1
|
Canonichesi J, Bellingacci L, Rivelli F, Tozzi A. Enhancing sleep quality in synucleinopathies through physical exercise. Front Cell Neurosci 2025; 19:1515922. [PMID: 39959465 PMCID: PMC11825755 DOI: 10.3389/fncel.2025.1515922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
During sleep, several crucial processes for brain homeostasis occur, including the rearrangement of synaptic connections, which is essential for memory formation and updating. Sleep also facilitates the removal of neurotoxic waste products, the accumulation of which plays a key role in neurodegeneration. Various neural components and environmental factors regulate and influence the physiological transition between wakefulness and sleep. Disruptions in this complex system form the basis of sleep disorders, as commonly observed in synucleinopathies. Synucleinopathies are neurodegenerative disorders characterized by abnormal build-up of α-synuclein protein aggregates in the brain. This accumulation in different brain regions leads to a spectrum of clinical manifestations, including hypokinesia, cognitive impairment, psychiatric symptoms, and neurovegetative disturbances. Sleep disorders are highly prevalent in individuals with synucleinopathies, and they not only affect the overall well-being of patients but also directly contribute to disease severity and progression. Therefore, it is crucial to develop effective therapeutic strategies to improve sleep quality in these patients. Adequate sleep is vital for brain health, and the role of synucleinopathies in disrupting sleep patterns must be taken into account. In this context, it is essential to explore the role of physical exercise as a potential non-pharmacological intervention to manage sleep disorders in individuals with synucleinopathies. The current evidence on the efficacy of exercise programs to enhance sleep quality in this patient population is discussed.
Collapse
Affiliation(s)
| | | | | | - Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Belia M, Keren-Portnoy T, Vihman M. Word form generalization across voices: The role of infant sleep. J Exp Child Psychol 2025; 249:106106. [PMID: 39423692 DOI: 10.1016/j.jecp.2024.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Infant sleep plays a crucial role in various aspects of language development, including the generalization of visual and auditory stimuli. The relative role of daytime naps and nocturnal sleep in these memory generalization processes is debated, with some studies observing significant generalization following a post-encoding nap and others observing it following nocturnal sleep, but only in cases where a post-encoding nap had occurred on the previous day. We conducted an online experiment with 8-month-old infants to determine whether a nap immediately following auditory exposure to words spoken by one talker enhances infants' recognition of the same word forms produced by a different talker (i.e., word form generalization). This ability involves the extraction of constant auditory features from a pool of variable auditory instances and thus is an example of memory generalization. Results revealed a significant increase in word form generalization after a night's sleep, specifically in infants who napped shortly after initial exposure to the words. This study provides the first evidence for the combined role of post-encoding naps and nocturnal sleep in phonological learning across different acoustic contexts. Phonological learning is frequently overlooked in research about word learning; however, prior to a child's ability to associate words and their meanings and to use language referentially they must first encode and access the phonological forms of words and recognize them in running speech. Therefore, the findings from this study contribute significantly to our understanding of vocabulary acquisition by highlighting the importance of daytime naps in phonological learning.
Collapse
|
3
|
Ball LV, Brusini P, Bannard C. Revisiting novel word semantic priming: The role of strategic priming mechanisms. Q J Exp Psychol (Hove) 2024:17470218241306747. [PMID: 39614688 DOI: 10.1177/17470218241306747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Although it has been proposed that new words are encoded in a qualitatively different way from established words-in episodic rather than semantic memory-such accounts are challenged by the finding that newly learnt words influence the processing of well-known words in semantic priming tasks. In this article, we explore whether this apparent contradiction is due to differences in task design. Specifically, we hypothesised that a large stimulus onset asynchrony (SOA) would allow the participant to engage strategic retrieval and priming mechanisms to facilitate the recognition of a semantically related word, compared with a shorter SOA, which promotes more automatic processing. In Experiment 1, 60 participants learned 34 novel words and their meanings that later served as primes for related/unrelated existing word targets in a primed lexical decision task, with a 450 ms SOA. There was no significant priming effect. In Experiment 2, we increased the SOA to 1,000 ms, and found a significant priming effect with novel words. Finally, there was no significant priming effect with novel words in Experiment 3 that used a 200 ms SOA. A semantic priming effect with familiar words was found in Experiments 1 and 3, but not Experiment 2 (the longest SOA). We interpret these results as providing evidence for the idea that new and existing words are represented differently, with the former encoded outside of conventional language networks as they appear to rely predominantly on slow (strategic) mechanisms to prime related, existing words.
Collapse
Affiliation(s)
- Lewis V Ball
- Department of Psychology, University of Liverpool, Liverpool, UK
- Department of Psychology, University of York, York, UK
| | - Perrine Brusini
- Department of Psychology, University of Liverpool, Liverpool, UK
| | - Colin Bannard
- Department of Linguistics and English Language, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Wamsley EJ, Trost T, Tucker M. Memory updating in dreams. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae096. [PMID: 39749230 PMCID: PMC11694696 DOI: 10.1093/sleepadvances/zpae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/09/2024] [Indexed: 01/04/2025]
Abstract
Robert Stickgold's research was among the earliest to rigorously quantify the effect of learning on dream content. As a result, we learned that dreaming is influenced by the activation of newly formed memory traces in the sleeping brain. Exactly how this happens is an ongoing area of investigation. Here, we test the hypothesis that participants are especially likely to dream of recent experiences, which overlap with well-established semantic networks. We created an artificial situation in which participants encountered new information about a person with which they have extensive past experience-a favorite celebrity. We tracked the effect of novel information about a favorite celebrity on participants' dream content across 3 consecutive nights and queried participants about other recent and remote memory sources of their dreams. While the celebrity manipulation failed to affect dream content, this dataset provides rich descriptive information about how recent and remote memory fragments are incorporated into dreams, and how multiple memory sources combine to create bizarre, imaginative scenarios. We discuss these observations in light of the proposed "memory updating" function of sleep-dependent memory consolidation, as well as Stickgold and Zadra's NEXTUP (Network Exploration to Understand Possibilities) model of dreaming. This paper is part of the Festschrift in honor of Dr Robert Stickgold.
Collapse
Affiliation(s)
- Erin J Wamsley
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, SC, USA
| | - Tempest Trost
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, SC, USA
| | - Matthew Tucker
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, SC, USA
| |
Collapse
|
5
|
Recher D, Rohde J, Da Poian G, Henninger M, Brogli L, Huber R, Karlen W, Lustenberger C, Kleim B. Targeted memory reactivation during sleep improves emotional memory modulation following imagery rescripting. Transl Psychiatry 2024; 14:490. [PMID: 39695124 DOI: 10.1038/s41398-024-03192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Targeted Memory Reactivation (TMR) during sleep benefits memory integration and consolidation. In this pre-registered study, we investigated the effects of TMR applied during non-rapid eye movement (NREM) sleep following modulation and updating of aversive autobiographical memories using imagery rescripting (ImR). During 2-5 nights postImR, 80 healthy participants were repeatedly presented with either idiosyncratic words from an ImR updated memory during sleep (experimental group) or with no or neutral words (control groups) using a wearable EEG device (Mobile Health Systems Lab-Sleepband, MHSL-SB) [1] implementing a close-loop cueing procedure. Multivariate analysis were conducted to assess change score trajectories in five key emotional memory characteristics (positive and negative valence, emotional distress, arousal, and vividness) across assessments (timepoints, t) and between the study groups (TMR condition). While ImR showed significant effects on all memory characteristics (d = 0.76-1.66), there were significant additional improvements in the experimental group. Memories were significantly less vivid and afflicted with less emotional distress and arousal following ImR-words cueing. TMR during sleep in individuals' homes was feasible and further improved some ImR's adaptive memory effects. If replicated in clinical samples, TMR may be utilized to augment the effects of ImR and other clinical memory modulation procedures and create personalized treatment options. Such advances in emotional memory treatments are direly needed, as aversive memories are a salient feature across mental disorders, such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Dominique Recher
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Judith Rohde
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Giulia Da Poian
- Sensory-Motor System Lab, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mirka Henninger
- Psychological Methods, Evaluation and Statistics, Department of Psychology, University of Zurich, Zurich, Switzerland
- Statistics and Data Science, Department of Psychology, University of Basel, Basel, Switzerland
| | - Luzius Brogli
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
- Cognitive Neuroscience of Memory and Consciousness, Department of Psychology, University of Bern, Bern, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Walter Karlen
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Caroline Lustenberger
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Picchioni D, Yang FN, de Zwart JA, Wang Y, Mandelkow H, Özbay PS, Chen G, Taylor PA, Lam N, Chappel-Farley MG, Chang C, Liu J, van Gelderen P, Duyn JH. Arousal threshold reveals novel neural markers of sleep depth independently from the conventional sleep stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607376. [PMID: 39149368 PMCID: PMC11326234 DOI: 10.1101/2024.08.09.607376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Reports of sleep-specific brain activity patterns have been constrained by assessing brain function as it related to the conventional polysomnographic sleep stages. This limits the variety of sleep states and underlying activity patterns that one can discover. The current study used all-night functional MRI sleep data and defined sleep behaviorally with auditory arousal threshold (AAT) to characterize sleep depth better by searching for novel neural markers of sleep depth that are neuroanatomically localized and temporally unrelated to the conventional stages. Functional correlation values calculated in a four-min time window immediately before the determination of AAT were entered into a linear mixed effects model, allowing multiple arousals across the night per subject into the analysis, and compared to models with sleep stage to determine the unique relationships with AAT. These unique relationships were for thalamocerebellar correlations, the relationship between the right language network and the right "default-mode network dorsal medial prefrontal cortex subsystem," and the relationship between thalamus and ventral attention network. These novel neural markers of sleep depth would have remained undiscovered if the data were merely analyzed with the conventional sleep stages.
Collapse
Affiliation(s)
- Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Fan Nils Yang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jacco A. de Zwart
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Yicun Wang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Department of Radiology, Stony Brook University, USA
| | - Hendrik Mandelkow
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Artificial Intelligence for Image-Guided Therapy, Koninklijke Philips, Netherlands
| | - Pinar S. Özbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Institute of Biomedical Engineering, Boğaziçi University, Turkey
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Paul A. Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Niki Lam
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- School of Medicine and Dentistry, University of Rochester, USA
| | - Miranda G. Chappel-Farley
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Center for Sleep and Circadian Science, University of Pittsburgh, USA
| | - Catie Chang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Departments of Electrical Engineering and Computer Science, Vanderbilt University, USA
| | - Jiaen Liu
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
| | - Peter van Gelderen
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jeff H. Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| |
Collapse
|
7
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
8
|
Kim SS, Lee S, Eghan K, Yoo D, Chun HS, Kim WK. Adverse effects of diethyl phthalate and butyl benzyl phthalate on circadian rhythms and sleep patterns in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117350. [PMID: 39571256 DOI: 10.1016/j.ecoenv.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
The zebrafish, a diurnal vertebrate, is commonly used in circadian rhythm studies due to its genetic and neurological similarities to humans. Circadian rhythms, which regulate sleep, neurotransmitter, behavior, and physiological responses to environmental changes, can be disrupted by various environmental factors. Phthalic acid esters (PAEs) are pervasive endocrine disruptors that individuals are frequently exposed to in daily life. However, the impact of PAEs on circadian rhythms during early development remains poorly understood. This study aimed to investigate the effects of exposure to diethyl phthalate (DEP) and butyl benzyl phthalate (BBzP) on the behavior and circadian rhythms of developing zebrafish larvae using a series of layered assays. Zebrafish larvae were exposed to the two PAEs from less than 2 hour post-fertilization (hpf) until 96 hpf. The results demonstrated a concentration-dependent reduction in tail coiling (TC), touch-evoked response (TER), and locomotor activity, alongside an increase in sleep time and alterations in sleep bouts and sleep latency during both 24-hour and Light1/Dark/Light2 (7/10/7-hour) periods. Additionally, exposure to BBzP led to increased acetylcholinesterase (AChE) and dopamine (DA) levels, and a decrease in 5-hydroxytryptamine (5-HT) levels. Gene expression analysis revealed that DEP and BBzP exposure increased the expression of circadian rhythm and light-response-related genes. In conclusion, exposure to these PAEs disrupts the circadian rhythm of zebrafish larvae, providing novel insights into the developmental impact of these common environmental contaminants. Further research is needed to understand the broader implications of these findings for human health and environmental safety.
Collapse
Affiliation(s)
- Soon Seok Kim
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Sangwoo Lee
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Kojo Eghan
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Donggon Yoo
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Hang-Suk Chun
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Woo-Keun Kim
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
9
|
Denis D, DiPietro C, Spreng RN, Schacter DL, Stickgold R, Payne JD. Sleep and retrieval practice both strengthen and distort story recollection. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae083. [PMID: 39687716 PMCID: PMC11648565 DOI: 10.1093/sleepadvances/zpae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/31/2024] [Indexed: 12/18/2024]
Abstract
Over time, memories lose episodic detail and become distorted, a process with serious ramifications for eyewitness identification. What are the processes contributing to such transformations over time? We investigated the roles of post-learning sleep and retrieval practice in memory accuracy and distortion, using a naturalistic story recollection task. Undergraduate students listened to a recording of the "War of the Ghosts," a Native American folktale, and were assigned to either a sleep or wake delay group, and either a retrieval practice or listen-only study condition. We found higher accuracy after sleep compared to wake in the listen-only condition, but not in the retrieval practice condition. This effect was driven by participants in the wake, retrieval practice condition showing superior memory compared to the wake, listen-only condition. A similar pattern was found for memory distortion, with both sleep and retrieval practice being associated with more inferences of nonpresented, but story-related information, compared to the wake, listen-only condition. These findings suggest both sleep and retrieval practice contribute to narrative memory stabilization and distortion.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York, UK
| | - Carissa DiPietro
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - R Nathan Spreng
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
10
|
Sindorf J, Szabo AL, O’Brien MK, Sunderrajan A, Knutson KL, Zee PC, Wolfe L, Arora VM, Jayaraman A. Wireless wearable sensors can facilitate rapid detection of sleep apnea in hospitalized stroke patients. Sleep 2024; 47:zsae123. [PMID: 38814827 PMCID: PMC11543614 DOI: 10.1093/sleep/zsae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
STUDY OBJECTIVES To evaluate wearable devices and machine learning for detecting sleep apnea in patients with stroke at an acute inpatient rehabilitation facility (IRF). METHODS A total of 76 individuals with stroke wore a standard home sleep apnea test (ApneaLink Air), a multimodal, wireless wearable sensor system (ANNE), and a research-grade actigraphy device (ActiWatch) for at least 1 night during their first week after IRF admission as part of a larger clinical trial. Logistic regression algorithms were trained to detect sleep apnea using biometric features obtained from the ANNE sensors and ground truth apnea rating from the ApneaLink Air. Multiple algorithms were evaluated using different sensor combinations and different apnea detection criteria based on the apnea-hypopnea index (AHI ≥ 5, AHI ≥ 15). RESULTS Seventy-one (96%) participants wore the ANNE sensors for multiple nights. In contrast, only 48 participants (63%) could be successfully assessed for obstructive sleep apnea by ApneaLink; 28 (37%) refused testing. The best-performing model utilized photoplethysmography (PPG) and finger-temperature features to detect moderate-severe sleep apnea (AHI ≥ 15), with 88% sensitivity and a positive likelihood ratio (LR+) of 44.00. This model was tested on additional nights of ANNE data achieving 71% sensitivity (10.14 LR+) when considering each night independently and 86% accuracy when averaging multi-night predictions. CONCLUSIONS This research demonstrates the feasibility of accurately detecting moderate-severe sleep apnea early in the stroke recovery process using wearable sensors and machine learning techniques. These findings can inform future efforts to improve early detection for post-stroke sleep disorders, thereby enhancing patient recovery and long-term outcomes. CLINICAL TRIAL SIESTA (Sleep of Inpatients: Empower Staff to Act) for Acute Stroke Rehabilitation, https://clinicaltrials.gov/study/NCT04254484?term=SIESTA&checkSpell=false&rank=1, NCT04254484.
Collapse
Affiliation(s)
- Jacob Sindorf
- Max Nader Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Alison L Szabo
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Megan K O’Brien
- Max Nader Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aashna Sunderrajan
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Kristen L Knutson
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Phyllis C Zee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lisa Wolfe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vineet M Arora
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Arun Jayaraman
- Max Nader Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Sifuentes Ortega R, Peigneux P. Does targeted memory reactivation during slow-wave sleep and rapid eye movement sleep have differential effects on mnemonic discrimination and generalization? Sleep 2024; 47:zsae114. [PMID: 38766994 DOI: 10.1093/sleep/zsae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Targeted memory reactivation (TMR), or the presentation of learning-related cues during sleep, has been shown to benefit memory consolidation for specific memory traces when applied during non-rapid eye movement (NREM) sleep. Prior studies suggest that TMR during rapid eye movement (REM) sleep may play a role in memory generalization processes, but evidence remains scarce. We tested the hypothesis that TMR exerts a differential effect on distinct mnemonic processes as a function of the sleep state (REM vs. NREM) in which TMR is delivered. Mnemonic discrimination and generalization of semantic categories were investigated using an adapted version of the Mnemonic Similarity Task, before and after sleep. Forty-eight participants encoded pictures from eight semantic categories, each associated with a sound. In the pre-sleep immediate test, they had to discriminate "old" (targets) from "similar" (lures) or "new" (foils) pictures. During sleep, half of the sounds were replayed in slow wave sleep (SWS) or REM sleep. Recognition, discrimination, and generalization memory indices were tested in the morning. These indices did not differ between SWS and REM TMR groups or reactivated and non-reactivated item categories. Additional results suggest a positive effect of TMR on performance for highly similar items mostly relying on mnemonic discrimination processes. During sleep, EEG activity after cue presentation increased in the delta-theta and sigma band in the SWS group, and in the beta band in the REM TMR group. These results do not support the hypothesis of differential processing of novel memory traces when TMR is administered in distinctive physiological sleep states.
Collapse
Affiliation(s)
- Rebeca Sifuentes Ortega
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
12
|
Temudo A, Albouy G. Using targeted memory reactivation as a tool to provide mechanistic insights into memory consolidation during sleep. Sleep 2024; 47:zsae163. [PMID: 39044535 DOI: 10.1093/sleep/zsae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Ainsley Temudo
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Geneviève Albouy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Reichardt R, Király A, Szőllősi Á, Racsmány M, Simor P. A daytime nap with REM sleep is linked to enhanced generalization of emotional stimuli. J Sleep Res 2024; 33:e14177. [PMID: 38369938 DOI: 10.1111/jsr.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
How memory representations are shaped during and after their encoding is a central question in the study of human memory. Recognition responses to stimuli that are similar to those observed previously can hint at the fidelity of the memories or point to processes of generalization at the expense of precise memory representations. Experimental studies utilizing this approach showed that emotions and sleep both influence these responses. Sleep, and more specifically rapid eye movement sleep, is assumed to facilitate the generalization of emotional memories. We studied mnemonic discrimination by the emotional variant of the Mnemonic Separation Task in participants (N = 113) who spent a daytime nap between learning and testing compared with another group that spent an equivalent time awake between the two sessions. Our findings indicate that the discrimination of similar but previously not seen items from previously seen ones is enhanced in case of negative compared with neutral and positive stimuli. Moreover, whereas the sleep and the wake groups did not differ in memory performance, participants entering rapid eye movement sleep exhibited increased generalization of emotional memories. Our findings indicate that entering into rapid eye movement sleep during a daytime nap shapes emotional memories in a way that enhances recognition at the expense of detailed memory representations.
Collapse
Affiliation(s)
- Richárd Reichardt
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Király
- National Institute of Locomotor Diseases and Disabilities, Budapest, Hungary
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Centre for Cognitive Medicine, University of Szeged, Szeged, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Centre for Cognitive Medicine, University of Szeged, Szeged, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Berry JA, Guhle DC, Davis RL. Active forgetting and neuropsychiatric diseases. Mol Psychiatry 2024; 29:2810-2820. [PMID: 38532011 PMCID: PMC11420092 DOI: 10.1038/s41380-024-02521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Recent and pioneering animal research has revealed the brain utilizes a variety of molecular, cellular, and network-level mechanisms used to forget memories in a process referred to as "active forgetting". Active forgetting increases behavioral flexibility and removes irrelevant information. Individuals with impaired active forgetting mechanisms can experience intrusive memories, distressing thoughts, and unwanted impulses that occur in neuropsychiatric diseases. The current evidence indicates that active forgetting mechanisms degrade, or mask, molecular and cellular memory traces created in synaptic connections of "engram cells" that are specific for a given memory. Combined molecular genetic/behavioral studies using Drosophila have uncovered a complex system of cellular active-forgetting pathways within engram cells that is regulated by dopamine neurons and involves dopamine-nitric oxide co-transmission and reception, endoplasmic reticulum Ca2+ signaling, and cytoskeletal remodeling machinery regulated by small GTPases. Some of these molecular cellular mechanisms have already been found to be conserved in mammals. Interestingly, some pathways independently regulate forgetting of distinct memory types and temporal phases, suggesting a multi-layering organization of forgetting systems. In mammals, active forgetting also involves modulation of memory trace synaptic strength by altering AMPA receptor trafficking. Furthermore, active-forgetting employs network level mechanisms wherein non-engram neurons, newly born-engram neurons, and glial cells regulate engram synapses in a state and experience dependent manner. Remarkably, there is evidence for potential coordination between the network and cellular level forgetting mechanisms. Finally, subjects with several neuropsychiatric diseases have been tested and shown to be impaired in active forgetting. Insights obtained from research on active forgetting in animal models will continue to enrich our understanding of the brain dysfunctions that occur in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada.
| | - Dana C Guhle
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
15
|
Kazemi K, Abiri A, Zhou Y, Rahmani A, Khayat RN, Liljeberg P, Khine M. Improved sleep stage predictions by deep learning of photoplethysmogram and respiration patterns. Comput Biol Med 2024; 179:108679. [PMID: 39033682 DOI: 10.1016/j.compbiomed.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
Sleep staging is a crucial tool for diagnosing and monitoring sleep disorders, but the standard clinical approach using polysomnography (PSG) in a sleep lab is time-consuming, expensive, uncomfortable, and limited to a single night. Advancements in sensor technology have enabled home sleep monitoring, but existing devices still lack sufficient accuracy to inform clinical decisions. To address this challenge, we propose a deep learning architecture that combines a convolutional neural network and bidirectional long short-term memory to accurately classify sleep stages. By supplementing photoplethysmography (PPG) signals with respiratory sensor inputs, we demonstrated significant improvements in prediction accuracy and Cohen's kappa (k) for 2- (92.7 %; k = 0.768), 3- (80.2 %; k = 0.714), 4- (76.8 %, k = 0.550), and 5-stage (76.7 %, k = 0.616) sleep classification using raw data. This relatively translatable approach, with a less intensive AI model and leveraging only a few, inexpensive sensors, shows promise in accurately staging sleep. This has potential for diagnosing and managing sleep disorders in a more accessible and practical manner, possibly even at home.
Collapse
Affiliation(s)
| | - Arash Abiri
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| | - Yongxiao Zhou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| | - Amir Rahmani
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States; School of Nursing, University of California, Irvine, Irvine, CA, United States
| | - Rami N Khayat
- Division of Pulmonary and Critical Care Medicine, The UCI Comprehensive Sleep Center, University of California. Irvine, Newport Beach, CA, United States
| | | | - Michelle Khine
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States.
| |
Collapse
|
16
|
Zhao X, Chen PH, Chen J, Sun H. Manipulated overlapping reactivation of multiple memories promotes explicit gist abstraction. Neurobiol Learn Mem 2024; 213:107953. [PMID: 38950676 DOI: 10.1016/j.nlm.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Sleep is considered to promote gist abstraction on the basis of spontaneous memory reactivation. As speculated in the theory of 'information overlap to abstract (iOtA)', 'overlap' between reactivated memories, beyond reactivation, is crucial to gist abstraction. Yet so far, empirical research has not tested this theory by manipulating the factor of 'overlap'. In the current study, 'overlap' itself was manipulated by targeted memory reactivation (TMR), through simultaneously reactivating multiple memories that either contain or do not contain spatially overlapped gist information, to investigate the effect of overlapping reactivation on gist abstraction. This study had a factorial design of 2 factors with 2 levels respectively (spatial overlap/no spatial overlap, TMR/no-TMR). Accordingly, 82 healthy college students (aged 19 ∼ 25, 57 females) were randomized into four groups. After learning 16 pictures, paired with 4 auditory cues (4 pictures - 1 cue) according to the grouping, participants were given a 90-minute nap opportunity. Then TMR cueing was conducted during N2 and slow wave sleep of the nap. Performance in memory task was used to measure gist abstraction. The results showed a significant main effect of TMR on both implicit and explicit gist abstraction, and a marginally significant interaction effect on explicit gist abstraction. Further analyses showed that explicit gist abstraction in the spatial overlap & TMR group was significantly better than in the control group. Moreover, explicit gist abstraction was positively correlated with spindle density. The current study thus indicates that TMR facilitates gist abstraction, and explicit gist abstraction may benefit more from overlapping reactivation.
Collapse
Affiliation(s)
- Xiaoxia Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Po-Han Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China.
| |
Collapse
|
17
|
Bloxham A, Horton CL. Enhancing and advancing the understanding and study of dreaming and memory consolidation: Reflections, challenges, theoretical clarity, and methodological considerations. Conscious Cogn 2024; 123:103719. [PMID: 38941924 DOI: 10.1016/j.concog.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Empirical investigations that search for a link between dreaming and sleep-dependent memory consolidation have focused on testing for an association between dreaming of what was learned, and improved memory performance for learned material. Empirical support for this is mixed, perhaps owing to the inherent challenges presented by the nature of dreams, and methodological inconsistencies. The purpose of this paper is to address critically prevalent assumptions and practices, with the aim of clarifying and enhancing research on this topic, chiefly by providing a theoretical synthesis of existing models and evidence. Also, it recommends the method of Targeted Memory Reactivation (TMR) as a means for investigating if dream content can be linked to specific cued activations. Other recommendations to enhance research practice and enquiry on this subject are also provided, focusing on the HOW and WHY we search for memory sources in dreams, and what purpose (if any) they might serve.
Collapse
Affiliation(s)
- Anthony Bloxham
- Nottingham Trent University, Nottingham, NG1 4FQ, United Kingdom.
| | | |
Collapse
|
18
|
Hermesch N, Konrad C, Barr R, Herbert JS, Seehagen S. Sleep-dependent memory consolidation of televised content in infants. J Sleep Res 2024; 33:e14121. [PMID: 38112265 DOI: 10.1111/jsr.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Infants face the constant challenge of selecting information for encoding and storage from a continuous incoming stream of data. Sleep might help in this process by selectively consolidating new memory traces that are likely to be of future relevance. Using a deferred imitation paradigm and an experimental design, we asked whether 15- and 24-month-old infants (N = 105) who slept soon after encoding a televised demonstration of target actions would show higher imitation scores (retention) after a 24-h delay than same-aged infants who stayed awake for ≥4 h after encoding. In light of infants' well-known difficulties in learning and remembering information from screens, we tested if increasing the relevance of the televised content via standardised caregiver verbalisations might yield the highest imitation scores in the sleep condition. Regardless of sleep condition, 24-month-olds exhibited retention of target actions while 15-month-olds consistently failed to do so. For 24-month-olds, temporal recall was facilitated by sleep, but not by parental verbalisations. Correlational analyses revealed that more time asleep within 4 h after encoding was associated with better retention of the target actions and their temporal order in 24-months-olds. These results suggest that sleep facilitates memory consolidation of screen-based content in late infancy and that this effect might not hinge on caregivers' verbal engagement during viewing.
Collapse
Affiliation(s)
- Neele Hermesch
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Carolin Konrad
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Rachel Barr
- Department of Psychology, Georgetown University, Washington, District of Columbia, USA
| | - Jane S Herbert
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Sabine Seehagen
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Zhang R, Dong X, Zhang L, Lin X, Wang X, Xu Y, Wu C, Jiang F, Wang J. Quantitative Electroencephalography in Term Neonates During the Early Postnatal Period Across Various Sleep States. Nat Sci Sleep 2024; 16:1011-1025. [PMID: 39071545 PMCID: PMC11282454 DOI: 10.2147/nss.s472595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Background Neonatal sleep is pivotal for their growth and development, yet manual interpretation of raw images is time-consuming and labor-intensive. Quantitative Electroencephalography (QEEG) presents significant advantages in terms of objectivity and convenience for investigating neonatal sleep patterns. However, research on the sleep patterns of healthy neonates remains scarce. This study aims to identify QEEG markers that distinguish between different neonatal sleep cycles and analyze QEEG alterations across various sleep stages in relation to postmenstrual age. Methods From September 2023 to February 2024, full-term neonates admitted to the neonatology department at the Obstetrics and Gynecology Hospital of Fudan University were enrolled in this study. Electroencephalographic (EEG) recordings were obtained from neonates aged 37-42 weeks, within 1-7 days post-birth. The ROC curve was employed to evaluate QEEG features related to amplitude, range EEG (rEEG), spectral density, and connectivity across different sleep stages. Furthermore, regression analyses were performed to investigate the association between these QEEG characteristics and postmenstrual age. Results The alpha frequency band's spectral_diff_F3 emerged as the most potent discriminator between active sleep (AS) and quiet sleep (QS). In distinguishing AS from wakefulness (W), the theta frequency's spectral_diff_C4 was the most effective, whereas the delta frequency's spectral_diff_P4 excelled in differentiating QS from W. During AS and QS phases, there was a notable increase in entropy within the delta frequency band across all monitored brain regions and in the spectral relative power within the theta frequency band, correlating with postmenstrual age (PMA). Conclusion Spectral difference showcases the highest discriminative capability across awake and various sleep states. The observed patterns of neonatal QEEG alterations in relation to PMA are consistent with the maturation of neonatal sleep, offering insights into the prediction and evaluation of brain development outcomes.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lu Zhang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xinao Lin
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xuefeng Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yan Xu
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, People’s Republic of China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Pesonen AK, Koskinen MK, Vuorenhela N, Halonen R, Mäkituuri S, Selin M, Luokkala S, Suutari A, Hovatta I. The effect of REM-sleep disruption on affective processing: A systematic review of human and animal experimental studies. Neurosci Biobehav Rev 2024; 162:105714. [PMID: 38729279 DOI: 10.1016/j.neubiorev.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Evidence on the importance of rapid-eye-movement sleep (REMS) in processing emotions is accumulating. The focus of this systematic review is the outcomes of experimental REMS deprivation (REMSD), which is the most common method in animal models and human studies on REMSD. This review revealed that variations in the applied REMSD methods were substantial. Animal models used longer deprivation protocols compared with studies in humans, which mostly reported acute deprivation effects after one night. Studies on animal models showed that REMSD causes aggressive behavior, increased pain sensitivity, reduced sexual behavior, and compromised consolidation of fear memories. Animal models also revealed that REMSD during critical developmental periods elicits lasting consequences on affective-related behavior. The few human studies revealed increases in pain sensitivity and suggest stronger consolidation of emotional memories after REMSD. As pharmacological interventions (such as selective serotonin reuptake inhibitors [SSRIs]) may suppress REMS for long periods, there is a clear gap in knowledge regarding the effects and mechanisms of chronic REMS suppression in humans.
Collapse
Affiliation(s)
- Anu-Katriina Pesonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland.
| | - Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Neea Vuorenhela
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Risto Halonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Saara Mäkituuri
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Maikki Selin
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Sanni Luokkala
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Alma Suutari
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| |
Collapse
|
21
|
Valdivia G, Espinosa N, Lara-Vasquez A, Caneo M, Inostroza M, Born J, Fuentealba P. Sleep-dependent decorrelation of hippocampal spatial representations. iScience 2024; 27:110076. [PMID: 38883845 PMCID: PMC11176648 DOI: 10.1016/j.isci.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Ariel Lara-Vasquez
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Mauricio Caneo
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| |
Collapse
|
22
|
Baran B, Lee EE. Age-Related Changes in Sleep and Its Implications for Cognitive Decline in Aging Persons With Schizophrenia: A Critical Review. Schizophr Bull 2024:sbae059. [PMID: 38713085 DOI: 10.1093/schbul/sbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairment is a core feature of schizophrenia that worsens with aging and interferes with quality of life. Recent work identifies sleep as an actionable target to alleviate cognitive deficits. Cardinal non-rapid eye movement (NREM) sleep oscillations such as sleep spindles and slow oscillations are critical for cognition. People living with schizophrenia (PLWS) and their first-degree relatives have a specific reduction in sleep spindles and an abnormality in their temporal coordination with slow oscillations that predict impaired memory consolidation. While NREM oscillatory activity is reduced in typical aging, it is not known how further disruption in these oscillations contributes to cognitive decline in older PLWS. Another understudied risk factor for cognitive deficits among older PLWS is obstructive sleep apnea (OSA) which may contribute to cognitive decline. STUDY DESIGN We conducted a narrative review to examine the published literature on aging, OSA, and NREM sleep oscillations in PLWS. STUDY RESULTS Spindles are propagated via thalamocortical feedback loops, and this circuitry shows abnormal hyperconnectivity in schizophrenia as revealed by structural and functional MRI studies. While the risk and severity of OSA increase with age, older PLWS are particularly vulnerable to OSA-related cognitive deficits because OSA is often underdiagnosed and undertreated, and OSA adds further damage to the circuitry that generates NREM sleep oscillations. CONCLUSIONS We highlight the critical need to study NREM sleep in older PWLS and propose that identifying and treating OSA in older PLWS will provide an avenue to potentially mitigate and prevent cognitive decline.
Collapse
Affiliation(s)
- Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
23
|
Denis D, Payne JD. Targeted Memory Reactivation during Nonrapid Eye Movement Sleep Enhances Neutral, But Not Negative, Components of Memory. eNeuro 2024; 11:ENEURO.0285-23.2024. [PMID: 38769012 PMCID: PMC11140657 DOI: 10.1523/eneuro.0285-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Emotionally salient components of memory are preferentially remembered at the expense of accompanying neutral information. This emotional memory trade-off is enhanced over time, and possibly sleep, through a process of memory consolidation. Sleep is believed to benefit memory through a process of reactivation during nonrapid eye movement sleep (NREM). Here, targeted memory reactivation (TMR) was used to manipulate the reactivation of negative and neutral memories during NREM sleep. Thirty-one male and female participants encoded composite scenes containing either a negative or neutral object superimposed on an always neutral background. During NREM sleep, sounds associated with the scene object were replayed, and memory for object and background components was tested the following morning. We found that TMR during NREM sleep improved memory for neutral, but not negative scene objects. This effect was associated with sleep spindle activity, with a larger spindle response following TMR cues predicting TMR effectiveness for neutral items only. These findings therefore do not suggest a role of NREM memory reactivation in enhancing the emotional memory trade-off across a 12 h period but do align with growing evidence of spindle-mediated memory reactivation in service of neutral declarative memory.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom,
| | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
24
|
Subramoney A, Bellec G, Scherr F, Legenstein R, Maass W. Fast learning without synaptic plasticity in spiking neural networks. Sci Rep 2024; 14:8557. [PMID: 38609429 PMCID: PMC11015027 DOI: 10.1038/s41598-024-55769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/27/2024] [Indexed: 04/14/2024] Open
Abstract
Spiking neural networks are of high current interest, both from the perspective of modelling neural networks of the brain and for porting their fast learning capability and energy efficiency into neuromorphic hardware. But so far we have not been able to reproduce fast learning capabilities of the brain in spiking neural networks. Biological data suggest that a synergy of synaptic plasticity on a slow time scale with network dynamics on a faster time scale is responsible for fast learning capabilities of the brain. We show here that a suitable orchestration of this synergy between synaptic plasticity and network dynamics does in fact reproduce fast learning capabilities of generic recurrent networks of spiking neurons. This points to the important role of recurrent connections in spiking networks, since these are necessary for enabling salient network dynamics. We show more specifically that the proposed synergy enables synaptic weights to encode more general information such as priors and task structures, since moment-to-moment processing of new information can be delegated to the network dynamics.
Collapse
Affiliation(s)
- Anand Subramoney
- Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria
- Department of Computer Science, Royal Holloway University of London, Egham, UK
| | - Guillaume Bellec
- Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria
- Laboratory of Computational Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Franz Scherr
- Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria
| | - Robert Legenstein
- Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria
| | - Wolfgang Maass
- Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria.
| |
Collapse
|
25
|
Spruyt K. Neurocognitive Effects of Sleep Disruption in Children and Adolescents. Psychiatr Clin North Am 2024; 47:27-45. [PMID: 38302211 DOI: 10.1016/j.psc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A main childhood task is learning. In this task, the role of sleep is increasingly demonstrated. Although most literature examining this role focuses on preadolescence and middle adolescence, some studies apply napping designs in preschoolers. Studies overall conclude that without proper sleep a child's cognitive abilities suffer, but questions on how and to what extent linger. Observational studies show the hazards of potential confounders such as an individual's resilience to poor sleep as well as developmental risk factors (eg, disorders, stressors). A better understanding of cognitive sleep neuroscience may have a big impact on pediatric sleep research and clinical applications.
Collapse
Affiliation(s)
- Karen Spruyt
- Université Paris Cité, INSERM - NeuroDiderot, Paris, France.
| |
Collapse
|
26
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
27
|
Temporiti F, Galbiati E, Bianchi F, Bianchi AM, Galli M, Gatti R. Early sleep after action observation plus motor imagery improves gait and balance abilities in older adults. Sci Rep 2024; 14:3179. [PMID: 38326504 PMCID: PMC10850554 DOI: 10.1038/s41598-024-53664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
Action observation plus motor imagery (AOMI) is a rehabilitative approach to improve gait and balance performance. However, limited benefits have been reported in older adults. Early sleep after motor practice represents a strategy to enhance the consolidation of trained skills. Here, we investigated the effects of AOMI followed by early sleep on gait and balance performance in older adults. Forty-five older adults (mean age: 70.4 ± 5.2 years) were randomized into three groups performing a 3-week training. Specifically, AOMI-sleep and AOMI-control groups underwent observation and motor imagery of gait and balance tasks between 8:00 and 10:00 p.m. or between 8:00 and 10:00 a.m. respectively, whereas Control group observed landscape video-clips. Participants were assessed for gait performance, static and dynamic balance and fear of falling before and after training and at 1-month follow-up. The results revealed that early sleep after AOMI training sessions improved gait and balance abilities in older adults compared to AOMI-control and Control groups. Furthermore, these benefits were retained at 1-month after the training end. These findings suggested that early sleep after AOMI may represent a safe and easy-applicable intervention to minimize the functional decay in older adults.
Collapse
Affiliation(s)
- Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy.
| | - Elena Galbiati
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
| | - Francesco Bianchi
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy
| | - Manuela Galli
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| |
Collapse
|
28
|
Nickl AT, Bäuml KHT. To-be-forgotten information shows more relative forgetting over time than to-be-remembered information. Psychon Bull Rev 2024; 31:156-165. [PMID: 37434044 PMCID: PMC10866758 DOI: 10.3758/s13423-023-02330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
People can intentionally forget studied material when cued to do so. Corresponding evidence has arisen from studies on item-method directed forgetting, in which participants are asked to forget single items directly upon presentation. We measured memory performance of to-be-remembered (TBR) and to-be-forgotten (TBF) items across retention intervals of up to 1 week and fitted power functions of time to the observed recall (Experiment 1) and recognition (Experiment 2) rates. In both experiments and each retention interval condition, memory performance for the TBR items was higher than for the TBF items, supporting the view that directed forgetting effects are lasting. Recall and recognition rates of both TBR and TBF items were well fit by the power function. However, the relative forgetting rates of the two item types differed, with a higher forgetting rate for the TBF than the TBR items. The findings are consistent with the view that TBR and TBF items differ (mainly) in recruitment of rehearsal processes and resulting memory strength.
Collapse
Affiliation(s)
- Anna T Nickl
- Department of Experimental Psychology, Regensburg University, 93040, Regensburg, Germany.
| | - Karl-Heinz T Bäuml
- Department of Experimental Psychology, Regensburg University, 93040, Regensburg, Germany
| |
Collapse
|
29
|
Niu X, Utayde MF, Sanders KEG, Denis D, Kensinger EA, Payne JD. Age-related positivity effect in emotional memory consolidation from middle age to late adulthood. Front Behav Neurosci 2024; 18:1342589. [PMID: 38328467 PMCID: PMC10847278 DOI: 10.3389/fnbeh.2024.1342589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background While younger adults are more likely to attend to, process, and remember negative relative to positive information, healthy older adults show the opposite pattern. The current study evaluates when, exactly, this positivity shift begins, and how it influences memory performance for positive, negative, and neutral information. Methods A total of 274 healthy early middle-aged (35-47), late middle-aged (48-59), and older adults (>59) viewed scenes consisting of a negative, positive, or a neutral object placed on a plausible neutral background, and rated each scene for its valence and arousal. After 12 h spanning a night of sleep (n = 137) or a day of wakefulness (n = 137), participants completed an unexpected memory test during which they were shown objects and backgrounds separately and indicated whether the scene component was the "same," "similar," or "new" to what they viewed during the study session. Results and conclusions We found that both late middle-aged and older adults rated positive and neutral scenes more positively compared to early middle-aged adults. However, only older adults showed better memory for positive objects relative to negative objects, and a greater positive memory trade-off magnitude (i.e., remembering positive objects at the cost of their associated neutral backgrounds) than negative memory trade-off magnitude (i.e., remembering negative objects at the cost of their associated neutral backgrounds). Our findings suggest that while the positivity bias may not emerge in memory until older adulthood, a shift toward positivity in terms of processing may begin in middle age.
Collapse
Affiliation(s)
- Xinran Niu
- Sleep, Stress, and Memory Lab, Department of Psychology, University of Notre Dame, Notre Dame, IN, United States
| | - Mia F. Utayde
- Sleep, Stress, and Memory Lab, Department of Psychology, University of Notre Dame, Notre Dame, IN, United States
| | - Kristin E. G. Sanders
- Sleep, Stress, and Memory Lab, Department of Psychology, University of Notre Dame, Notre Dame, IN, United States
| | - Dan Denis
- Department of Psychology, University of York, York, United Kingdom
| | - Elizabeth A. Kensinger
- Cognitive and Affective Neuroscience Laboratory, Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| | - Jessica D. Payne
- Sleep, Stress, and Memory Lab, Department of Psychology, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
30
|
Parrilla MM, Kautiainen RJ, King TZ. Sleep quality and executive function in a diverse sample of healthy young adults. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-9. [PMID: 38170836 DOI: 10.1080/23279095.2023.2297299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Few studies examine the relationship between sleep and executive function in diverse samples of young adults. Our research aims to fill this gap by analyzing how self-reported sleep quality is related to informant-rated executive function as a whole and its working memory component in a diverse sample of 29 healthy college students. Using the self-report measure, the Pittsburgh Sleep Quality Index (PSQI), we divided our sample into two groups based on cutoff criteria (score ≥5: poor sleep): good sleep quality (n = 11) and poor sleep quality (n = 18). Participants were on average 20.86 years old. Informants rated participants' executive functioning and working memory using the Frontal Systems Behavior Scale (FrSBe) and Behavior Rating Inventory of Executive Function (BRIEF). Individuals in the poor sleep quality group were reported as having significantly worse executive function and working memory scores. Young adult college students who report less than 7 hours of sleep per night have lower scores on informant measures of working memory and executive function. This study raises awareness about how self-reported sleep experiences are related to other's observation of cognitive abilities in everyday life in a diverse young adult sample.
Collapse
Affiliation(s)
- Maria M Parrilla
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
31
|
Wilckens KA, Habte RF, Dong Y, Stepan ME, Dessa KM, Whitehead AB, Peng CW, Fletcher ME, Buysse DJ. A pilot time-in-bed restriction intervention behaviorally enhances slow-wave activity in older adults. FRONTIERS IN SLEEP 2024; 2:1265006. [PMID: 38938690 PMCID: PMC11210605 DOI: 10.3389/frsle.2023.1265006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Introduction Identifying intervention methods that target sleep characteristics involved in memory processing is a priority for the field of cognitive aging. Older adults with greater sleep efficiency and non-rapid eye movement slow-wave activity (SWA) (0.5-4 Hz electroencephalographic activity) tend to exhibit better memory and cognitive abilities. Paradoxically, long total sleep times are consistently associated with poorer cognition in older adults. Thus, maximizing sleep efficiency and SWA may be a priority relative to increasing mere total sleep time. As clinical behavioral sleep treatments do not consistently enhance SWA, and propensity for SWA increases with time spent awake, we examined with a proof-of concept pilot intervention whether a greater dose of time-in-bed (TiB) restriction (75% of habitual TiB) would increase both sleep efficiency and SWA in older adults with difficulties staying asleep without impairing memory performance. Methods Participants were adults ages 55-80 with diary-reported sleep efficiency <90% and wake after sleep onset (WASO) >20 min. Sleep diary, actigraphy, polysomnography (PSG), and paired associate memory acquisition and retention were assessed before and after a week-long TiB restriction intervention (n = 30). TiB was restricted to 75% of diary-reported habitual TiB. A comparison group of n = 5 participants repeated assessments while following their usual sleep schedule to obtain preliminary estimates of effect sizes associated with repeated testing. Results Subjective and objective sleep measures robustly improved in the TiB restriction group for sleep quality, sleep depth, sleep efficiency and WASO, at the expense of TiB and time spent in N1 and N2 sleep. As hypothesized, SWA increased robustly with TiB restriction across the 0.5-4 Hz range, as well as subjective sleep depth, subjective and objective WASO. Despite increases in sleepiness ratings, no impairments were found in memory acquisition or retention. Conclusion A TiB restriction dose equivalent to 75% of habitual TiB robustly increased sleep continuity and SWA in older adults with sleep maintenance difficulties, without impairing memory performance. These findings may inform long-term behavioral SWA enhancement interventions aimed at improving memory performance and risk for cognitive impairments.
Collapse
Affiliation(s)
| | - Rima F. Habte
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yue Dong
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michelle E. Stepan
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kibra M. Dessa
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Alexis B. Whitehead
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Christine W. Peng
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Mary E. Fletcher
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Daniel J. Buysse
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
33
|
Law EF, Tham SW, Howard W, Ward TM, Palermo TM. Executive Functioning and Self-Management Processes Mediate the Relationship Between Insomnia and Pain-Related Disability. THE JOURNAL OF PAIN 2024; 25:273-283. [PMID: 37633572 PMCID: PMC10840973 DOI: 10.1016/j.jpain.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Insomnia has been identified as a predictor of reduced benefit from cognitive-behavioral treatment (CBT) for adolescent chronic pain; however, it is not well understood how insomnia leads to reduced treatment response. The purpose of this study was to evaluate executive function and self-management processes as 2 potential mediators of the relationship between insomnia symptoms and pain-related disability outcomes from internet-delivered CBT using a single-arm clinical trial design. Eighty-five adolescents with chronic pain (77% female, ages 12-17 years) and their caregiver received an 8-week internet-delivered CBT intervention. Youth completed validated measures of insomnia symptoms, executive function, self-management processes, and pain-related disability at baseline, mid-treatment, immediate post-treatment, and 3-month follow-up. Results from multilevel structural equation modeling indicated that more severe insomnia symptoms were associated with greater problems with executive function, which, in turn, led to lower engagement in self-management processes and less improvement in pain-related disability. These findings identify 2 mediators by which higher insomnia symptoms may lead to reduced benefit from CBT intervention for chronic pain. Research is needed to understand whether psychological treatments for chronic pain may be optimized by strategies targeting insomnia, executive function, and/or engagement in self-management. This trial was registered at clinicaltrials.gov (NCT04043962). PERSPECTIVE: Our study suggests that executive functioning and self-management processes mediate the relationship between insomnia and treatment outcomes for pediatric chronic pain, highlighting the impact of insomnia on youth learning and implementation of self-management strategies and the critical need for targeted sleep interventions in this population.
Collapse
Affiliation(s)
- Emily F. Law
- Center for Child Health, Behavior & Development, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - See Wan Tham
- Center for Child Health, Behavior & Development, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Waylon Howard
- Center for Child Health, Behavior & Development, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Teresa M. Ward
- Department of Child, Family, and Population Health Nursing, University of Washington, School of Nursing, Seattle, WA, USA
| | - Tonya M. Palermo
- Center for Child Health, Behavior & Development, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
34
|
Hudachek L, Wamsley EJ. A meta-analysis of the relation between dream content and memory consolidation. Sleep 2023; 46:zsad111. [PMID: 37058584 DOI: 10.1093/sleep/zsad111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/11/2023] [Indexed: 04/16/2023] Open
Abstract
The frequent appearance of newly learned information in dreams suggests that dream content is influenced by memory consolidation. Many studies have tested this hypothesis by asking whether dreaming about a learning task is associated with improved memory, but results have been inconsistent. We conducted a meta-analysis to determine the strength of the association between learning-related dreams and post-sleep memory improvement. We searched the literature for studies that (1) trained participants on a pre-sleep learning task and then tested their memory after sleep, and (2) associated post-sleep memory improvement with the extent to which dreams incorporated learning task content. Sixteen studies qualified for inclusion, which together reported 45 effects. Integrating across effects, we report a strong and statistically significant association between task-related dreaming and memory performance (SMD = 0.51 [95% CI 0.28, 0.74], p < 0.001). Among studies using polysomnography, this relationship was statistically significant for dreams collected from non-rapid eye movement (NREM) sleep (n = 10) but not for dreams collected from rapid eye movement (REM) sleep (n = 12). There was a significant association between dreaming and memory for all types of learning tasks studied. This meta-analysis provides further evidence that dreaming about a learning task is associated with improved memory performance, suggesting that dream content may be an indication of memory consolidation. Furthermore, we report preliminary evidence that the relationship between dreaming and memory may be stronger in NREM sleep compared to REM.
Collapse
Affiliation(s)
- Lauren Hudachek
- Furman University Department of Psychology and Program in Neuroscience, Greenville, SC, 29613, USA
| | - Erin J Wamsley
- Furman University Department of Psychology and Program in Neuroscience, Greenville, SC, 29613, USA
| |
Collapse
|
35
|
Richter M, Cross ZR, Bornkessel-Schlesewsky I. Individual differences in information processing during sleep and wake predict sleep-based memory consolidation of complex rules. Neurobiol Learn Mem 2023; 205:107842. [PMID: 37848075 DOI: 10.1016/j.nlm.2023.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/03/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Memory is critical for many cognitive functions, from remembering facts, to learning complex environmental rules. While memory encoding occurs during wake, memory consolidation is associated with sleep-related neural activity. Further, research suggests that individual differences in alpha frequency during wake (∼7 - 13 Hz) modulate memory processes, with higher individual alpha frequency (IAF) associated with greater memory performance. However, the relationship between wake-related EEG individual differences, such as IAF, and sleep-related neural correlates of memory consolidation has been largely unexplored, particularly in a complex rule-based memory context. Here, we aimed to investigate whether wake-derived IAF and sleep neurophysiology interact to influence rule learning in a sample of 35 healthy adults (16 males; mean age = 25.4, range: 18 - 40). Participants learned rules of a modified miniature language prior to either 8hrs of sleep or wake, after which they were tested on their knowledge of the rules in a grammaticality judgement task. Results indicate that sleep neurophysiology and wake-derived IAF do not interact but modulate memory for complex linguistic rules separately. Phase-amplitude coupling between slow oscillations and spindles during non-rapid eye-movement (NREM) sleep also promoted memory for rules that were analogous to the canonical English word order. As an exploratory analysis, we found that rapid eye-movement (REM) sleep theta power at posterior regions interacts with IAF to predict rule learning and proportion of time in REM sleep predicts rule learning differentially depending on grammatical rule type. Taken together, the current study provides behavioural and electrophysiological evidence for a complex role of NREM and REM sleep neurophysiology and wake-derived IAF in the consolidation of rule-based information.
Collapse
Affiliation(s)
- Madison Richter
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia; College of Nursing and Health Sciences, Flinders University, Adelaide, Australia.
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia; Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, United States
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| |
Collapse
|
36
|
El-Kafoury BMA, Abdel-Hady EA, El Bakly W, Elayat WM, Hamam GG, Abd El Rahman SMM, Lasheen NN. Lipoic acid inhibits cognitive impairment induced by multiple cell phones in young male rats: role of Sirt1 and Atg7 pathway. Sci Rep 2023; 13:18486. [PMID: 37898621 PMCID: PMC10613255 DOI: 10.1038/s41598-023-44134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023] Open
Abstract
The utilization of digital technology has grown rapidly in the past three decades. With this rapid increase, cell phones emit electromagnetic radiation; that is why electromagnetic field (EMF) has become a substantial new pollution source in modern civilization, mainly having adverse effects on the brain. While such a topic attracted many researchers' scopes, there are still minimal discoveries made regarding chronic exposure to EMF. The extensive use of cell phones may affect children's cognition even indirectly if parents and guardians used their phones repeatedly near them. This study aims to investigate possible lipoic acid (LA) effects on cognitive functions and hippocampal structure in young male rats exposed to electromagnetic fields (EMF) emitted from multiple cell phones. Forty young male Wistar rats were randomly allocated into three groups: control, multiple cell phones-exposed and lipoic acid-treated rats. By the end of the experimental period, the Morris water maze was used as a cognitive test. The rats were sacrificed for the collection of serum and hippocampal tissue. These serum samples were then utilized for assessment of Liver function tests. The level ofglutamate, acetylcholine (Ach) and malondialdehyde (MDA) was estimated, in addition to evaluating the expression of autophagy-related protein-7 (Atg7) and Sirt1 genes. The left hippocampal specimens were used for histopathological studies. Results showed that multiple cell phone-exposed rats exhibited shorter latency time to reach the platform by the fifth day of training; additionally, there was a reduction in consolidation of spatial long-term memory. Correspondingly, there was an elevation of hippocampal Ach, glutamate, and MDA levels; accompanied by up-regulation of hippocampal Sirt1 and Atg7 gene expression. Compared to the EMF-exposed group, LA administration improved both learning and memory, this was proved by the significant decline in hippocampal MDA and Ach levels, the higher hippocampal glutamate, the downregulated hippocampal Sirt1 gene expression and the upregulated Atg7 gene expression. In conclusion, EMF exposure could enhance learning ability; however, it interfered with long-term memory consolidation shown by higher hippocampal Ach levels. Lipoic acid treatment improved both learning and memory by enhancing autophagy and hippocampal glutamate level and by the reduced Ach levels and Sirt1 gene expression.
Collapse
Affiliation(s)
- Bataa M A El-Kafoury
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A Abdel-Hady
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wesam El Bakly
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, AFCM, Cairo, Egypt
| | - Wael M Elayat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, Egypt
| | - Ghada Galal Hamam
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Noha N Lasheen
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, Egypt.
| |
Collapse
|
37
|
Wamsley EJ, Arora M, Gibson H, Powell P, Collins M. Memory Consolidation during Ultra-short Offline States. J Cogn Neurosci 2023; 35:1617-1634. [PMID: 37584585 DOI: 10.1162/jocn_a_02035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Traditionally, neuroscience and psychology have studied the human brain during periods of "online" attention to the environment, while participants actively engage in processing sensory stimuli. However, emerging evidence shows that the waking brain also intermittently enters an "offline" state, during which sensory processing is inhibited and our attention shifts inward. In fact, humans may spend up to half of their waking hours offline [Wamsley, E. J., & Summer, T. Spontaneous entry into an "offline" state during wakefulness: A mechanism of memory consolidation? Journal of Cognitive Neuroscience, 32, 1714-1734, 2020; Killingsworth, M. A., & Gilbert, D. T. A wandering mind is an unhappy mind. Science, 330, 932, 2010]. The function of alternating between online and offline forms of wakefulness remains unknown. We hypothesized that rapidly switching between online and offline states enables the brain to alternate between the competing demands of encoding new information and consolidating already-encoded information. A total of 46 participants (34 female) trained on a memory task just before a 30-min retention interval, during which they completed a simple attention task while undergoing simultaneous high-density EEG and pupillometry recording. We used a data-driven method to parse this retention interval into a sequence of discrete online and offline states, with a 5-sec temporal resolution. We found evidence for three distinct states, one of which was an offline state with features well-suited to support memory consolidation, including increased EEG slow oscillation power, reduced attention to the external environment, and increased pupil diameter (a proxy for increased norepinephrine). Participants who spent more time in this offline state following encoding showed improved memory at delayed test. These observations are consistent with the hypothesis that even brief, seconds-long entry into an offline state may support the early stages of memory consolidation.
Collapse
|
38
|
Kaida K, Mori I, Kihara K, Kaida N. The function of REM and NREM sleep on memory distortion and consolidation. Neurobiol Learn Mem 2023; 204:107811. [PMID: 37567411 DOI: 10.1016/j.nlm.2023.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
During rapid eye movement (REM) sleep, newly consolidated memories can be distorted to adjust the existing memory base in memory integration. However, only a few studies have demonstrated the role of REM sleep in memory distortion. The present study aims to clarify the role of REM sleep in the facilitation of memory distortion, that is, hindsight bias, compared to non-rapid eye movement (NREM) sleep and wake states. The split-night paradigm was used to segregate REM and NREM sleep. The hypotheses are (1) hindsight bias-memory distortion-is more substantial during REM-rich sleep (late-night sleep) than during NREM-rich sleep (early-night sleep); (2) memory stabilization is more substantial during NREM-rich sleep (early-night sleep) than during REM-rich sleep (late-night sleep); and (3) memory distortion takes longer time than memory stabilization. The results of the hindsight bias test show that more memory distortions were observed after the REM condition in comparison to the NREM condition. Contrary to the hindsight bias, the correct response in the word-pair association test was observed more in the NREM than in the REM condition. The difference in the hindsight bias index between the REM and NREM conditions was identified only one week later. Comparatively, the difference in correct responses in the word-pair association task between the conditions appeared three hours later and one week later. The present study found that (1) memory distortion occurs more during REM-rich sleep than during NREM-rich sleep, while memory stabilization occurs more during NREM-rich sleep than during REM-rich sleep. Moreover, (2) the newly encoded memory could be stabilized immediately after encoding, but memory distortion occurs over several days. These results suggest that the roles of NREM and REM sleep in memory processes could be different.
Collapse
Affiliation(s)
- Kosuke Kaida
- Institute for Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Ikue Mori
- Institute for Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ken Kihara
- Institute for Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Naoko Kaida
- Institute of Systems and Information Engineering, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8573, Japan
| |
Collapse
|
39
|
Collins AC, Price GD, Woodworth RJ, Jacobson NC. Predicting Individual Response to a Web-Based Positive Psychology Intervention: A Machine Learning Approach. THE JOURNAL OF POSITIVE PSYCHOLOGY 2023; 19:675-685. [PMID: 38854972 PMCID: PMC11156258 DOI: 10.1080/17439760.2023.2254743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/13/2023] [Indexed: 06/11/2024]
Abstract
Positive psychology interventions (PPIs) are effective at increasing happiness and decreasing depressive symptoms. PPIs are often administered as self-guided web-based interventions, but not all persons benefit from web-based interventions. Therefore, it is important to identify whether someone is likely to benefit from web-based PPIs, in order to triage persons who may not benefit from other interventions. In the current study, we used machine learning to predict individual response to a web-based PPI, in order to investigate baseline prognostic indicators of likelihood of response (N = 120). Our models demonstrated moderate correlations (happiness: r Test = 0.30 ± 0.09; depressive symptoms: r Test = 0.39 ± 0.06), indicating that baseline features can predict changes in happiness and depressive symptoms at a 6-month follow-up. Thus, machine learning can be used to predict outcome changes from a web-based PPI and has important clinical implications for matching individuals to PPIs based on their individual characteristics.
Collapse
Affiliation(s)
- Amanda C. Collins
- Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Department of Psychology, Mississippi State University, Mississippi State, MS, United States
| | - George D. Price
- Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Quantitative Biomedical Sciences Program, Dartmouth College, Lebanon, NH, United States
| | | | - Nicholas C. Jacobson
- Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Quantitative Biomedical Sciences Program, Dartmouth College, Lebanon, NH, United States
- Department of Psychiatry, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
40
|
Qiao Q, Mairlot C, Bendor D. Memory capacity and prioritization in female mice. Sci Rep 2023; 13:14073. [PMID: 37640740 PMCID: PMC10462704 DOI: 10.1038/s41598-023-40976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Our brain's capacity for memory storage may be vast but is still finite. Given that we cannot remember the entirety of our experiences, how does our brain select what to remember and what to forget? Much like the triage of a hospital's emergency room, where urgent cases are prioritized and less critical patients receive delayed or even no care, the brain is believed to go through a similar process of memory triage. Recent salient memories are prioritized for consolidation, which helps create stable, long-term representations in the brain; less salient memories receive a lower priority, and are eventually forgotten if not sufficiently consolidated (Stickgold and Walker in Nat Neurosci 16(2):139-145, 2013). While rodents are a primary model for studying memory consolidation, common behavioral tests typically rely on a limited number of items or contexts, well within the memory capacity of the subject. A memory test allowing us to exceed an animal's memory capacity is key to investigating how memories are selectively strengthened or forgotten. Here we report a new serial novel object recognition task designed to measure memory capacity and prioritization, which we test and validate using female mice.
Collapse
Affiliation(s)
- Qinbo Qiao
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Caroline Mairlot
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| |
Collapse
|
41
|
Rahman HH, Akinjobi Z, Gard C, Munson-McGee SH. Sleeping behavior and associated factors during COVID-19 in students at a Hispanic serving institution in the US southwestern border region. Sci Rep 2023; 13:11620. [PMID: 37464098 DOI: 10.1038/s41598-023-38713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Sleep is responsible for maintenance and regulatory functions in human physiology. Insufficient sleep has been associated with cardiovascular disease, weight gain, obesity, inflammation, and morbidity. University students are at high risk under normal circumstances of stress and anxiety due to extracurricular demands, competing pressures on student time, long study hours, and financial concerns. The COVID 19 pandemic has disrupted normal college students' lives adding stresses such as lost jobs and family responsibilities such as serving as caregivers, which disproportionally affect minority and rural student. This study aimed to assess the correlation of sleep disorders in New Mexico State University students during COVID 19 with selected variates including base demographics (e.g., gender, age, etc.), lifestyle metrics (e.g., employment status, discipline, class, etc.), living arrangements (e.g., housing type, number of children, etc.), alcohol and tobacco use, vaccination status, family COVID status, and family vaccination status. Single- and multi-factor logistic regressions were performed to analyze the data on the students. Qualtrics software was used to collect data on demographics and sleep disorders. R software was used for data analysis. Correlations were found between sleeping less, sleeping more, and disturbed sleep among several covariate categories. For all three responses, being married (sleeping less: OR = 0.342, 95% CI = 0.181-0.642, sleeping more: OR = 0.265, 95% CI = 0.111-0.591; disturbed sleeping: OR = 0.345, 95% CI = 0.182-0.650), frequency of feeling sleepy-very often (OR = 16.87, 95% CI = 6.571-47.434; OR = 8.393, 95% CI = 3.086-25.298; OR = 13.611, 95% CI = 5.409-36.975) and change in diet- quality decreased (OR = 7.304, 95% CI = 3.615-15.270; OR = 5.250, 95% CI = 2.309-12.558; OR = 4.181, 95% CI = 2.145-8.359) were all significant correlated to change in sleeping behavior. Other correlations were found among covariates and sleep changes. Several covariates were determined to be correlated with the effect of COVID-19 on sleeping.
Collapse
Affiliation(s)
- Humairat H Rahman
- Department of Public Health Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Zainab Akinjobi
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Charlotte Gard
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
42
|
Ko B, Yoo JY, Yoo T, Choi W, Dogan R, Sung K, Um D, Lee SB, Kim HJ, Lee S, Beak ST, Park SK, Paik SB, Kim TK, Kim JH. Npas4-mediated dopaminergic regulation of safety memory consolidation. Cell Rep 2023; 42:112678. [PMID: 37379214 DOI: 10.1016/j.celrep.2023.112678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Amygdala circuitry encodes associations between conditioned stimuli and aversive unconditioned stimuli and also controls fear expression. However, whether and how non-threatening information for unpaired conditioned stimuli (CS-) is discretely processed remains unknown. The fear expression toward CS- is robust immediately after fear conditioning but then becomes negligible after memory consolidation. The synaptic plasticity of the neural pathway from the lateral to the anterior basal amygdala gates the fear expression of CS-, depending upon neuronal PAS domain protein 4 (Npas4)-mediated dopamine receptor D4 (Drd4) synthesis, which is precluded by stress exposure or corticosterone injection. Herein, we show cellular and molecular mechanisms that regulate the non-threatening (safety) memory consolidation, supporting the fear discrimination.
Collapse
Affiliation(s)
- BumJin Ko
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jong-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Taesik Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Rumeysa Dogan
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kibong Sung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyun Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangjun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung Tae Beak
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Institute of Convergence Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Institute of Convergence Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Institute of Convergence Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Institute of Convergence Science, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
43
|
Morrow EL, Mayberry LS, Duff MC. The growing gap: A study of sleep, encoding, and consolidation of new words in chronic traumatic brain injury. Neuropsychologia 2023; 184:108518. [PMID: 36804844 PMCID: PMC10174227 DOI: 10.1016/j.neuropsychologia.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/31/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023]
Abstract
Word learning is an iterative and dynamic process supported by multiple neural and cognitive systems. Converging evidence from behavioral, cellular, and systems neuroscience highlights sleep as an important support for memory and word learning over time. In many lab-based word learning experiments, participants encode and subsequently retrieve newly learned words in a single session. These designs are inadequate to capture the full dynamic word learning process, making them less ecologically valid. Single timepoint studies also limit investigation of the role of behavioral and lifestyle factors, like sleep, in supporting word learning over time. Adults with a history of traumatic brain injury (TBI), who commonly exhibit deficits in the memory systems that support word learning and report concomitant sleep disturbance, provide a unique opportunity to examine the link between memory, sleep, and word learning. Here we examined word learning over time and the influence of sleep on short- and long-term word recall in 50 adults with chronic moderate-severe TBI and 50 demographically matched neurotypical peers. We used a randomized within-participant crossover design to assess immediate encoding of new words and the consolidation of those words over time across intervals that did or did not involve sleep. Participants completed this study over the course of two weeks in their own homes to capture the iterative, dynamic process of real-world word learning. We also measured sleep in free living conditions using actigraphy throughout the experiment. Participants with TBI exhibited a word learning deficit that began at encoding and persisted across time. Critically, this deficit grew over the course of the week. The performance gap between groups was larger at the 1-week post-test than the immediate post-test, suggesting deficits in both encoding and consolidation of new words in individuals with TBI. Participants with and without TBI remembered more words when they slept after learning. Ecologically valid research designs that examine the relationship between memory, sleep, and word learning over time promise to advance mechanistic accounts of word learning and improve the long-term retention of new words in individuals with and without brain injury.
Collapse
Affiliation(s)
- Emily L Morrow
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, USA; Department of Medicine, Division of General Internal Medicine & Public Health, Vanderbilt University Medical Center, USA; Center for Health Behavior and Health Education, Vanderbilt University Medical Center, USA.
| | - Lindsay S Mayberry
- Department of Medicine, Division of General Internal Medicine & Public Health, Vanderbilt University Medical Center, USA; Center for Health Behavior and Health Education, Vanderbilt University Medical Center, USA
| | - Melissa C Duff
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, USA
| |
Collapse
|
44
|
Roach ST, Ford MC, Simhambhatla V, Loutrianakis V, Farah H, Li Z, Periandri EM, Abdalla D, Huang I, Kalra A, Shaw PJ. Sleep deprivation, sleep fragmentation, and social jet lag increase temperature preference in Drosophila. Front Neurosci 2023; 17:1175478. [PMID: 37274220 PMCID: PMC10237294 DOI: 10.3389/fnins.2023.1175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Despite the fact that sleep deprivation substantially affects the way animals regulate their body temperature, the specific mechanisms behind this phenomenon are not well understood. In both mammals and flies, neural circuits regulating sleep and thermoregulation overlap, suggesting an interdependence that may be relevant for sleep function. To investigate this relationship further, we exposed flies to 12 h of sleep deprivation, or 48 h of sleep fragmentation and evaluated temperature preference in a thermal gradient. Flies exposed to 12 h of sleep deprivation chose warmer temperatures after sleep deprivation. Importantly, sleep fragmentation, which prevents flies from entering deeper stages of sleep, but does not activate sleep homeostatic mechanisms nor induce impairments in short-term memory also resulted in flies choosing warmer temperatures. To identify the underlying neuronal circuits, we used RNAi to knock down the receptor for Pigment dispersing factor, a peptide that influences circadian rhythms, temperature preference and sleep. Expressing UAS-PdfrRNAi in subsets of clock neurons prevented sleep fragmentation from increasing temperature preference. Finally, we evaluated temperature preference after flies had undergone a social jet lag protocol which is known to disrupt clock neurons. In this protocol, flies experience a 3 h light phase delay on Friday followed by a 3 h light advance on Sunday evening. Flies exposed to social jet lag exhibited an increase in temperature preference which persisted for several days. Our findings identify specific clock neurons that are modulated by sleep disruption to increase temperature preference. Moreover, our data indicate that temperature preference may be a more sensitive indicator of sleep disruption than learning and memory.
Collapse
Affiliation(s)
- S. Tanner Roach
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Melanie C. Ford
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vikram Simhambhatla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vasilios Loutrianakis
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Hamza Farah
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhaoyi Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica M. Periandri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Dina Abdalla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Irene Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Arjan Kalra
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
45
|
Xia T, Antony JW, Paller KA, Hu X. Targeted memory reactivation during sleep influences social bias as a function of slow-oscillation phase and delta power. Psychophysiology 2023; 60:e14224. [PMID: 36458473 PMCID: PMC10085833 DOI: 10.1111/psyp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
To understand how memories are reactivated and consolidated during sleep, experimenters have employed the unobtrusive re-presentation of memory cues from a variety of pre-sleep learning tasks. Using this procedure, known as targeted memory reactivation (TMR), we previously found that reactivation of counter-social-bias training during post-training sleep could selectively enhance training effects in reducing unintentional social biases. Here, we describe re-analyses of electroencephalographic (EEG) data from this previous study to characterize neurophysiological correlates of TMR-induced bias reduction. We found that TMR benefits in bias reduction were associated with (a) the timing of memory-related cue presentation relative to the 0.1-1.5 Hz slow-oscillation phase and (b) cue-elicited EEG power within the 1-4 Hz delta range. Although cue delivery was at a fixed rate in this study and not contingent on the slow-oscillation phase, cues were found to be clustered in slow-oscillation upstates for those participants with stronger TMR benefits. Similarly, higher cue-elicited delta power 250-1000 ms after cue onset was also linked with larger TMR benefits. These electrophysiological results substantiate the claim that memory reactivation altered social bias in the original study, while also informing neural explanations of these benefits. Future research should consider these sleep physiology parameters in relation to TMR applications and to memory reactivation in general.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
| | - James W. Antony
- Department of Psychology, Center for Mind and Brain, University of California, Davis, USA
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, USA
| | - Ken A. Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
46
|
Golkashani HA, Ghorbani S, Leong RLF, Ong JL, Chee MWL. Advantage conferred by overnight sleep on schema-related memory may last only a day. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad019. [PMID: 37193282 PMCID: PMC10155747 DOI: 10.1093/sleepadvances/zpad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Indexed: 05/18/2023]
Abstract
Study Objectives Sleep contributes to declarative memory consolidation. Independently, schemas benefit memory. Here we investigated how sleep compared with active wake benefits schema consolidation 12 and 24 hours after initial learning. Methods Fifty-three adolescents (age: 15-19 years) randomly assigned into sleep and active wake groups participated in a schema-learning protocol based on transitive inference (i.e. If B > C and C > D then B > D). Participants were tested immediately after learning and following 12-, and 24-hour intervals of wake or sleep for both the adjacent (e.g. B-C, C-D; relational memory) and inference pairs: (e.g.: B-D, B-E, and C-E). Memory performance following the respective 12- and 24-hour intervals were analyzed using a mixed ANOVA with schema (schema, no-schema) as the within-participant factor, and condition (sleep, wake) as the between-participant factor. Results Twelve hours after learning, there were significant main effects of condition (sleep, wake) and schema, as well as a significant interaction, whereby schema-related memory was significantly better in the sleep condition compared to wake. Higher sleep spindle density was most consistently associated with greater overnight schema-related memory benefit. After 24 hours, the memory advantage of initial sleep was diminished. Conclusions Overnight sleep preferentially benefits schema-related memory consolidation following initial learning compared with active wake, but this advantage may be eroded after a subsequent night of sleep. This is possibly due to delayed consolidation that might occur during subsequent sleep opportunities in the wake group. Clinical Trial Information Name: Investigating Preferred Nap Schedules for Adolescents (NFS5) URL: https://clinicaltrials.gov/ct2/show/NCT04044885. Registration: NCT04044885.
Collapse
Affiliation(s)
- Hosein Aghayan Golkashani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shohreh Ghorbani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
47
|
Picard-Deland C, Konkoly K, Raider R, Paller KA, Nielsen T, Pigeon WR, Carr M. The memory sources of dreams: serial awakenings across sleep stages and time of night. Sleep 2023; 46:zsac292. [PMID: 36462190 PMCID: PMC10091095 DOI: 10.1093/sleep/zsac292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Memories of waking-life events are incorporated into dreams, but their incorporation is not uniform across a night of sleep. This study aimed to elucidate ways in which such memory sources vary by sleep stage and time of night. Twenty healthy participants (11 F; 24.1 ± 5.7 years) spent a night in the laboratory and were awakened for dream collection approximately 12 times spread across early, middle, and late periods of sleep, while covering all stages of sleep (N1, N2, N3, REM). In the morning, participants identified and dated associated memories of waking-life events for each dream report, when possible. The incorporation of recent memory sources in dreams was more frequent in N1 and REM than in other sleep stages. The incorporation of distant memories from over a week ago, semantic memories not traceable to a single event, and anticipated future events remained stable throughout sleep. In contrast, the relative proportions of recent versus distant memory sources changed across the night, independently of sleep stage, with late-night dreams in all stages having relatively less recent and more remote memory sources than dreams earlier in the night. Qualitatively, dreams tended to repeat similar themes across the night and in different sleep stages. The present findings clarify the temporal course of memory incorporations in dreams, highlighting a specific connection between time of night and the temporal remoteness of memories. We discuss how dream content may, at least in part, reflect the mechanisms of sleep-dependent memory consolidation.
Collapse
Affiliation(s)
| | - Karen Konkoly
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Rachel Raider
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Tore Nielsen
- Department of Psychiatry and Addictology, University of Montreal, Montreal, Quebec, Canada
| | - Wilfred R Pigeon
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle Carr
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
48
|
Brezack N, Pan S, Chandler J, Woodward AL. Toddlers' action learning and memory from active and observed instructions. J Exp Child Psychol 2023; 232:105670. [PMID: 36972644 DOI: 10.1016/j.jecp.2023.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
From early in life, children learn to perform actions on the objects in their environments. Although children learn from observing others' actions, actively engaging with the material to be learned can be important for learning. This study tested whether instruction that included opportunities for children to be active supported toddlers' action learning. In a within-participants design, 46 22- to 26-month-old toddlers (average age = 23.3 months; 21 male) were introduced to target actions for which instruction was either active or observed (instruction order counterbalanced across children). During active instruction, toddlers were coached to perform a set of target actions. During observed instruction, toddlers saw a teacher perform the actions. Toddlers were then tested on their action learning and generalization. Surprisingly, action learning and generalization did not differ between instruction conditions. However, toddlers' cognitive maturity supported their learning from both types of instruction. One year later, children from the original sample were tested on their long-term memory for information learned from active and observed instructions. Of this sample, 26 children provided usable data for the follow-up memory task (average age = 36.7 months, range = 33-41; 12 male). Children demonstrated better memory for information learned from active instruction than for information learned from observed instruction (odds ratio = 5.23) 1 year after instruction. Active experience during instruction appears to be pivotal for supporting children's long-term memory.
Collapse
Affiliation(s)
- Natalie Brezack
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA.
| | - Sarah Pan
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| | - Jessica Chandler
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| | - Amanda L Woodward
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Demirlek C, Bora E. Sleep-dependent memory consolidation in schizophrenia: A systematic review and meta-analysis. Schizophr Res 2023; 254:146-154. [PMID: 36889181 DOI: 10.1016/j.schres.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Sleep disturbances and cognitive impairment are both persistent and common features of schizophrenia. Accumulating evidence indicates that sleep-dependent memory consolidation might be impaired in patients with schizophrenia compared to healthy controls. The current systematic review was performed in accordance with PRISMA guidelines. A random-effects model was used to calculate effect sizes (Hedge's g). In the quantitative review, three separate meta-analyses were conducted for procedural memory in healthy controls, schizophrenia, and comparison between healthy controls and schizophrenia. Additionally, separate meta-analyses were conducted for the studies using finger tapping motor sequence task, as it is the most commonly used task. The current systematic review included 14 studies including 304 patients with schizophrenia and 209 healthy controls. The random-effects model analyses for sleep-dependent procedural memory consolidation resulted in a small effect size in schizophrenia (g = 0.26), a large effect size in healthy controls (g = 0.98), a moderate effect size in healthy controls vs schizophrenia (g = 0.64). For the studies using finger tapping motor sequence task, meta-analyses resulted in a small effect size in schizophrenia (g = 0.19), a large effect size in healthy controls (g = 1.07), a moderate effect size in healthy controls vs schizophrenia (g = 0.70). In the qualitative review, there was also impaired sleep-dependent declarative memory consolidation in schizophrenia compared to healthy controls. Current findings support that sleep improves memory consolidation in healthy adults, but there is a deficit in sleep-dependent memory consolidation in people with schizophrenia. Future studies investigating sleep-dependent consolidation of different memory subtypes with polysomnography in different stages of psychotic disorders are needed.
Collapse
Affiliation(s)
- Cemal Demirlek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Dokuz Eylul University Medical School, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| |
Collapse
|
50
|
Si Y, Chen J, Shen Y, Kubra S, Mei B, Qin ZS, Pan B, Meng B. Circadian rhythm sleep disorders and time-of-day-dependent memory deficiency in Presenilin1/2 conditional knockout mice with long noncoding RNA expression profiling changes. Sleep Med 2023; 103:146-158. [PMID: 36805914 DOI: 10.1016/j.sleep.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Alzheimer's disease (AD) patients exhibit sleep and circadian disturbances prior to the onset of cognitive decline, and these disruptions worsen with disease severity. However, the molecular mechanisms behind sleep and circadian disruptions in AD patients are poorly understood. In this study, we investigated sleep pattern and circadian rhythms in Presenilin-1/2 conditional knockout (DKO) mice. Assessment of EEG and EMG recordings showed that DKO mice displayed increased NREM sleep time but not REM sleep during the dark phase compared to WT mice at the age of two months; at the age of six months, the DKO mice showed increased wakefulness periods and decreased total time spent in both NREM and REM sleep. WT exhibited time-of-day dependent modulation of contextual and cued memory. Compared with WT mice, 4-month-old DKO mice exhibited the deficiency regardless trained and tested in the same light/night phase or not. Particularly interesting was that DKO showed circadian modulation deficiency when trained in the resting period but not in the active period. Long noncoding RNAs (lncRNAs) are typically defined as transcripts longer than 200 nucleotides, and they have rhythmic expression in mammals. To date no study has investigated rhythmic lncRNA expression in Alzheimer's disease. We applied RNA-seq technology to profile hippocampus expression of lncRNAs in DKO mice during the light (/resting) and dark (/active) phases and performed gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the cis lncRNA targets. Expression alteration of lncRNAs associated with immune response and metallodipeptidase activity may contribute to the circadian disruptions of DKO mice. Especially we identified some LncRNAs which expression change oppositely between day and light in DKO mice compared to WT mice and are worthy to be studied further. Our results exhibited the circadian rhythm sleep disorders and a noteworthy time-of-day-dependent memory deficiency in AD model mice and provide a useful resource for studying the expression and function of lncRNAs during circadian disruptions in Alzheimer's disease.
Collapse
Affiliation(s)
- Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jing Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yang Shen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States.
| | - Syeda Kubra
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Bing Mei
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States.
| | - Boxi Pan
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China.
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|