1
|
Cao J, Bao Q, Hao H. Indole-3-Carboxaldehyde Alleviates LPS-Induced Intestinal Inflammation by Inhibiting ROS Production and NLRP3 Inflammasome Activation. Antioxidants (Basel) 2024; 13:1107. [PMID: 39334766 PMCID: PMC11429283 DOI: 10.3390/antiox13091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Indole-3-carboxaldehyde (IAld) is a tryptophan (Trp) metabolite derived from gut microbiota, which has a potential protective effect on intestinal inflammatory diseases. Abnormal activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important cause of intestinal inflammation. However, the effect and mechanism of IAld on NLRP3 inflammasome activation remain unclear. Here, we found that IAld inhibited the activation of the NLRP3 inflammasome in intestinal epithelial cells, and effectively prevented intestinal epithelial barrier injury caused by lipopolysaccharide (LPS) stimulation. Mechanistically, we demonstrated that IAld activated the aryl hydrocarbon receptor (AhR), subsequently prevented reactive oxygen species (ROS) production, maintained mitochondrial membrane potential, and blocked the NF-κB/NLRP3 inflammatory pathway in intestinal epithelial cells. Also, the AhR-specific inhibitor CH-223191 effectively blocked the IAld-induced NLRP3 inhibition and intestinal epithelial barrier repairment. In addition, in vivo results showed that IAld prevented pro-inflammatory mediator production and intestinal inflammatory damage in LPS-induced mice, which is related to AhR activation and NLRP3 inflammasome inhibition. Collectively, our study unveiled that IAld is an effective endogenous antioxidant and suggested the AhR as a potential treatment target for NLRP3-induced intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Ji Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyu Bao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Kim R, Sung JH. Recent Advances in Gut- and Gut-Organ-Axis-on-a-Chip Models. Adv Healthc Mater 2024; 13:e2302777. [PMID: 38243887 DOI: 10.1002/adhm.202302777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/22/2024]
Abstract
The human gut extracts nutrients from the diet while forming the largest barrier against the outer environment. In addition, the gut actively maintains homeostasis through intricate interactions with the gut microbes, the immune system, the enteric nervous system, and other organs. These interactions influence digestive health and, furthermore, play crucial roles in systemic health and disease. Given its primary role in absorbing and metabolizing orally administered drugs, there is significant interest in the development of preclinical in vitro model systems that can accurately emulate the intestine in vivo. A gut-on-a-chip system holds great potential as a testing and screening platform because of its ability to emulate the physiological aspects of in vivo tissues and expandability to incorporate and combine with other organs. This review aims to identify the key physiological features of the human gut that need to be incorporated to build more accurate preclinical models and highlights the recent progress in gut-on-a-chip systems and competing technologies toward building more physiologically relevant preclinical model systems. Furthermore, various efforts to construct multi-organ systems with the gut, called gut-organ-axis-on-a-chip models, are discussed. In vitro gut models with physiological relevance can provide valuable platforms for bridging the gap between preclinical and clinical studies.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
3
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
4
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
5
|
Liang B, Xing D. The Current and Future Perspectives of Postbiotics. Probiotics Antimicrob Proteins 2023; 15:1626-1643. [PMID: 36763279 PMCID: PMC9913028 DOI: 10.1007/s12602-023-10045-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
With the emphasis on intestinal health, probiotics have exploded into a vast market potential. However, new scientific evidence points out that the beneficial health benefits of probiotics are not necessarily directly related to viable bacteria. However, the metabolites or bacterial components of the live bacteria are the driving force behind health promotion. Therefore, scientists gradually noticed that the beneficial effects of probiotics are based on bacteria itself, metabolites, or cell lysates, and these factors are officially named "postbiotics" by the ISAPP. Postbiotic components are diverse and outperform live probiotics in terms of technology, safety, and cost due to their good absorption, metabolism, and organismal distribution. Postbiotics have been shown to have bioactivities such as antimicrobial, antioxidant, anti-inflammatory, anti-proliferative, and immunomodulation. Moreover, numerous studies have revealed the significant potential of postbiotics for disease treatment. This paper first presents the production and classification of postbiotics with examples from lactic acid bacteria (LAB), followed by the mechanisms of action with the most recent pre-clinical and clinical studies and the wide range of non-clinical and clinical applications of postbiotics. Furthermore, the current and future prospects of the postbiotic market with commercial available products are discussed. Finally, we comment on the knowledge gaps and future clinical applications with several examples.
Collapse
Affiliation(s)
- Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
- Cancer Institute, Qingdao University, Qingdao, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Cancer Institute, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
An L, Lu Q, Wang K, Wang Y. Urolithins: A Prospective Alternative against Brain Aging. Nutrients 2023; 15:3884. [PMID: 37764668 PMCID: PMC10534540 DOI: 10.3390/nu15183884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The impact of host-microbiome interactions on cognitive health and disease has received increasing attention. Microbial-derived metabolites produced in the gut are one of crucial mechanisms of the gut-brain axis interaction, showing attractive perspectives. Urolithins (Uros) are gut microbial-derived metabolites of ellagitannins and ellagic acid, whose biotransformation varies considerably between individuals and decreases greatly with age. Recently, accumulating evidence has suggested that Uros may have specific advantages in preventing brain aging including favorable blood-brain barrier permeability, selective brain distribution, and increasingly supporting data from preclinical and clinical studies. However, the usability of Uros in diagnosis, prevention, and treatment of neurodegenerative diseases remains elusive. In this review, we aim to present the comprehensive achievements of Uros in age-related brain dysfunctions and neurodegenerative diseases and discuss their prospects and knowledge gaps as functional food, drugs, or biomarkers against brain aging.
Collapse
Affiliation(s)
- Lei An
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
| | - Qiu Lu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Moraitis I, Guiu J, Rubert J. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab 2023:S1043-2760(23)00108-X. [PMID: 37336645 DOI: 10.1016/j.tem.2023.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Cancer remains the second leading cause of mortality, with nearly 10 million deaths worldwide in 2020. In many cases, radiotherapy is used for its anticancer effects. However, radiation causes healthy tissue toxicity as a side effect. In intra-abdominal and pelvic malignancies, the healthy bowel is inevitably included in the radiation field, causing radiation-induced enteritis and dramatically affecting the gut microbiome. This condition is associated with significant morbidity and mortality that impairs cancer patients' and survivors' quality of life. This Review provides a critical overview of the main drivers in modulating the gut microenvironment in homeostasis, disease, and injury, focusing on gut microbial metabolites and microorganisms that influence epithelial regeneration upon radiation injury.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain.
| | - Josep Rubert
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, Netherlands; Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708, WG, Netherlands.
| |
Collapse
|
9
|
Gao J, Wang L, Jiang J, Xu Q, Zeng N, Lu B, Yuan P, Sun K, Zhou H, He X. A probiotic bi-functional peptidoglycan hydrolase sheds NOD2 ligands to regulate gut homeostasis in female mice. Nat Commun 2023; 14:3338. [PMID: 37286542 PMCID: PMC10247697 DOI: 10.1038/s41467-023-38950-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Secreted proteins are one of the direct molecular mechanisms by which microbiota influence the host, thus constituting a promising field for drug discovery. Here, through bioinformatics-guided screening of the secretome of clinically established probiotics from Lactobacillus, we identify an uncharacterized secreted protein (named LPH here) that is shared by most of these probiotic strains (8/10) and demonstrate that it protects female mice from colitis in multiple models. Functional studies show that LPH is a bi-functional peptidoglycan hydrolase with both N-Acetyl-β-D-muramidase and DL-endopeptidase activities that can generate muramyl dipeptide (MDP), a NOD2 ligand. Different active site mutants of LPH in combination with Nod2 knockout female mice confirm that LPH exerts anti-colitis effects through MDP-NOD2 signaling. Furthermore, we validate that LPH can also exert protective effects on inflammation-associated colorectal cancer in female mice. Our study reports a probiotic enzyme that enhances NOD2 signaling in vivo in female mice and describes a molecular mechanism that may contribute to the effects of traditional Lactobacillus probiotics.
Collapse
Affiliation(s)
- Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Lei Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Jing Jiang
- Department Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China
| | - Qian Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Bingyun Lu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, 518101, Shenzhen, Guangdong, China
| | - Peibo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Kai Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, 510655, Guangzhou, Guangdong, China.
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Song D, Wang X, Ma Y, Liu NN, Wang H. Beneficial insights into postbiotics against colorectal cancer. Front Nutr 2023; 10:1111872. [PMID: 36969804 PMCID: PMC10036377 DOI: 10.3389/fnut.2023.1111872] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancer types with limited therapeutic options worldwide. Gut microbiota has been recognized as the pivotal determinant in maintaining gastrointestinal (GI) tract homeostasis, while dysbiosis of gut microbiota contributes to CRC development. Recently, the beneficial role of postbiotics, a new concept in describing microorganism derived substances, in CRC has been uncovered by various studies. However, a comprehensive characterization of the molecular identity, mechanism of action, or routes of administration of postbiotics, particularly their role in CRC, is still lacking. In this review, we outline the current state of research toward the beneficial effects of gut microbiota derived postbiotics against CRC, which will represent the key elements of future precision-medicine approaches in the development of novel therapeutic strategies targeting gut microbiota to improve treatment outcomes in CRC.
Collapse
Affiliation(s)
| | | | | | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Filosa A, Sawamiphak S. Heart development and regeneration-a multi-organ effort. FEBS J 2023; 290:913-930. [PMID: 34894086 DOI: 10.1111/febs.16319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Development of the heart, from early morphogenesis to functional maturation, as well as maintenance of its homeostasis are tasks requiring collaborative efforts of cardiac tissue and different extra-cardiac organ systems. The brain, lymphoid organs, and gut are among the interaction partners that can communicate with the heart through a wide array of paracrine signals acting at local or systemic level. Disturbance of cardiac homeostasis following ischemic injury also needs immediate response from these distant organs. Our hearts replace dead muscles with non-contractile fibrotic scars. We have learned from animal models capable of scarless repair that regenerative capability of the heart does not depend only on competency of the myocardium and cardiac-intrinsic factors but also on long-range molecular signals originating in other parts of the body. Here, we provide an overview of inter-organ signals that take part in development and regeneration of the heart. We highlight recent findings and remaining questions. Finally, we discuss the potential of inter-organ modulatory approaches for possible therapeutic use.
Collapse
Affiliation(s)
- Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
12
|
Hussain A, Patwekar U, Mongad DS, Shouche YS. Strategizing the human microbiome for small molecules: Approaches and perspectives. Drug Discov Today 2023; 28:103459. [PMID: 36435302 DOI: 10.1016/j.drudis.2022.103459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Studies of the human microbiome are providing a deeper understanding of its significance to human health, and increasing evidence links the microbiota with several diseases. Nevertheless, the exact mechanisms involved in human-microbe interactions are mostly undefined. The genomic potential of the human microbiome to biosynthesize distinct molecules outmatches its known chemical space, and small-molecule discovery in this context remains in its infancy. The profiling of microbiome-derived small molecules and their contextualization through cause-effect mechanistic studies may provide a better understanding of host-microbe interactions, guide new therapeutic interventions, and modulate microbiome-based therapies. This review describes the advances, approaches, and allied challenges in mining new microbial scaffolds from the human microbiome using genomic, microbe cultivation, and chemical analytic platforms. In the future, the complete biological characterization of a single microbe-derived molecule that has a specific therapeutic application could resolve the current limitations of microbiota-modulating therapies.
Collapse
Affiliation(s)
- Aehtesham Hussain
- NCMR-National Centre for Cell Science (NCCS), Pune, Maharashtra 411007, India.
| | - Umera Patwekar
- NCMR-National Centre for Cell Science (NCCS), Pune, Maharashtra 411007, India
| | - Dattatray S Mongad
- NCMR-National Centre for Cell Science (NCCS), Pune, Maharashtra 411007, India
| | - Yogesh S Shouche
- NCMR-National Centre for Cell Science (NCCS), Pune, Maharashtra 411007, India
| |
Collapse
|
13
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Zakošek Pipan M, Podpečan O, Mrkun J. The fascinating microbes and their impact on neonatal dogs and cats - A review. Acta Vet Hung 2022; 70:175-183. [PMID: 35976733 DOI: 10.1556/004.2022.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
Recent literature data indicate that canine and feline neonates are not born in a sterile environment as it was stated previously. The acquisition, colonisation and maintenance of the early life microbiota of healthy fetuses is a rapidly developing research area. In humans, the natural healthy infant microbiome plays an essential role in health and its assembly is determined by the maternal-offspring exchanges of microbes. Even though this topic is becoming more and more important in dogs and cats, the exact role of the neonatal microbiome is not yet fully known in animals. This review summarises the current knowledge of the normal physiological neonatal microbiome in healthy puppies and kittens.
Collapse
Affiliation(s)
- Maja Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Ožbalt Podpečan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Janko Mrkun
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
16
|
Carneiro PV, Montenegro NDA, Lana A, Amato AA, Santos GM. Lipids from gut microbiota: pursuing a personalized treatment. Trends Mol Med 2022; 28:631-643. [PMID: 35739018 DOI: 10.1016/j.molmed.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
The discovery of microbiome metabolites has enlivened the field of fecal transplantation for therapeutic purposes. However, the transfer of pathogenic living organisms was recently observed to limit its therapeutic potential by increasing the risk of infection. Lipids produced by gut microbiota enter the circulation and control many phenotypic changes associated with microbiota composition. Fecal lipids significantly impact the regulation of several cell signaling pathways, including inflammation. Focusing on these molecules, we review how bioactive gut microbiota-associated lipids affect cellular functioning and clinical outcome. Here, we interrogate whether the gut microbiota can be considered a cutting-edge biotechnological tool for rapid metabolic engineering of meaningful lipids to offer a novel personalized therapy.
Collapse
Affiliation(s)
- Pamela V Carneiro
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Brasília, Brasil
| | | | - Addison Lana
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Angelica A Amato
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Brasília, Brasil
| | - Guilherme M Santos
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Brasília, Brasil.
| |
Collapse
|
17
|
Chai R, Tai Z, Zhu Y, Chai C, Chen Z, Zhu Q. Symbiotic microorganisms: prospects for treating atopic dermatitis. Expert Opin Biol Ther 2022; 22:911-927. [PMID: 35695265 DOI: 10.1080/14712598.2022.2089560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a common chronic recurrent inflammatory skin disease. The pathogenesis is unclear but may be related to genetic, immune, and environmental factors and abnormal skin barrier function. Symbiotic microorganisms in the gut and on the skin are associated with AD occurrence. AREAS COVERED We discuss the metabolism and distribution of intestinal and skin flora and review their relationship with AD, summarizing the recent applications of intestinal and skin flora in AD treatment, and discussing the prospect of research on these two human microbiota systems and their influence on AD treatment. The PubMed database was searched to identify relevant publications from 1949 to 2020 for the bibliometric analysis of atopic dermatitis and symbiotic microorganisms. EXPERT OPINION Many studies have suggested a potential contribution of microbes in the intestine and on the skin to AD. Bacteria living on the skin can aggravate AD by secreting numerous virulence factors. Moreover, the metabolism of intestinal flora can influence AD occurrence and development via the circulatory system. Current evidence suggests that by regulating intestinal and skin flora, AD can be treated and prevented.
Collapse
Affiliation(s)
- Rongrong Chai
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| | - Zongguang Tai
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Yunjie Zhu
- RnD-I, Zifo RnD Solution, Shanghai, P.R. China
| | - Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing P.R. China
| | - Zhongjian Chen
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| |
Collapse
|
18
|
Du L, Li Q, Yi H, Kuang T, Tang Y, Fan G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomed Pharmacother 2022; 149:112839. [PMID: 35325852 DOI: 10.1016/j.biopha.2022.112839] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most risk factors threatening human health. Although genetic and environmental factors contribute to the development of T2DM, gut microbiota has also been found to be involved. Gut microbiota-derived metabolites are a key factor in host-microbe crosstalk, and have been revealed to play a central role in the physiology and physiopathology of T2DM. In this review, we provide a timely and comprehensive summary of the microbial metabolites that are protective or causative for T2DM, including some amino acids-derived metabolites, short-chain fatty acids, trimethylamine N-oxide, and bile acids. The mechanisms by which metabolites affect T2DM have been elaborated. Knowing more about these processes will increase our understanding of the causal relationship between gut microbiota and T2DM. Moreover, some frontier therapies that target gut microbes and their metabolites to improve T2DM, including dietary intervention, fecal microbiota transplantation, probiotics, prebiotics or synbiotics intervention, and drugging microbial metabolism, have been critically discussed. This review may provide novel insights for the development of targeted and personalized treatments for T2DM based on gut microbial metabolites. More high-quality clinical trials are needed to accelerate the clinical translation of gut-targeted therapies for T2DM.
Collapse
Affiliation(s)
- Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Tang
- Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611130, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Liu XC, Sun Q, Ji YC, Fu LZ, Wang ZL, He Y, Li LQ. Differences in the Gut Microbiota Composition and Metabolites Associated With Feeding Intolerance in VLBW Infants With a Gestational Age of ≤ 30 Weeks: A Pilot Study. Front Cell Infect Microbiol 2022; 12:726322. [PMID: 35252022 PMCID: PMC8891543 DOI: 10.3389/fcimb.2022.726322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To explore the main variations in gut microbiota compositions, short-chain fatty acids (SCFAs) concentrations and autoinducer-2 (AI-2) levels in very-low-birth-weight (VLBW) infants with feeding intolerance (FI). Methods Twenty-seven VLBW infants with gestational ages of ≤30 weeks were divided into the FI group (n=14) and feeding tolerance (FT) group (n=13). The gut microbiota composition and SCFAs concentrations and AI-2 levels in feces were detected at 2 and 4 weeks after birth. Results There was no difference in alpha diversity between the two groups at 2 and 4 weeks after birth (P>0.05). Although the Chao index decreased (P<0.05), there was no difference in the Shannon index from 2 weeks to 4 weeks in either the FI or FT group (P>0.05). Additionally, there was no difference in beta diversity between the FI and FT groups at 2 weeks (P>0.05), but there was a significant difference in beta diversity between the two groups at 4 weeks (P<0.05) and a large difference from 2 weeks to 4 weeks in both the FI and FT groups (P<0.05). Furthermore, the composition of the microbiota at 4 weeks was significantly different from that at 2 weeks in the FI group (P<0.05). The Veillonella abundance was lower at 4 weeks in the FI group (P<0.05), but there were no differences in the compositions of the other main microbes between the two groups (P>0.05). Proteobacteria and Firmicutes were dominant in both the FI and FT groups. The concentrations of propanoic, valeric and hexanoic acids were lower in the FI group at 2 weeks, and the levels of isobutyric and valeric acids were lower at 4 weeks after birth (P<0.05). The areas under the curves (AUCs) of propanoic, butanoic and valeric acids in predicting FI were 0.878, 0.816 and 0.744, respectively. Compared with that in the FT group, the relative bioluminescence of AI-2 was lower in the FI group at 2 weeks (P<0.05), and the AUC was 0.736. Conclusions The main composition of the microbiota was not obviously different in infants with FI. Some SCFAs and AI-2 have moderate value in predicting FI.
Collapse
Affiliation(s)
- Xiao-Chen Liu
- Neonatal Diagnosis and Treatment Centre of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qian Sun
- Neonatal Diagnosis and Treatment Centre of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yan-Chun Ji
- Neonatal Diagnosis and Treatment Centre of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li-Zhen Fu
- Neonatal Diagnosis and Treatment Centre of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zheng-Li Wang
- Neonatal Diagnosis and Treatment Centre of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu He
- Neonatal Diagnosis and Treatment Centre of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lu-Quan Li
- Neonatal Diagnosis and Treatment Centre of Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- *Correspondence: Lu-Quan Li,
| |
Collapse
|
20
|
Vitko D, McQuaid JW, Gheinani AH, Hasegawa K, DiMartino S, Davis KH, Chung CY, Petrosino JF, Adam RM, Mansbach JM, Lee RS. Urinary Tract Infections in Children with Vesicoureteral Reflux Are Accompanied by Alterations in Urinary Microbiota and Metabolome Profiles. Eur Urol 2022; 81:151-154. [PMID: 34538688 DOI: 10.1016/j.eururo.2021.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/20/2021] [Indexed: 12/21/2022]
Abstract
Children with vesicoureteral reflux (VUR) are at an increased risk of recurrent urinary tract infections (UTIs) and renal scarring. Gut microbiota are associated with disease phenotypes, but there has been no study that associates urinary microbiota (uMB) and metabolic profiles with VUR pathology. To identify dominant uMB genera and metabolites associated with UTIs in VUR, urine samples collected under sterile conditions underwent 16S ribosomal RNA sequencing (n = 49) and metabolomic analysis by mass spectrometry (n = 96). Alterations in uMB and metabolomic profiles in VUR patients suggest remodeling of urinary bacterial communities after UTIs: Dorea- and Escherichia-dominant uMB profiles were more frequently identified in participants with VUR. Prevotella- and Lactobacillus-dominant uMB profiles were more prevalent in controls (p < 0.001). Microbial composition varied based on recurrent febrile UTI status (p = 0.001). A total of 243 urinary metabolites involved in energy, amino acid, nucleotide, and lipid metabolism were altered in VUR patients with UTIs (p < 0.05). Importantly, VUR specimens revealed changes in the bacteria-associated metabolic pathways such as glutamate degradation, methyl-citrate cycle, and bile acid metabolism. PATIENT SUMMARY: Differences in urinary commensal bacteria and metabolites exist between children with and without vesicoureteral reflux (VUR). These changes may be utilized to identify patients at risk of VUR-associated kidney damage.
Collapse
Affiliation(s)
- Dijana Vitko
- Department of Urology, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Joseph W McQuaid
- Department of Urology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ali Hashemi Gheinani
- Department of Urology, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kylie H Davis
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - Candace Y Chung
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Rosalyn M Adam
- Department of Urology, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | | | - Richard S Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Skoufos G, Almodaresi F, Zakeri M, Paulson JN, Patro R, Hatzigeorgiou AG, Vlachos IS. AGAMEMNON: an Accurate metaGenomics And MEtatranscriptoMics quaNtificatiON analysis suite. Genome Biol 2022; 23:39. [PMID: 35101114 PMCID: PMC8802518 DOI: 10.1186/s13059-022-02610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
We introduce AGAMEMNON ( https://github.com/ivlachos/agamemnon ) for the acquisition of microbial abundances from shotgun metagenomics and metatranscriptomic samples, single-microbe sequencing experiments, or sequenced host samples. AGAMEMNON delivers accurate abundances at genus, species, and strain resolution. It incorporates a time and space-efficient indexing scheme for fast pattern matching, enabling indexing and analysis of vast datasets with widely available computational resources. Host-specific modules provide exceptional accuracy for microbial abundance quantification from tissue RNA/DNA sequencing, enabling the expansion of experiments lacking metagenomic/metatranscriptomic analyses. AGAMEMNON provides an R-Shiny application, permitting performance of investigations and visualizations from a graphics interface.
Collapse
Affiliation(s)
- Giorgos Skoufos
- Department of Electrical & Computer Engineering, University of Thessaly, 38221, Volos, Greece.
- Hellenic Pasteur Institute, 11521, Athens, Greece.
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, 351 31, Lamia, Greece.
| | - Fatemeh Almodaresi
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Mohsen Zakeri
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Joseph N Paulson
- Department of Data Sciences, Genentech Inc., South San Francisco, CA, USA
| | - Rob Patro
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Artemis G Hatzigeorgiou
- Department of Electrical & Computer Engineering, University of Thessaly, 38221, Volos, Greece.
- Hellenic Pasteur Institute, 11521, Athens, Greece.
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, 351 31, Lamia, Greece.
| | - Ioannis S Vlachos
- Cancer Research Institute | HMS Initiative for RNA Medicine | Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, MA, Boston, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
22
|
Microbiota in relation to cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Jastrząb R, Graczyk D, Siedlecki P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int J Mol Sci 2021; 22:ijms222413475. [PMID: 34948270 PMCID: PMC8707144 DOI: 10.3390/ijms222413475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, commensal bacteria colonizing the human body have been recognized as important determinants of health and multiple pathologic conditions. Among the most extensively studied commensal bacteria are the gut microbiota, which perform a plethora of functions, including the synthesis of bioactive products, metabolism of dietary compounds, and immunomodulation, both through attenuation and immunostimulation. An imbalance in the microbiota population, i.e., dysbiosis, has been linked to many human pathologies, including various cancer types and neurodegenerative diseases. Targeting gut microbiota and microbiome-host interactions resulting from probiotics, prebiotics, and postbiotics is a growing opportunity for the effective treatment of various diseases. As more research is being conducted, the microbiome field is shifting from simple descriptive analysis of commensal compositions to more molecular, cellular, and functional studies. Insight into these mechanisms is of paramount importance for understanding and modulating the effects that microbiota, probiotics, and their derivatives exert on host health.
Collapse
|
24
|
Barone M, Rampelli S, Biagi E, Bertozzi SM, Falchi F, Cavalli A, Armirotti A, Brigidi P, Turroni S, Candela M. Searching for New Microbiome-Targeted Therapeutics through a Drug Repurposing Approach. J Med Chem 2021; 64:17277-17286. [PMID: 34846885 DOI: 10.1021/acs.jmedchem.1c01333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Commonly used non-antibiotic drugs have been associated with changes in gut microbiome composition, paving the way for the possibility of repurposing FDA-approved molecules as next-generation microbiome therapeutics. Herein, we developed and validated an ex vivo high-throughput screening platform─the mini gut model─to underpin human gut microbiome response to molecular modulators. Ten FDA-approved compounds, selected based on maximum structural diversity of molecular fingerprints, were screened against the gut microbiome of five healthy subjects to characterize the ability of human-targeted drugs to modulate the human gut microbiome network. Three compounds, THIP hydrochloride, methenamine, and mesna, have shown promise as novel gut microbiome therapeutics in light of their capability of promoting health-associated features of the gut microbiome. Our findings provide a resource for future research on drug-microbiome interactions and lay the foundation for a new era of more precise gut microbiome modulation through drug repurposing, aimed at targeting specific dysbiotic events.
Collapse
Affiliation(s)
- Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, Bologna40138, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna40126, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna40126, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova16163, Italy
| | - Federico Falchi
- Molecular Horizon, Via Montelino 30, Bettona (PG)06084, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna40126, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, Genova16163, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova16163, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, Bologna40138, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna40126, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna40126, Italy
| |
Collapse
|
25
|
Thangamani S, Monasky R, Lee JK, Antharam V, HogenEsch H, Hazbun TR, Jin Y, Gu H, Guo GL. Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. J Fungi (Basel) 2021; 7:jof7121030. [PMID: 34947012 PMCID: PMC8708873 DOI: 10.3390/jof7121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (CA), a commensal and opportunistic eukaryotic organism, frequently inhabits the gastrointestinal (GI) tract and causes life-threatening infections. Antibiotic-induced gut dysbiosis is a major risk factor for increased CA colonization and dissemination from the GI tract. We identified a significant increase of taurocholic acid (TCA), a major bile acid in antibiotic-treated mice susceptible to CA infection. In vivo findings indicate that administration of TCA through drinking water is sufficient to induce colonization and dissemination of CA in wild-type and immunosuppressed mice. Treatment with TCA significantly reduced mRNA expression of immune genes ang4 and Cxcr3 in the colon. In addition, TCA significantly decreased the relative abundance of three culturable species of commensal bacteria, Turicibacter sanguinis, Lactobacillus johnsonii, and Clostridium celatum, in both cecal contents and mucosal scrapings from the colon. Taken together, our results indicate that TCA promotes fungal colonization and dissemination of CA from the GI tract by controlling the host defense system and intestinal microbiota that play a critical role in regulating CA in the intestine.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
- Correspondence: ; Tel.: +1-765-494-0763
| | - Ross Monasky
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Jung Keun Lee
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Vijay Antharam
- Department of Chemistry, College of Arts, Humanities and Sciences, Methodist University, Fayetteville, NC 28311, USA;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA;
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
- Center for Translational Science, Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL 33199, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
26
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
27
|
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281-5308. [PMID: 34405262 PMCID: PMC8370661 DOI: 10.1007/s00203-021-02516-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deciphered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling molecule production and controlling host's cellular health, immunity and neuropsychiatric behavior. Besides maintaining intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities including gut-brain-immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic disorders.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| |
Collapse
|
28
|
Bruneau A, Hundertmark J, Guillot A, Tacke F. Molecular and Cellular Mediators of the Gut-Liver Axis in the Progression of Liver Diseases. Front Med (Lausanne) 2021; 8:725390. [PMID: 34650994 PMCID: PMC8505679 DOI: 10.3389/fmed.2021.725390] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The gut-liver axis covers the bidirectional communication between the gut and the liver, and thus includes signals from liver-to-gut (e.g., bile acids, immunoglobulins) and from gut-to-liver (e.g., nutrients, microbiota-derived products, and recirculating bile acids). In a healthy individual, liver homeostasis is tightly controlled by the mostly tolerogenic liver resident macrophages, the Kupffer cells, capturing the gut-derived antigens from the blood circulation. However, disturbances of the gut-liver axis have been associated to the progression of varying chronic liver diseases, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and primary sclerosing cholangitis. Notably, changes of the gut microbiome, or intestinal dysbiosis, combined with increased intestinal permeability, leads to the translocation of gut-derived bacteria or their metabolites into the portal vein. In the context of concomitant or subsequent liver inflammation, the liver is then infiltrated by responsive immune cells (e.g., monocytes, neutrophils, lymphoid, or dendritic cells), and microbiota-derived products may provoke or exacerbate innate immune responses, hence perpetuating liver inflammation and fibrosis, and potentiating the risks of developing cirrhosis. Similarly, food derived antigens, bile acids, danger-, and pathogen-associated molecular patterns are able to reshape the liver immune microenvironment. Immune cell intracellular signaling components, such as inflammasome activation, toll-like receptor or nucleotide-binding oligomerization domain-like receptors signaling, are potent targets of interest for the modulation of the immune response. This review describes the current understanding of the cellular landscape and molecular pathways involved in the gut-liver axis and implicated in chronic liver disease progression. We also provide an overview of innovative therapeutic approaches and current clinical trials aiming at targeting the gut-liver axis for the treatment of patients with chronic liver and/or intestinal diseases.
Collapse
Affiliation(s)
- Alix Bruneau
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Jana Hundertmark
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
29
|
Association of Cesarean Delivery and Formula Supplementation with the Stool Metabolome of 6-Week-Old Infants. Metabolites 2021; 11:metabo11100702. [PMID: 34677417 PMCID: PMC8540440 DOI: 10.3390/metabo11100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cesarean delivery and formula feeding have both been implicated as important factors associated with perturbations to the infant gut microbiome. To investigate the functional metabolic response of the infant gut microbial milieu to these factors, we profiled the stool metabolomes of 121 infants from a US pregnancy cohort study at approximately 6 weeks of life and evaluated associations with delivery mode and feeding method. Multivariate analysis of six-week stool metabolomic profiles indicated discrimination by both delivery mode and diet. For diet, exclusively breast-fed infants exhibited metabolomic profiles that were distinct from both exclusively formula-fed and combination-fed infants, which were relatively more similar to each other in metabolomic profile. We also identified individual metabolites that were important for differentiating delivery mode groups and feeding groups and metabolic pathways related to delivery mode and feeding type. We conclude based on previous work and this current study that the microbial communities colonizing the gastrointestinal tracts of infants are not only taxonomically, but also functionally distinct when compared according to delivery mode and feeding groups. Further, different sets of metabolites and metabolic pathways define delivery mode and diet metabotypes.
Collapse
|
30
|
Osborn LJ, Claesen J, Brown JM. Microbial Flavonoid Metabolism: A Cardiometabolic Disease Perspective. Annu Rev Nutr 2021; 41:433-454. [PMID: 34633856 DOI: 10.1146/annurev-nutr-120420-030424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiometabolic disease (CMD) is a leading cause of death worldwide and encompasses the inflammatory metabolic disorders of obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, and cardiovascular disease. Flavonoids are polyphenolic plant metabolites that are abundantly present in fruits and vegetables and have biologically relevant protective effects in a number of cardiometabolic disorders. Several epidemiological studies underscored a negative association between dietary flavonoid consumption and the propensity to develop CMD. Recent studies elucidated the contribution of the gut microbiota in metabolizing dietary intake as it relates to CMD. Importantly, the biological efficacy of flavonoids in humans and animal models alike is linked to the gut microbial community. Herein, we discuss the opportunities and challenges of leveraging flavonoid intake as a potential strategy to prevent and treat CMD in a gut microbe-dependent manner, with special emphasis on flavonoid-derived microbial metabolites.
Collapse
Affiliation(s)
- Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| |
Collapse
|
31
|
Qiu K, Huang Y, Anselmo AC. Polymer and Crosslinker Content Influences Performance of Encapsulated Live Biotherapeutic Products. Cell Mol Bioeng 2021; 14:487-499. [PMID: 34777606 PMCID: PMC8548438 DOI: 10.1007/s12195-021-00674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Live biotherapeutic products (LBPs), or therapeutic microbes, are an emerging therapeutic modality for prevention and treatment of gastrointestinal diseases. Since LBPs are living, they are uniquely sensitive to external stresses (e.g., oxygen, acid) encountered during manufacturing, storage, and delivery. Here, we systematically evaluate how polymer and crosslinker concentration affects the performance of an encapsulated LBP toward developing a comprehensive framework for the characterization and optimization of LBP delivery systems. METHODS We encapsulate a model LBP, Lactobacillus casei ATCC 393, in calcium chloride (CaCl2)-crosslinked alginate beads, and evaluate how alginate and CaCl2 concentrations influence LBP formulation performance, including: (i) encapsulation efficiency, (ii) shrinkage upon drying, (iii) survival upon lyophilization, (iv) acid resistance, (v) release, and (vi) metabolite secretion. Approaches from microbiology (e.g., colony forming unit enumeration), materials science (e.g., scanning electron microscopy), and pharmaceutical sciences (e.g., release assays) are employed. RESULTS LBP-encapsulating alginate beads were systematically evaluated as a function of alginate and CaCl2 concentrations. Specifically: (i) encapsulation efficiency of all formulations was >50%, (ii) all alginate beads shrunk (after lyophilization) and recovered (after rehydration) similarly, (iii) at 10% alginate concentration, lower CaCl2 concentration decreased survival upon lyophilization, (iv) 10% alginate improved acid resistance, (v) sustained release was enabled by increasing alginate and CaCl2 concentrations, and (vi) encapsulation did not impair secretion of l-lactate as compared to free LBP. CONCLUSIONS This research demonstrates that polymer content and crosslinking extent modulate the performance of polymer-based LBP delivery systems, motivating research into the optimization of material properties for LBP delivery systems.
Collapse
Affiliation(s)
- Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| | - Yirui Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| |
Collapse
|
32
|
van den Berg FF, Hugenholtz F, Boermeester MA, Zaborina O, Alverdy JC. Spatioregional assessment of the gut microbiota in experimental necrotizing pancreatitis. BJS Open 2021; 5:zrab061. [PMID: 34518874 PMCID: PMC8438261 DOI: 10.1093/bjsopen/zrab061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Infectious complications following experimental pancreatitis involve major disruptions in the gut microbiota. The aim of this study was to characterize this disruption by examining the spatioregional distribution in microbial community structure and function following experimental pancreatitis associated with pancreatic infection. METHODS Mice were subjected to infusion of the pancreatic duct with either taurocholate to induce necrotizing pancreatitis or normal saline (control group). The spatial (lumen versus mucosa) and regional composition and function of the microbiota from the duodenum, ileum, caecum, colon, pancreas and blood were evaluated using 16S rRNA gene amplicon sequencing. RESULTS Mice that developed necrotizing pancreatitis demonstrated a decrease in microbial richness and significantly altered microbiota in distal parts of the gastrointestinal tract, compared with controls. Among the most differentially increased taxa were the mucus-degrading Akkermansia muciniphila, and there was a decrease of butyrate-producing bacteria following pancreatitis. Application of the SourceTracker tool to the generated metadata indicated that the duodenum was the most probable source of bacteria that subsequently infected pancreatic tissue in this model. The functional prediction annotation using pathway analyses indicated a diminished capacity of the caecal microbiota to metabolize carbohydrate, and fatty and amino acids. DISCUSSION The distal gut microbiota was significantly impacted in this model of experimental necrotizing pancreatitis. Data suggest that the duodenal microbiota might also play a role in bacterial translation and secondary infections.
Collapse
Affiliation(s)
- F F van den Berg
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - F Hugenholtz
- Centre for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - M A Boermeester
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - O Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - J C Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
van den Berg FF, van Dalen D, Hyoju SK, van Santvoort HC, Besselink MG, Wiersinga WJ, Zaborina O, Boermeester MA, Alverdy J. Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate. Gut 2021; 70:915-927. [PMID: 32873697 PMCID: PMC7917160 DOI: 10.1136/gutjnl-2019-320430] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 07/09/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The gut microbiota are the main source of infections in necrotising pancreatitis. We investigated the effect of disruption of the intestinal microbiota by a Western-type diet on mortality and bacterial dissemination in necrotising pancreatitis and its reversal by butyrate supplementation. DESIGN C57BL/6 mice were fed either standard chow or a Western-type diet for 4 weeks and were then subjected to taurocholate-induced necrotising pancreatitis. Blood and pancreas were collected for bacteriology and immune analysis. The cecum microbiota composition of mice was analysed using 16S rRNA gene amplicon sequencing and cecal content metabolites were analysed by targeted (ie, butyrate) and untargeted metabolomics. Prevention of necrotising pancreatitis in this model was compared between faecal microbiota transplantation (FMT) from healthy mice, antibiotic decontamination against Gram-negative bacteria and oral or systemic butyrate administration. Additionally, the faecal microbiota of patients with pancreatitis and healthy subjects were analysed. RESULTS Mortality, systemic inflammation and bacterial dissemination were increased in mice fed Western diet and their gut microbiota were characterised by a loss of diversity, a bloom of Escherichia coli and an altered metabolic profile with butyrate depletion. While antibiotic decontamination decreased mortality, Gram-positive dissemination was increased. Both oral and systemic butyrate supplementation decreased mortality, bacterial dissemination, and reversed the microbiota alterations. Paradoxically, mortality and bacterial dissemination were increased with FMT administration. Finally, patients with acute pancreatitis demonstrated an increase in Proteobacteria and a decrease of butyrate producers compared with healthy subjects. CONCLUSION Butyrate depletion and its repletion appear to play a central role in disease progression towards necrotising pancreatitis.
Collapse
Affiliation(s)
- Fons F van den Berg
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Demi van Dalen
- Department of Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Sanjiv K Hyoju
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands,Department of Surgery, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine, Department of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Marja A Boermeester
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - John Alverdy
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
34
|
Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, Sim CK, Lim AI, Link VM, Enamorado M, Trinchieri G, Segre JA, Rehermann B, Belkaid Y. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 2021; 184:615-627.e17. [PMID: 33453153 PMCID: PMC8786454 DOI: 10.1016/j.cell.2020.12.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.
Collapse
Affiliation(s)
- Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Vinicius Andrade-Oliveira
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benedikt Hild
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji Hoon Oh
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Choon K Sim
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Lee JS, Wang RX, Alexeev EE, Colgan SP. Intestinal Inflammation as a Dysbiosis of Energy Procurement: New Insights into an Old Topic. Gut Microbes 2021; 13:1-20. [PMID: 33583319 PMCID: PMC7889129 DOI: 10.1080/19490976.2021.1880241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) coincides with profound shifts in microbiota and host metabolic energy supply and demand. The gastrointestinal epithelium is anatomically positioned to provide a selective barrier between the anaerobic luminal microbiota and host lamina propria, with the microbiota and epithelium participating in an intricate energy exchange necessary for homeostasis. Maintenance and restoration of the barrier requires high energy flux and places significant demands on available substrates to generate ATP. It is recently appreciated that components of the microbiota contribute significantly to a multitude of biochemical pathways within and outside of the mucosa. Decades-old studies have appreciated that byproducts of the microbiota provide essential sources of energy to the intestinal epithelium, especially the colon. More recent work has unveiled the existence of numerous microbial-derived metabolites that support energy procurement within the mucosa. It is now appreciated that disease-associated shifts in the microbiota, termed dysbiosis, places significant demands on energy acquisition within the mucosa. Here, we review the topic of host- and microbial-derived components that influence tissue energetics in health and during disease.
Collapse
Affiliation(s)
- J. Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| | - Ruth X. Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| | - Erica E. Alexeev
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
- Department of Gastroenterology, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States
| | - Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
36
|
Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes 2021; 13:1-22. [PMID: 33590776 PMCID: PMC7899087 DOI: 10.1080/19490976.2021.1882927] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
The interaction disorder between gut microbiota and its host has been documented in different non-communicable diseases (NCDs) such as metabolic syndrome, neurodegenerative disease, and autoimmune disease. The majority of these altered interactions arise through metabolic cross-talk between gut microbiota and host immune system, inducing a low-grade chronic inflammation that characterizes all NCDs. In this review, we discuss the contribution of bacterial metabolites to immune signaling pathways involved in NCDs. We then review recent advances that aid to rationally design microbial therapeutics. A deeper understanding of these intersections between host and gut microbiota metabolism using metabolomics-based system biology platform promises to reveal the fundamental mechanisms that drive metabolic predispositions to disease and suggest new avenues to use microbial therapeutic opportunities for NCDs treatment and prevention. Abbreviations: NCDs: non-communicable disease, IBD: inflammatory bowel disease, IL: interleukin, T2D: type 2 diabetes, SCFAs: short-chain fatty acids, HDAC: histone deacetylases, GPCR: G-protein coupled receptors, 5-HT: 5-hydroxytryptamine receptor signaling, DCs: dendritic cells, IECs: intestinal epithelial cells, T-reg: T regulatory cell, NF-κB: nuclear factor κB, TNF-α: tumor necrosis factor alpha, Th: T helper cell, CNS: central nervous system, ECs: enterochromaffin cells, NSAIDs: non-steroidal anti-inflammatory drugs, AhR: aryl hydrocarbon receptor, IDO: indoleamine 2,3-dioxygenase, QUIN: quinolinic acid, PC: phosphatidylcholine, TMA: trimethylamine, TMAO: trimethylamine N-oxide, CVD: cardiovascular disease, NASH: nonalcoholic steatohepatitis, BAs: bile acids, FXR: farnesoid X receptor, CDCA: chenodeoxycholic acid, DCA: deoxycholic acid, LCA: lithocholic acid, UDCA: ursodeoxycholic acid, CB: cannabinoid receptor, COBRA: constraint-based reconstruction and analysis.
Collapse
Affiliation(s)
- F. Hosseinkhani
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - A. Heinken
- Division of System Biomedicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - I. Thiele
- Division of System Biomedicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - P. W. Lindenburg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Research Group Metabolomics, Faculty Science & Technology, Leiden Centre for Applied Bioscience, University of Applied Sciences, Leiden, Netherlands
| | - A. C. Harms
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - T. Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
37
|
Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host-Microbe Interplay. Trends Endocrinol Metab 2020; 31:818-834. [PMID: 32284282 DOI: 10.1016/j.tem.2020.02.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Gut microbial metabolism is intimately coupled with host health and disease. Aromatic amino acid (AAA) catabolism by the gut microbiome yields numerous metabolites that may regulate immune, metabolic, and neuronal responses at local and distant sites. Such a chemical dialog between host cells and the gut microbiome is shaped by environmental cues, and may become dysregulated in gastrointestinal and systems diseases. Increasing knowledge of the bacterial pathway and signaling basis may shed additional light on metabolic host-microbiome crosstalk that remains untapped for drug discovery. Here, we update our understanding of microbial AAA metabolism and its impacts on host physiology and disease. We also consider open questions related to therapeutically mining these signaling metabolites and how recent concepts and tools may drive this area forward.
Collapse
Affiliation(s)
- Yali Liu
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanlong Hou
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao Zheng
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
38
|
Negatu DA, Gengenbacher M, Dartois V, Dick T. Indole Propionic Acid, an Unusual Antibiotic Produced by the Gut Microbiota, With Anti-inflammatory and Antioxidant Properties. Front Microbiol 2020; 11:575586. [PMID: 33193190 PMCID: PMC7652848 DOI: 10.3389/fmicb.2020.575586] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Most antibiotics are produced by soil microbes and typically interfere with macromolecular synthesis processes as their antibacterial mechanism of action. These natural products are often large and suffer from poor chemical tractability. Here, we discuss discovery, mechanism of action, and the therapeutic potentials of an unusual antibiotic, indole propionic acid (IPA). IPA is produced by the human gut microbiota. The molecule is small, chemically tractable, and targets amino acid biosynthesis. IPA is active against a broad spectrum of mycobacteria, including drug resistant Mycobacterium tuberculosis and non-tuberculous mycobacteria (NTM). Interestingly, the microbiota-produced metabolite is detectable in the serum of healthy individuals, tuberculosis (TB) patients, and several animal models. Thus, the microbiota in our gut may influence susceptibility to mycobacterial diseases. If a gut-lung microbiome axis can be demonstrated, IPA may have potential as a biomarker of disease progression, and development of microbiota-based therapies could be explored. In addition to its antimycobacterial activity, the molecule displays anti-inflammatory and antioxidant properties. This raises the possibility that IPA has therapeutic potential as both antibiotic and add-on host-directed drug for the treatment of TB in patient populations where disease morbidity and mortality is driven by excessive inflammation and tissue damage, such as TB-associated immune reconstitution inflammatory syndrome, TB-meningitis, and TB-diabetes.
Collapse
Affiliation(s)
- Dereje Abate Negatu
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States.,Department of Microbiology and Immunology, Georgetown University, Washington, DC, United States
| |
Collapse
|
39
|
Liu Y, Sheng Y, Pan Q, Xue Y, Yu L, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Identification of the key physiological characteristics of Lactobacillus plantarum strains for ulcerative colitis alleviation. Food Funct 2020; 11:1279-1291. [PMID: 31984399 DOI: 10.1039/c9fo02935d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactobacillus plantarum is a probiotic that is widely used to prevent ulcerative colitis (UC). However, the effects of this species are strain-specific. We believe that the physiological characteristics of L. plantarum strains may affect their UC-alleviating function. Therefore, this study investigated the relationship between the alleviating effect of L. plantarum strains on UC and their physiological characteristics in vitro. The physiological characteristics of 14 L. plantarum strains were assayed in vitro, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid (CLA) synthesis. To create animal models, colitis was established in C57BL/6 mice by adding 3.5% dextran sulfate sodium to drinking water for 7 days. L. plantarum strains with significantly different physiological characteristics were orally administered to the mice at a dose of 3 × 109 CFU. The results indicated that among the tested L. plantarum strains, L. plantarum N13 and L. plantarum CCFM8610 significantly alleviated colitis in the mice, as observed from the restoration of the body weight and disease activity index (DAI) score, recovery of the gut microbiota composition, reduced expression of pro-inflammatory cytokines, and significantly inhibited expression of p65. Correlation analysis indicated that four of the measured physiological characteristics (gastrointestinal transit tolerance, HT-29 cell adhesion, generation time, and CLA synthesis) were related to the UC-alleviating effects to different degrees. The strongest correlation was observed between the CLA synthesis ability and UC-alleviating effects (with Pearson correlation coefficients for IL-1β, IL-6, IL-17F, TNF-α, myeloperoxidase, and the DAI all below -0.95). The ability to synthesize CLA may be the key physiological characteristic of L. plantarum in UC alleviation. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qiqi Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
40
|
Yamauchi T, Oi A, Kosakamoto H, Akuzawa-Tokita Y, Murakami T, Mori H, Miura M, Obata F. Gut Bacterial Species Distinctively Impact Host Purine Metabolites during Aging in Drosophila. iScience 2020; 23:101477. [PMID: 32916085 PMCID: PMC7520893 DOI: 10.1016/j.isci.2020.101477] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota impacts the host metabolome and affects its health span. How bacterial species in the gut influence age-dependent metabolic alteration has not been elucidated. Here we show in Drosophila melanogaster that allantoin, an end product of purine metabolism, is increased during aging in a microbiota-dependent manner. Allantoin levels are low in young flies but are commonly elevated upon lifespan-shortening dietary manipulations such as high-purine, high-sugar, or high-yeast feeding. Removing Acetobacter persici in the Drosophila microbiome attenuated age-dependent allantoin increase. Mono-association with A. persici, but not with Lactobacillus plantarum, increased allantoin in aged flies. A. persici increased allantoin via activation of innate immune signaling IMD pathway in the renal tubules. On the other hand, analysis of bacteria-conditioned diets revealed that L. plantarum can decrease allantoin by reducing purines in the diet. These data together demonstrate species-specific regulations of host purine levels by the gut microbiome.
Collapse
Affiliation(s)
- Toshitaka Yamauchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayano Oi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoriko Akuzawa-Tokita
- Department of Genetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Murakami
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Li H, Ranhotra HS, Mani S, Dvořák Z, Sokol H, Müller R. Human microbial metabolite mimicry as a strategy to expand the chemical space of potential drugs. Drug Discov Today 2020; 25:1575-1579. [PMID: 32562605 PMCID: PMC7572573 DOI: 10.1016/j.drudis.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
The concept of small-molecule mimicry even of weak microbial metabolites present in rodents and humans, as a means to expand drug repertoires, is new. Hitherto, there are few proof-of-concept papers demonstrating utility of this concept. More recently, papers demonstrating mimicry of intestinal microbial metabolites could expand the drug repertoire for diseases such as inflammatory bowel disease (IBD). We opine that, as more functional metabolite-receptor pairings are discovered, small-molecule metabolite mimicry could be a significant effort in drug discovery.
Collapse
Affiliation(s)
- Hao Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harmit S Ranhotra
- St Edmund's College, Shillong, Old Jowai Road, Shillong, Meghalaya 793003, India
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc 78371, Czech Republic.
| | - Harry Sokol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, F-75012 Paris, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, 78352, France; Paris Centre for Microbiome Medicine FHU, Paris, France.
| | - Rolf Müller
- Helmholtz Center for Infection Research, GmbH Inhoffenstrasse, 738124 Braunschweig, Germany; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)University campus E8, 166123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.
| |
Collapse
|
42
|
Gutierrez D, Weinstock A, Antharam VC, Gu H, Jasbi P, Shi X, Dirks B, Krajmalnik-Brown R, Maldonado J, Guinan J, Thangamani S. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol 2020; 96:5643884. [PMID: 31769789 PMCID: PMC6934136 DOI: 10.1093/femsec/fiz187] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-induced alterations in the gut ecosystem increases the susceptibility to Candida albicans, yet the mechanisms involved remains poorly understood. Here we show that mice treated with the broad-spectrum antibiotic cefoperazone promoted the growth, morphogenesis and gastrointestinal (GI) colonization of C. albicans. Using metabolomics, we revealed that the cecal metabolic environment of the mice treated with cefoperazone showed a significant alteration in intestinal metabolites. Levels of carbohydrates, sugar alcohols and primary bile acids increased, whereas carboxylic acids and secondary bile acids decreased in antibiotic treated mice susceptible to C. albicans. Furthermore, using in-vitro assays, we confirmed that carbohydrates, sugar alcohols and primary bile acids promote, whereas carboxylic acids and secondary bile acids inhibit the growth and morphogenesis of C. albicans. In addition, in this study we report changes in the levels of gut metabolites correlated with shifts in the gut microbiota. Taken together, our in-vivo and in-vitro results indicate that cefoperazone-induced metabolome and microbiome alterations favor the growth and morphogenesis of C. albicans, and potentially play an important role in the GI colonization of C. albicans.
Collapse
Affiliation(s)
- Daniel Gutierrez
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Vijay C Antharam
- Department of Chemistry, School of Science and Human Development, Methodist University, 5400 Ramsey St, Fayetteville, NC 28311, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Blake Dirks
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA.,Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Juan Maldonado
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jack Guinan
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
43
|
Feng P, Cao Z, Wang X, Li J, Liu J. On-Demand Bacterial Reactivation by Restraining within a Triggerable Nanocoating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002406. [PMID: 32686247 DOI: 10.1002/adma.202002406] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Bacteria have been widely exploited as bioagents for applications in diagnosis and treatment, benefitting from their living characteristics including colonization, rapid proliferation, and facile genetic manipulation. As such, bacteria being tailored to perform precisely in the right place at the right time to avoid potential side effects would be of great importance but has proven to be difficult. Here, a strategy of on-demand bacterial reactivation is described by individually restraining within a triggerable nanocoating. Upon reaching at a location of interest, nanocoatings can be triggered to dissolution in situ and subsequently decoat the bacteria which are able to recover their bioactivities as needed. It is demonstrated that gut microbiota coated with an enteric nanocoating can respond to gastrointestinal environments and reactivate in the intestine by a pH-triggered decoating. In virtue of this unique, coated bacteria remain inactive following oral administration to exempt acidic insults, while revive to restore therapeutic effects after gastric emptying. Consequently, improved oral availability and treatment efficacy are achieved in two mouse models of intestinal infection. Bacteria restrained by a triggerable nanocoating represent a smart therapeutic that can take effect when necessary. On-demand bacterial reactivation suggests a robust platform for the development of precision bacterial-mediated bioagents.
Collapse
Affiliation(s)
- Pingping Feng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
44
|
Brown EM, Kenny DJ, Xavier RJ. Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annu Rev Immunol 2020; 37:599-624. [PMID: 31026411 DOI: 10.1146/annurev-immunol-042718-041841] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Douglas J Kenny
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA;
| |
Collapse
|
45
|
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front Microbiol 2020; 11:1266. [PMID: 32670224 PMCID: PMC7329990 DOI: 10.3389/fmicb.2020.01266] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Collapse
Affiliation(s)
| | | | | | - Eden Ephraim
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | | | | | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Jan S. Suchodolski
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|
46
|
Merrick B, Allen L, Masirah M Zain N, Forbes B, Shawcross DL, Goldenberg SD. Regulation, risk and safety of Faecal Microbiota Transplant. Infect Prev Pract 2020; 2:100069. [PMID: 34316559 PMCID: PMC7280140 DOI: 10.1016/j.infpip.2020.100069] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
From its origins as a left-field, experimental, and even “maverick” intervention, faecal microbiota transplantation (FMT) is now a well-recognised, accepted, and potentially life-saving therapeutic strategy, for the management of recurrent Clostridiodes difficile infection (rCDI). It is being investigated as a treatment for a growing number of diseases including hepatic encephalopathy and eradication of antimicrobial resistant organisms, and the list of indications will likely expand in the future. There is no universally accepted definition of what FMT is, and its mechanism of action remains incompletely understood; this has likely contributed to the breadth of approaches to regulation depending on interpretation. In the UK FMT is considered a medicinal product, in North America, a biological product, whereas in parts of Europe, it is considered a human cell/tissue product. Regulation seeks to improve quality and safety, however, lack of standardisation creates confusion, and overly restrictive regulation may hamper widespread access and discourage research using FMT. FMT is generally considered safe, especially if rigorous donor screening and testing is conducted. Most short-term risks are associated with the delivery method (e.g. colonoscopy). Longer term risks are less well described but longitudinal follow-up of treated cohorts is in place to assess for this, and no signal towards harm has been found to date. Rarely it has been associated with adverse outcomes including the transmission of antibiotic resistant bacteria, and even death. It is vital patients undergoing FMT are well informed to the currently appreciated risks and benefits before proceeding.
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research (CIDR), King's College, London and Guy's & St. Thomas' NHS Foundation Trust, UK
| | - Liz Allen
- Early Clinical Development Centre of Excellence, IQVIA, Reading, UK.,Department of Pharmacy, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Nur Masirah M Zain
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research (CIDR), King's College, London and Guy's & St. Thomas' NHS Foundation Trust, UK
| |
Collapse
|
47
|
Habib AM, Nagi K, Thillaiappan NB, Sukumaran V, Akhtar S. Vitamin D and Its Potential Interplay With Pain Signaling Pathways. Front Immunol 2020; 11:820. [PMID: 32547536 PMCID: PMC7270292 DOI: 10.3389/fimmu.2020.00820] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
About 50 million of the U.S. adult population suffer from chronic pain. It is a complex disease in its own right for which currently available analgesics have been deemed woefully inadequate since ~20% of the sufferers derive no benefit. Vitamin D, known for its role in calcium homeostasis and bone metabolism, is thought to be of clinical benefit in treating chronic pain without the side-effects of currently available analgesics. A strong correlation between hypovitaminosis D and incidence of bone pain is known. However, the potential underlying mechanisms by which vitamin D might exert its analgesic effects are poorly understood. In this review, we discuss pathways involved in pain sensing and processing primarily at the level of dorsal root ganglion (DRG) neurons and the potential interplay between vitamin D, its receptor (VDR) and known specific pain signaling pathways including nerve growth factor (NGF), glial-derived neurotrophic factor (GDNF), epidermal growth factor receptor (EGFR), and opioid receptors. We also discuss how vitamin D/VDR might influence immune cells and pain sensitization as well as review the increasingly important topic of vitamin D toxicity. Further in vitro and in vivo experimental studies will be required to study these potential interactions specifically in pain models. Such studies could highlight the potential usefulness of vitamin D either alone or in combination with existing analgesics to better treat chronic pain.
Collapse
Affiliation(s)
| | | | | | | | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
48
|
Abstract
Host-microbiota interactions are fundamental for the development of the immune system. Drastic changes in modern environments and lifestyles have led to an imbalance of this evolutionarily ancient process, coinciding with a steep rise in immune-mediated diseases such as autoimmune, allergic and chronic inflammatory disorders. There is an urgent need to better understand these diseases in the context of mucosal and skin microbiota. This Review discusses the mechanisms of how the microbiota contributes to the predisposition, initiation and perpetuation of immune-mediated diseases in the context of a genetically prone host. It is timely owing to the wealth of new studies that recently contributed to this field, ranging from metagenomic studies in humans and mechanistic studies of host-microorganism interactions in gnotobiotic models and in vitro systems, to molecular mechanisms with broader implications across immune-mediated diseases. We focus on the general principles, such as breaches in immune tolerance and barriers, leading to the promotion of immune-mediated diseases by gut, oral and skin microbiota. Lastly, the therapeutic avenues that either target the microbiota, the barrier surfaces or the host immune system to restore tolerance and homeostasis will be explored.
Collapse
|
49
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Metabolism and Interaction with Food Components. Int J Mol Sci 2020; 21:ijms21103688. [PMID: 32456257 PMCID: PMC7279363 DOI: 10.3390/ijms21103688] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe–nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
- Correspondence: ; Tel.: +39-0668-594061; Fax: +39-0668-592218
| | - Federica Del Chierico
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| | - Lorenza Putignani
- Unit of Parasitology and Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’ Onofrio 4, 00165 Rome, Italy;
| |
Collapse
|
50
|
What's new in IBD therapy: An "omics network" approach. Pharmacol Res 2020; 159:104886. [PMID: 32428668 DOI: 10.1016/j.phrs.2020.104886] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The industrial revolution that began in the late 1800s has resulted in dramatic changes in the environment, human lifestyle, dietary habits, social structure, and so on. Almost certainly because this rapid evolution has outpaced the ability of the body to adapt to a number of environmental and behavioral changes, there has been a parallel emergence of several chronic inflammatory diseases, among which are inflammatory bowel diseases (IBD), primarily ulcerative colitis and Crohn's disease. The ability to treat these conditions has progressively improved in the last 50 years, particularly in the last couple of decades with the introduction of biological therapy targeting primarily soluble mediators produced by inflammatory cells. A large number of biologics are now available, but all of them induce similarly unsatisfactory (<50%) rates of clinical response and remission, and most of them lose efficacy over time, requiring dose escalation or switching from one biologic to another. So, treatment of IBD still needs improvement that will occur only if different approaches are taken. A reason why even the most recent forms of IBD therapy are unsatisfactory is because they target only selected components of an exceedingly complex pathophysiological process, a reality that must be honestly considered if better IBD therapies are to be achieved. Brand new approaches must integrate all relevant factors in their totality - the "omes" - and identify the key controllers of biological responses. This can be accomplished by using systems biology-based approaches and advanced bioinformatics tools, which together represent the essence of network medicine. This review looks at the past and the present of IBD pathogenesis and therapy, and discusses how to develop new therapies based on a network medicine approach.
Collapse
|