço
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Philippa C. Matthews
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Translational Research for Gastrointestinal Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Sunetra Gupta
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Craig P. Thompson
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
40
|
Yong YK, Wong WF, Vignesh R, Chattopadhyay I, Velu V, Tan HY, Zhang Y, Larsson M, Shankar EM. Dengue Infection - Recent Advances in Disease Pathogenesis in the Era of COVID-19. Front Immunol 2022; 13:889196. [PMID: 35874775 PMCID: PMC9299105 DOI: 10.3389/fimmu.2022.889196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The dynamics of host-virus interactions, and impairment of the host’s immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.
Collapse
Affiliation(s)
- Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ramachandran Vignesh
- Preclinical Department, Royal College of Medicine Perak (UniKL RCMP), Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Indranil Chattopadhyay
- Cancer and Microbiome Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory National Primate Research Center, Emory University, Atlanta GA, United States
| | - Hong Yien Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Ying Zhang
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| |
Collapse
|
41
|
Lv H, So RTY, Teo QW, Yuan M, Liu H, Lee CCD, Yip GK, Ng WW, Wilson IA, Peiris M, Wu NC, Mok CKP. Neutralizing Antibody Response to Sarbecovirus Is Delayed in Sequential Heterologous Immunization. Viruses 2022; 14:1382. [PMID: 35891363 PMCID: PMC9318566 DOI: 10.3390/v14071382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antigenic imprinting, which describes the bias of the antibody response due to previous immune history, can influence vaccine effectiveness. While this phenomenon has been reported for viruses such as influenza, there is little understanding of how prior immune history affects the antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting through immunization with two Sarbecoviruses, the subgenus that includes SARS-CoV-2. Mice were immunized subsequently with two antigenically distinct Sarbecovirus strains, namely SARS-CoV-1 and SARS-CoV-2. We found that sequential heterologous immunization induced cross-reactive binding antibodies for both viruses and delayed the emergence of neutralizing antibody responses against the booster strain. Our results provide fundamental knowledge about the immune response to Sarbecovirus and important insights into the development of pan-sarbecovirus vaccines and guiding therapeutic interventions.
Collapse
Affiliation(s)
- Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Ray T. Y. So
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Garrick K. Yip
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Wilson W. Ng
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
- The Skaggs Institute for Chemical Biology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Nicholas C. Wu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
42
|
Luria-Pérez R, Sánchez-Vargas LA, Muñoz-López P, Mellado-Sánchez G. Mucosal Vaccination: A Promising Alternative Against Flaviviruses. Front Cell Infect Microbiol 2022; 12:887729. [PMID: 35782117 PMCID: PMC9241634 DOI: 10.3389/fcimb.2022.887729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae are a family of positive-sense, single-stranded RNA enveloped viruses, and their members belong to a single genus, Flavivirus. Flaviviruses are found in mosquitoes and ticks; they are etiological agents of: dengue fever, Japanese encephalitis, West Nile virus infection, Zika virus infection, tick-borne encephalitis, and yellow fever, among others. Only a few flavivirus vaccines have been licensed for use in humans: yellow fever, dengue fever, Japanese encephalitis, tick-borne encephalitis, and Kyasanur forest disease. However, improvement is necessary in vaccination strategies and in understanding of the immunological mechanisms involved either in the infection or after vaccination. This is especially important in dengue, due to the immunological complexity of its four serotypes, cross-reactive responses, antibody-dependent enhancement, and immunological interference. In this context, mucosal vaccines represent a promising alternative against flaviviruses. Mucosal vaccination has several advantages, as inducing long-term protective immunity in both mucosal and parenteral tissues. It constitutes a friendly route of antigen administration because it is needle-free and allows for a variety of antigen delivery systems. This has promoted the development of several ways to stimulate immunity through the direct administration of antigens (e.g., inactivated virus, attenuated virus, subunits, and DNA), non-replicating vectors (e.g., nanoparticles, liposomes, bacterial ghosts, and defective-replication viral vectors), and replicating vectors (e.g., Salmonella enterica, Lactococcus lactis, Saccharomyces cerevisiae, and viral vectors). Because of these characteristics, mucosal vaccination has been explored for immunoprophylaxis against pathogens that enter the host through mucosae or parenteral areas. It is suitable against flaviviruses because this type of immunization can stimulate the parenteral responses required after bites from flavivirus-infected insects. This review focuses on the advantages of mucosal vaccine candidates against the most relevant flaviviruses in either humans or animals, providing supporting data on the feasibility of this administration route for future clinical trials.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
| | - Luis A. Sánchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Paola Muñoz-López
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México, Mexico
| |
Collapse
|
43
|
Innate Immune Response to Dengue Virus: Toll-like Receptors and Antiviral Response. Viruses 2022; 14:v14050992. [PMID: 35632732 PMCID: PMC9147118 DOI: 10.3390/v14050992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Dengue is a mosquito-borne viral disease caused by the dengue virus (DENV1-4). The clinical manifestations range from asymptomatic to life-threatening dengue hemorrhagic fever (DHF) and/or Dengue Shock Syndrome (DSS). Viral and host factors are related to the clinical outcome of dengue, although the disease pathogenesis remains uncertain. The innate antiviral response to DENV is implemented by a variety of immune cells and inflammatory mediators. Blood monocytes, dendritic cells (DCs) and tissue macrophages are the main target cells of DENV infection. These cells recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Pathogen recognition is a critical step in eliciting the innate immune response. Toll-like receptors (TLRs) are responsible for the innate recognition of pathogens and represent an essential component of the innate and adaptive immune response. Ten different TLRs are described in humans, which are expressed in many different immune cells. The engagement of TLRs with viral PAMPs triggers downstream signaling pathways leading to the production of inflammatory cytokines, interferons (IFNs) and other molecules essential for the prevention of viral replication. Here, we summarize the crucial TLRs’ roles in the antiviral innate immune response to DENV and their association with viral pathogenesis.
Collapse
|
44
|
Transcriptomics of Acute DENV-Specific CD8+ T Cells Does Not Support Qualitative Differences as Drivers of Disease Severity. Vaccines (Basel) 2022; 10:vaccines10040612. [PMID: 35455361 PMCID: PMC9029181 DOI: 10.3390/vaccines10040612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022] Open
Abstract
While several lines of evidence suggest a protective role of T cells against disease associated with Dengue virus (DENV) infection, their potential contribution to immunopathology in the acute phase of DENV infection remains controversial, and it has been hypothesized that the more severe form of the disease (dengue hemorrhagic fever, DHF) is associated with altered T cell responses. To address this question, we determined the transcriptomic profiles of DENV-specific CD8+ T cells in a cohort of 40 hospitalized dengue patients with either a milder form of the disease (dengue fever, DF) or a more severe disease form (dengue hemorrhagic fever, DHF). We found multiple transcriptomic signatures, one associated with DENV-specific interferon-gamma responding cells and two other gene signatures, one specifically associated with the acute phase and the other with the early convalescent phase. Additionally, we found no differences in quantity and quality of DENV-specific CD8+ T cells based on disease severity. Taken together with previous findings that did not detect altered DENV-specific CD4 T cell responses, the current analysis argues against alteration in DENV-specific T cell responses as being a correlate of immunopathology.
Collapse
|
45
|
Low Activation of CD8+ T Cells in response to Viral Peptides in Mexican Patients with Severe Dengue. J Immunol Res 2022; 2022:9967594. [PMID: 35372587 PMCID: PMC8975689 DOI: 10.1155/2022/9967594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
It is acknowledged that antiviral immune response contributes to dengue immunopathogenesis. To identify immunological markers that distinguish dengue fever (DF) and dengue hemorrhagic fever (DHF), 113 patients with confirmed dengue infection were analyzed at 6 or 7 days after fever onset. Peripheral blood mononuclear cells (PBMC) were isolated, lymphocyte subsets and activation biomarkers were identified by flow cytometry, and differentiation of T helper (Th) lymphocytes was achieved by the relative expression analysis of T-bet (Th1), GATA-3 (Th2), ROR-γ (Th17), and FOXP-3 (T regulatory) transcription factors quantified by real-time PCR. CD8+, CD40L+, and CD45+ cells show higher numbers in DF compared to DHF patients, whereas CD4+, CD19+, and CD25+ cells show higher numbers in DHF than DF patients. High expression of GATA-3 accompanied by low expression of T-bet indicates predominance of Th2 response. In addition, higher expression of FOXP-3 and reduced functional cytotoxic T cells (CD8+perforin+) were observed in DHF patients. In further experiments, PBMC were stimulated ex vivo with dengue virus E, NS3, NS4, and NS5 peptides, and proliferating T cell subsets were determined. Lower proliferative responses to NS3 and NS4 peptides and reduced CD8+ cytotoxic T cells were observed in DHF patients. Our results suggest that immune response to dengue is dysregulated with predominance of CD4+ T cells, low activation of Th1 cells, and downregulation of the antiviral cytotoxic activity during severe dengue, likely induced by regulatory T cells.
Collapse
|
46
|
Ercanoglu MS, Gieselmann L, Dähling S, Poopalasingam N, Detmer S, Koch M, Korenkov M, Halwe S, Klüver M, Di Cristanziano V, Janicki H, Schlotz M, Worczinski J, Gathof B, Gruell H, Zehner M, Becker S, Vanshylla K, Kreer C, Klein F. No substantial preexisting B cell immunity against SARS-CoV-2 in healthy adults. iScience 2022; 25:103951. [PMID: 35224466 PMCID: PMC8857777 DOI: 10.1016/j.isci.2022.103951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Preexisting immunity against SARS-CoV-2 may have critical implications for our understanding of COVID-19 susceptibility and severity. The presence and clinical relevance of a preexisting B cell immunity remain to be fully elucidated. Here, we provide a detailed analysis of the B cell immunity to SARS-CoV-2 in unexposed individuals. To this end, we extensively investigated SARS-CoV-2 humoral immunity in 150 adults sampled pre-pandemically. Comprehensive screening of donor plasma and purified IgG samples for binding and neutralization in various functional assays revealed no substantial activity against SARS-CoV-2 but broad reactivity to endemic betacoronaviruses. Moreover, we analyzed antibody sequences of 8,174 putatively SARS-CoV-2-reactive B cells at a single cell level and generated and tested 158 monoclonal antibodies. None of these antibodies displayed relevant binding or neutralizing activity against SARS-CoV-2. Taken together, our results show no evidence of competent preexisting antibody and B cell immunity against SARS-CoV-2 in unexposed adults. Comprehensive analysis of the B cell response to SARS-CoV-2 in pre-pandemic samples No substantial plasma and IgG reactivity against SARS-CoV-2 MAbs isolated from pre-pandemic samples showed no SARS-CoV-2 neutralizing activity No indication of competent preexisting B cell immunity against SARS-CoV-2
Collapse
Affiliation(s)
- Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nareshkumar Poopalasingam
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Susanne Detmer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Michael Klüver
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Veronica Di Cristanziano
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Johanna Worczinski
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
47
|
Goncharov NV, Vasilyev KA, Kudryavtsev IV, Avdonin PP, Belinskaia DA, Stukova MA, Shamova OV, Avdonin PV. Experimental Search for New Means of Pathogenetic Therapy COVID-19: Inhibitor of H2-Receptors Famotidine Increases the Effect of Oseltamivir on Survival and Immune Status of Mice Infected by A/PR/8/34 (H1N1). J EVOL BIOCHEM PHYS+ 2022; 58:230-246. [PMID: 35283537 PMCID: PMC8897615 DOI: 10.1134/s0022093022010203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
The development of drugs for the therapy of COVID-19 is one
of the main problems of modern physiology, biochemistry and pharmacology.
Taking into account the available information on the participation
of mast cells and the role of histamine in the pathogenesis of COVID-19,
as well as information on the positive role of famotidine in the
prevention and treatment of coronavirus infection, an experiment
was carried out using famotidine in a mouse model. We used a type
A/PR/8/34 (H1N1) virus adapted to mice. The antiviral drug oseltamivir
(Tamiflu), which belongs to the group of neuraminidase inhibitors,
was used as a reference drug. The use of famotidine in combination
with oseltamivir can increase survival, improve the dynamics of
animal weight, reduce the level of NKT cells and increase the level
of naive T-helpers. Further studies of famotidine in vivo should
be aimed at optimizing the regimen of drug use at a higher viral
load, as well as with a longer use of famotidine.
Collapse
Affiliation(s)
- N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| | - K. A. Vasilyev
- Smorodintsev Research Institute
of Influenza of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | | | - P. P. Avdonin
- Koltsov Institute of Development
Biology, Russian Academy of Sciences, Moscow, Russia
| | - D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - M. A. Stukova
- Smorodintsev Research Institute
of Influenza of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - O. V. Shamova
- Institute of Experimental
Medicine, St. Petersburg, Russia
| | - P. V. Avdonin
- Koltsov Institute of Development
Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
48
|
Single-cell Temporal Analysis of Natural Dengue Infection Reveals Skin-Homing Lymphocyte Expansion One Day before Defervescence. iScience 2022; 25:104034. [PMID: 35345453 PMCID: PMC8957021 DOI: 10.1016/j.isci.2022.104034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Effective clinical management of acute dengue virus (DENV) infection relies on the timing of suitable treatments during the disease progression. We analyzed single-cell transcriptomic profiles of the peripheral blood mononuclear cell samples from two DENV patients, collected daily during acute phase and also at convalescence. Key immune cell types demonstrated different dynamic responses over the course of the infection. On the day before defervescence (Day −1), we observed the peak expression of several prominent genes in the adaptive immunological pathways. We also characterized unique effector T cell clusters that expressed skin-homing signature genes at Day −1, whereas upregulation of skin and gut homing genes was also observed in plasma cells and plasmablasts during the febrile period. This work provides an overview of unique molecular dynamics that signify the entry of the critical phase, and the findings could improve the patient management of DENV infection. Time-course scRNA-seq reveals immune response dynamics during acute dengue infection Rapid transcriptional switching was observed one day before fever subsided (Day -1) Skin-homing signatures were observed in specific T cells during the febrile phase Expansion of skin-homing CD69+ PD-1+ T cells at Day -1 was confirmed with FACS
Collapse
|
49
|
Tinto B, Kania D, Samdapawindé Kagone T, Dicko A, Traore I, de Rekeneire N, Bicaba BW, Hien H, Van de Perre P, Simonin Y, Salinas S. [Dengue virus circulation in West Africa: An emerging public health issue]. Med Sci (Paris) 2022; 38:152-158. [PMID: 35179469 DOI: 10.1051/medsci/2022007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dengue is the most widespread arbovirosis in the world, with approximately 390 million cases per year, 96 millions of which have clinical manifestations and 25,000 deaths. In West Africa, the circulation of this virus in human populations was first reported in the 1960s in Nigeria. Clinical diagnosis of dengue in West Africa is made difficult by the existence of other diseases with similar clinical presentations. Biological diagnosis remains therefore the only alternative. This biological diagnosis requires high quality equipment and well-trained personnel, which are not always available in resource-limited countries. Thus, many cases of dengue fever are consistently reported as malaria, leading to mismanagement, which can have serious consequences on the health status of patients. It is therefore necessary to set up surveillance systems for febrile infections of unknown origin in Africa by strengthening the diagnostic capacities of national laboratories.
Collapse
Affiliation(s)
- Bachirou Tinto
- Laboratoire national de référence des fièvres hémorragiques virales, Centre Muraz, Institut national de santé publique (INSP), Bobo-Dioulasso, Burkina Faso
| | - Dramane Kania
- Laboratoire national de référence des fièvres hémorragiques virales, Centre Muraz, Institut national de santé publique (INSP), Bobo-Dioulasso, Burkina Faso
| | - Thérèse Samdapawindé Kagone
- Laboratoire national de référence des fièvres hémorragiques virales, Centre Muraz, Institut national de santé publique (INSP), Bobo-Dioulasso, Burkina Faso
| | - Amadou Dicko
- Laboratoire central de référence, INSP, Ouagadougou, Burkina Faso
| | - Isidore Traore
- Laboratoire national de référence des fièvres hémorragiques virales, Centre Muraz, Institut national de santé publique (INSP), Bobo-Dioulasso, Burkina Faso
| | | | - Brice Wilfried Bicaba
- Centre des opérations de réponse aux urgences sanitaires (CORUS), INSP, Ouagadougou, Burkina Faso
| | | | - Philippe Van de Perre
- Pathogenèse et contrôle des infections chroniques, université de Montpellier, Inserm, Établissement français du sang, 60 rue de Navacelles, 34000 Montpellier, France
| | - Yannick Simonin
- Pathogenèse et contrôle des infections chroniques, université de Montpellier, Inserm, Établissement français du sang, 60 rue de Navacelles, 34000 Montpellier, France
| | - Sara Salinas
- Pathogenèse et contrôle des infections chroniques, université de Montpellier, Inserm, Établissement français du sang, 60 rue de Navacelles, 34000 Montpellier, France
| |
Collapse
|
50
|
Mapalagamage M, Weiskopf D, Sette A, De Silva AD. Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses 2022; 14:v14020242. [PMID: 35215836 PMCID: PMC8878350 DOI: 10.3390/v14020242] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.
Collapse
Affiliation(s)
- Maheshi Mapalagamage
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00700, Sri Lanka;
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Aruna Dharshan De Silva
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Paraclinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo 10390, Sri Lanka
- Correspondence:
| |
Collapse
|