1
|
Cavalcanti de Albuquerque JP, Hunter J, Domingues RG, Harno E, Worth AA, Liguori FM, D'Alessio A, Aviello G, Bechtold D, White A, Luckman SM, Hepworth MR, D'Agostino G. Brain sensing of metabolic state regulates circulating monocytes. Sci Immunol 2025; 10:eadr3226. [PMID: 40184437 DOI: 10.1126/sciimmunol.adr3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/13/2025] [Indexed: 04/06/2025]
Abstract
Changes in energy availability alter the dynamics of circulating immune cells. The existing view is that these effects are due to altered nutrient levels affecting peripheral tissue metabolism. Here, using mice and genetic approaches to manipulate the activity of distinct molecularly defined neurons, we show that the brain's perception of hunger and satiety alone is sufficient to drive these immune changes. Hunger-promoting Agouti-related peptide (AgRP) neurons in the hypothalamus were both sufficient and necessary to reduce circulating Ly6CHi classical monocytes during fasting. Mechanistically, these neurons suppressed hepatic mammalian target of rapamycin signaling via sympathetic regulation, decreasing circulating chemokine ligand 2 and monocyte numbers. AgRP neuron-induced corticosterone release and glucocorticoid receptor activation played a permissive role in this process. These changes in monocyte dynamics can occur independently of actual nutrient levels, revealing an unexpected brain-mediated control of peripheral immunity in response to perceived variation in energy state.
Collapse
Affiliation(s)
- Joao Paulo Cavalcanti de Albuquerque
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jenna Hunter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rita G Domingues
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Erika Harno
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Amy A Worth
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Fabrizio Maria Liguori
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Aurora D'Alessio
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Gabriella Aviello
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - David Bechtold
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Simon M Luckman
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Giuseppe D'Agostino
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Goto T, Hagihara M, Irie S, Abe T, Kiyonari H, Miyamichi K. Dietary availability acutely influences puberty onset via a hypothalamic neural circuit. Neuron 2025; 113:1036-1050.e5. [PMID: 39999843 DOI: 10.1016/j.neuron.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/21/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Reproduction poses a substantial burden, especially for mammalian females. Puberty onset serves as a vital checkpoint, regulated based on the body's energy state, to prevent inappropriate reproductive activity under malnutrition. However, the neural basis of this puberty checkpoint remains poorly understood. Here, we demonstrate that peripubertal malnutrition in female mice reduces the synchronous activity episodes of arcuate kisspeptin neurons, which are critical regulators of the gonadotropin axis. Improved dietary availability increased the frequency of this pulsatile activity, facilitating puberty onset. Using a viral-genetic approach, we show that the activity of agouti-related protein neurons in the arcuate nucleus, a hunger center, can bidirectionally regulate the pulsatile activity of kisspeptin neurons and follicular maturation in the ovaries. Collectively, a neural circuit connecting feeding to reproductive centers acts as an adjuster of the frequency of pulsatile kisspeptin neuron activity based on dietary availability, contributing to the neural basis of the puberty checkpoint.
Collapse
Affiliation(s)
- Teppei Goto
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| | - Mitsue Hagihara
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
3
|
Koutlas I, Patrikiou L, van der Starre SE, Danko D, Wolterink-Donselaar IG, Luijendijk MCM, Adan RAH, Meye FJ. Distinct ventral tegmental area neuronal ensembles are indispensable for reward-driven approach and stress-driven avoidance behaviors. Nat Commun 2025; 16:3147. [PMID: 40175375 PMCID: PMC11965480 DOI: 10.1038/s41467-025-58384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Assigning valence to stimuli for adaptive behavior is an essential function, involving the ventral tegmental area (VTA). VTA cell types are often defined through neurotransmitters (NT). However, valence function in VTA does not parse along NT-boundaries as, within each NT-class, certain neurons are excited by reward and others by stressors. Here we identify, in male mice, the co-activated VTA neuronal ensembles for reward and stress, and determine their role in adaptive behaviors. We show that stimuli of opposite valence (opioid vs acute social stress) recruit two distinct VTA neuronal ensembles. These two ensembles continue to be preferentially engaged by congruent valence stimuli. Stimulation of VTA stress- or reward ensembles is aversive/reinforcing, respectively. Strikingly, external valence stimuli fully require activity of these small discrete VTA ensembles for conferring approach/avoidance outcomes. Overall, our study identifies distinct VTA ensembles for positive and negative valence coding and shows their indispensability for adaptive behavior.
Collapse
Affiliation(s)
- Ioannis Koutlas
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lefkothea Patrikiou
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Stef E van der Starre
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Diaz Danko
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Inge G Wolterink-Donselaar
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mieneke C M Luijendijk
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Ariyani W, Yoshikawa C, Tsuneoka H, Amano I, Imayoshi I, Ichinose H, Sumi-Ichinose C, Koibuchi N, Kitamura T, Kohno D. Dopaminergic neurons in the paraventricular hypothalamus extend the food consumption phase. Proc Natl Acad Sci U S A 2025; 122:e2411069122. [PMID: 40153459 DOI: 10.1073/pnas.2411069122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025] Open
Abstract
Feeding behavior is controlled by various neural networks in the brain that are involved in different feeding phases: Food procurement, consumption, and termination. However, the specific neural circuits controlling the food consumption phase remain poorly understood. Here, we investigated the roles of dopaminergic neurons in the paraventricular nucleus of the hypothalamus (PVH) in the feeding behavior in mice. Our results indicated that the PVH dopaminergic neurons were critical for extending the food consumption phase and involved in the development of obesity through epigenetic mechanisms. These neurons synchronized with proopiomelanocortin neurons during consumption, were stimulated by proopiomelanocortin activation, and projected to the lateral habenula (LHb), where dopamine receptor D2 was involved in the increase in food consumption. In addition, upregulated tyrosine hydroxylase (TH) expression in PVH was associated with obesity and indispensable for obesity induction in mice lacking Dnmt3a. Taken together, our results highlight the roles of PVH dopaminergic neurons in promoting food consumption and obesity induction.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Chiharu Yoshikawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Haruka Tsuneoka
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Itaru Imayoshi
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Deconstruction of Stem Cells, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Chiho Sumi-Ichinose
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
5
|
Chen J, Cai M, Zhan C. Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem. Neurosci Bull 2025; 41:665-675. [PMID: 39704987 PMCID: PMC11978587 DOI: 10.1007/s12264-024-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/19/2024] [Indexed: 12/21/2024] Open
Abstract
In the face of constantly changing environments, the central nervous system (CNS) rapidly and accurately calculates the body's needs, regulates feeding behavior, and maintains energy homeostasis. The arcuate nucleus of the hypothalamus (ARC) plays a key role in this process, serving as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis. Agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis. In this review, we explore the discovery and research progress of AgRP neurons in regulating feeding and energy metabolism. In addition, recent advances in terms of feeding behavior and energy homeostasis, along with the redundant neural mechanisms involved in energy metabolism, are discussed. Finally, the challenges and opportunities in the field of neural regulation of feeding and energy metabolism are briefly discussed.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Meiting Cai
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Cheng Zhan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Mendez-Hernandez R, Braga I, Bali A, Yang M, de Lartigue G. Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond. Compr Physiol 2025; 15:e70010. [PMID: 40229922 DOI: 10.1002/cph4.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The vagus nerve is the body's primary sensory conduit from gut to brain, traditionally viewed as a passive relay for satiety signals. However, emerging evidence reveals a far more complex system-one that actively encodes diverse aspects of meal-related information, from mechanical stretch to nutrient content, metabolic state, and even microbial metabolites. This review challenges the view of vagal afferent neurons (VANs) as simple meal-termination sensors and highlights their specialized subpopulations, diverse sensory modalities, and downstream brain circuits, which shape feeding behavior, metabolism, and cognition. We integrate recent advances from single-cell transcriptomics, neural circuit mapping, and functional imaging to examine how VANs contribute to gut-brain communication beyond satiety, including their roles in food reward and memory formation. By synthesizing the latest research and highlighting emerging directions for the field, this review provides a comprehensive update on vagal sensory pathways and their role as integrators of meal information.
Collapse
Affiliation(s)
- Rebeca Mendez-Hernandez
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isadora Braga
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Avnika Bali
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mingxin Yang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guillaume de Lartigue
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Zhu Z, Gong R, Rodriguez V, Quach KT, Chen X, Sternson SM. Hedonic eating is controlled by dopamine neurons that oppose GLP-1R satiety. Science 2025; 387:eadt0773. [PMID: 40146831 DOI: 10.1126/science.adt0773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/27/2025] [Indexed: 03/29/2025]
Abstract
Hedonic eating is defined as food consumption driven by palatability without physiological need. However, neural control of palatable food intake is poorly understood. We discovered that hedonic eating is controlled by a neural pathway from the peri-locus ceruleus to the ventral tegmental area (VTA). Using photometry-calibrated optogenetics, we found that VTA dopamine (VTADA) neurons encode palatability to bidirectionally regulate hedonic food consumption. VTADA neuron responsiveness was suppressed during food consumption by semaglutide, a glucagon-like peptide receptor 1 (GLP-1R) agonist used as an antiobesity drug. Mice recovered palatable food appetite and VTADA neuron activity during repeated semaglutide treatment, which was reversed by consumption-triggered VTADA neuron inhibition. Thus, hedonic food intake activates VTADA neurons, which sustain further consumption, a mechanism that opposes appetite reduction by semaglutide.
Collapse
Affiliation(s)
- Zhenggang Zhu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Rong Gong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vicente Rodriguez
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen T Quach
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Xinyu Chen
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Scott M Sternson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Manceau R, Anthony P, Hryhorczuk C, Labbé P, Thorin-Trescases N, Fulton S, Thorin É. Sexually dimorphic effects of angiopoietin-like 2 on energy metabolism and hypothalamic neuropeptide regulation. Int J Obes (Lond) 2025:10.1038/s41366-025-01754-0. [PMID: 40133699 DOI: 10.1038/s41366-025-01754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Adipokines regulate body weight and metabolism by targeting the hypothalamus, influencing feeding, energy expenditure (EE) and insulin sensitivity. Angiopoietin-like 2 (Angptl2) is a pro-inflammatory adipokine linking obesity to insulin resistance. Both Angptl2 and its receptor are expressed in the central nervous system. Yet, the contribution of Angptl2 to the regulation of energy metabolism and relevant hypothalamic neuropeptides in male and female mice is unknown. We aim at determining the impact of Angptl2 knockdown (KD) on energy balance, nutrient partitioning and hypothalamic responses to a standard (STD) or high-fat diet (HFD) in mice. METHODS Three-month-old male and female Angptl2-KD mice and wildtype (WT) littermates were fed 16 weeks either a STD or a HFD. Body weight, food consumption and insulin sensitivity were assessed along with measurements of EE, respiratory exchange ratio (RER) and locomotor activity. We quantified the expression of Angptl2 and its receptors itga5, mag and pirb in the medio-basal hypothalamus (MBH) of WT mice, and MBH neuropeptide Y (NPY), agouti-related neuropeptide (AgRP) and proopiomelanocortin (POMC) gene expression in both KD and control fasting mice. RESULTS Lack of Angptl2 reduced food intake in males on both diets, and in females on HFD. In KD males, this anorexigenic effect was associated with lower body weight, increased EE, improved insulin sensitivity and lower hypothalamic orexigenic NPY expression compared to controls. Female Angptl2-KD mice however, exhibited unaltered body weight, EE and insulin sensitivity, and elevated NPY, AgRP and MC4R expression compared to controls. Fasting caused an increase in the MBH of mag expression in males and females but Angptl2 expression only in female mice. CONCLUSIONS Angptl2 KD improved diet-induced obesity and associated metabolic dysfunction in male mice. The lack of similar changes in female mice and divergent MBH neuropeptide profile suggest that sex-dependent mechanisms underly the anabolic effects of this proinflammatory adipokine.
Collapse
Affiliation(s)
- Romane Manceau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pinçon Anthony
- Montreal Heart Institute Research Center, Montréal, QC, Canada
- Charles River Laboratories, 22022 Transcanadienne, Senneville, QC, H9X 3R3, Canada
| | - Cécile Hryhorczuk
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Pauline Labbé
- Montreal Heart Institute Research Center, Montréal, QC, Canada
| | | | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Éric Thorin
- Montreal Heart Institute Research Center, Montréal, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
9
|
James-Okoro PP, Lewis JE, Gribble FM, Reimann F. The role of GIPR in food intake control. Front Endocrinol (Lausanne) 2025; 16:1532076. [PMID: 40166681 PMCID: PMC11955450 DOI: 10.3389/fendo.2025.1532076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is one of two incretin hormones playing key roles in the control of food intake, nutrient assimilation, insulin secretion and whole-body metabolism. Recent pharmacological advances and clinical trials show that unimolecular co-agonists that target the receptors for the incretins - GIP and glucagon-like peptide 1 (GLP-1) - offer more effective treatment strategies for obesity and type 2 diabetes mellitus (T2D) compared with GLP-1 receptor (GLP1R) agonists alone, suggesting previously underappreciated roles of GIP in regulating food intake and body weight. The mechanisms by which GIP regulates energy balance remain controversial as both agonism and antagonism of the GIP receptor (GIPR) produce weight loss and improve metabolic outcomes in preclinical models. Recent studies have shown that GIPR signalling in the central nervous system (CNS), especially in regions of the brain that regulate energy balance, is essential for its action on appetite regulation. This finding has sparked interest in understanding the mechanisms by which GIP engages brain circuits to reduce food intake and body weight. In this review, we present key knowledge around the actions of GIP on food intake regulation and the potential mechanisms by which GIPR and GIPR/GLP1R agonists may regulate energy balance.
Collapse
Affiliation(s)
| | | | - Fiona Mary Gribble
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Höybye C, Petersson M. The Role of the Arcuate Nucleus in Regulating Hunger and Satiety in Prader-Willi Syndrome. Curr Issues Mol Biol 2025; 47:192. [PMID: 40136445 PMCID: PMC11941671 DOI: 10.3390/cimb47030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder. The main characteristics are muscular hypotonia, failure to thrive and feeding problems in infancy, which switch to hyperphagia in early childhood and continue into adulthood. Due to hyperphagia, the risk of developing morbid obesity is high without treatment. PWS is considered a hypothalamic disease, and within the hypothalamus the arcuate nucleus (AC) is of central importance for controlling metabolism, hunger, and satiety. The AC has been studied in several animal models as well as in humans, including PWS. The function of AC is regulated by several neuropeptides and proteins produced within the central nervous system such as oxytocin, orexin, tachykinins as well as the hypothalamic hormones, regulating the adeno-hypophyseal hormones, also acting as neurotransmitters. Additionally, there are many peripheral hormones among which insulin, leptin, adiponectin, ghrelin, and glucagon-like peptide (GLP-1) are the most important. High levels of adiponectin and ghrelin have consistently been reported in PWS, but dysregulation and deviating levels of many other factors and hormones have also been demonstrated in both individuals with PWS and in animal models. In this review, we focus on the role of AC and peptides and proteins produced within the central nervous system in the regulation of hunger and satiety in PWS.
Collapse
Affiliation(s)
- Charlotte Höybye
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Petersson
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Douglass AM, Kucukdereli H, Madara JC, Wang D, Wu C, Lowenstein ED, Tao J, Lowell BB. Acute and circadian feedforward regulation of agouti-related peptide hunger neurons. Cell Metab 2025; 37:708-722.e5. [PMID: 39719709 PMCID: PMC11885038 DOI: 10.1016/j.cmet.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024]
Abstract
When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice. We discovered new forms of AgRP neuron regulation, including fast pre-ingestive decreases in activity and unexpectedly rapid activation by fasting. Furthermore, AgRP neuron activity has a circadian rhythm that peaks concurrent with the daily feeding onset. Importantly, this rhythm persists when nutrition is provided via constant-rate gastric infusions. Hence, it is not secondary to a circadian feeding rhythm. The AgRP neuron rhythm is driven by the circadian clock, the suprachiasmatic nucleus (SCN), as SCN ablation abolishes the circadian rhythm in AgRP neuron activity and feeding. The SCN activates AgRP neurons via excitatory afferents from thyrotrophin-releasing hormone-expressing neurons in the dorsomedial hypothalamus (DMHTrh neurons) to drive daily feeding rhythms.
Collapse
Affiliation(s)
- Amelia M Douglass
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daqing Wang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chen Wu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Elijah D Lowenstein
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jenkang Tao
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Ouldibbat L, Rocks D, Sampson B, Kundakovic M. The role of ovarian hormone dynamics in metabolic phenotype and gene expression in female mice. Horm Behav 2025; 169:105693. [PMID: 39946826 DOI: 10.1016/j.yhbeh.2025.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/22/2024] [Accepted: 01/23/2025] [Indexed: 03/16/2025]
Abstract
Ovarian hormones, particularly estradiol, play an important role in the regulation of metabolic function including in food intake, thermogenesis, activity, fat distribution, and overall weight management. While it is known that weight and food intake follow cyclical patterns across the rodent estrous cycle, the majority of metabolic studies still focus on ovariectomized rodent models and estrogen replacement. Here we provide a comprehensive metabolic profiling of female mice under different ovarian hormone states, from having naturally-cycling ovarian hormone levels to complete ovarian hormone depletion and "estrous cycle-like" estrogen replacement (0.2 or 1 μg estradiol benzoate every 4 days). Every domain of metabolic function that we examined including activity levels, food intake, and body composition was affected by ovariectomy and contributed to >30 % weight gain and nearly two-fold increase in fat mass in ovarian hormone-depleted mice over the 12-week period. By combining physiological and hormone replacement paradigms, we show that cyclical estrogen levels are necessary and sufficient to maintain optimal body weight and fat mass. We show that the hypothalamic expression of genes encoding estrogen receptor alpha (Esr1) and neuropeptides involved in feeding behavior (Agrp, Pomc) changes across the cycle and with ovariectomy, and is partially "rescued" by cyclical estrogen treatment. The drastic fat mass changes following ovariectomy are accompanied by changes in adipose tissue gene expression, including a decreased responsiveness to estrogens due to Esr1 down-regulation. Our study highlights the importance of understanding the dynamic regulation of metabolic function by ovarian hormones and calls for more naturalistic and higher-resolution approaches to studying the molecular basis of ovarian hormone action.
Collapse
Affiliation(s)
- Laila Ouldibbat
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Branden Sampson
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
13
|
Dave S, Patel B. The lipocalin saga: Insights into its role in cancer-associated cachexia. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167684. [PMID: 39837432 DOI: 10.1016/j.bbadis.2025.167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Cancer-associated cachexia (CAC) is a debilitating condition, observed in patients with advanced stages of cancer. It is marked by ongoing weight loss, weakness, and nutritional impairment. Lower tolerance of chemotherapeutic agents and radiation therapy makes it difficult to treat CAC. Anorexia is a significant contributor to worsening CAC. Anorexia can be found in the early or advanced stages of cancer. Anorexia in cancer patients arises from a confluence of factors. Tumor-related inflammatory cytokines can directly impact the gastrointestinal tract, leading to dysphagia and compromised gut function. Additionally, increased serotonin and hormonal disruptions lead to early satiety, suppressing appetite. Due to the complexities in the pathogenesis of the disease, identifying druggable targets is a challenge. Research is ongoing to identify novel targets for the treatment of this condition. Recent research suggests a potential link between elevated levels of Lipocalin 2 (LCN2) and cachexia in cancer patients. LCN2, a glycoprotein primarily released by neutrophils, is implicated in numerous illnesses, including skin disorders, cancer, atherosclerosis, and type 2 diabetes. LCN2 suppresses hunger by binding to the melanocortin-4 receptors. Several in vitro, in vivo, and clinical studies indicate the association between LCN2 levels and appetite suppression. Further research should be explored emphasizing the significance of well-crafted clinical trials to confirm LCN2's usefulness as a therapeutic target and its ability to help cancer patients who are suffering from the fatal hallmark of cachexia. This review explores LCN2's function in the multifaceted dynamics of CAC and anorexia.
Collapse
Affiliation(s)
- Srusti Dave
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India
| | - Bhoomika Patel
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
14
|
Wang DC, Wu Y, Mehaffy C, Espinoza-Campomanes LA, Santos-Valencia F, Franks KM, Luo L. Distinct Neural Representations of Hunger and Thirst in Neonatal Mice before the Emergence of Food- and Water-seeking Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.22.614378. [PMID: 39386432 PMCID: PMC11463676 DOI: 10.1101/2024.09.22.614378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hunger and thirst are two fundamental drives for maintaining homeostasis and elicit distinct food- and water-seeking behaviors essential for survival. For neonatal mammals, however, both hunger and thirst are sated by consuming milk from their mother. While distinct neural circuits underlying hunger and thirst drives in the adult brain have been characterized, it is unclear when these distinctions emerge in neonates and what processes may affect their development. Here we show that hypothalamic hunger and thirst regions already exhibit specific responses to starvation and dehydration well before a neonatal mouse can seek food and water separately. At this early age, hunger neurons drive feeding behaviors more than do thirst neurons. In vivo Neuropixels recordings in dehydrated and starved neonatal mice revealed that maternal presentation leads to a relative increase in activity which is suppressed by feeding on short timescales, particularly in hypothalamic and thalamic neurons. Changes in activity become more heterogeneous on longer timescales. Lastly, within neonatal regions that respond to both hunger and thirst, subpopulations of neurons respond distinctly to one or the other need. Combining food and water into a liquid diet throughout the animal's life does not alter the distinct representations of hunger and thirst in the adult brain. Thus, neural representations of hunger and thirst in mice become distinct before food- and water-seeking behaviors mature and are robust to environmental changes in food and water sources.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
- Stanford Medical Scientist Training Program
| | - Yunming Wu
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
| | - Conor Mehaffy
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
| | | | | | | | - Liqun Luo
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
| |
Collapse
|
15
|
Poelman R, Le May MV, Schéle E, Stoltenborg I, Dickson SL. Intranasal Delivery of a Ghrelin Mimetic Engages the Brain Ghrelin Signaling System in Mice. Endocrinology 2025; 166:bqae166. [PMID: 39813130 PMCID: PMC11795113 DOI: 10.1210/endocr/bqae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake and other feeding behaviors, and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic neuropeptide Y neurons that coexpress agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats. Thus, GHS and ghrelin have therapeutic relevance in patients who could benefit from its orexigenic and/or GH-releasing effects. This study examined whether intranasal delivery of ghrelin, GHRP-6, or MK-0677 engages the brain ghrelin signaling system. Effective compounds and doses were selected based on increased food intake after intranasal application in mice. Only GHRP-6 (5 mg/kg) increased food intake without adverse effects, prompting detailed analysis of meal patterns, neuronal activation in the arcuate nucleus (via Fos mapping) and neurochemical identification of c-fos messenger RNA (mRNA)-expressing neurons using RNAscope. We also assessed the effect of intranasal GHRP-6 on serum GH levels. Intranasal GHRP-6 increased food intake by increasing meal frequency and size. Fos expression in the arcuate nucleus was higher in GHRP-6-treated mice than in saline controls. When examining the neurochemical identity of c-fos-mRNA-expressing neurons, we found coexpression with 63.5 ± 1.9% Ghsr mRNA, 79 ± 6.8% Agrp mRNA, and 11.4 ± 2.5% Ghrh mRNA, demonstrating GHRP-6's ability to engage arcuate nucleus neurons involved in food intake and GH release. Additionally, intranasal GHRP-6 elevated GH serum levels. These findings suggest that intranasal GHRP-6, but not ghrelin or MK-0677, can engage the brain ghrelin signaling system.
Collapse
Affiliation(s)
- Renée Poelman
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| |
Collapse
|
16
|
Li Y, Mao J, Chai G, Zheng R, Liu X, Xie J. Neurobiological mechanisms of nicotine's effects on feeding and body weight. Neurosci Biobehav Rev 2025; 169:106021. [PMID: 39826824 DOI: 10.1016/j.neubiorev.2025.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure. The energy homeostasis-related neurons, pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), prolactin-releasing hormone (Prlh), etc, were discussed about the responsibility for nicotine's effects on feeding. Nicotine's actions on hypothalamus and its related neural circuits were described in view of peripheral nervous system, reward system, adipose browning, hormone secretion, and gut-brain axis. Elucidation of neurobiological mechanism of nicotine's actions on feeding and body weight will be of immense value to the therapeutic strategies of smoking, and advance the medicine research for the therapy of obesity.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Guobi Chai
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruimao Zheng
- Department of Anatomy Histology and Embryology School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xingyu Liu
- Beijing Life Science Academy, Beijing, China.
| | - Jianping Xie
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
17
|
Hankir MK, Lutz TA. Novel neural pathways targeted by GLP-1R agonists and bariatric surgery. Pflugers Arch 2025; 477:171-185. [PMID: 39644359 PMCID: PMC11761532 DOI: 10.1007/s00424-024-03047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide has revolutionized the treatment of obesity, with other gut hormone-based drugs lined up that show even greater weight-lowering ability in obese patients. Nevertheless, bariatric surgery remains the mainstay treatment for severe obesity and achieves unparalleled weight loss that generally stands the test of time. While their underlying mechanisms of action remain incompletely understood, it is clear that the common denominator between GLP-1R agonists and bariatric surgery is that they suppress food intake by targeting the brain. In this Review, we highlight recent preclinical studies using contemporary neuroscientific techniques that provide novel concepts in the neural control of food intake and body weight with reference to endogenous GLP-1, GLP-1R agonists, and bariatric surgery. We start in the periphery with vagal, intestinofugal, and spinal sensory nerves and then progress through the brainstem up to the hypothalamus and finish at non-canonical brain feeding centers such as the zona incerta and lateral septum. Further defining the commonalities and differences between GLP-1R agonists and bariatric surgery in terms of how they target the brain may not only help bridge the gap between pharmacological and surgical interventions for weight loss but also provide a neural basis for their combined use when each individually fails.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Hankir MK, Le Foll C. Central nervous system pathways targeted by amylin in the regulation of food intake. Biochimie 2025; 229:95-104. [PMID: 39426704 DOI: 10.1016/j.biochi.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Amylin is a peptide hormone co-released with insulin from pancreatic β-cells during a meal and primarily serves to promote satiation. While the caudal hindbrain was originally implicated as a major site of action in this regard, it is becoming increasingly clear that amylin recruits numerous central nervous system pathways to exert multifaceted effects on food intake. In this Review, we discuss the evidence derived from preclinical studies showing that amylin and the related peptide salmon calcitonin (sCT) directly or indirectly target genetically distinct neurons in the caudal hindbrain (nucleus tractus solitarius and area postrema), rostral hindbrain (lateral parabrachial nucleus), midbrain (lateral dorsal tegmentum and ventral tegmental area) and hypothalamus (arcuate nucleus and parasubthalamic nucleus) via activation of amylin and/or calcitonin receptors. Given that the stable amylin analogue cagrilintide is under clinical development for the treatment of obesity, it is important to determine whether this drug recruits overlapping or distinct central nervous system pathways to that of amylin and sCT with implications for minimising any aversive effects it potentially causes. Such insight will also be important to understand how amylin and sCT analogues synergize with other molecules as part of dual or triple agonist therapies for obesity, especially the glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide, which has been shown to synergistically lower body weight with cagrilintide (CagriSema) in clinical trials.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | - Christelle Le Foll
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Leon-Mercado L, Menendez-Montes I, Tao J, Chen B, Olson DP, Mackaaij C, Cleypool CGJ, Gautron L. Hypoxia inducible factor-dependent upregulation of Agrp in glomus type I cells of the carotid body. Mol Metab 2025; 92:102095. [PMID: 39793758 PMCID: PMC11786784 DOI: 10.1016/j.molmet.2025.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB). Furthermore, we have uncovered evidence supporting the expression of the AgRP receptor melanocortin receptor 3 (Mc3r) in adjacent sympathetic neurons, suggesting a potential local paracrine role for AgRP within the CB. Importantly, AgRP immunoreactivity was also identified in glomus type I cells of the human CB. Given the unexpected abundance of AgRP in glomus type I cells, a chemoreceptor cell specialized in oxygen sensing, we proceeded to investigate whether Agrp expression in the CB is regulated by hypoxemia and associated oxygen-sensing molecular mechanisms. In vitro luciferase assays reveal that hypoxia stimulates the human and mouse Agrp promoters in a Hypoxia Inducible Factor (HIF1/2)-dependent manner. Our in vivo experiments further demonstrate that exposure to environmental hypoxia (10%) robustly induces Agrp expression in type I glomus cells of mice. Furthermore, these findings collectively highlight the hitherto unknown source of AgRP in murine and human type I glomus cells and underscore the direct control of Agrp transcription by HIF signaling.
Collapse
Affiliation(s)
- Luis Leon-Mercado
- Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Menendez-Montes
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Tao
- Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bandy Chen
- Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - David P Olson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - C Mackaaij
- Division of Surgical Specialties, Department of Anatomy, University Medical Center, Utrecht, the Netherlands
| | - C G J Cleypool
- Division of Surgical Specialties, Department of Anatomy, University Medical Center, Utrecht, the Netherlands
| | - Laurent Gautron
- Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Long BY, Liao X, Liang X. The Hypothalamus and Pituitary Gland Regulate Reproduction and Are Involved in the Development of Polycystic Ovary Syndrome. Neuroendocrinology 2025; 115:315-334. [PMID: 39894018 DOI: 10.1159/000543877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex condition with unclear mechanisms, posing a challenge for prevention and treatment of PCOS. The role of the hypothalamus and pituitary gland in regulating female reproduction is critical. Abnormalities in the hypothalamus and pituitary can impair reproductive function. It is important to study hypothalamic and pituitary changes in patients with PCOS. SUMMARY This article reviews articles on the hypothalamus and PCOS with the goal of summarizing what abnormalities of the hypothalamic-pituitary-ovarian axis are present in patients with PCOS and to clarify the pathogenesis of PCOS. We find that the mechanisms by which the hypothalamus and pituitary regulate reproduction in girls are complex and are associated with altered sex hormone levels, obesity, and insulin resistance. Different animal models of PCOS are characterized by different alterations in the hypothalamus and pituitary and respond differently to different treatments, which correspond to the complex pathogenesis of patients with PCOS. KEY MESSAGES Arcuate nucleus (ARC) is associated with luteinizing hormone (LH) surges. Suprachiasmatic nucleus, ARC, and RP3V are associated with LH surges. Animal models of PCOS have different characteristics.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xipeng Liao
- Tianjin University of Technology, Tianjin, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Ly A, Karnosky R, Prévost ED, Hotchkiss H, Pelletier J, Spencer RL, Ford CP, Root DH. VGluT3 BNST neurons transmit GABA and restrict feeding without affecting rewarding or aversive processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631003. [PMID: 39803518 PMCID: PMC11722381 DOI: 10.1101/2025.01.01.631003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT). Cell-type specific presynaptic processes were identified in arcuate nucleus (ARC) and the paraventricular nucleus of the hypothalamus (PVN), regions critical for feeding and homeostatic regulation. Whole-cell patch-clamp electrophysiology revealed that, while these neurons co-express VGluT3 and VGaT, they functionally transmit GABA to both ARC and PVN, with rare glutamate co-transmission to ARC. Neuronal recordings of VGluT3 BNST neurons showed greater calcium-dependent signaling in response to sucrose consumption while sated compared with fasted. When fasted, optogenetic stimulation of BNST VGluT3 neurons decreased sucrose consumption using several stimulation conditions but not when stimulation occurred prior to sucrose access, suggesting that BNST VGluT3 activation concurrent with consumption in the fasted state reduces feeding. BNST VGluT3 activation during anxiety-like paradigms (novelty-suppressed feeding, open field, and elevated zero maze) and real-time place conditioning resulted in no changes in anxiety-like or reward/aversion behavior. We interpret these data such that VGluT3 BNST neurons represent a unique cellular population within the BNST that provides inhibitory input to hypothalamic regions to decrease feeding without affecting anxiety-like or reward/aversion behavior.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Rachel Karnosky
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Julianne Pelletier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Christopher P. Ford
- Deparment of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
22
|
Espinal Abreu V, Barnes R, Borra V, Schurdak J, Perez-Tilve D. Chemogenetic engagement of different GPCR signaling pathways segregates the orexigenic activity from the control of whole-body glucose metabolism by AGRP neurons. Mol Metab 2025; 91:102079. [PMID: 39643082 PMCID: PMC11699438 DOI: 10.1016/j.molmet.2024.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024] Open
Abstract
OBJECTIVE The control of energy balance involves neural circuits in the central nervous system, including AGRP neurons in the arcuate nucleus of the hypothalamus (ARC). AGRP neurons are crucial for energy balance and their increased activity during fasting is critical to promote feeding behavior. The activity of these neurons is influenced by multiple signals including those acting on G-protein coupled receptors (GPCR) activating different intracellular signaling pathways. We sought to determine whether discrete G-protein mediated signaling in AGRP neurons, promotes differential regulation of feeding and whole-body glucose homeostasis. METHODS To test the contribution of Gαq/11 or Gαs signaling, we developed congenital mouse lines expressing the different DREADD receptors (i.e., hM3q and rM3s), in AGRP neurons. Then we elicited chemogenetic activation of AGRP neurons in these mice during the postprandial state to determine the impact on feeding and glucose homeostasis. RESULTS Activation of AGRP neurons via hM3q and rM3s promoted hyperphagia. In contrast, only hM3q activation of AGRP neurons of the hypothalamic arcuate nucleus during the postprandial state enhanced whole-body glucose disposal by reducing sympathetic nervous system activity to the pancreas and liver, promoting glucose-stimulated insulin secretion, glycogen deposition and improving glucose tolerance. CONCLUSIONS These data indicate that AGRP neurons regulate food intake and glucose homeostasis through distinct GPCR-dependent signaling pathways and suggest that the transient increase in AGRP neuron activity may contribute to the beneficial effects of fasting on glycemic control.
Collapse
Affiliation(s)
- Valerie Espinal Abreu
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA
| | - Rachel Barnes
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA
| | - Vishnupriya Borra
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA
| | - Jennifer Schurdak
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA
| | - Diego Perez-Tilve
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA.
| |
Collapse
|
23
|
Dittmann NL, Chen L, Voronova A. Regulation of neural stem cells by innervating neurons. J Neurochem 2025; 169:e16287. [PMID: 39775528 PMCID: PMC11707326 DOI: 10.1111/jnc.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states. Recently, NPCs have been found to express neurotransmitter receptors, respond to electrical stimulation and interact with neurons, suggesting that neuron-NPC communication is an emerging critical regulator of NPC biology. In this review, we discuss reports that demonstrate neuronal innervation and control of the neurogenic niches. We discuss the role of innervating neurons in regulating NPC fates, such as activation, proliferation, and differentiation. Our review focuses primarily on the innervation of the SVZ niche by the following neuronal types: glutamatergic, GABAergic projection and interneurons, cholinergic, dopaminergic, serotonergic, neuropeptidergic, nitrergic, and noradrenergic. We also discuss the origins of SVZ niche innervating neurons, such as striatum, cortex, basal ganglia, raphe nuclei, substantia nigra and ventral tegmental area, hypothalamus, and locus coeruleus. Our review highlights the various roles of innervating neurons in SVZ NPC fates in a spatiotemporal manner and emphasizes a need for future investigation into the impact of neuronal innervation on NPC gliogenesis.
Collapse
Affiliation(s)
| | - Lauren Chen
- Department of Medical Genetics, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Anastassia Voronova
- Neurosciences and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Faculty of Medicine & Dentistry, MS CentreUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
24
|
Zhang SX, Kim A, Madara JC, Zhu PK, Christenson LF, Lutas A, Kalugin PN, Sunkavalli PS, Jin Y, Pal A, Tian L, Lowell BB, Andermann ML. Stochastic neuropeptide signals compete to calibrate the rate of satiation. Nature 2025; 637:137-144. [PMID: 39506113 PMCID: PMC11981016 DOI: 10.1038/s41586-024-08164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Neuropeptides have important roles in neural plasticity, spiking and behaviour1. Yet, many fundamental questions remain regarding their spatiotemporal transmission, integration and functions in the awake brain. Here we examined how MC4R-expressing neurons in the paraventricular nucleus of the hypothalamus (PVHMC4R) integrate neuropeptide signals to modulate feeding-related fast synaptic transmission and titrate the transition to satiety2-6. We show that hunger-promoting AgRP axons release the neuropeptide NPY to decrease the second messenger cAMP in PVHMC4R neurons, while satiety-promoting POMC axons release the neuropeptide αMSH to increase cAMP. Each release event is all-or-none, stochastic and can impact multiple neurons within an approximately 100-µm-diameter region. After release, NPY and αMSH peptides compete to control cAMP-the amplitude and persistence of NPY signalling is blunted by high αMSH in the fed state, while αMSH signalling is blunted by high NPY in the fasted state. Feeding resolves this competition by simultaneously elevating αMSH release and suppressing NPY release7,8, thereby sustaining elevated cAMP in PVHMC4R neurons throughout a meal. In turn, elevated cAMP facilitates potentiation of feeding-related excitatory inputs with each bite to gradually promote satiation across many minutes. Our findings highlight biochemical modes of peptide signal integration and information accumulation to guide behavioural state transitions.
Collapse
Affiliation(s)
- Stephen X Zhang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Angela Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Paula K Zhu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lauren F Christenson
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter N Kalugin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Praneel S Sunkavalli
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Neuroscience Graduate Group, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Akash Pal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024; 15:11811-11833. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
27
|
Kosse C, Ivanov J, Knight Z, Pellegrino K, Friedman J. A subcortical feeding circuit linking an interoceptive node to jaw movement. Nature 2024; 636:151-161. [PMID: 39443799 PMCID: PMC11618074 DOI: 10.1038/s41586-024-08098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The brain processes an array of stimuli, enabling the selection of appropriate behavioural responses, but the neural pathways linking interoceptive inputs to outputs for feeding are poorly understood1-3. Here we delineate a subcortical circuit in which brain-derived neurotrophic factor (BDNF)-expressing neurons in the ventromedial hypothalamus (VMH) directly connect interoceptive inputs to motor centres, controlling food consumption and jaw movements. VMHBDNF neuron inhibition increases food intake by gating motor sequences of feeding through projections to premotor areas of the jaw. When food is unavailable, VMHBDNF inhibition elicits consummatory behaviours directed at inanimate objects such as wooden blocks, and inhibition of perimesencephalic trigeminal area (pMe5) projections evokes rhythmic jaw movements. The activity of these neurons is decreased during food consumption and increases when food is in proximity but not consumed. Activity is also increased in obese animals and after leptin treatment. VMHBDNF neurons receive monosynaptic inputs from both agouti-related peptide (AgRP) and proopiomelanocortin neurons in the arcuate nucleus (Arc), and constitutive VMHBDNF activation blocks the orexigenic effect of AgRP activation. These data indicate an Arc → VMHBDNF → pMe5 circuit that senses the energy state of an animal and regulates consummatory behaviours in a state-dependent manner.
Collapse
Affiliation(s)
- Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jessica Ivanov
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Zachary Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle Pellegrino
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
28
|
Dixon LM, Brocklehurst S, Hills J, Foister S, Wilson PW, Reid AMA, Caughey S, Sandilands V, Boswell T, Dunn IC, D'Eath RB. Dilution of broiler breeder diets with oat hulls prolongs feeding but does not affect central control of appetite. Poult Sci 2024; 103:104262. [PMID: 39353330 PMCID: PMC11464247 DOI: 10.1016/j.psj.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
The parents of broiler (meat) chickens (ie, broiler breeders) are food-restricted until sexual maturity, ensuring good health and reproduction, but resulting in hunger. We investigated whether diets with added insoluble fiber promote satiety and reduce behavioral, motivational, and physiological signs of hunger. Ninety-six broiler breeders were fed 1 of 4 feed treatments (n = 24 per diet) from 6 to 12 wk of age: 1) a commercial diet fed to the recommended ration (R) or 2) ad libitum (AL), the same diet as R but mixed with oat hulls at 3) 20% (OH20%) or 4) 40% (OH40%). The R, OH20% and OH40% diets were approximately iso-energetic and resulted in mean 12 wk of age weights within 2.5% of each other (1.21 kg), while AL birds weighed 221% as much (2.67kg). At 12 wk of age, agouti-related protein (AGRP) expression, was, on average, more than 12 times lower in AL birds (P < 0.001) but did not differ between the fiber diet treatments and R. Pro-opiomelanocortin (POMC) expression, was, on average, over 1.5 times higher in AL birds, but was not statistically significantly affected by feed treatments (P = 0.33). In their home pens, AL birds stood/sat more, foraged less and fed more in total (P < 0.001) and OH40% birds spent longer feeding than R (P = 0.001). Motivation to forage tested by willingness to walk through water to access an area of wood shavings (without food) was not significantly affected by diet (P = 0.33). However, restricted birds were willing to cross in only 7.3% to 12.5% of tests. Mostly birds stayed on the start platform, where AL birds sat more than other treatments and OH40% birds reduced walking relative to R birds (P = 0.016). Across the behavioral and physiological measurements there was a dichotomy of effects in response to approximately iso-energetic diets differing in fiber. There were some potentially beneficial behavioral effects related to reduced foraging and walking. However, there was no evidence that these diets significantly improved physiological measures of satiety of broiler breeders.
Collapse
Affiliation(s)
| | | | | | - Simone Foister
- Innovent Technology Ltd, Northern Agri-Tech Innovation Hub, Easter Bush, UK
| | - Peter W Wilson
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | - Angus M A Reid
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | - Sarah Caughey
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | | | - Tim Boswell
- Centre for Behavior and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Ian C Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | | |
Collapse
|
29
|
Tan HL, Yin L, Tan Y, Ivanov J, Plucinska K, Ilanges A, Herb BR, Wang P, Kosse C, Cohen P, Lin D, Friedman JM. Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake. Nature 2024; 636:198-205. [PMID: 39478220 PMCID: PMC11618066 DOI: 10.1038/s41586-024-08108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/24/2024] [Indexed: 11/04/2024]
Abstract
Leptin is an adipose tissue hormone that maintains homeostatic control of adipose tissue mass by regulating the activity of specific neural populations controlling appetite and metabolism1. Leptin regulates food intake by inhibiting orexigenic agouti-related protein (AGRP) neurons and activating anorexigenic pro-opiomelanocortin (POMC) neurons2. However, whereas AGRP neurons regulate food intake on a rapid time scale, acute activation of POMC neurons has only a minimal effect3-5. This has raised the possibility that there is a heretofore unidentified leptin-regulated neural population that rapidly suppresses appetite. Here we report the discovery of a new population of leptin-target neurons expressing basonuclin 2 (Bnc2) in the arcuate nucleus that acutely suppress appetite by directly inhibiting AGRP neurons. Opposite to the effect of AGRP activation, BNC2 neuronal activation elicited a place preference indicative of positive valence in hungry but not fed mice. The activity of BNC2 neurons is modulated by leptin, sensory food cues and nutritional status. Finally, deleting leptin receptors in BNC2 neurons caused marked hyperphagia and obesity, similar to that observed in a leptin receptor knockout in AGRP neurons. These data indicate that BNC2-expressing neurons are a key component of the neural circuit that maintains energy balance, thus filling an important gap in our understanding of the regulation of food intake and leptin action.
Collapse
Affiliation(s)
- Han L Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Luping Yin
- Department of Psychiatry, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yuqi Tan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Ivanov
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Kaja Plucinska
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Anoj Ilanges
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Brian R Herb
- Department of Pharmacology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Dayu Lin
- Department of Psychiatry, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
30
|
Zuarth Gonzalez JD, Mottinelli M, McCurdy CR, de Lartigue G, McMahon LR, Wilkerson JL. Mitragynine and morphine produce dose-dependent bimodal action on food but not water intake in rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R568-R579. [PMID: 39250542 PMCID: PMC11687856 DOI: 10.1152/ajpregu.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Kratom (Mitragyna speciosa), containing the primary alkaloid mitragynine, has emerged as an alternative self-treatment for opioid use disorder. Mitragynine binds numerous receptor types, including opioid receptors, which are known to modulate food consumption. However, the ability of acute mitragynine to modulate food consumption remains unknown. The current study assessed the effects of acute mitragynine or morphine administration on unconditioned food and water intake in 16 Sprague-Dawley rats. Food and water intake changes were monitored in response to morphine, mitragynine (1.78-56 mg/kg ip), saline, or vehicle controls for 12 h, starting at the onset of the dark cycle. Naltrexone pretreatment was used to examine pharmacological specificity. Both morphine and mitragynine demonstrated a biphasic food intake dose-effect, with low doses (5.6 mg/kg) increasing and high doses (56 mg/kg) decreasing food intake. All morphine doses reduced water intake; however, only the highest dose of mitragynine (56 mg/kg) reduced water intake. Naltrexone attenuated both stimulatory and inhibitory effects of morphine on food intake, but only the stimulatory effect of mitragynine. In conclusion, low doses of mitragynine stimulate food intake via opioid-related pathways, while high doses likely recruit other targets.NEW & NOTEWORTHY This study reveals that morphine and the kratom alkaloid mitragynine produce dose-dependent effects on feeding in rats. Low doses stimulate food intake via opioid pathways, while high doses decrease consumption through nonopioid mechanisms. Morphine potently suppresses water intake at all doses, whereas only high doses of mitragynine reduce drinking. These findings provide novel insights into the complex opioid and nonopioid mechanisms underlying the effects of mitragynine on ingestive behaviors.
Collapse
Affiliation(s)
- Julio D Zuarth Gonzalez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, United States
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Monell Chemical Senses Center and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| |
Collapse
|
31
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
32
|
Webster AN, Becker JJ, Li C, Schwalbe DC, Kerspern D, Karolczak EO, Bundon CB, Onoharigho RA, Crook M, Jalil M, Godschall EN, Dame EG, Dawer A, Belmont-Rausch DM, Pers TH, Lutas A, Habib N, Güler AD, Krashes MJ, Campbell JN. Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety. Nat Metab 2024; 6:2354-2373. [PMID: 39627618 DOI: 10.1038/s42255-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/17/2024] [Indexed: 12/11/2024]
Abstract
Liraglutide and other glucagon-like peptide 1 receptor agonists (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons that inhibit the hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nucleus transcriptomics. Here, we identify at least 21 afferent subtypes of AgRP neurons in the mouse mediobasal and paraventricular hypothalamus, which are predicted by our method. Among these are thyrotropin-releasing hormone (TRH)+ Arc (TRHArc) neurons, inhibitory neurons that express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TRHArc neurons inhibits AgRP neurons and feeding, probably in an AgRP neuron-dependent manner. Silencing TRHArc neurons causes overeating and weight gain and attenuates liraglutide's effect on body weight. Our results demonstrate a widely applicable method for molecular connectomics, comprehensively identify local inputs to AgRP neurons and reveal a circuit through which GLP-1RAs suppress appetite.
Collapse
Affiliation(s)
- Addison N Webster
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Jordan J Becker
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Chia Li
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Dana C Schwalbe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Damien Kerspern
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Eva O Karolczak
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | | | - Maisie Crook
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Emily G Dame
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Adam Dawer
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Lutas
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Naomi Habib
- Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ali D Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael J Krashes
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | - John N Campbell
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
33
|
Ajwani J, Hwang E, Portillo B, Lieu L, Wallace B, Kabahizi A, He Z, Dong Y, Grose K, Williams KW. Upregulation of Xbp1 in NPY/AgRP neurons reverses diet-induced obesity and ameliorates leptin and insulin resistance. Neuropeptides 2024; 108:102461. [PMID: 39180950 PMCID: PMC11568921 DOI: 10.1016/j.npep.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes are not fully understood. In this study, we show that induction of the unfolded protein response transcription factor, spliced X-box binding protein 1 (Xbp1s), in Agouti-Related Peptide (AgRP) neurons alone, is sufficient to not only protect against but also significantly reverse diet-induced obesity (DIO) as well as improve leptin and insulin sensitivity, despite activation of endoplasmic reticulum stress. We also demonstrate that constitutive expression of Xbp1s in AgRP neurons contributes to improved insulin sensitivity and glucose tolerance. Together, our results identify critical molecular mechanisms linking ER stress in arcuate AgRP neurons to acute leptin and insulin resistance as well as liver glucose metabolism in DIO and diabetes.
Collapse
Affiliation(s)
- Jason Ajwani
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Eunsang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Bryan Portillo
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Linh Lieu
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Briana Wallace
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Anita Kabahizi
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Zhenyan He
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yanbin Dong
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kyle Grose
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
34
|
Aguggia J, Fernandez G, Cassano D, Mustafá ER, Rodríguez SS, Cantel S, Fehrentz JA, Raingo J, Schiöth HB, Habib AM, De Francesco PN, Perello M. Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction. Endocrinology 2024; 166:bqae160. [PMID: 39737802 DOI: 10.1210/endocr/bqae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 01/01/2025]
Abstract
The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear. To explore the potential colocalization of GHSR and GLP-1R in specific neurons, we performed detailed mapping of cells positive for both receptors using GHSR-eGFP reporter mice or wild-type mice infused with fluorescent ghrelin, alongside an anti-GLP-1R antibody. We found that GHSR+ and GLP-1R+ cells are largely segregated in the mouse brain. The highest overlap was observed in the hypothalamic arcuate nucleus, where 15% to 20% of GHSR+ cells were also GLP-1R+ cells. Additionally, we examined RNA-sequencing datasets from mouse and human brains to assess the fraction and distribution of neurons expressing both receptors, finding that double-positive Ghsr+/Glp1r+ cells are highly segregated, with a small subset of double-positive Ghsr+/Glp1r+ cells representing <10% of all Ghsr+ or Glp1r+ cells, primarily enriched in the hypothalamus. Furthermore, we conducted functional studies using patch-clamp recordings in a heterologous expression system to assess potential crosstalk in regulating presynaptic calcium channels. We provide the first evidence that liraglutide-evoked GLP-1R activity inhibits presynaptic channels, and that the presence of one GPCR attenuates the inhibitory effects of ligand-evoked activity mediated by the other on presynaptic calcium channels. In conclusion, while GHSR and GLP-1R can engage in molecular crosstalk, they are largely segregated across most neuronal types within the brain.
Collapse
Affiliation(s)
- Julieta Aguggia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Silvia S Rodríguez
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jesica Raingo
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| |
Collapse
|
35
|
Kamath T, Lodder B, Bilsel E, Green I, Dalangin R, Capelli P, Raghubardayal M, Legister J, Hulshof L, Wallace JB, Tian L, Uchida N, Watabe-Uchida M, Sabatini BL. Hunger modulates exploration through suppression of dopamine signaling in the tail of striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622990. [PMID: 39713287 PMCID: PMC11661229 DOI: 10.1101/2024.11.11.622990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Caloric depletion leads to behavioral changes that help an animal find food and restore its homeostatic balance. Hunger increases exploration and risk-taking behavior, allowing an animal to forage for food despite risks; however, the neural circuitry underlying this change is unknown. Here, we characterize how hunger restructures an animal's spontaneous behavior as well as its directed exploration of a novel object. We show that hunger-induced changes in exploration are accompanied by and result from modulation of dopamine signaling in the tail of the striatum (TOS). Dopamine signaling in the TOS is modulated by internal hunger state through the activity of agouti-related peptide (AgRP) neurons, putative "hunger neurons" in the arcuate nucleus of the hypothalamus. These AgRP neurons are poly-synaptically connected to TOS-projecting dopaminergic neurons through the lateral hypothalamus, the central amygdala, and the periaqueductal grey. We thus delineate a hypothalamic-midbrain circuit that coordinates changes in exploration behavior in the hungry state.
Collapse
|
36
|
Kim KS, Lee YH, Yun JW, Kim YB, Song HY, Park JS, Jung SH, Sohn JW, Kim KW, Kim HR, Choi HJ. A normative framework dissociates need and motivation in hypothalamic neurons. SCIENCE ADVANCES 2024; 10:eado1820. [PMID: 39504367 PMCID: PMC11540019 DOI: 10.1126/sciadv.ado1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Physiological needs evoke motivational drives that produce natural behaviors for survival. In previous studies, the temporally intertwined dynamics of need and motivation have made it challenging to differentiate these two components. On the basis of classic homeostatic theories, we established a normative framework to derive computational models for need-encoding and motivation-encoding neurons. By combining the model-based predictions and naturalistic experimental paradigms, we demonstrated that agouti-related peptide (AgRP) and lateral hypothalamic leptin receptor (LHLepR) neuronal activities encode need and motivation, respectively. Our model further explains the difference in the dynamics of appetitive behaviors induced by optogenetic stimulation of AgRP or LHLepR neurons. Our study provides a normative modeling framework that explains how hypothalamic neurons separately encode need and motivation in the mammalian brain.
Collapse
Affiliation(s)
- Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Hee Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jong Won Yun
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center of Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Ha Young Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Joon Seok Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sang-Ho Jung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Ki Woo Kim
- Division of Physiology, Departments of Oral Biology and Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - HyungGoo R. Kim
- Center of Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do 25159, Republic of Korea
| |
Collapse
|
37
|
Jarrah M, Tasabehji D, Fraer A, Mokadem M. Spinal afferent neurons: emerging regulators of energy balance and metabolism. Front Mol Neurosci 2024; 17:1479876. [PMID: 39582948 PMCID: PMC11583444 DOI: 10.3389/fnmol.2024.1479876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advancements in neurophysiology have challenged the long-held paradigm that vagal afferents serve as the primary conduits for physiological signals governing food intake and energy expenditure. An expanding body of evidence now illuminates the critical role of spinal afferent neurons in these processes, necessitating a reevaluation of our understanding of energy homeostasis regulation. This comprehensive review synthesizes cutting-edge research elucidating the multifaceted functions of spinal afferent neurons in maintaining metabolic equilibrium. Once predominantly associated with nociception and pathological states, these neurons are now recognized as integral components in the intricate network regulating feeding behavior, nutrient sensing, and energy balance. We explore the role of spinal afferents in food intake and how these neurons contribute to satiation signaling and meal termination through complex gut-brain axis pathways. The review also delves into the developing evidence that spinal afferents play a crucial role in energy expenditure regulation. We explore the ability of these neuronal fibers to carry signals that can modulate feeding behavior as well as adaptive thermogenesis in adipose tissue influencing basal metabolic rate, and thereby contributing to overall energy balance. This comprehensive analysis not only challenges existing paradigms but also opens new avenues for therapeutic interventions suggesting potential targets for treating metabolic disorders. In conclusion, this review highlights the need for a shift in our understanding of energy homeostasis, positioning spinal afferent neurons as key players in the intricate web of metabolic regulation.
Collapse
Affiliation(s)
- Mohammad Jarrah
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Dana Tasabehji
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aviva Fraer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mohamad Mokadem
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Orders of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, United States
- Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
38
|
Balbo SL, Soares GM, Morari J, Felisberto AM, Vettorazzi JF, Bronczek GA, Bonfleur ML, Carneiro EM, Boschero AC, Velloso LA. Impact of Sleeve Gastrectomy on Body Weight and Food Intake Regulation in Diet-Induced Obese Mice. Curr Issues Mol Biol 2024; 46:12633-12640. [PMID: 39590343 PMCID: PMC11592983 DOI: 10.3390/cimb46110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The epidemic of obesity has increased worldwide and is associated with comorbidities such as diabetes and cardiovascular disease. In this context, strategies that modulate body weight and improve glycemic metabolism have increased, and bariatric surgeries such as Sleeve Gastrectomy (SG) have been highlighted in obesity treatment. However, the mechanism by which SG reduces body weight and improves glycemic control remains unknown. Thus, in this study, we aimed to evaluate food intake and the expression of hypothalamic genes involved with the regulation of this process in diet-induced obese mice submitted to SG. For this, we used C57BL/6 mice submitted to a 10-week high-fat diet protocol and submitted to SG. Food intake, fed and fasted glycemia, as well as hypothalamic anorexigenic and orexigenic gene expression were evaluated 4 weeks after the surgical procedure. First, we observed that SG reduces body weight (44.19 ± 0.47 HFD, 43.51 ± 0.71 HFD-SHAM, and 38.22 ± 1.31 HFD-SG), fasting glycemia (115.0 ± 4.60 HFD, 122.4 ± 3.48 HFD-SHAM, and 93.43 ± 4.67 HFD-SG), insulinemia (1.77 ± 0.15 HFD, 1.92 ± 0.27 HFD-SHAM, and 0.93 ± 0.05 HFD-SG), and leptinemia (5.86 ± 1.38 HFD, 6.44 ± 1.51 HFD-SHAM, and 1.43 ± 0.35 HFD-SG) in obese mice. Additionally, SG reduces food (5.15 ± 0.18 HFD, 5.49 ± 0.32, HFD-SHAM, and 3.28 ± 0.26 HFD-SG) and total (16.88 ± 0.88 HFD, 17.05 ± 0.42, HFD-SHAM, and 14.30 ± 0.73 HFD-SG) calorie intake without alterations in anorexigenic and orexigenic gene expression. In conclusion, these data indicate that SG improves obesity-associated alterations at least in part by a reduction in food intake. This effect is not associated with the canonical food intake pathway in the hypothalamus, indicating the involvement of non-canonical pathways in this process.
Collapse
Affiliation(s)
- Sandra Lucinei Balbo
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Parana State University, Cascavel 85819210, PR, Brazil; (A.M.F.J.); (M.L.B.)
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083864, SP, Brazil; (G.M.S.); (J.M.); (G.A.B.); (E.M.C.); (A.C.B.); (L.A.V.)
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083864, SP, Brazil; (G.M.S.); (J.M.); (G.A.B.); (E.M.C.); (A.C.B.); (L.A.V.)
| | - Joseane Morari
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083864, SP, Brazil; (G.M.S.); (J.M.); (G.A.B.); (E.M.C.); (A.C.B.); (L.A.V.)
| | - Antonio Machado Felisberto
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Parana State University, Cascavel 85819210, PR, Brazil; (A.M.F.J.); (M.L.B.)
- Laboratory of Medical Sciences, Latin-American Institute of Life and Natural Sciences, Federal University of Latin-American Integration (UNILA), Foz do Iguassu 85867970, PR, Brazil
| | - Jean Franciesco Vettorazzi
- Laboratory of Medical Sciences, Latin-American Institute of Life and Natural Sciences, Federal University of Latin-American Integration (UNILA), Foz do Iguassu 85867970, PR, Brazil
| | - Gabriela Alves Bronczek
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083864, SP, Brazil; (G.M.S.); (J.M.); (G.A.B.); (E.M.C.); (A.C.B.); (L.A.V.)
| | - Maria Lúcia Bonfleur
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Parana State University, Cascavel 85819210, PR, Brazil; (A.M.F.J.); (M.L.B.)
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083864, SP, Brazil; (G.M.S.); (J.M.); (G.A.B.); (E.M.C.); (A.C.B.); (L.A.V.)
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083864, SP, Brazil; (G.M.S.); (J.M.); (G.A.B.); (E.M.C.); (A.C.B.); (L.A.V.)
| | - Lício Augusto Velloso
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083864, SP, Brazil; (G.M.S.); (J.M.); (G.A.B.); (E.M.C.); (A.C.B.); (L.A.V.)
| |
Collapse
|
39
|
Colarusso B, Ortiz R, Yeboah J, Chang A, Gupta M, Kulkarni P, Ferris CF. APOE4 rat model of Alzheimer's disease: sex differences, genetic risk and diet. BMC Neurosci 2024; 25:57. [PMID: 39506641 PMCID: PMC11539573 DOI: 10.1186/s12868-024-00901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
The strongest genetic risk factor for Alzheimer's disease (AD) is the ε4 allele of apolipoprotein E (ApoE ε4). A high fat diet also adds to the risk of dementia and AD. In addition, there are sex differences as women carriers have a higher risk of an earlier onset and rapid decline in memory than men. The present study looked at the effect of the genetic risk of ApoE ε4 together with a high fat/high sucrose diet (HFD/HSD) on brain function in male and female rats using magnetic resonance imaging. We hypothesized female carriers would present with deficits in cognitive behavior together with changes in functional connectivity as compared to male carriers. Four-month-old wildtype and human ApoE ε4 knock-in (TGRA8960), male and female Sprague Dawley rats were put on a HFD/HSD for four months. Afterwards they were imaged for changes in function using resting state BOLD functional connectivity. Images were registered to, and analyzed, using a 3D MRI rat atlas providing site-specific data on 173 different brain areas. Resting state functional connectivity showed male wildtype had greater connectivity between areas involved in feeding and metabolism while there were no differences between female and male carriers and wildtype females. The data were unexpected. The genetic risk was overshadowed by the diet. Male wildtype rats were most sensitive to the HFD/HSD presenting with a deficit in cognitive performance with enhanced functional connectivity in neural circuitry associated with food consumption and metabolism.
Collapse
Affiliation(s)
- Bradley Colarusso
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Richard Ortiz
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Julian Yeboah
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Megha Gupta
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA.
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, 125 NI Hall, 360 Huntington Ave, Boston, MA, 02115-5000, USA.
| |
Collapse
|
40
|
Kim YB, Lee YH, Park SJ, Choi HJ. A unified theoretical framework underlying the regulation of motivated behavior. Bioessays 2024; 46:e2400016. [PMID: 39221529 DOI: 10.1002/bies.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
To orchestrate behaviors for survival, multiple psychological components have evolved. The current theories do not clearly distinguish the distinct components. In this article, we provide a unified theoretical framework. To optimize survival, there should be four components; (1) "need", an alarm based on a predicted deficiency. (2) "motivation", a direct behavior driver. (3) "pleasure", a teacher based on immediate outcomes. (4) "utility", a teacher based on final delayed outcomes. For behavior stability, need should be accumulated into motivation to drive behavior. Based on the immediate outcome of the behavior, the pleasure should teach whether to continue the current behavior. Based on the final delay outcome, the utility should teach whether to increase future behavior by reshaping the other three components. We provide several neural substrate candidates in the food context. The proposed theoretical framework, in combination with appropriate experiments, will unravel the neural components responsible for each theoretical component.
Collapse
Affiliation(s)
- Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shee-June Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Gangwon-do, Republic of Korea
| |
Collapse
|
41
|
Khare P, Chand J, Ptakova A, Liguori R, Ferrazzi F, Bishnoi M, Vlachova V, Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol Ther 2024; 263:108727. [PMID: 39384022 DOI: 10.1016/j.pharmthera.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The transient receptor potential canonical (TRPC) channels are a group of highly homologous nonselective cation channels from the larger TRP channel family. They have the ability to form homo- and heteromers with varying degrees of calcium (Ca2+) permeability and signalling properties. TRPC5 is the one cold-sensitive among them and likewise facilitates the influx of extracellular Ca2+ into cells to modulate neuronal depolarization and integrate various intracellular signalling pathways. Recent research with cryo-electron microscopy revealed its structure, along with clear insight into downstream signalling and protein-protein interaction sites. Investigations using global and conditional deficient mice revealed the involvement of TRPC5 in metabolic diseases, energy balance, thermosensation and conditions such as osteoarthritis, rheumatoid arthritis, and inflammatory pain including opioid-induced hyperalgesia and hyperalgesia following tooth decay and pulpitis. This review provides an update on recent advances in our understanding of the role of TRPC5 with focus on metabolic diseases and pain.
Collapse
Affiliation(s)
- Pragyanshu Khare
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jagdish Chand
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Renato Liguori
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector (Knowledge City), Punjab, India
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katharina Zimmermann
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
42
|
Choi Y, Yoo ES, Oh Y, Sohn JW. Cellular and metabolic function of GIRK1 potassium channels expressed by arcuate POMC and NPY/AgRP neurons. Mol Cells 2024; 47:100122. [PMID: 39374791 PMCID: PMC11567913 DOI: 10.1016/j.mocell.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024] Open
Abstract
It is well known that the G protein-gated inwardly rectifying K+ (GIRK) channels are critical to maintain excitability of central neurons. GIRK channels consist of 4 subunits and GIRK1/GIRK2 heterotetramers are considered to be the neuronal prototype. We previously reported the metabolic significance of GIRK2 subunits expressed by the neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARH). However, the role of GIRK1 subunits expressed by the neurons of ARH remains to be determined. In this study, we delineated the contribution of GIRK1 channel subunits to the excitability of the pro-opiomelanocortin (POMC) and NPY/AgRP neurons of the ARH. We further assessed the metabolic function of GIRK1 subunits expressed by these neurons. Our results provide insight into how GIRK channels regulate arcuate POMC and NPY/AgRP neurons and shape metabolic phenotypes.
Collapse
Affiliation(s)
- Yeeun Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
43
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
44
|
Sweet SR, Biddinger JE, Zimmermann JB, Yu GL, Simerly RB. Early perturbations to fluid homeostasis alter development of hypothalamic feeding circuits with context-specific changes in ingestive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620307. [PMID: 39484367 PMCID: PMC11527132 DOI: 10.1101/2024.10.25.620307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Drinking and feeding are tightly coordinated homeostatic events and the paraventricular nucleus of the hypothalamus (PVH) represents a possible node of neural integration for signals related to energy and fluid homeostasis. We used TRAP2;Ai14 and Fos labeling to visualize neurons in the PVH and median preoptic nucleus (MEPO) responding to both water deprivation and hunger. Moreover, we determined that structural and functional development of dehydration-sensitive inputs to the PVH from the MEPO precedes those of agouti-related peptide (AgRP) neurons, which convey hunger signals and are known to be developmentally programmed by nutrition. We also determined that osmotic hyperstimulation of neonatal mice led to enhanced AgRP inputs to the PVH in adulthood, as well as disruptions to ingestive behaviors during high-fat diet feeding and dehydration-anorexia. Thus, development of feeding circuits is impacted not only by nutritional signals, but also by early perturbations to fluid homeostasis with context-specific consequences for coordination of ingestive behavior.
Collapse
|
45
|
Barrett MR, Pan Y, Murrell C, Karolczak EO, Wang J, Fang L, Thompson JM, Chang YH, Casey E, Czarny J, So WL, Reichenbach A, Stark R, Taghipourbibalan H, Penna SR, McCullough KB, Westbrook S, Matikainen-Ankney B, Cazares VA, Delevich K, Fobbs W, Maloney S, Hickey AS, McCutcheon JE, Andrews Z, Creed MC, Krashes MJ, Kravitz AV. A simple action reduces high fat diet intake and obesity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.615599. [PMID: 39484373 PMCID: PMC11526865 DOI: 10.1101/2024.10.01.615599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Diets that are high in fat cause over-eating and weight gain in multiple species of animals, suggesting that high dietary fat is sufficient to cause obesity. However, high-fat diets are typically provided freely to animals in obesity experiments, so it remains unclear if high-fat diets would still cause obesity if they required more effort to obtain. We hypothesized that unrestricted and easy access is necessary for high-fat diet induced over-eating, and the corollary that requiring mice to perform small amounts of work to obtain high-fat diet would reduce high-fat diet intake and associated weight gain. To test this hypothesis, we developed a novel home-cage based feeding device that either provided high-fat diet freely, or after mice poked their noses into a port one time - a simple action that is easy for them to do. We tested the effect of this intervention for six weeks, with mice receiving all daily calories from high-fat diet, modifying only how they accessed it. Requiring mice to nose-poke to access high-fat diet reduced intake and nearly completely prevented the development of obesity. In follow up experiments, we observed a similar phenomenon in mice responding for low-fat grain-based pellets that do not induce obesity, suggesting a general mechanism whereby animals engage with and consume more food when it is freely available vs. when it requires a simple action to obtain. We conclude that unrestricted access to food promotes overeating, and that a simple action such as a nose-poke can reduce over-eating and weight gain in mice. This may have implications for why over-eating and obesity are common in modern food environments, which are often characterized by easy access to low-cost unhealthy foods.
Collapse
Affiliation(s)
- M R Barrett
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Y Pan
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chantelle Murrell
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Eva O Karolczak
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Wang
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Fang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy M Thompson
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yu-Hsuan Chang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric Casey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - J Czarny
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Wang Lok So
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | - Suzanne R Penna
- Psychology Department, Williams College, Williamstown, MA, USA
| | - Katherine B McCullough
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Sara Westbrook
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | | | | | - Kristen Delevich
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Wambura Fobbs
- Department of Psychology, Swarthmore College, Swarthmore, PA, USA
| | - Susan Maloney
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Intellectual and Developmental Disabilities Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ames Sutton Hickey
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - James E McCutcheon
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Zane Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Meaghan C Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
46
|
Ramírez-Sánchez E, Mondragón-García A, Garduño J, Hernández-Vázquez F, Ortega-Tinoco S, Hernández-López S. Opposing effects of nicotine on hypothalamic arcuate nucleus POMC and NPY neurons. Prog Neurobiol 2024; 242:102682. [PMID: 39490889 DOI: 10.1016/j.pneurobio.2024.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The hypothalamic arcuate nucleus (ARC) contains two main populations of neurons essential for energy homeostasis: neuropeptide Y (NPY) neurons, which are orexigenic and stimulate food intake, and proopiomelanocortin (POMC) neurons, which have an anorexigenic effect. Located near the blood-brain barrier, ARC neurons sense blood-borne signals such as leptin, insulin, and glucose. Exogenous substances, such as nicotine, can also alter ARC neuron activity and energy balance. Nicotine, an addictive drug used worldwide, inhibits appetite, and reduces body weight, although its mechanisms in regulating ARC neurons are not well understood. Using electrophysiological techniques in brain slices, we investigated the effects of nicotine on POMC and NPY neurons at physiological glucose concentrations. We found that nicotine increased the firing rate of POMC and inhibited NPY neurons. Additionally, nicotine-enhanced glutamatergic inputs to POMC cells and GABAergic inputs to NPY neurons, mediated by α7 and α4β2 nicotinic acetylcholine receptors (nAChRs), respectively. These findings can contribute to the understanding of the anorexigenic effects of nicotine in smokers.
Collapse
Affiliation(s)
- E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - F Hernández-Vázquez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - S Ortega-Tinoco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico.
| |
Collapse
|
47
|
Davenport JB, Güler AD, Zhang Q. Methodology for Studying Hypothalamic Regulation of Feeding Behaviors. Methods Protoc 2024; 7:86. [PMID: 39584979 PMCID: PMC11586955 DOI: 10.3390/mps7060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Continuous advances in neurological research techniques are enabling researchers to further understand the neural mechanisms that regulate energy balance. In this review, we specifically highlight key tools and techniques and explore how they have been applied to study the role of the hypothalamic arcuate nucleus in feeding behaviors. Additionally, we provide a detailed discussion of the advantages and limitations associated with each methodology.
Collapse
Affiliation(s)
- Julia B. Davenport
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (J.B.D.)
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (J.B.D.)
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (J.B.D.)
| |
Collapse
|
48
|
Xing M, Li Y, Zhang Y, Zhou J, Ma D, Zhang M, Tang M, Ouyang T, Zhang F, Shi X, Sun J, Chen Z, Zhang WJ, Zhang S, Xie X. Paraventricular hypothalamic RUVBL2 neurons suppress appetite by enhancing excitatory synaptic transmission in distinct neurocircuits. Nat Commun 2024; 15:8939. [PMID: 39414808 PMCID: PMC11484884 DOI: 10.1038/s41467-024-53258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
The paraventricular hypothalamus (PVH) is crucial for food intake control, yet the presynaptic mechanisms underlying PVH neurons remain unclear. Here, we show that RUVBL2 in the PVH is significantly reduced during energy deficit, and knockout (KO) of PVH RUVBL2 results in hyperphagic obesity in mice. RUVBL2-expressing neurons in the PVH (PVHRUVBL2) exert the anorexigenic effect by projecting to the arcuate hypothalamus, the dorsomedial hypothalamus, and the parabrachial complex. We further demonstrate that PVHRUVBL2 neurons form the synaptic connections with POMC and AgRP neurons in the ARC. PVH RUVBL2 KO impairs the excitatory synaptic transmission by reducing presynaptic boutons and synaptic vesicles near active zone. Finally, RUVBL2 overexpression in the PVH suppresses food intake and protects against diet induced obesity. Together, this study demonstrates an essential role for PVH RUVBL2 in food intake control, and suggests that modulation of synaptic plasticity could be an effective way to curb appetite and obesity.
Collapse
Affiliation(s)
- Mingming Xing
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yang Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Juemou Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Danting Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Mengqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Minglei Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ting Ouyang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fumiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Weiping J Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
49
|
Aitken TJ, Liu Z, Ly T, Shehata S, Sivakumar N, La Santa Medina N, Gray LA, Zhang J, Dundar N, Barnes C, Knight ZA. Negative feedback control of hypothalamic feeding circuits by the taste of food. Neuron 2024; 112:3354-3370.e5. [PMID: 39153476 PMCID: PMC11591316 DOI: 10.1016/j.neuron.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here, we show that hunger-promoting agouti-related peptide (AgRP) neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin-receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.
Collapse
Affiliation(s)
- Tara J Aitken
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhengya Liu
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Truong Ly
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah Shehata
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nilla Sivakumar
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naymalis La Santa Medina
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lindsay A Gray
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jingkun Zhang
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naz Dundar
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chris Barnes
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
50
|
Yang X, Yan W, Gong R. Holistic inside and outside: The impact of food taste on ARC AGRP neuron activity in feeding regulation. Neuron 2024; 112:3228-3230. [PMID: 39389011 DOI: 10.1016/j.neuron.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The activities of appetite-regulated neurons-ARCAGRP neurons-are modulated by multi-level feedback signals during feeding. In this issue of Neuron, Aitken et al.1 expand our understanding of the feedback control within feeding circuits, revealing that food taste signals can causally and precisely regulate meal patterns through ARCAGRP neurons.
Collapse
Affiliation(s)
- Xiao Yang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Weijie Yan
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Rong Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & Chinese Institute for Brain Research, Beijing, 100875, China.
| |
Collapse
|