1
|
Novakovic MM, Prakriya M. Calcium signaling at the interface between astrocytes and brain inflammation. Curr Opin Neurobiol 2025; 90:102940. [PMID: 39673911 DOI: 10.1016/j.conb.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Astrocytes are the most prevalent glial cells of the brain and mediate vital roles in the development and function of the nervous system. Astrocytes, along with microglia, also play key roles in initiating inflammatory immune responses following brain injury, stress, or disease-related triggers. While these glial immune responses help contain and resolve cellular damage to the brain, dysregulation of astrocyte activity can in some cases amplify inflammation and worsen impact on neural tissue. As nonexcitable cells, astrocytes excitability is regulated primarily by Ca2+ signals that control key functions such as gene expression, release of inflammatory mediators, and cell metabolism. In this review, we examine the molecular and functional architecture of Ca2+ signaling networks in astrocytes and their impact on astrocyte effector functions involved in inflammation and immunity.
Collapse
Affiliation(s)
- Michaela M Novakovic
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Hike D, Liu X, Xie Z, Zhang B, Choi S, Zhou XA, Liu A, Murstein A, Jiang Y, Devor A, Yu X. High-resolution awake mouse fMRI at 14 tesla. eLife 2025; 13:RP95528. [PMID: 39786364 PMCID: PMC11717365 DOI: 10.7554/elife.95528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts. Using a 14 T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100 µm×100 µm×200 µm resolution with a 2 s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust blood oxygen level-dependent (BOLD) responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 s prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous exposure of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.
Collapse
Affiliation(s)
- David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Zeping Xie
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Bei Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Andy Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Graduate Program in Neuroscience, Boston UniversityBostonUnited States
| | - Alyssa Murstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Graduate Program in Neuroscience, Boston UniversityBostonUnited States
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General HospitalCharlestownUnited States
| |
Collapse
|
3
|
Williamson MR, Kwon W, Woo J, Ko Y, Maleki E, Yu K, Murali S, Sardar D, Deneen B. Learning-associated astrocyte ensembles regulate memory recall. Nature 2025; 637:478-486. [PMID: 39506118 DOI: 10.1038/s41586-024-08170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
The physical manifestations of memory formation and recall are fundamental questions that remain unresolved1. At the cellular level, ensembles of neurons called engrams are activated by learning events and control memory recall1-5. Astrocytes are found in close proximity to neurons and engage in a range of activities that support neurotransmission and circuit plasticity6-10. Moreover, astrocytes exhibit experience-dependent plasticity11-13, although whether specific ensembles of astrocytes participate in memory recall remains obscure. Here we show that learning events induce c-Fos expression in a subset of hippocampal astrocytes, and that this subsequently regulates the function of the hippocampal circuit in mice. Intersectional labelling of astrocyte ensembles with c-Fos after learning events shows that they are closely affiliated with engram neurons, and reactivation of these astrocyte ensembles stimulates memory recall. At the molecular level, learning-associated astrocyte (LAA) ensembles exhibit elevated expression of nuclear factor I-A, and its selective deletion from this population suppresses memory recall. Taken together, our data identify LAA ensembles as a form of plasticity that is sufficient to provoke memory recall and indicate that astrocytes are an active component of the engram.
Collapse
Affiliation(s)
- Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjana Murali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Speggiorin M, Chiavegato A, Zonta M, Gómez-Gonzalo M. Characterization of the Astrocyte Calcium Response to Norepinephrine in the Ventral Tegmental Area. Cells 2024; 14:24. [PMID: 39791726 PMCID: PMC11720743 DOI: 10.3390/cells14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Astrocytes from different brain regions respond with Ca2+ elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes. We found that VTA astrocytes from both female and male young adult mice showed a strong Ca2+ response to NE at both soma and processes. Our results revealed that Gq-coupled α1 adrenergic receptors, which elicit the production of IP3, are the main mediators of the astrocyte response. In mice lacking the IP3 receptor type-2 (IP3R2-/- mice), we found that the astrocyte response to NE, even if reduced, is still present. We also found that in IP3R2-/- astrocytes, the residual Ca2+ elevations elicited by NE depend on the release of Ca2+ from the endoplasmic reticulum, through IP3Rs different from IP3R2. In conclusion, our results reveal VTA astrocytes as novel targets of the noradrenergic signaling, opening to new interpretations of the cellular and molecular mechanisms that mediate the NE effects in the VTA.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/drug effects
- Ventral Tegmental Area/metabolism
- Ventral Tegmental Area/drug effects
- Norepinephrine/pharmacology
- Norepinephrine/metabolism
- Calcium/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Mice
- Male
- Female
- Calcium Signaling/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/drug effects
Collapse
Affiliation(s)
- Michele Speggiorin
- Department of Biomedical Sciences, Università degli Studi di Padova, 35131 Padova, Italy; (M.S.); (A.C.)
| | - Angela Chiavegato
- Department of Biomedical Sciences, Università degli Studi di Padova, 35131 Padova, Italy; (M.S.); (A.C.)
| | - Micaela Zonta
- Neuroscience Institute, Section of Padova, National Research Council (CNR), 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, Section of Padova, National Research Council (CNR), 35131 Padova, Italy;
| |
Collapse
|
5
|
Lines J, Baraibar A, Nanclares C, Martin ED, Aguilar J, Kofuji P, Navarrete M, Araque A. A spatial threshold for astrocyte calcium surge. eLife 2024; 12:RP90046. [PMID: 39680037 DOI: 10.7554/elife.90046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Astrocytes are active cells involved in brain function through the bidirectional communication with neurons, in which astrocyte calcium plays a crucial role. Synaptically evoked calcium increases can be localized to independent subcellular domains or expand to the entire cell, i.e., calcium surge. Because a single astrocyte may contact ~100,000 synapses, the control of the intracellular calcium signal propagation may have relevant consequences on brain function. Yet, the properties governing the spatial dynamics of astrocyte calcium remains poorly defined. Imaging subcellular responses of cortical astrocytes to sensory stimulation in mice, we show that sensory-evoked astrocyte calcium responses originated and remained localized in domains of the astrocytic arborization, but eventually propagated to the entire cell if a spatial threshold of >23% of the arborization being activated was surpassed. Using Itpr2-/- mice, we found that type-2 IP3 receptors were necessary for the generation of astrocyte calcium surge. We finally show using in situ electrophysiological recordings that the spatial threshold of the astrocyte calcium signal consequently determined the gliotransmitter release. Present results reveal a fundamental property of astrocyte physiology, i.e., a spatial threshold for astrocyte calcium propagation, which depends on astrocyte intrinsic properties and governs astrocyte integration of local synaptic activity and subsequent neuromodulation.
Collapse
Affiliation(s)
- Justin Lines
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | - Andres Baraibar
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | - Carmen Nanclares
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | | | - Juan Aguilar
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | | | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| |
Collapse
|
6
|
Zhu Y, Ma J, Li Y, Gu M, Feng X, Shao Y, Tan L, Lou HF, Sun L, Liu Y, Zeng LH, Qiu Z, Li XM, Duan S, Yu YQ. Adenosine-Dependent Arousal Induced by Astrocytes in a Brainstem Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407706. [PMID: 39494592 DOI: 10.1002/advs.202407706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Astrocytes play a crucial role in regulating sleep-wake behavior. However, how astrocytes govern a specific sleep-arousal circuit remains unknown. Here, the authors show that parafacial zone (PZ) astrocytes responded to sleep-wake cycles with state-differential Ca2+ activity, peaking during transitions from sleep to wakefulness. Using chemogenetic and optogenetic approaches, they find that activating PZ astrocytes elicited and sustained wakefulness by prolonging arousal episodes while impeding transitions from wakefulness to non-rapid eye movement (NREM) sleep. Activation of PZ astrocytes specially induced the elevation of extracellular adenosine through the ATP hydrolysis pathway but not equilibrative nucleoside transporter (ENT) mediated transportation. Strikingly, the rise in adenosine levels induced arousal by activating A1 receptors, suggesting a distinct role for adenosine in the PZ beyond its conventional sleep homeostasis modulation observed in the basal forebrain (BF) and cortex. Moreover, at the circuit level, PZ astrocyte activation induced arousal by suppressing the GABA release from the PZGABA neurons, which promote NREM sleep and project to the parabrachial nucleus (PB). Thus, their study unveils a distinctive arousal-promoting effect of astrocytes within the PZ through extracellular adenosine and elucidates the underlying mechanism at the neural circuit level.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Jiale Ma
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Yulan Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengyang Gu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lei Tan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hui-Fang Lou
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Zilong Qiu
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Zhou Z, Bai Y, Gu X, Ren H, Xi W, Wang Y, Bian L, Liu X, Shen L, Xiang X, Huang W, Luo Z, Han B, Yao H. Membrane Associated RNA-Containing Vesicles Regulate Cortical Astrocytic Microdomain Calcium Transients in Awake Ischemic Stroke Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404391. [PMID: 39444078 PMCID: PMC11633488 DOI: 10.1002/advs.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/01/2024] [Indexed: 10/25/2024]
Abstract
Astrocytic processes minutely regulate neuronal activity via tripartite synaptic structures. The precision-tuning of the function of astrocytic processes is garnering increasing attention because of its significance in promoting brain repair following ischemic stroke. Microdomain calcium (Ca2+) transients in astrocytic processes are pivotal for the functional regulation of these processes. However, the understanding of the alterations and regulatory mechanism of microdomain Ca2+ transients during stroke remains limited. In the present study, a fast high-resolution, miniaturized two-photon microscopy is used to show that the levels of astrocytic microdomain Ca2+ transients are significantly reduced in the peri-infarct area of awake ischemic stroke mice. This finding correlated with the behavioral deficits shown by these mice under freely-moving conditions. Mitochondrial Ca2+ activity is an important factor driving the microdomain Ca2+ transients. DEAD Box 1 (DDX1) bound to circSCMH1 (a circular RNA involved in vascular post-stroke repair) facilitates the formation of membrane-associated RNA-containing vesicles (MARVs) and enhances the activity of astrocytic microdomain Ca2+ transients, thereby promoting behavioral recovery. These results show that targeting astrocytic microdomain Ca2+ transients is a potential therapeutic approach in stroke intervention.
Collapse
Affiliation(s)
- Zhongqiu Zhou
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ying Bai
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xiaochun Gu
- Jiangsu Key Laboratory of Molecular and Functional ImagingDepartment of RadiologyZhongda HospitalMedical School of Southeast UniversityNanjing210009China
| | - Hui Ren
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Wen Xi
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Yu Wang
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Liang Bian
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xue Liu
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ling Shen
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Wenhui Huang
- Department of Molecular PhysiologyCenter for Integrative Physiology and Molecular MedicineUniversity of Saarland66421HomburgGermany
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Bing Han
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Honghong Yao
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Institute of Life SciencesKey Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjing210096China
| |
Collapse
|
8
|
Paidlewar M, Kumari S, Dhapola R, Sharma P, HariKrishnaReddy D. Unveiling the role of astrogliosis in Alzheimer's disease Pathology: Insights into mechanisms and therapeutic approaches. Int Immunopharmacol 2024; 141:112940. [PMID: 39154532 DOI: 10.1016/j.intimp.2024.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is one of the most debilitating age-related disorders that affect people globally. It impacts social and cognitive behavior of the individual and is characterized by phosphorylated tau and Aβ accumulation. Astrocytesmaintain a quiescent, anti-inflammatory state on anatomical level, expressing few cytokines and exhibit phagocytic activity to remove misfolded proteins. But in AD, in response to specific stimuli, astrocytes overstimulate their phagocytic character with overexpressing cytokine gene modules. Upon interaction with generated Aβ and neurofibrillary tangle, astrocytes that are continuously activated release a large number of inflammatory cytokines. This cytokine storm leads to neuroinflammation which is also one of the recognizable features of AD. Astrogliosis eventually promotes cholinergic dysfunction, calcium imbalance, oxidative stress and excitotoxicity. Furthermore, C5aR1, Lcn2/, BDNF/TrkB and PPARα/TFEB signaling dysregulation has a major impact on the disease progression. This review clarifies numerous ways that lead to astrogliosis, which is stimulated by a variety of processes that exacerbate AD pathology and make it a suitable target for AD treatment. Drugs under clinical and preclinical investigations that target several pathways managing astrogliosis and are efficacious in ameliorating the pathology of the disease are also included in this study. D-ALA2GIP, TRAM-34, Genistein, L-serine, MW150 and XPro1595 are examples of few drugs targeting astrogliosis. Therefore, this study may aid in the development of a potent therapeutic agent for ameliorating astrogliosis mediated AD progression.
Collapse
Affiliation(s)
- Mohit Paidlewar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India.
| |
Collapse
|
9
|
Bai Y, Zhou Z, Han B, Xiang X, Huang W, Yao H. Revisiting astrocytic calcium signaling in the brain. FUNDAMENTAL RESEARCH 2024; 4:1365-1374. [PMID: 39734522 PMCID: PMC11670731 DOI: 10.1016/j.fmre.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/31/2024] Open
Abstract
Astrocytes, characterized by complex spongiform morphology, participate in various physiological processes, and abnormal changes in their calcium (Ca2+) signaling are implicated in central nervous system disorders. However, medications targeting the control of Ca2+ have fallen short of the anticipated therapeutic outcomes in clinical applications. This underscores the fact that our comprehension of this intricate regulation of calcium ions remains considerably incomplete. In recent years, with the advancement of Ca2+ labeling, imaging, and analysis techniques, Ca2+ signals have been found to exhibit high specificity at different spatial locations within the intricate structure of astrocytes. This has ushered the study of Ca2+ signaling in astrocytes into a new phase, leading to several groundbreaking research achievements. Despite this, the comprehensive understanding of astrocytic Ca2+ signaling and their implications remains challenging area for future research.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongqiu Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenhui Huang
- Molecular Physiology, CIPMM, University of Saarland, Homburg 66421, Germany
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Center for Global Health, School of Public Health, Nanjig Medical University, Nanjing 211166, China
| |
Collapse
|
10
|
Zhang Y, Li D, Cai Y, Zou R, Zhang Y, Deng X, Wang Y, Tang T, Ma Y, Wu F, Xie Y. Astrocyte allocation during brain development is controlled by Tcf4-mediated fate restriction. EMBO J 2024; 43:5114-5140. [PMID: 39300210 PMCID: PMC11535398 DOI: 10.1038/s44318-024-00218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024] Open
Abstract
Astrocytes in the brain exhibit regional heterogeneity contributing to regional circuits involved in higher-order brain functions, yet the mechanisms controlling their distribution remain unclear. Here, we show that the precise allocation of astrocytes to specific brain regions during development is achieved through transcription factor 4 (Tcf4)-mediated fate restriction based on their embryonic origin. Loss of Tcf4 in ventral telencephalic neural progenitor cells alters the fate of oligodendrocyte precursor cells to transient intermediate astrocyte precursor cells, resulting in mislocalized astrocytes in the dorsal neocortex. These ectopic astrocytes engage with neocortical neurons and acquire features reminiscent of dorsal neocortical astrocytes. Furthermore, Tcf4 functions as a suppressor of astrocyte fate during the differentiation of oligodendrocyte precursor cells derived from the ventral telencephalon, thereby restricting the fate to the oligodendrocyte lineage in the dorsal neocortex. Together, our findings highlight a previously unappreciated role for Tcf4 in regulating astrocyte allocation, offering additional insights into the mechanisms underlying neurodevelopmental disorders linked to Tcf4 mutations.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dan Li
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuqun Cai
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zou
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yilan Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Deng
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yafei Wang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianxiang Tang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feizhen Wu
- Laboratory of Epi-Informatics, Intelligent Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Yunli Xie
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Wahis J, Akkaya C, Kirunda AM, Mak A, Zeise K, Verhaert J, Gasparyan H, Hovhannisyan S, Holt MG. The astrocyte α1A-adrenoreceptor is a key component of the neuromodulatory system in mouse visual cortex. Glia 2024; 72:1955-1973. [PMID: 39001577 DOI: 10.1002/glia.24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 11/15/2024]
Abstract
Noradrenaline (norepinephrine) is known to modulate many physiological functions and behaviors. In this study, we tested to what extent astrocytes, a type of glial cell, participate in noradrenergic signaling in mouse primary visual cortex (V1). Astrocytes are essential partners of neurons in the central nervous system. They are central to brain homeostasis, but also dynamically regulate neuronal activity, notably by relaying and regulating neuromodulator signaling. Indeed, astrocytes express receptors for multiple neuromodulators, including noradrenaline, but the extent to which astrocytes are involved in noradrenergic signaling remains unclear. To test whether astrocytes are involved in noradrenergic neuromodulation in mice, we employed both short hairpin RNA mediated knockdown as well as pharmacological manipulation of the major noradrenaline receptor in astrocytes, the α1A-adrenoreceptor. Using acute brain slices, we found that the astrocytic α1A-adrenoreceptor subtype contributes to the generation of large intracellular Ca2+ signals in visual cortex astrocytes, which are generally thought to underlie astrocyte function. To test if reduced α1A-adrenoreceptor signaling in astrocytes affected the function of neuronal circuits in V1, we used both patch-clamp and field potential recordings. These revealed that noradrenergic signaling through the astrocyte α1A-adrenoreceptor is important to not only modulate synaptic activity but also to regulate plasticity in V1, through the potentiation of synaptic responses in circuits involved in visual information processing.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Cansu Akkaya
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Andre M Kirunda
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Aline Mak
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Karen Zeise
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jens Verhaert
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Hayk Gasparyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
- Armenian Bioinformatics institute, Yerevan, Armenia
| | - Sargis Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
- Armenian Bioinformatics institute, Yerevan, Armenia
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Freund A, Mayr A, Winkler P, Weber R, Tervonen A, Refaeli R, Lenk K. Computational modeling of the relationship between morphological heterogeneity and functional responses in mouse hippocampal astrocytes. Front Cell Neurosci 2024; 18:1474948. [PMID: 39484184 PMCID: PMC11524972 DOI: 10.3389/fncel.2024.1474948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Recent studies indicate that astrocytes show heterogeneity in morphology and physiological function. They integrate synaptic signals and release calcium in reaction to active neurons. These calcium signals are not yet fully understood as they are highly dependent on the cell's morphology, which can vary across and within brain regions. We found structural heterogeneity among mouse hippocampal CA1 astrocytes based on geometric features, clustering 741 cells into six classes. Of those, we selected 84 cells and reconstructed their morphology based on confocal microscope images and converted them into multi-compartment models with a high detailedness. We applied a computational biophysical model simulating the intracellular ion and IP3 signaling and diffusion in those 3D cell geometries. The cells were stimulated with three different glutamate stimuli. Calcium mainly oscillated in the stimulated and the neighboring compartment but not in the soma. Significant differences were found in the peak width, mean prominence, and mean peak amplitude of the calcium signal when comparing the signals in the stimulated and neighboring compartments. Overall, this study highlights the influence of the complex morphology of astrocytes on intracellular ionic signaling.
Collapse
Affiliation(s)
- Anna Freund
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Alexander Mayr
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Peter Winkler
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Rene Weber
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Aapo Tervonen
- Biosciences Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ron Refaeli
- Laboratory of Inbal Goshen, Hebrew University of Jerusalem, Edmond and Lily Safra Center (ELSC), Jerusalem, Israel
| | - Kerstin Lenk
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
13
|
Ahrens MB, Khakh BS, Poskanzer KE. Astrocyte Calcium Signaling. Cold Spring Harb Perspect Biol 2024; 16:a041353. [PMID: 38768971 PMCID: PMC11444304 DOI: 10.1101/cshperspect.a041353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system and participate in well-established functional and morphological interactions with neurons, blood vessels, and other glia. These ubiquitous cells display rich intracellular Ca2+ signaling, which has now been studied for over 30 years. In this review, we provide a summary and perspective of recent progress concerning the study of astrocyte intracellular Ca2+ signaling as well as discussion of its potential functions. Progress has occurred in the areas of imaging, silencing, activating, and analyzing astrocyte Ca2+ signals. These insights have collectively permitted exploration of the relationships of astrocyte Ca2+ signals to neural circuit function and behavior in a variety of species. We summarize these aspects along with a framework for mechanistically interpreting behavioral studies to identify directly causal effects. We finish by providing a perspective on new avenues of research concerning astrocyte Ca2+ signaling.
Collapse
Affiliation(s)
- Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Baljit S Khakh
- Department of Physiology and Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
14
|
Li J, Jin S, Hu J, Xu R, Xu J, Li Z, Wang M, Fu Y, Liao S, Li X, Chen Y, Gao T, Yang J. Astrocytes in the Ventral Hippocampus Bidirectionally Regulate Innate and Stress-Induced Anxiety-Like Behaviors in Male Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400354. [PMID: 39120568 PMCID: PMC11481230 DOI: 10.1002/advs.202400354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The mechanisms of anxiety disorders, the most common mental illness, remain incompletely characterized. The ventral hippocampus (vHPC) is critical for the expression of anxiety. However, current studies primarily focus on vHPC neurons, leaving the role for vHPC astrocytes in anxiety largely unexplored. Here, genetically encoded Ca2+ indicator GCaMP6m and in vivo fiber photometry calcium imaging are used to label vHPC astrocytes and monitor their activity, respectively, genetic and chemogenetic approaches to inhibit and activate vHPC astrocytes, respectively, patch-clamp recordings to measure glutamate currents, and behavioral assays to assess anxiety-like behaviors. It is found that vHPC astrocytic activity is increased in anxiogenic environments and by 3-d subacute restraint stress (SRS), a well-validated mouse model of anxiety disorders. Genetic inhibition of vHPC astrocytes exerts anxiolytic effects on both innate and SRS-induced anxiety-related behaviors, whereas hM3Dq-mediated chemogenetic or SRS-induced activation of vHPC astrocytes enhances anxiety-like behaviors, which are reversed by intra-vHPC application of the ionotropic glutamate N-methyl-d-aspartate receptor antagonists. Furthermore, intra-vHPC or systemic application of the N-methyl-d-aspartate receptor antagonist memantine, a U.S. FDA-approved drug for Alzheimer's disease, fully rescues SRS-induced anxiety-like behaviors. The findings highlight vHPC astrocytes as critical regulators of stress and anxiety and as potential therapeutic targets for anxiety and anxiety-related disorders.
Collapse
Affiliation(s)
- Jing‐Ting Li
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Shi‐Yang Jin
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jian Hu
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Ru‐Xia Xu
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jun‐Nan Xu
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zi‐Ming Li
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Meng‐Ling Wang
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yi‐Wen Fu
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Shi‐Han Liao
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xiao‐Wen Li
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yi‐Hua Chen
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Tian‐Ming Gao
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jian‐Ming Yang
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
15
|
Ghézali G, Ribot J, Curry N, Pillet LE, Boutet-Porretta F, Mozheiko D, Calvo CF, Ezan P, Perfettini I, Lecoin L, Janel S, Zapata J, Escartin C, Etienne-Manneville S, Kaminski CF, Rouach N. Connexin 30 locally controls actin cytoskeleton and mechanical remodeling in motile astrocytes. Glia 2024; 72:1915-1929. [PMID: 38982826 DOI: 10.1002/glia.24590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.
Collapse
Affiliation(s)
- Grégory Ghézali
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Jérôme Ribot
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Nathan Curry
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Laure-Elise Pillet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N°562, Université Paris Cité, Paris, France
| | - Flora Boutet-Porretta
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Daria Mozheiko
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Charles-Félix Calvo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Isabelle Perfettini
- Institut Pasteur, Université de Paris, CNRS, Cell Polarity, Migration and Cancer Unit, Paris, France
| | - Laure Lecoin
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Sébastien Janel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Wu Y, Dai Y, Lefton KB, Holy TE, Papouin T. STARDUST: A pipeline for the unbiased analysis of astrocyte regional calcium dynamics. STAR Protoc 2024; 5:103305. [PMID: 39276355 PMCID: PMC11417172 DOI: 10.1016/j.xpro.2024.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
Calcium imaging has become a popular way to probe astrocyte activity, but few techniques holistically capture discrete calcium signals occurring across the astrocyte domain. Here, we introduce STARDUST, a pipeline for the spatio-temporal analysis of regional dynamics and unbiased sorting of transients from fluorescence recordings of astrocytes. We describe steps for installing software, detecting active pixel patches, obtaining region of activity (ROA) maps, and extracting time series from ROAs. We then detail procedures for extracting signal features using custom-made code.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanchao Dai
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katheryn B Lefton
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Fabbri R, Scidà A, Saracino E, Conte G, Kovtun A, Candini A, Kirdajova D, Spennato D, Marchetti V, Lazzarini C, Konstantoulaki A, Dambruoso P, Caprini M, Muccini M, Ursino M, Anderova M, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes. NATURE NANOTECHNOLOGY 2024; 19:1344-1353. [PMID: 38987650 PMCID: PMC11405283 DOI: 10.1038/s41565-024-01711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell-electrolyte or cell-material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine.
Collapse
Affiliation(s)
- Roberta Fabbri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandra Scidà
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Giorgia Conte
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Andrea Candini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Diletta Spennato
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Valeria Marchetti
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chiara Lazzarini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Aikaterini Konstantoulaki
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Paolo Dambruoso
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Bologna, Italy
| | - Mauro Ursino
- Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Emanuele Treossi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| |
Collapse
|
18
|
Lines J, Baraibar A, Nanclares C, Martín ED, Aguilar J, Kofuji P, Navarrete M, Araque A. A spatial threshold for astrocyte calcium surge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549563. [PMID: 37503130 PMCID: PMC10370153 DOI: 10.1101/2023.07.18.549563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Astrocytes are active cells involved in brain function through the bidirectional communication with neurons, in which the astrocyte calcium signal plays a crucial role. Synaptically-evoked calcium increases can be localized to independent subcellular domains or expand to the entire cell, i.e., calcium surge. In turn, astrocytes may regulate individual synapses by calcium-dependent release of gliotransmitters. Because a single astrocyte may contact ∼100,000 synapses, the control of the intracellular calcium signal propagation may have relevant consequences on brain function by regulating the spatial range of astrocyte neuromodulation of synapses. Yet, the properties governing the spatial dynamics of the astrocyte calcium signal remains poorly defined. Imaging subcellular responses of cortical astrocytes to sensory stimulation in mice, we show that sensory-evoked astrocyte calcium responses originated and remained localized in domains of the astrocytic arborization, but eventually propagated to the entire cell if a spatial threshold of >23% of the arborization being activated was surpassed. Using transgenic IP 3 R2 -/- mice, we found that type-2 IP 3 receptors were necessary for the generation of the astrocyte calcium surge. We finally show using in situ electrophysiological recordings that the spatial threshold of the astrocyte calcium signal consequently determined the gliotransmitter release. Present results reveal a fundamental property of astrocyte calcium physiology, i.e., a spatial threshold for the astrocyte intracellular calcium signal propagation, which depends on astrocyte intrinsic properties and governs the astrocyte integration of local synaptic activity and the subsequent neuromodulation. One-Sentence Summary There is a spatial threshold for the astrocyte intracellular calcium signal propagation that is determined by astrocyte intrinsic properties and controls gliotransmission.
Collapse
|
19
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
20
|
Gonçalves-Ribeiro J, Savchak OK, Costa-Pinto S, Gomes JI, Rivas-Santisteban R, Lillo A, Sánchez Romero J, Sebastião AM, Navarrete M, Navarro G, Franco R, Vaz SH. Adenosine receptors are the on-and-off switch of astrocytic cannabinoid type 1 (CB1) receptor effect upon synaptic plasticity in the medial prefrontal cortex. Glia 2024; 72:1096-1116. [PMID: 38482984 DOI: 10.1002/glia.24518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.
Collapse
Affiliation(s)
- Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Costa-Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rafael Rivas-Santisteban
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Javier Sánchez Romero
- Instituto Cajal, CSIC, Madrid, Spain
- PhD Program in Neuroscience, Universidad Autónoma de Madrid-Instituto Cajal, Madrid, Spain
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Wu Y, Dai Y, Lefton KB, Holy TE, Papouin T. STARDUST: a pipeline for the unbiased analysis of astrocyte regional calcium dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588196. [PMID: 38645020 PMCID: PMC11030233 DOI: 10.1101/2024.04.04.588196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Calcium imaging has become a popular way to probe astrocyte activity, but few analysis methods holistically capture discrete calcium signals that occur across the astrocyte domain. Here, we introduce STARDUST, a pipeline for the Spatio-Temporal Analysis of Regional Dynamics & Unbiased Sorting of Transients from fluorescence recordings of astrocytes, and provide step-by-step guidelines. STARDUST yields fluorescence time-series from data-defined regions of activity and performs systematic signal detection and feature extraction, enabling the in-depth and unbiased study of astrocyte calcium signals.
Collapse
Affiliation(s)
- Yifan Wu
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
- Technical contact
| | - Yanchao Dai
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
| | - Katheryn B. Lefton
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
| | - Timothy E. Holy
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
| | - Thomas Papouin
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
- Lead contact
| |
Collapse
|
22
|
Rupprecht P, Duss SN, Becker D, Lewis CM, Bohacek J, Helmchen F. Centripetal integration of past events in hippocampal astrocytes regulated by locus coeruleus. Nat Neurosci 2024; 27:927-939. [PMID: 38570661 PMCID: PMC11089000 DOI: 10.1038/s41593-024-01612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.
Collapse
Affiliation(s)
- Peter Rupprecht
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland.
| | - Sian N Duss
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Denise Becker
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland
| | - Christopher M Lewis
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
23
|
Reis FMCV, Maesta-Pereira S, Ollivier M, Schuette PJ, Sethi E, Miranda BA, Iniguez E, Chakerian M, Vaughn E, Sehgal M, Nguyen DCT, Yuan FTH, Torossian A, Ikebara JM, Kihara AH, Silva AJ, Kao JC, Khakh BS, Adhikari A. Control of feeding by a bottom-up midbrain-subthalamic pathway. Nat Commun 2024; 15:2111. [PMID: 38454000 PMCID: PMC10920831 DOI: 10.1038/s41467-024-46430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Investigative exploration and foraging leading to food consumption have vital importance, but are not well-understood. Since GABAergic inputs to the lateral and ventrolateral periaqueductal gray (l/vlPAG) control such behaviors, we dissected the role of vgat-expressing GABAergic l/vlPAG cells in exploration, foraging and hunting. Here, we show that in mice vgat l/vlPAG cells encode approach to food and consumption of both live prey and non-prey foods. The activity of these cells is necessary and sufficient for inducing food-seeking leading to subsequent consumption. Activation of vgat l/vlPAG cells produces exploratory foraging and compulsive eating without altering defensive behaviors. Moreover, l/vlPAG vgat cells are bidirectionally interconnected to several feeding, exploration and investigation nodes, including the zona incerta. Remarkably, the vgat l/vlPAG projection to the zona incerta bidirectionally controls approach towards food leading to consumption. These data indicate the PAG is not only a final downstream target of top-down exploration and foraging-related inputs, but that it also influences these behaviors through a bottom-up pathway.
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Matthias Ollivier
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ekayana Sethi
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Blake A Miranda
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Emily Iniguez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meghmik Chakerian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Eric Vaughn
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Megha Sehgal
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, USA
| | - Darren C T Nguyen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Faith T H Yuan
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anita Torossian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Juliane M Ikebara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Alcino J Silva
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Baljit S Khakh
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Montalant A, Kiehn O, Perrier JF. Dopamine and noradrenaline activate spinal astrocyte endfeet via D1-like receptors. Eur J Neurosci 2024; 59:1278-1295. [PMID: 38052454 DOI: 10.1111/ejn.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system, respond to a wide variety of neurotransmitters binding to metabotropic receptors. Here, we investigated the intracellular calcium responses of spinal cord astrocytes to dopamine and noradrenaline, two catecholamines released by specific descending pathways. In a slice preparation from the spinal cord of neonatal mice, puff application of dopamine resulted in intracellular calcium responses that remained in the endfeet. Noradrenaline induced stronger responses that also started in the endfeet but spread to neighbouring compartments. The intracellular calcium responses were unaffected by blocking neuronal activity or inhibiting various neurotransmitter receptors, suggesting a direct effect of dopamine and noradrenaline on astrocytes. The intracellular calcium responses induced by noradrenaline and dopamine were inhibited by the D1 receptor antagonist SCH 23390. We assessed the functional consequences of these astrocytic responses by examining changes in arteriole diameter. Puff application of dopamine or noradrenaline resulted in vasoconstriction of spinal arterioles. However, blocking D1 receptors or manipulating astrocytic intracellular calcium levels did not abolish the vasoconstrictions, indicating that the observed intracellular calcium responses in astrocyte endfeet were not responsible for the vascular changes. Our findings demonstrate a compartmentalized response of spinal cord astrocytes to catecholamines and expand our understanding of astrocyte-neurotransmitter interactions and their potential roles in the physiology of the central nervous system.
Collapse
Affiliation(s)
- Alexia Montalant
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Tao S, Hulpiau P, Wagner LE, Witschas K, Yule DI, Bultynck G, Leybaert L. IP3RPEP6, a novel peptide inhibitor of IP 3 receptor channels that does not affect connexin-43 hemichannels. Acta Physiol (Oxf) 2024; 240:e14086. [PMID: 38240350 DOI: 10.1111/apha.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
AIM Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca2+ -release channels with crucial roles in cell function. Current IP3 R inhibitors suffer from off-target effects and poor selectivity towards the three distinct IP3 R subtypes. We developed a novel peptide inhibitor of IP3 Rs and determined its effect on connexin-43 (Cx43) hemichannels, which are co-activated by IP3 R stimulation. METHODS IP3RPEP6 was developed by in silico molecular docking studies and characterized by on-nucleus patch-clamp experiments of IP3 R2 channels and carbachol-induced IP3 -mediated Ca2+ responses in IP3 R1, 2 or 3 expressing cells, triple IP3 R KO cells and astrocytes. Cx43 hemichannels were studied by patch-clamp and ATP-release approaches, and by inhibition with Gap19 peptide. IP3RPEP6 interactions with IP3 Rs were verified by co-immunoprecipitation and affinity pull-down assays. RESULTS IP3RPEP6 concentration-dependently reduced the open probability of IP3 R2 channels and competitively inhibited IP3 Rs in an IC50 order of IP3 R2 (~3.9 μM) < IP3 R3 (~4.3 μM) < IP3 R1 (~9.0 μM), without affecting Cx43 hemichannels or ryanodine receptors. IP3RPEP6 co-immunoprecipitated with IP3 R2 but not with IP3 R1; interaction with IP3 R3 varied between cell types. The IC50 of IP3RPEP6 inhibition of carbachol-induced Ca2+ responses decreased with increasing cellular Cx43 expression. Moreover, Gap19-inhibition of Cx43 hemichannels significantly reduced the amplitude of the IP3 -Ca2+ responses and strongly increased the EC50 of these responses. Finally, we identified palmitoyl-8G-IP3RPEP6 as a membrane-permeable IP3RPEP6 version allowing extracellular application of the IP3 R-inhibiting peptide. CONCLUSION IP3RPEP6 inhibits IP3 R2/R3 at concentrations that have limited effects on IP3 R1. IP3 R activation triggers hemichannel opening, which strongly affects the amplitude and concentration-dependence of IP3 -triggered Ca2+ responses.
Collapse
Affiliation(s)
- Siyu Tao
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Department of Bio-Medical Sciences, HOWEST University of Applied Sciences (Hogeschool West-Vlaanderen), Bruges, Belgium
| | - Larry E Wagner
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Katja Witschas
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent, Belgium
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Clare K, Park K, Pan Y, Lejuez CW, Volkow ND, Du C. Neurovascular effects of cocaine: relevance to addiction. Front Pharmacol 2024; 15:1357422. [PMID: 38455961 PMCID: PMC10917943 DOI: 10.3389/fphar.2024.1357422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cocaine is a highly addictive drug, and its use is associated with adverse medical consequences such as cerebrovascular accidents that result in debilitating neurological complications. Indeed, brain imaging studies have reported severe reductions in cerebral blood flow (CBF) in cocaine misusers when compared to the brains of healthy non-drug using controls. Such CBF deficits are likely to disrupt neuro-vascular interaction and contribute to changes in brain function. This review aims to provide an overview of cocaine-induced CBF changes and its implication to brain function and to cocaine addiction, including its effects on tissue metabolism and neuronal activity. Finally, we discuss implications for future research, including targeted pharmacological interventions and neuromodulation to limit cocaine use and mitigate the negative impacts.
Collapse
Affiliation(s)
- Kevin Clare
- New York Medical College, Valhalla, NY, United States
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Carl W. Lejuez
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
27
|
Ahmadpour N, Kantroo M, Stobart MJ, Meza-Resillas J, Shabanipour S, Parra-Nuñez J, Salamovska T, Muzaleva A, O'Hara F, Erickson D, Di Gaetano B, Carrion-Falgarona S, Weber B, Lamont A, Lavine NE, Kauppinen TM, Jackson MF, Stobart JL. Cortical astrocyte N-methyl-D-aspartate receptors influence whisker barrel activity and sensory discrimination in mice. Nat Commun 2024; 15:1571. [PMID: 38383567 PMCID: PMC10882001 DOI: 10.1038/s41467-024-45989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Astrocytes express ionotropic receptors, including N-methyl-D-aspartate receptors (NMDARs). However, the contribution of NMDARs to astrocyte-neuron interactions, particularly in vivo, has not been elucidated. Here we show that a knockdown approach to selectively reduce NMDARs in mouse cortical astrocytes decreases astrocyte Ca2+ transients evoked by sensory stimulation. Astrocyte NMDAR knockdown also impairs nearby neuronal circuits by elevating spontaneous neuron activity and limiting neuronal recruitment, synchronization, and adaptation during sensory stimulation. Furthermore, this compromises the optimal processing of sensory information since the sensory acuity of the mice is reduced during a whisker-dependent tactile discrimination task. Lastly, we rescue the effects of astrocyte NMDAR knockdown on neurons and improve the tactile acuity of the animal by supplying exogenous ATP. Overall, our findings show that astrocytes can respond to nearby neuronal activity via their NMDAR, and that these receptors are an important component for purinergic signaling that regulate astrocyte-neuron interactions and cortical sensory discrimination in vivo.
Collapse
Affiliation(s)
| | - Meher Kantroo
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | - Anna Muzaleva
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Finnegan O'Hara
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Dustin Erickson
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Bruno Di Gaetano
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | | | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alana Lamont
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Center, Health Sciences Center, Winnipeg, MB, Canada
| | - Natalie E Lavine
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Center, Health Sciences Center, Winnipeg, MB, Canada
| | - Tiina M Kauppinen
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Center, Health Sciences Center, Winnipeg, MB, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Center, Health Sciences Center, Winnipeg, MB, Canada
| | - Jillian L Stobart
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada.
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
28
|
Li J, Miramontes TG, Czopka T, Monk KR. Synaptic input and Ca 2+ activity in zebrafish oligodendrocyte precursor cells contribute to myelin sheath formation. Nat Neurosci 2024; 27:219-231. [PMID: 38216650 DOI: 10.1038/s41593-023-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
In the nervous system, only one type of neuron-glial synapse is known to exist: that between neurons and oligodendrocyte precursor cells (OPCs), yet their composition, assembly, downstream signaling and in vivo functions remain largely unclear. Here, we address these questions using in vivo microscopy in zebrafish spinal cord and identify postsynaptic molecules PSD-95 and gephyrin in OPCs. The puncta containing these molecules in OPCs increase during early development and decrease upon OPC differentiation. These puncta are highly dynamic and frequently assemble at 'hotspots'. Gephyrin hotspots and synapse-associated Ca2+ activity in OPCs predict where a subset of myelin sheaths forms in differentiated oligodendrocytes. Further analyses reveal that spontaneous synaptic release is integral to OPC Ca2+ activity, while evoked synaptic release contributes only in early development. Finally, disruption of the synaptic genes dlg4a/dlg4b, gphnb and nlgn3b impairs OPC differentiation and myelination. Together, we propose that neuron-OPC synapses are dynamically assembled and can predetermine myelination patterns through Ca2+ signaling.
Collapse
Affiliation(s)
- Jiaxing Li
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | | | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
29
|
Wang J, Cheng P, Qu Y, Zhu G. Astrocytes and Memory: Implications for the Treatment of Memory-related Disorders. Curr Neuropharmacol 2024; 22:2217-2239. [PMID: 38288836 PMCID: PMC11337689 DOI: 10.2174/1570159x22666240128102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 08/23/2024] Open
Abstract
Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimer's disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ping Cheng
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Qu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
30
|
Garcia R, Zarate S, Srinivasan R. The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:319-343. [PMID: 39190081 DOI: 10.1007/978-3-031-64839-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex and multifactorial pathogenesis. This chapter delves into the critical role of astrocytes in PD. Once viewed as supporting cells in the central nervous system, astrocytes have emerged as key players in both maintaining neuronal health and contributing to neurodegeneration in PD. Their functions play a dual role in the progression of PD, ranging from protective functions like secretion of neurotrophic factors and clearance of α-synuclein to detrimental functions like promotion of neuroinflammation. This chapter is structured into three primary sections: the morphological and functional organization of astrocytes, astrocytic calcium signaling, and the role of astrocyte heterogeneity in PD. We provide a detailed exploration of astrocytic organelles, bidirectional astrocyte-neuron interactions, and the impact of astrocytic secretions such as antioxidant molecules and neurotrophic factors. Furthermore, we discuss the influence of astrocytes on non-neuronal cells, including interactions with microglia and the blood-brain barrier (BBB). By examining the multifaceted roles of astrocytes, in this chapter, we aim to bridge basic astrocyte biology with the clinical complexities of PD, offering insights into novel therapeutic strategies. The inclusion of astrocyte biology in our broader research approach will aid in the development of more effective treatment strategies for PD.
Collapse
Affiliation(s)
- Roger Garcia
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sara Zarate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
31
|
Uribe-Arias A, Rozenblat R, Vinepinsky E, Marachlian E, Kulkarni A, Zada D, Privat M, Topsakalian D, Charpy S, Candat V, Nourin S, Appelbaum L, Sumbre G. Radial astrocyte synchronization modulates the visual system during behavioral-state transitions. Neuron 2023; 111:4040-4057.e6. [PMID: 37863038 PMCID: PMC10783638 DOI: 10.1016/j.neuron.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Glial cells support the function of neurons. Recent evidence shows that astrocytes are also involved in brain computations. To explore whether and how their excitable nature affects brain computations and motor behaviors, we used two-photon Ca2+ imaging of zebrafish larvae expressing GCaMP in both neurons and radial astrocytes (RAs). We found that in the optic tectum, RAs synchronize their Ca2+ transients immediately after the end of an escape behavior. Using optogenetics, ablations, and a genetically encoded norepinephrine sensor, we observed that RA synchronous Ca2+ events are mediated by the locus coeruleus (LC)-norepinephrine circuit. RA synchronization did not induce direct excitation or inhibition of tectal neurons. Nevertheless, it modulated the direction selectivity and the long-distance functional correlations among neurons. This mechanism supports freezing behavior following a switch to an alerted state. These results show that LC-mediated neuro-glial interactions modulate the visual system during transitions between behavioral states.
Collapse
Affiliation(s)
- Alejandro Uribe-Arias
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Rotem Rozenblat
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ehud Vinepinsky
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emiliano Marachlian
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Anirudh Kulkarni
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David Zada
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Diego Topsakalian
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sarah Charpy
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Virginie Candat
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sarah Nourin
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Germán Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
32
|
Naghieh P, Delavar A, Amiri M, Peremans H. Astrocyte's self-repairing characteristics improve working memory in spiking neuronal networks. iScience 2023; 26:108241. [PMID: 38047076 PMCID: PMC10692671 DOI: 10.1016/j.isci.2023.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/23/2023] [Accepted: 10/15/2023] [Indexed: 12/05/2023] Open
Abstract
Astrocytes play a significant role in the working memory (WM) mechanism, yet their contribution to spiking neuron-astrocyte networks (SNAN) is underexplored. This study proposes a non-probabilistic SNAN incorporating a self-repairing (SR) mechanism through endocannabinoid pathways to facilitate WM function. Four experiments were conducted with different damaging patterns, replicating close-to-realistic synaptic impairments. Simulation results suggest that the SR process enhances WM performance by improving the consistency of neuronal firing. Moreover, the intercellular astrocytic [Ca]2+ transmission via gap junctions improves WM and SR processes. With increasing damage, WM and SR activities initially fail for non-matched samples and then for smaller and minimally overlapping matched samples. Simulation results also indicate that the inclusion of the SR mechanism in both random and continuous forms of damage improves the resilience of the WM by approximately 20%. This study highlights the importance of astrocytes in synaptically impaired networks.
Collapse
Affiliation(s)
- Pedram Naghieh
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abolfazl Delavar
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Courtney CD, Sobieski C, Ramakrishnan C, Ingram RJ, Wojnowski NM, DeFazio RA, Deisseroth K, Christian-Hinman CA. Optoα1AR activation in astrocytes modulates basal hippocampal synaptic excitation and inhibition in a stimulation-specific manner. Hippocampus 2023; 33:1277-1291. [PMID: 37767862 PMCID: PMC10842237 DOI: 10.1002/hipo.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Astrocytes play active roles at synapses and can monitor, respond, and adapt to local synaptic activity. While there is abundant evidence that astrocytes modulate excitatory transmission in the hippocampus, evidence for astrocytic modulation of hippocampal synaptic inhibition remains more limited. Furthermore, to better investigate roles for astrocytes in modulating synaptic transmission, more tools that can selectively activate native G protein signaling pathways in astrocytes with both spatial and temporal precision are needed. Here, we utilized AAV8-GFAP-Optoα1AR-eYFP (Optoα1AR), a viral vector that enables activation of Gq signaling in astrocytes via light-sensitive α1-adrenergic receptors. To determine if stimulating astrocytic Optoα1AR modulates hippocampal synaptic transmission, recordings were made in CA1 pyramidal cells with surrounding astrocytes expressing Optoα1AR, channelrhodopsin (ChR2), or GFP. Both high-frequency (20 Hz, 45-ms light pulses, 5 mW, 5 min) and low-frequency (0.5 Hz, 1-s pulses at increasing 1, 5, and 10 mW intensities, 90 s per intensity) blue light stimulation were tested. 20 Hz Optoα1AR stimulation increased both inhibitory and excitatory postsynaptic current (IPSC and EPSC) frequency, and the effect on miniature IPSCs (mIPSCs) was largely reversible within 20 min. However, low-frequency stimulation of Optoα1AR did not modulate either IPSCs or EPSCs, suggesting that astrocytic Gq -dependent modulation of basal synaptic transmission in the hippocampus is stimulation-dependent. By contrast, low-frequency stimulation of astrocytic ChR2 was effective in increasing both synaptic excitation and inhibition. Together, these data demonstrate that Optoα1AR activation in astrocytes changes basal GABAergic and glutamatergic transmission, but only following high-frequency stimulation, highlighting the importance of temporal dynamics when using optical tools to manipulate astrocyte function.
Collapse
Affiliation(s)
- Connor D. Courtney
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Courtney Sobieski
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | | | - Robbie J. Ingram
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Natalia M. Wojnowski
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - R. Anthony DeFazio
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Catherine A. Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
34
|
Stopper G, Caudal LC, Rieder P, Gobbo D, Stopper L, Felix L, Everaerts K, Bai X, Rose CR, Scheller A, Kirchhoff F. Novel algorithms for improved detection and analysis of fluorescent signal fluctuations. Pflugers Arch 2023; 475:1283-1300. [PMID: 37700120 PMCID: PMC10567899 DOI: 10.1007/s00424-023-02855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools for visualizing concentration changes of specific ions and messenger molecules during intra- as well as intercellular communication. Using advanced imaging technologies, fluorescence indicators are a prerequisite for the analysis of physiological molecular signaling. Automated detection and analysis of fluorescence signals require to overcome several challenges, including correct estimation of fluorescence fluctuations at basal concentrations of messenger molecules, detection, and extraction of events themselves as well as proper segmentation of neighboring events. Moreover, event detection algorithms need to be sensitive enough to accurately capture localized and low amplitude events exhibiting a limited spatial extent. Here, we present two algorithms (PBasE and CoRoDe) for accurate baseline estimation and automated detection and segmentation of fluorescence fluctuations.
Collapse
Affiliation(s)
- Gebhard Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina Everaerts
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany.
| |
Collapse
|
35
|
Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer's Disease and Glioblastoma. Life (Basel) 2023; 13:2038. [PMID: 37895420 PMCID: PMC10608464 DOI: 10.3390/life13102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain. In the last few decades, compelling evidence has revealed that glial cells are far more active and complex than previously thought. In particular, astrocytes, the most abundant glial cell population, not only take part in brain development, metabolism, and defense against pathogens and insults, but they also affect sensory, motor, and cognitive functions by constantly modulating synaptic activity. Not surprisingly, astrocytes are actively involved in neurodegenerative diseases (NDs) and other neurological disorders like brain tumors, in which they rapidly become reactive and mediate neuroinflammation. Reactive astrocytes acquire or lose specific functions that differently modulate disease progression and symptoms, including cognitive impairments. Astrocytes express several types of ion channels, including K+, Na+, and Ca2+ channels, transient receptor potential channels (TRP), aquaporins, mechanoreceptors, and anion channels, whose properties and functions are only partially understood, particularly in small processes that contact synapses. In addition, astrocytes express ionotropic receptors for several neurotransmitters. Here, we provide an extensive and up-to-date review of the roles of ion channels and ionotropic receptors in astrocyte physiology and pathology. As examples of two different brain pathologies, we focus on Alzheimer's disease (AD), one of the most diffuse neurodegenerative disorders, and glioblastoma (GBM), the most common brain tumor. Understanding how ion channels and ionotropic receptors in astrocytes participate in NDs and tumors is necessary for developing new therapeutic tools for these increasingly common neurological conditions.
Collapse
Affiliation(s)
- Annamaria Lia
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
| | - Alessandro Di Spiezio
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
- Neuroscience Institute (CNR-IN), Padova Section, 35131 Padova, Italy
| | - Lorenzo Vitalini
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Manuela Tore
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Puja
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Gabriele Losi
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
36
|
Lu TY, Hanumaihgari P, Hsu ET, Agarwal A, Kawaguchi R, Calabresi PA, Bergles DE. Norepinephrine modulates calcium dynamics in cortical oligodendrocyte precursor cells promoting proliferation during arousal in mice. Nat Neurosci 2023; 26:1739-1750. [PMID: 37697112 PMCID: PMC10630072 DOI: 10.1038/s41593-023-01426-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/10/2023] [Indexed: 09/13/2023]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated from oligodendrocyte precursor cells (OPCs) that express neurotransmitter receptors. However, the mechanisms that affect OPC activity in vivo and the physiological roles of neurotransmitter signaling in OPCs are unclear. In this study, we generated a transgenic mouse line that expresses membrane-anchored GCaMP6s in OPCs and used longitudinal two-photon microscopy to monitor OPC calcium (Ca2+) dynamics in the cerebral cortex. OPCs exhibit focal and transient Ca2+ increases within their processes that are enhanced during locomotion-induced increases in arousal. The Ca2+ transients occur independently of excitatory neuron activity, rapidly decline when OPCs differentiate and are inhibited by anesthesia, sedative agents or noradrenergic receptor antagonists. Conditional knockout of α1A adrenergic receptors in OPCs suppresses spontaneous and locomotion-induced Ca2+ increases and reduces OPC proliferation. Our results demonstrate that OPCs are directly modulated by norepinephrine in vivo to enhance Ca2+ dynamics and promote population homeostasis.
Collapse
Affiliation(s)
- Tsai-Yi Lu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Priyanka Hanumaihgari
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Eric T Hsu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Riki Kawaguchi
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter A Calabresi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
37
|
Uzcategui NL, Güçer S, Richter C, Speidel A, Zirdum E, Duszenko M, Garaschuk O, Figarella K. Live imaging of microglia during sleeping sickness reveals early and heterogeneous inflammatory responses. Front Immunol 2023; 14:1253648. [PMID: 37781403 PMCID: PMC10534015 DOI: 10.3389/fimmu.2023.1253648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Invasion of the central nervous system (CNS) is the most serious consequence of Trypanosoma brucei infection, which causes sleeping sickness. Recent experimental data have revealed some more insights into the disease during the meningoencephalitic stage. However, detailed cellular processes befalling the CNS during the disease are poorly understood. Methods To further address this issue, we implanted a cranial window on the cortex of B6.129P2(Cg)-Cx3cr1tm1Litt/J mice, infected them with Trypanosoma brucei expressing RFP via intraperitoneal injection, and monitored microglial cells and parasites longitudinally over 30 days using in vivo 2-photon imaging. We correlated the observed changes with histological analyses to evaluate the recruitment of peripheral immune cells. Results and discussion We uncovered an early involvement of microglia that precedes invasion of the CNS by the parasite. We accomplished a detailed characterization of the progressive sequence of events that correlates with microglial morphological changes and microgliosis. Our findings unveiled a heterogeneous microglial response in places of initial homeostatic disruption near brain barriers and pointed out an exceptional capability of microglia to hamper parasite proliferation inside the brain. We also found early signs of inflammation in the meninges, which synchronize with the microglial response. Moreover, we observed a massive infiltration of peripheral immune cells into the parenchyma as a signature in the final disease stage. Overall, our study provides new insights into the host-pathogen immune interactions in the meningeal and parenchymal compartments of the neocortex.
Collapse
Affiliation(s)
- Nestor L. Uzcategui
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Sena Güçer
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Cris Richter
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Annika Speidel
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Elizabeta Zirdum
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Michael Duszenko
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Katherine Figarella
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
38
|
Novakovic MM, Korshunov KS, Grant RA, Martin ME, Valencia HA, Budinger GRS, Radulovic J, Prakriya M. Astrocyte reactivity and inflammation-induced depression-like behaviors are regulated by Orai1 calcium channels. Nat Commun 2023; 14:5500. [PMID: 37679321 PMCID: PMC10485021 DOI: 10.1038/s41467-023-40968-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Astrocytes contribute to brain inflammation in neurological disorders but the molecular mechanisms controlling astrocyte reactivity and their relationship to neuroinflammatory endpoints are complex and poorly understood. In this study, we assessed the role of the calcium channel, Orai1, for astrocyte reactivity and inflammation-evoked depression behaviors in mice. Transcriptomics and metabolomics analysis indicated that deletion of Orai1 in astrocytes downregulates genes in inflammation and immunity, metabolism, and cell cycle pathways, and reduces cellular metabolites and ATP production. Systemic inflammation by peripheral lipopolysaccharide (LPS) increases hippocampal inflammatory markers in WT but not in astrocyte Orai1 knockout mice. Loss of Orai1 also blunts inflammation-induced astrocyte Ca2+ signaling and inhibitory neurotransmission in the hippocampus. In line with these cellular changes, Orai1 knockout mice showed amelioration of LPS-evoked depression-like behaviors including anhedonia and helplessness. These findings identify Orai1 as an important signaling hub controlling astrocyte reactivity and astrocyte-mediated brain inflammation that is commonly observed in many neurological disorders.
Collapse
Affiliation(s)
- Michaela M Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kirill S Korshunov
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rogan A Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Megan E Martin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hiam A Valencia
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - G R Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jelena Radulovic
- Department of Neuroscience, Albert Einstein School of Medicine, Bronx, NY, 10461, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
39
|
Ozawa K, Nagao M, Konno A, Iwai Y, Vittani M, Kusk P, Mishima T, Hirai H, Nedergaard M, Hirase H. Astrocytic GPCR-Induced Ca 2+ Signaling Is Not Causally Related to Local Cerebral Blood Flow Changes. Int J Mol Sci 2023; 24:13590. [PMID: 37686396 PMCID: PMC10487464 DOI: 10.3390/ijms241713590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Activation of Gq-type G protein-coupled receptors (GPCRs) gives rise to large cytosolic Ca2+ elevations in astrocytes. Previous in vitro and in vivo studies have indicated that astrocytic Ca2+ elevations are closely associated with diameter changes in the nearby blood vessels, which astrocytes enwrap with their endfeet. However, the causal relationship between astrocytic Ca2+ elevations and blood vessel diameter changes has been questioned, as mice with diminished astrocytic Ca2+ signaling show normal sensory hyperemia. We addressed this controversy by imaging cortical vasculature while optogenetically elevating astrocyte Ca2+ in a novel transgenic mouse line, expressing Opto-Gq-type GPCR Optoα1AR (Astro-Optoα1AR) in astrocytes. Blue light illumination on the surface of the somatosensory cortex induced Ca2+ elevations in cortical astrocytes and their endfeet in mice under anesthesia. Blood vessel diameter did not change significantly with Optoα1AR-induced Ca2+ elevations in astrocytes, while it was increased by forelimb stimulation. Next, we labeled blood plasma with red fluorescence using AAV8-P3-Alb-mScarlet in Astro-Optoα1AR mice. We were able to identify arterioles that display diameter changes in superficial areas of the somatosensory cortex through the thinned skull. Photo-stimulation of astrocytes in the cortical area did not result in noticeable changes in the arteriole diameters compared with their background strain C57BL/6. Together, compelling evidence for astrocytic Gq pathway-induced vasodiameter changes was not observed. Our results support the notion that short-term (<10 s) hyperemia is not mediated by GPCR-induced astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Katsuya Ozawa
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0106, Saitama, Japan; (K.O.)
| | - Masaki Nagao
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Youichi Iwai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0106, Saitama, Japan; (K.O.)
| | - Marta Vittani
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Peter Kusk
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Tsuneko Mishima
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
40
|
González-Arias C, Sánchez-Ruiz A, Esparza J, Sánchez-Puelles C, Arancibia L, Ramírez-Franco J, Gobbo D, Kirchhoff F, Perea G. Dysfunctional serotonergic neuron-astrocyte signaling in depressive-like states. Mol Psychiatry 2023; 28:3856-3873. [PMID: 37773446 PMCID: PMC10730416 DOI: 10.1038/s41380-023-02269-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Astrocytes play crucial roles in brain homeostasis and are regulatory elements of neuronal and synaptic physiology. Astrocytic alterations have been found in Major Depressive Disorder (MDD) patients; however, the consequences of astrocyte Ca2+ signaling in MDD are poorly understood. Here, we found that corticosterone-treated juvenile mice (Cort-mice) showed altered astrocytic Ca2+ dynamics in mPFC both in resting conditions and during social interactions, in line with altered mice behavior. Additionally, Cort-mice displayed reduced serotonin (5-HT)-mediated Ca2+ signaling in mPFC astrocytes, and aberrant 5-HT-driven synaptic plasticity in layer 2/3 mPFC neurons. Downregulation of astrocyte Ca2+ signaling in naïve animals mimicked the synaptic deficits found in Cort-mice. Remarkably, boosting astrocyte Ca2+ signaling with Gq-DREADDS restored to the control levels mood and cognitive abilities in Cort-mice. This study highlights the important role of astrocyte Ca2+ signaling for homeostatic control of brain circuits and behavior, but also reveals its potential therapeutic value for depressive-like states.
Collapse
Affiliation(s)
- Candela González-Arias
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | - Andrea Sánchez-Ruiz
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | | | | | | | - Jorge Ramírez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, 13005, Marseille, France
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | | |
Collapse
|
41
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
42
|
Stogsdill JA, Harwell CC, Goldman SA. Astrocytes as master modulators of neural networks: Synaptic functions and disease-associated dysfunction of astrocytes. Ann N Y Acad Sci 2023; 1525:41-60. [PMID: 37219367 DOI: 10.1111/nyas.15004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system and are essential to the development, plasticity, and maintenance of neural circuits. Astrocytes are heterogeneous, with their diversity rooted in developmental programs modulated by the local brain environment. Astrocytes play integral roles in regulating and coordinating neural activity extending far beyond their metabolic support of neurons and other brain cell phenotypes. Both gray and white matter astrocytes occupy critical functional niches capable of modulating brain physiology on time scales slower than synaptic activity but faster than those adaptive responses requiring a structural change or adaptive myelination. Given their many associations and functional roles, it is not surprising that astrocytic dysfunction has been causally implicated in a broad set of neurodegenerative and neuropsychiatric disorders. In this review, we focus on recent discoveries concerning the contributions of astrocytes to the function of neural networks, with a dual focus on the contribution of astrocytes to synaptic development and maturation, and on their role in supporting myelin integrity, and hence conduction and its regulation. We then address the emerging roles of astrocytic dysfunction in disease pathogenesis and on potential strategies for targeting these cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Steven A Goldman
- Sana Biotechnology Inc., Cambridge, Massachusetts, USA
- Center for Translational Neuromedicine, University of Rochester, Rochester, New York, USA
- University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
43
|
Kelly P, Sanchez-Mico MV, Hou SS, Whiteman S, Russ A, Hudry E, Arbel-Ornath M, Greenberg SM, Bacskai BJ. Neuronally Derived Soluble Abeta Evokes Cell-Wide Astrocytic Calcium Dysregulation in Absence of Amyloid Plaques in Vivo. J Neurosci 2023; 43:4926-4940. [PMID: 37236808 PMCID: PMC10312057 DOI: 10.1523/jneurosci.1988-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The key pathologic entities driving the destruction of synaptic function and integrity during the evolution of Alzheimer's disease (AD) remain elusive. Astrocytes are structurally and functionally integrated within synaptic and vascular circuitry and use calcium-based physiology to modulate basal synaptic transmission, vascular dynamics, and neurovascular coupling, which are central to AD pathogenesis. We used high-resolution multiphoton imaging to quantify all endogenous calcium signaling arising spontaneously throughout astrocytic somata, primary processes, fine processes, and capillary endfeet in the brain of awake APP/PS1 transgenic mice (11 male and 6 female mice). Endogenous calcium signaling within capillary endfeet, while surprisingly as active as astrocytic fine processes, was reduced ∼50% in the brain of awake APP/PS1 mice. Cortical astrocytes, in the presence of amyloid plaques in awake APP/PS1 mice, had a cell-wide increase in intracellular calcium associated with an increased frequency, amplitude, and duration of spontaneous calcium signaling. The cell-wide astrocytic calcium dysregulation was not directly related to distance to amyloid plaques. We could re-create the cell-wide intracellular calcium dysregulation in the absence of amyloid plaques following acute exposure to neuronally derived soluble Abeta from Tg2576 transgenic mice, in the living brain of male C57/Bl6 mice. Our findings highlight a role for astrocytic calcium pathophysiology in soluble-Abeta mediated neurodegenerative processes in AD. Additionally, therapeutic strategies aiming to protect astrocytic calcium physiology from soluble Abeta-mediated toxicity may need to pharmacologically enhance calcium signaling within the hypoactive capillary endfeet while reducing the hyperactivity of spontaneous calcium signaling throughout the rest of the astrocyte.SIGNIFICANCE STATEMENT Astrocytic calcium signaling is functionally involved in central pathologic processes of Alzheimer's disease. We quantified endogenous calcium signaling arising spontaneously in the brain of awake APP/PS1 mice, as general anesthesia suppressed astrocytic calcium signaling. Cell-wide astrocytic calcium dysregulation was not related to distance to amyloid plaques but mediated in part by neuronally derived soluble Abeta, supporting a role for astrocytes in soluble-Abeta mediated neurodegeneration. Spontaneous calcium signaling is largely compartmentalized and capillary endfeet were as active as fine processes but hypoactive in the presence of amyloid plaques, while the rest of the astrocyte became hyperactive. The cell-wide calcium pathophysiology in astrocytes may require a combination therapeutic strategy for hypoactive endfeet and astrocytic hyperactivity.
Collapse
Affiliation(s)
- Patricia Kelly
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Maria V Sanchez-Mico
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Steven S Hou
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Sara Whiteman
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Alyssa Russ
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Eloise Hudry
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Michal Arbel-Ornath
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Steven M Greenberg
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Brian J Bacskai
- Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
44
|
Cunha-Garcia D, Monteiro-Fernandes D, Correia JS, Neves-Carvalho A, Vilaça-Ferreira AC, Guerra-Gomes S, Viana JF, Oliveira JF, Teixeira-Castro A, Maciel P, Duarte-Silva S. Genetic Ablation of Inositol 1,4,5-Trisphosphate Receptor Type 2 (IP 3R2) Fails to Modify Disease Progression in a Mouse Model of Spinocerebellar Ataxia Type 3. Int J Mol Sci 2023; 24:10606. [PMID: 37445783 PMCID: PMC10341520 DOI: 10.3390/ijms241310606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.
Collapse
Affiliation(s)
- Daniela Cunha-Garcia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Catarina Vilaça-Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, 4750-810 Barcelos, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| |
Collapse
|
45
|
Sardar D, Cheng YT, Woo J, Choi DJ, Lee ZF, Kwon W, Chen HC, Lozzi B, Cervantes A, Rajendran K, Huang TW, Jain A, Arenkiel B, Maze I, Deneen B. Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. Science 2023; 380:eade0027. [PMID: 37319217 PMCID: PMC10874521 DOI: 10.1126/science.ade0027] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Neuronal activity drives alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. We found that neuronal activity induces widespread transcriptional up-regulation and down-regulation in astrocytes, highlighted by the identification of Slc22a3 as an activity-inducible astrocyte gene that encodes neuromodulator transporter Slc22a3 and regulates sensory processing in the mouse olfactory bulb. Loss of astrocytic Slc22a3 reduced serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduced the expression of γ-aminobutyric acid (GABA) biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.
Collapse
Affiliation(s)
- Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Yi-Ting Cheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Zhung-Fu Lee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston TX
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston TX
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston TX
| | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Kavitha Rajendran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston TX
| | - Benjamin Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX
- Neurological Research Institute, Texas Children’s Hospital, Houston TX
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York NY
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston TX
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| |
Collapse
|
46
|
Salinas-Birt A, Zhu X, Lim EY, Cruz Santory AJ, Ye L, Paukert M. Constraints of vigilance-dependent noradrenergic signaling to mouse cerebellar Bergmann glia. Glia 2023; 71:1451-1465. [PMID: 36790089 PMCID: PMC10082684 DOI: 10.1002/glia.24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Behavioral state plays an important role in determining astroglia Ca2+ signaling. In particular, locomotion-mediated elevated vigilance has been found to trigger norepinephrine-dependent whole cell Ca2+ elevations in astroglia throughout the brain. For cerebellar Bergmann glia it has recently been found that locomotion-induced transient Ca2+ elevations depend on their α1A -adrenergic receptors. With increasing availability and implementation of locomotion as behavioral parameter it becomes important to understand the constraints of noradrenergic signaling to astroglia. Here we evaluated the effect of speed, duration and interval of locomotion on Ca2+ signals in Bergmann glia as well as cerebellar noradrenergic axon terminals. We found almost no dependence on locomotion speed, but following the initial Ca2+ transient prolonged locomotion events revealed a steady-state Ca2+ elevation. Comparison of time course and recovery of transient Bergmann glia and noradrenergic terminal Ca2+ dynamics suggested that noradrenergic terminal Ca2+ activity determines Bergmann glia Ca2+ activation and does not require noradrenergic receptor desensitization to account for attenuation during prolonged locomotion. Further, analyzing the correlation among Ca2+ dynamics within regions within the field of observation we found that coordinated activity among noradrenergic terminals accounts for fluctuations of steady-state Bergmann glia Ca2+ activity. Together, our findings will help to better understand astroglia Ca2+ dynamics during less controlled awake behavior and may guide the identification of behavioral contexts preferably dependent on astroglia Ca2+ signaling.
Collapse
Affiliation(s)
- Angelica Salinas-Birt
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xiangyu Zhu
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Eunice Y. Lim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Aryana J. Cruz Santory
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liang Ye
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Martin Paukert
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
47
|
Rasmussen RN, Asiminas A, Carlsen EMM, Kjaerby C, Smith NA. Astrocytes: integrators of arousal state and sensory context. Trends Neurosci 2023; 46:418-425. [PMID: 37003933 PMCID: PMC10192111 DOI: 10.1016/j.tins.2023.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 04/01/2023]
Abstract
The integration of external information with the internal state of the body is central to the survival of virtually every multicellular organism. However, a complete picture of the mechanisms that govern this process is lacking. In this opinion article, we synthesize evidence demonstrating that astrocytes sense the momentary arousal state - through neuromodulator release - as well as the sensory inputs - through local synaptic activity - and respond to them with changes in calcium (Ca2+) signaling. We hypothesize that astrocytes integrate sensory signals with the internal state and that this process is necessary to secure optimal behavior. Finally, we argue that dysfunctional astrocytic Ca2+ signaling could be an underlying factor in disorders characterized by disrupted sensory processing.
Collapse
Affiliation(s)
- Rune Nguyen Rasmussen
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Antonis Asiminas
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Celia Kjaerby
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nathan Anthony Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
48
|
Gau YTA, Hsu E, Cha J, Pak RW, Looger LL, Kang JU, Bergles DE. Multicore fiber optic imaging reveals that astrocyte calcium activity in the cerebral cortex is modulated by internal motivational state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541390. [PMID: 37292710 PMCID: PMC10245653 DOI: 10.1101/2023.05.18.541390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales through their close proximity to synapses. However, our knowledge about how astrocytes are functionally recruited during different animal behaviors and their diverse effects on the CNS remains limited. To enable measurement of astrocyte activity patterns in vivo during normative behaviors, we developed a high-resolution, long working distance, multi-core fiber optic imaging platform that allows visualization of cortical astrocyte calcium transients through a cranial window in freely moving mice. Using this platform, we defined the spatiotemporal dynamics of astrocytes during diverse behaviors, ranging from circadian fluctuations to novelty exploration, showing that astrocyte activity patterns are more variable and less synchronous than apparent in head-immobilized imaging conditions. Although the activity of astrocytes in visual cortex was highly synchronized during quiescence to arousal transitions, individual astrocytes often exhibited distinct thresholds and activity patterns during explorative behaviors, in accordance with their molecular diversity, allowing temporal sequencing across the astrocyte network. Imaging astrocyte activity during self-initiated behaviors revealed that noradrenergic and cholinergic systems act synergistically to recruit astrocytes during state transitions associated with arousal and attention, which was profoundly modulated by internal state. The distinct activity patterns exhibited by astrocytes in the cerebral cortex may provide a means to vary their neuromodulatory influence in response to different behaviors and internal states.
Collapse
Affiliation(s)
- Yung-Tian A. Gau
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Eric Hsu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Jaepyeong Cha
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Rebecca W. Pak
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Loren L. Looger
- Howard Hughes Medical Institute, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Jin U. Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
49
|
Fritschi L, Lenk K. Parameter Inference for an Astrocyte Model using Machine Learning Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540982. [PMID: 37292854 PMCID: PMC10245674 DOI: 10.1101/2023.05.16.540982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astrocytes are the largest subset of glial cells and perform structural, metabolic, and regulatory functions. They are directly involved in the communication at neuronal synapses and the maintenance of brain homeostasis. Several disorders, such as Alzheimer's, epilepsy, and schizophrenia, have been associated with astrocyte dysfunction. Computational models on various spatial levels have been proposed to aid in the understanding and research of astrocytes. The difficulty of computational astrocyte models is to fastly and precisely infer parameters. Physics informed neural networks (PINNs) use the underlying physics to infer parameters and, if necessary, dynamics that can not be observed. We have applied PINNs to estimate parameters for a computational model of an astrocytic compartment. The addition of two techniques helped with the gradient pathologies of the PINNS, the dynamic weighting of various loss components and the addition of Transformers. To overcome the issue that the neural network only learned the time dependence but did not know about eventual changes of the input stimulation to the astrocyte model, we followed an adaptation of PINNs from control theory (PINCs). In the end, we were able to infer parameters from artificial, noisy data, with stable results for the computational astrocyte model.
Collapse
Affiliation(s)
| | - Kerstin Lenk
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
50
|
Bonato J, Curreli S, Romanzi S, Panzeri S, Fellin T. ASTRA: a deep learning algorithm for fast semantic segmentation of large-scale astrocytic networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539211. [PMID: 37205519 PMCID: PMC10187152 DOI: 10.1101/2023.05.03.539211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Changes in the intracellular calcium concentration are a fundamental fingerprint of astrocytes, the main type of glial cell. Astrocyte calcium signals can be measured with two-photon microscopy, occur in anatomically restricted subcellular regions, and are coordinated across astrocytic networks. However, current analytical tools to identify the astrocytic subcellular regions where calcium signals occur are time-consuming and extensively rely on user-defined parameters. These limitations limit reproducibility and prevent scalability to large datasets and fields-of-view. Here, we present Astrocytic calcium Spatio-Temporal Rapid Analysis (ASTRA), a novel software combining deep learning with image feature engineering for fast and fully automated semantic segmentation of two-photon calcium imaging recordings of astrocytes. We applied ASTRA to several two-photon microscopy datasets and found that ASTRA performed rapid detection and segmentation of astrocytic cell somata and processes with performance close to that of human experts, outperformed state-of-the-art algorithms for the analysis of astrocytic and neuronal calcium data, and generalized across indicators and acquisition parameters. We also applied ASTRA to the first report of two-photon mesoscopic imaging of hundreds of astrocytes in awake mice, documenting large-scale redundant and synergistic interactions in extended astrocytic networks. ASTRA is a powerful tool enabling closed-loop and large-scale reproducible investigation of astrocytic morphology and function.
Collapse
Affiliation(s)
- Jacopo Bonato
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna; 40126 Bologna, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany
| | - Sebastiano Curreli
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
| | - Sara Romanzi
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- University of Genova; 16126 Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany
| | - Tommaso Fellin
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
| |
Collapse
|