1
|
Schoeps B, Lauer UM, Elbers K. Deciphering permissivity of human tumor ecosystems to oncolytic viruses. Oncogene 2025; 44:1069-1077. [PMID: 40148688 DOI: 10.1038/s41388-025-03357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Effective cancer therapy involves initiation of a tumor-specific immune response. Consequently, the interest in oncolytic viruses (OV) capable of triggering immunogenic cell death has sparked in recent years. However, the common use of pre-clinical models that fail to mirror patient tumor ecosystems (TES) hinders clinical translation. Here, we provide a condensed view on the intricate interplay between several aspects of TES and OV action and discuss these considerations in the view of recently developed pre-clinical human model systems. Given the urgent demand for innovative cancer treatments, the purpose of this review is to highlight the so-far overlooked complex impact of the tumor microenvironment (TME) on OV permissivity, with the intent to provide a foundation for future, more effective pre-clinical studies.
Collapse
Affiliation(s)
| | - Ulrich M Lauer
- Department of Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tübingen, Germany
| | | |
Collapse
|
2
|
Yu J, Jin C, Su C, Moon D, Sun M, Zhang H, Jiang X, Zhang F, Tserentsoodol N, Bowie ML, Pirozzi CJ, George DJ, Wild R, Gao X, Ashley DM, He Y, Huang J. Resilience and vulnerabilities of tumor cells under purine shortage stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644180. [PMID: 40166329 PMCID: PMC11957128 DOI: 10.1101/2025.03.19.644180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purine metabolism is a promising therapeutic target in cancer; however how cancer cells respond to purine shortage,particularly their adaptation and vulnerabilities, remains unclear. Using the recently developed purine shortage-inducing prodrug DRP-104 and genetic approaches, we investigated these responses in prostate, lung and glioma cancer models. We demonstrate that when de novo purine biosynthesis is compromised, cancer cells employ microtubules to assemble purinosomes, multi-protein complexes of de novo purine biosynthesis enzymes that enhance purine biosynthesis efficiency. While this process enables tumor cells to adapt to purine shortage stress, it also renders them more susceptible to the microtubule-stabilizing chemotherapeutic drug Docetaxel. Furthermore, we show that although cancer cells primarily rely on de novo purine biosynthesis, they also exploit Methylthioadenosine Phosphorylase (MTAP)-mediated purine salvage as a crucial alternative source of purine supply, especially under purine shortage stress. In support of this finding, combining DRP-104 with an MTAP inhibitor significantly enhances tumor suppression in prostate cancer (PCa) models in vivo. Finally, despite the resilience of the purine supply machinery, purine shortage-stressed tumor cells exhibit increased DNA damage and activation of the cGAS-STING pathway, which may contribute to impaired immunoevasion and provide a molecular basis of the previously observed DRP-104-induced anti-tumor immunity. Together, these findings reveal purinosome assembly and purine salvage as key mechanisms of cancer cell adaptation and resilience to purine shortage while identifying microtubules, MTAP, and immunoevasion deficits as therapeutic vulnerabilities.
Collapse
|
3
|
Omezzolli G, Iannello A, Vallone FE, Brandimarte L, Micillo M, Bertola N, Lavarello C, Grinovero N, Ferrero G, Mellert K, Möller P, Bruno S, Furman RR, Allan JN, Petretto A, Deaglio S, Ravera S, Vaisitti T. Complementary approaches define the metabolic features that accompany Richter syndrome transformation. Cell Mol Life Sci 2025; 82:152. [PMID: 40204982 PMCID: PMC11982009 DOI: 10.1007/s00018-025-05670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade lymphoma with previously unknown metabolic features. Transcriptomic data from primary CLL and RS samples, as well as RS-patient-derived xenografts, highlighted cellular metabolism as one of the most significant differentially expressed processes. Activity assays of key enzymes confirmed the intense metabolic rewiring of RS cells, which is characterized by an elevated rate of Krebs cycle, oxidative phosphorylation, and glutamine metabolism. These pathways were sustained by increased uptake of glucose and glutamine, two critical substrates for these cells. Moreover, RS cells showed activation of anabolic processes that resulted in the synthesis of nucleotides and lipids necessary to support their high proliferation. Exposure to drugs targeting PI3K and NF-kB, two master regulators of cellular metabolism, resulted in the shutdown of ATP production and glycolysis. Overall, these data suggest that metabolic rewiring characterizes the transformation of CLL into RS, presenting new translational opportunities.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Animals
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/genetics
- Glycolysis
- Citric Acid Cycle
- Mice
- Oxidative Phosphorylation
- Glucose/metabolism
- Glutamine/metabolism
- NF-kappa B/metabolism
- NF-kappa B/antagonists & inhibitors
- Phosphatidylinositol 3-Kinases/metabolism
Collapse
Affiliation(s)
- Giulia Omezzolli
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Andrea Iannello
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Francesco E Vallone
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Lorenzo Brandimarte
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Matilde Micillo
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Nadia Bertola
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Nicole Grinovero
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Richard R Furman
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - John N Allan
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
4
|
Youn D, Kim B, Jeong D, Lee JY, Kim S, Sumberzul D, Ginting RP, Lee MW, Song JH, Park YS, Kim Y, Oh CM, Lee M, Cho J. Cross-talks between Metabolic and Translational Controls during Beige Adipocyte Differentiation. Nat Commun 2025; 16:3373. [PMID: 40204764 PMCID: PMC11982337 DOI: 10.1038/s41467-025-58665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Whether and how regulatory events at the translation stage shape the cellular and metabolic features of thermogenic adipocytes is hardly understood. In this study, we report two hitherto unidentified cross-talk pathways between metabolic and translational regulation in beige adipocytes. By analysing temporal profiles of translation activity and protein level changes during precursor-to-beige differentiation, we found selective translational down-regulation of OXPHOS component-coding mRNAs. The down-regulation restricted to Complexes I, III, IV, and V, is coordinated with enhanced translation of TCA cycle genes, engendering distinct stoichiometry of OXPHOS and TCA cycle components and altering the related metabolic activities in mitochondria of thermogenic adipocytes. Our high-resolution description of ribosome positioning unveiled potentiated ribosome pausing at glutamate codons. The increased stalling is attributable to remodelled glutamate metabolism that decreases glutamates for tRNA charging during pan-adipocyte differentiation. The ribosome pauses decrease protein synthesis and mRNA stability of glutamate codon-rich genes, such as actin cytoskeleton-associated genes.
Collapse
Affiliation(s)
- Daehwa Youn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Boseon Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Dahee Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ju Yeon Lee
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Seha Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dulguun Sumberzul
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Rehna Paula Ginting
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ju Hwan Song
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Ye Seul Park
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
5
|
Fang S, Zhu G, Xie Y, Ding M, Zhen N, Zhu J, Mao S, Tang X, Wu H, Zhang Q, Zhang A, Ni X, Pan Q, Ma J. O-GlcNAcylation of glutaminase isoform KGA inhibits ferroptosis through activation of glutaminolysis in hepatoblastoma. Cell Death Discov 2025; 11:160. [PMID: 40204725 PMCID: PMC11982200 DOI: 10.1038/s41420-025-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Hepatoblastoma (HB), the most common pediatric hepatic malignancy, exhibits an increasing incidence. Metabolism reprogramming represents a pivotal hallmark in the oncogenic transformation process, with glutamine emerging as a critical energy source for neoplastic cells, rivaling glucose. However, the mechanism by which glutamine is involved in the development of HB remains unclear. Our study identified glutamine metabolism as a crucial factor in the development of HB. The key enzyme of glutamine metabolism, kidney-type glutaminase (GLS1), is activated in HB and regulates cell proliferation. Mechanistically, the GLS1 subtype KGA, utilizing glutamate derived from glutaminolysis, enhances glutathione (GSH) synthesis, which in turn inhibits ferroptosis in HB cells. Importantly, the Thr563 residue of KGA undergoes O-GlcNAcylation, enhancing enzyme activity and stability, accelerating glutaminolysis, and promoting the proliferation of HB. This study demonstrated that enhanced glutaminolysis, driven by GLS1, is crucial for the development of HB by inhibiting ferroptosis. The O-GlcNAcylation of KGA isoform ensures its stability and glutaminase function in HB cells, which can serve as a promising therapeutic target for KGA-mediated glutaminolysis in HB.
Collapse
Affiliation(s)
- Sijia Fang
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Zhu
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xie
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Ding
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Zhen
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabei Zhu
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siwei Mao
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Wu
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijia Zhang
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China.
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China.
| | - Qiuhui Pan
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China.
| | - Ji Ma
- Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China.
| |
Collapse
|
6
|
Hu H, Ning S, Liu F, Zhang Z, Zeng W, Liu Y, Liao Z, Zhang H, Zhang Z. Hafnium Metal-Organic Framework-Based Glutamine Metabolism Disruptor For Potentiating Radio-Immunotherapy in MYC-Amplified Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19367-19381. [PMID: 40116395 DOI: 10.1021/acsami.4c21998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Hepatocellular carcinoma (HCC) with MYC oncogene amplification remains a serious challenge in clinical practice. Recent advances in comprehensive treatment strategies, particularly the combination of radiotherapy and immunotherapy, offer new hope. To further improve efficacy while lowering radiation doses, nanopharmaceuticals based on high-Z elements have been extensively studied in radio-immunotherapy. In this work, a hafnium-based metal-organic framework (Hf-MOF), UiO-66-Hf(2OH)-CB-839/BSO@HA (UiO-66-Hf(2OH)-C/B@HA), was designed to codeliver telaglenastat (CB-839) and buthionine sulfoximine (BSO), which synergistically inhibited glutamine metabolism and alleviated tumor hypoxia. Further modification with hyaluronic acid (HA) enhanced tumor targeting, ultimately strengthening the efficacy of radiotherapy in MYC-amplified HCC. Beyond increasing reactive oxygen species (ROS) generation, promoting DNA damage, and inducing tumor apoptosis, more importantly, UiO66-Hf(2OH)-C/B@HA triggered immunogenic cell death (ICD), driving the antitumor immune response. Combination with immune checkpoint blockade (ICB) further enhanced the efficacy, accompanied by increased infiltration of T cells with high granzyme B expression (GZMB+ T cells) within the tumor microenvironment (TME). In the orthotopic HCC model, established with MYC-amplified tumor cells, intravenous administration of UiO66-Hf(2OH)-C/B@HA significantly potentiated the efficacy of radio-immunotherapy, resulting in superior tumor regression. In summary, our study provides insights into the design of Hf-MOF for radio-immunotherapy and proposes a promising therapeutic approach for MYC-amplified HCC.
Collapse
Affiliation(s)
- Haofan Hu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Shangwu Ning
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| |
Collapse
|
7
|
Yi J, Wang H, Deng Q, Huang C, Zhang L, Sun M, Ren J, Qu X. A bacteria-based bioorthogonal platform disrupts the flexible lipid homeostasis for potent metabolic therapy. Chem Sci 2025; 16:6014-6022. [PMID: 40070470 PMCID: PMC11891781 DOI: 10.1039/d4sc06481j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer cells exhibit altered metabolism and energetics, prominently reprogramming lipid metabolism to support tumor growth and progression, making it a promising target for cancer therapy. However, traditional genetic and pharmaceutical approaches for disrupting lipid metabolism face challenges due to the adaptability of tumor metabolism and potential side effects on normal tissues. Here, we present a bacteria-based bioorthogonal platform combining transition metal catalysts and Lactobacillus to disrupt the flexible lipid homeostasis in tumors. This platform activates glutamine transporter inhibitors in situ, targeting lipid synthesis in hypoxic tumor environments, while Lactobacillus inhibits lipid accumulation. By disrupting lipid metabolism and glutamine utilization, the present study proposes a safe and potent strategy for cancer therapy, with potential applications for other metabolic diseases.
Collapse
Affiliation(s)
- Jiadai Yi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Huan Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Congcong Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
8
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
9
|
Dissanayake UC, Roy A, Maghsoud Y, Polara S, Debnath T, Cisneros GA. Computational studies on the functional and structural impact of pathogenic mutations in enzymes. Protein Sci 2025; 34:e70081. [PMID: 40116283 PMCID: PMC11926659 DOI: 10.1002/pro.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Enzymes are critical biological catalysts involved in maintaining the intricate balance of metabolic processes within living organisms. Mutations in enzymes can result in disruptions to their functionality that may lead to a range of diseases. This review focuses on computational studies that investigate the effects of disease-associated mutations in various enzymes. Through molecular dynamics simulations, multiscale calculations, and machine learning approaches, computational studies provide detailed insights into how mutations impact enzyme structure, dynamics, and catalytic activity. This review emphasizes the increasing impact of computational simulations in understanding molecular mechanisms behind enzyme (dis)function by highlighting the application of key computational methodologies to selected enzyme examples, aiding in the prediction of mutation effects and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Upeksha C. Dissanayake
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Arkanil Roy
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Yazdan Maghsoud
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Sarthi Polara
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Tanay Debnath
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - G. Andrés Cisneros
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
10
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Pu X, Wu Y, Long W, Sun X, Yuan X, Wang D, Wang X, Xu M. The m6A reader IGF2BP2 promotes pancreatic cancer progression through the m6A-SLC1A5-mTORC1 axis. Cancer Cell Int 2025; 25:122. [PMID: 40158101 PMCID: PMC11954220 DOI: 10.1186/s12935-025-03736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Pancreatic cancer is a highly malignant digestive tumor. Glutamine metabolism is one of the important sources of tumors. N6-methyladenosine (m6A) modification plays a key role in regulating tumor metabolism and holds promise as a therapeutic target in various cancers, including pancreatic cancer. Disrupting m6A regulation of glutamine metabolism could impair tumor growth, offering potential new therapeutic strategies. However, the functional role of m6A modifications in pancreatic cancer, especially in glutamine metabolism, remains poorly understood. METHODS The Cancer Genome Atlas (TCGA) dataset and GEPIA bioinformatics tool were used to identify the relationship between m6A related proteins and the glutamine metabolism-associated genes, respectively. The biological effects of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were investigated using in vitro and in vivo models. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), MeRIP-PCR and RNA immunoprecipitation (RIP) were used to identify solute carrier family 1 member 5 (SLC1A5) as a direct target of IGF2BP2. RESULTS We found that IGF2BP2 expression and SLC1A5 were significantly correlated and both highly expressed in pancreatic cancer could predict poor prognosis in patients with pancreatic cancer. Functionally, silencing IGF2BP2 suppressed tumor growth and also inhibited glutamine uptake by tumor cells. Mechanistically, IGF2BP2 induced the m6A-SLC1A5-mTORC1 axis, facilitating the uptake of glutamine by pancreatic cancer cells and accelerate the progress of pancreatic cancer. Furthermore, silencing IGF2BP2 can enhance the sensitivity of pancreatic cancer to radiotherapy and chemotherapy. CONCLUSION Our findings suggest that IGF2BP2 promotes pancreatic cancer by activating the m6A-SLC1A5 -mTORC1 axis. Targeting the m6A machinery, particularly IGF2BP2, offers a novel therapeutic avenue for pancreatic cancer treatment. By disrupting the regulation of glutamine metabolism, we provide new insights into how m6A-based therapies could enhance the efficacy of current treatments and offer hope for improving patient outcomes in this difficult-to-treat cancer.
Collapse
Affiliation(s)
- Xi Pu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Yuting Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Weiguo Long
- Pathology Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiao Yuan
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Deqiang Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Excellent Medical School, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| |
Collapse
|
12
|
Biswal S, Sahoo SK, Biswal BK. Shikonin a potent phytotherapeutic: a comprehensive review on metabolic reprogramming to overcome drug resistance in cancer. Mol Biol Rep 2025; 52:347. [PMID: 40156720 DOI: 10.1007/s11033-025-10459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Drug resistance remains a major challenge in cancer therapy, often leading to treatment failure. Metabolic reprogramming, a hallmark of cancer, plays a pivotal role in drug resistance. Phytocompounds, particularly shikonin, a naphthoquinone derived from Lithospermum erythrorhizon, have garnered significant interest as potential alternatives for cancer prevention and treatment. This review focuses on the anticancer properties of shikonin, particularly its ability to modulate metabolic reprogramming and overcome drug resistance. This review, based on extensive searches in databases like PubMed, Web of Science, Google Scholar, and Scopus, highlights shikonin's potential as a therapeutic agent. Shikonin exhibits a wide range of anticancer activities, including induction of apoptosis, autophagy, necroptosis, inhibition of angiogenesis, invasion, and migration, as well as disruption of the cell cycle and promotion of DNA damage. It targets altered cancer cell metabolism to inhibit proliferation and reverse drug resistance, making it a promising candidate for therapeutic development. Preliminary clinical trials suggest that shikonin can enhance the efficacy of established chemotherapeutic agents, immunotherapies, and radiation through additive and synergistic interactions. Despite its promise, further research is needed to elucidate the precise mechanisms underlying shikonin's metabolic reprogramming effects in cancer. A comprehensive understanding could pave the way for its integration into standard oncological treatments. With its capacity to act on multiple cancer pathways and enhance conventional treatments, shikonin stands out as a viable candidate for combating drug-resistant cancers and advancing clinical oncology.
Collapse
Affiliation(s)
- Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | | | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
13
|
Wang Y, Zhou H, Ju S, Dong X, Zheng C. The solid tumor microenvironment and related targeting strategies: a concise review. Front Immunol 2025; 16:1563858. [PMID: 40207238 PMCID: PMC11979131 DOI: 10.3389/fimmu.2025.1563858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
The malignant tumor is a serious disease threatening human life. Increasing studies have confirmed that the tumor microenvironment (TME) is composed of a variety of complex components that precisely regulate the interaction of tumor cells with other components, allowing tumor cells to continue to proliferate, resist apoptosis, evade immune surveillance and clearance, and metastasis. However, the characteristics of each component and their interrelationships remain to be deeply understood. To target TME, it is necessary to deeply understand the role of various components of TME in tumor growth and search for potential therapeutic targets. Herein, we innovatively classify the TME into physical microenvironment (such as oxygen, pH, etc.), mechanical microenvironment (such as extracellular matrix, blood vessels, etc.), metabolic microenvironment (such as glucose, lipids, etc.), inflammatory microenvironment and immune microenvironment. We introduce a concise but comprehensive classification of the TME; depict the characteristics of each component in TME; summarize the existing methods for detecting each component in TME; highlight the current strategies and potential therapeutic targets for TME; discuss current challenges in presenting TME and its clinical applications; and provide our prospect on the future research direction and clinical benefits of TME.
Collapse
Affiliation(s)
- Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| |
Collapse
|
14
|
Zhang B, Zheng J, Zheng S. Cirsiliol suppresses malignant progression of hepatocellular carcinoma via regulation of glutamine metabolism. Am J Transl Res 2025; 17:2145-2153. [PMID: 40226041 PMCID: PMC11982850 DOI: 10.62347/aoty4308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/06/2024] [Indexed: 04/15/2025]
Abstract
BACKGROUND To investigate the therapeutic potential of cirsiliol in hepatocellular carcinoma (HCC), focusing on its impact on glutamine metabolism. METHODS HCC cell lines HCCLM3 and Huh7 were treated with cirsiliol, and cell viability and proliferation were assessed using CCK-8 assay. Intracellular concentrations of glutamine, α-ketoglutaric acid (α-KG), and adenosine triphosphate (ATP) were measured to evaluate glutamine metabolism. A xenograft tumor model was employed to examine the in vivo effects of cirsiliol. Additionally, network pharmacological analysis was used to identify potential targets of cirsiliol in HCC. Western blotting was conducted to analyze the modulation of the PI3K/AKT signaling pathway by cirsiliol. RESULTS Cirsiliol significantly inhibited HCC cell growth both in vitro and in vivo while reducing levels of glutamine, α-KG, and ATP, indicating suppression of glutamine metabolism. Activation of the PI3K signaling pathway reversed the inhibitory effects of cirsiliol on HCC cell growth and metabolism. CONCLUSION Cirsiliol suppresses glutamine metabolism and inhibits the growth of HCC cells by modulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bin Zhang
- Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Ningbo University No. 59, Liuting Street, Haishu District, Ningbo 315000, Zhejiang, China
| | - Jianbo Zheng
- Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Ningbo University No. 59, Liuting Street, Haishu District, Ningbo 315000, Zhejiang, China
| | - Siming Zheng
- Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Ningbo University No. 59, Liuting Street, Haishu District, Ningbo 315000, Zhejiang, China
| |
Collapse
|
15
|
Zhang D, Song S, Lin J, Ye T, Yang X, Jiang Q, Mi Y, Zhang M, Ge X, Shen Y, Du P, Shi Y, Zhang X, Li L, Zhang Y, Ding L, Liu J, Zhang Y, Gao S, Ye Q. Glutamine binds HSC70 to transduce signals inhibiting IFN-β-mediated immunogenic cell death. Dev Cell 2025:S1534-5807(25)00117-0. [PMID: 40086433 DOI: 10.1016/j.devcel.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Glutamine plays a role in cell signaling that regulates gene expression and impacts tumorigenesis. However, it is still unclear how glutamine transduces signals in cells. Here, we show that glutamine binds to heat shock cognate protein 70 (HSC70) to stimulate the deubiquitinase otubain domain containing protein (OTUD4) independently of known glutamine metabolic or signaling pathways, resulting in lactate dehydrogenase A (LDHA) stabilization via the microautophagy-lysosome pathway, increased lactate production and decreased expression of interferon (IFN)-β and its targets, hallmarks of immunogenic cell death (ICD). In cancer cell lines and patient-derived organoids and xenografts, glutamine depletion or glutamine transport inhibition combined with ICD-inducing chemotherapeutic drugs synergistically activates IFN-β, promotes CD8+ T cell recruitment, and inhibits cancer cell growth via the OTUD4/LDHA axis. CD8 expression is negatively correlated with expression of the glutamine transporter alanine/serine/cysteine transporter 2 (ASCT2), OTUD4, and LDHA in cancer patients. Thus, we identify an intracellular glutamine signaling pathway, and targeting this pathway is a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Songze Song
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, China Medical University, Shenyang 110122, China
| | - Jing Lin
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; Department of Laboratory Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100037, China
| | - Tianxing Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiao Yang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Qiwei Jiang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yue Mi
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Mengting Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiangwei Ge
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China
| | - Yanjie Shen
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Peizhe Du
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yanzhu Shi
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiujuan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ling Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yanan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Lihua Ding
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jie Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China.
| |
Collapse
|
16
|
Yang R, Zhang G, Meng Z, Wang L, Li Y, Li H, Yan S, Wei X, Wang S, Cui H. Glutamate dehydrogenase 1-catalytic glutaminolysis feedback activates EGFR/PI3K/AKT pathway and reprograms glioblastoma metabolism. Neuro Oncol 2025; 27:668-681. [PMID: 39446525 PMCID: PMC11889723 DOI: 10.1093/neuonc/noae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Glutamine is an important nutrient for cancer cell growth that provides biological sources for nucleic acid and fatty acid synthesis, but the role of glutaminolysis in signal transduction and glioblastoma (GBM) progression remains little known. METHODS Knockdown and overexpression cells were obtained to explore the functional roles of glutamate dehydrogenase 1 (GDH1) in cell proliferation, tumor formation, and aerobic glycolysis. RNA-seq, Chromatin immunoprecipitation, luciferase assay, and western blot were performed to verify the regulation of the EGFR-AKT pathway by the GDH1 (also known as GLUD1) and KDM6A. Metabolite-level measurements and Seahorse Assay were performed to assess the functional role of GHD1 in reprogramming glycolysis. RESULTS Here, we report that GDH1 catalytic glutaminolysis is essential for GBM cell line proliferation and brain tumorigenesis even in high-glucose conditions. Glutamine is metabolized through glutaminolysis to produce α-ketoglutarate (α-KG). We demonstrate that glutamine in combination with leucine activates mammalian TORC1 by enhancing glutaminolysis and α-KG production. α-KG increases the transcription of PDPK1 by reducing the suppressive histone modification H3K27me3 and then promotes the activation of the PI3K/AKT/mTOR pathway. This transcriptional activation induced by α-KG requires histone demethylase KDM6A, which is a 2-oxoglutarate oxygenase that plays an important role in converting α-KG to succinate. Furthermore, we show that GDH1-catalytic glutaminolysis also increases the expression of HK2 and promotes glycolysis in high-glucose conditions dependent on KDM6A-mediated demethylation of H3K27. CONCLUSIONS These findings suggest a novel function of glutaminolysis in the regulation of signal transduction and metabolism reprogramming and provide further evidence for the unique role of glutaminolysis in GBM progression.
Collapse
Affiliation(s)
- Rui Yang
- Biomedical Laboratory, School of Medicine, Liaocheng University, Liaocheng, China
| | - Guanghui Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Meng
- Biomedical Laboratory, School of Medicine, Liaocheng University, Liaocheng, China
| | - Li Wang
- Biomedical Laboratory, School of Medicine, Liaocheng University, Liaocheng, China
| | - Yanping Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Haibin Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Siyuan Yan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaonan Wei
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Shanshan Wang
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Hongjuan Cui
- Jinfeng Laboratory, Chongqing, China
- Medical Research Institute, State Key Laboratory of Resources Insects, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Wu Y, Sun J, Xie W, Xue S, Li X, Guo J, Shan J, Peng G, Zheng Y. Immunomodulation of Glycyrrhiza Polysaccharides In Vivo Based on Microbiome and Metabolomics Approaches. Foods 2025; 14:874. [PMID: 40077577 PMCID: PMC11898905 DOI: 10.3390/foods14050874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Glycyrrhiza uralensis Fisch. is a medicinal herb that can be added to food to provide therapeutic effects and reduce the burden of medications. Herein, the immunomodulatory effects of Glycyrrhiza polysaccharides (GPs) were verified and illustrated by intervening immunocompromised rats treated with different doses of GPs, which were reflected for adjusting the composition and structure of the intestinal microbiota and altering the metabolic profile. The immunomodulatory effects of GPs were exerted by regulating the intestinal microenvironment. In particular, GPs could promote the growth of probiotic bacteria Allobaculum, norank__o_Clostridia_UCG-014, Dubosiella, and g__norank_o___RF39 and curb the growth of harmful bacteria Enterococcus. The results showed that GPs had a prebiotic effect, which contributed to improving the intestinal environment and maintaining intestinal health. In addition, the content of beneficial differential metabolites was up-regulated, especially short-chain fatty acids, with alanine, aspartate, and glutamate metabolism; arginine biosynthesis; glyoxylate and dicarboxylate metabolism being the most enriched pathways. These metabolic pathways imply the metabolic process of GPs, and the metabolic pathways and differential effector metabolites of it are focused. Overall, the purpose of this article lies in providing support for the application of GPs for regulating immune function.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Sun
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xie
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Simin Xue
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinli Li
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Guoping Peng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Yunfeng Zheng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| |
Collapse
|
18
|
Liang L, Kuang X, He Y, Zhu L, Lau P, Li X, Luo D, Gong L, Zhou W, Zhang F, Liang X, Li Z, Hu B, Liu D, Ding T, Li H, Zhao S, Su J, Hung MC, Liu J, Liu H, Chen X. Alterations in PD-L1 succinylation shape anti-tumor immune responses in melanoma. Nat Genet 2025; 57:680-693. [PMID: 40069506 PMCID: PMC11906371 DOI: 10.1038/s41588-025-02077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/06/2025] [Indexed: 03/15/2025]
Abstract
Tumors undergo metabolic reprogramming to meet the energetic, synthetic and redox demands essential for malignancy, often characterized by increased glycolysis and lactate production. However, the role of mitochondrial metabolism in tumor immunity remains unclear. The present study integrates spatial transcriptomics, bulk transcriptomics and proteomics, revealing a strong link between the metabolite succinyl-CoA and tumor immunity as well as the efficacy of anti-programmed cell death protein-1 (PD-1) therapy in patients with melanoma. Elevated succinyl-CoA levels, through α-ketoglutarate or succinate supplementation, enhanced T cell-mediated tumor elimination, both in vitro and in vivo. Mechanistically, succinylation of the ligand of PD-1 (PD-L1) at lysine 129 led to its degradation. Increased carnitine palmitoyltransferase 1A (CPT1A), identified as a succinyltransferase for PD-L1, boosted anti-tumor activity. Preclinically, bezafibrate, a hyperlipidemia drug, upregulated CPT1A and synergized with CTLA-4 monoclonal antibody to inhibit tumor growth. Clinically, higher PD-L1 and lower CPT1A levels in tumors correlated with better anti-PD-1 therapy responses, suggesting potential biomarkers for prediction of treatment efficacy.
Collapse
Affiliation(s)
- Long Liang
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Xinwei Kuang
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Lin Zhu
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Poyee Lau
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Xin Li
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Dingan Luo
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Lan Gong
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Wenbin Zhou
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Fanglin Zhang
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Xiaowei Liang
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Zhuofeng Li
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Bin Hu
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Dandan Liu
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Tao Ding
- Department of Statistical Science, University College London, London, UK
| | - Hui Li
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jing Liu
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
| |
Collapse
|
19
|
Wang Y, Rozen V, Zhao Y, Wang Z. Oncogenic activation of PI K3 CA in cancers: Emerging targeted therapies in precision oncology. Genes Dis 2025; 12:101430. [PMID: 39717717 PMCID: PMC11665392 DOI: 10.1016/j.gendis.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 12/25/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are heterodimers consisting of a p110 catalytic subunit and a p85 regulatory subunit. The PIK3CA gene, which encodes the p110α, is the most frequently mutated oncogene in cancer. Oncogenic PIK3CA mutations activate the PI3K pathway, promote tumor initiation and development, and mediate resistance to anti-tumor treatments, making the mutant p110α an excellent target for cancer therapy. PIK3CA mutations occur in two hotspot regions: one in the helical domain and the other in the kinase domain. The PIK3CA helical and kinase domain mutations exert their oncogenic function through distinct mechanisms. For example, helical domain mutations of p110α gained direct interaction with insulin receptor substrate 1 (IRS-1) to activate the downstream signaling pathways. Moreover, p85β proteins disassociate from helical domain mutant p110α, translocate into the nucleus, and stabilize enhancer of zeste homolog 1/2 (EZH1/2). Due to the fundamental role of PI3Kα in tumor initiation and development, PI3Kα-specific inhibitors, represented by FDA-approved alpelisib, have developed rapidly in recent decades. However, side effects, including on-target side effects such as hyperglycemia, restrict the maximum dose and thus clinical efficacy of alpelisib. Therefore, developing p110α mutant-specific inhibitors to circumvent on-target side effects becomes a new direction for targeting PIK3CA mutant cancers. In this review, we briefly introduce the function of the PI3K pathway and discuss how PIK3CA mutations rewire cell signaling, metabolism, and tumor microenvironment, as well as therapeutic strategies under development to treat patients with tumors harboring a PIK3CA mutation.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Valery Rozen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Zhang N, Ping W, Xiang J, Chu S, Li D, Ning S, Zhu D, Zeng W, Xu Q. Biomimetic Single-Atom Nanozyme for Dual Starvation-Enhanced Breast Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2401362. [PMID: 39363640 DOI: 10.1002/adhm.202401362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/08/2024] [Indexed: 10/05/2024]
Abstract
Cold exposure (CE) therapy is an innovative and cost-efficient cancer treatment that activates brown adipose tissue to compete for glucose uptake, leading to metabolic starvation in tumors. Exploring the combined antitumor mechanisms of CE and traditional therapies (such as nanocatalysis) is exciting and promising. In this study, a platelet membrane biomimetic single-atom nanozyme (SAEs) nanodrug (PFB) carrying bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide (BPTES) is developed for use in cancer CE therapy. Owing to the platelet membrane modification, PFB can effectively target tumors. Upon entering cancer cells, the dual starvation effect induced by CE treatment and BPTES can significantly diminish intracellular glucose and ATP levels, resulting in a substantial reduction in cellular (glutathione) GSH, which can enhance the cytotoxic efficacy of reactive oxygen species generated by SAEs. This strategy not only boosts ROS production in tumors, but also strengthens immune responses, particularly by increasing memory T-cell abundance and suppressing distant tumor growth and tumor metastasis. Compared with SAEs therapy alone, this combined approach offers superior benefits for tumor immunotherapy. This study achieves a combination of CE and nanomedicines for the first time, providing new ideas for future nanomedicine combination therapy modalities.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jingfeng Xiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sitong Chu
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Dan Li
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| | - Daoming Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qingyong Xu
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
21
|
Chen J, Hu S, Liu J, Jiang H, Wang S, Yang Z. Exosomes: a double-edged sword in cancer immunotherapy. MedComm (Beijing) 2025; 6:e70095. [PMID: 39968497 PMCID: PMC11831209 DOI: 10.1002/mco2.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Over the past few decades, immunotherapy has emerged as a powerful strategy to overcome the limitations of conventional cancer treatments. The use of extracellular vesicles, particularly exosomes, which carry cargoes capable of modulating the immune response, has been extensively explored as a potential therapeutic approach in cancer immunotherapy. Exosomes can deliver their cargo to target cells, thereby influencing their phenotype and immunomodulatory functions. They exhibit either immunosuppressive or immune-activating characteristics, depending on their internal contents. These exosomes originate from diverse cell sources, and their internal contents can vary, suggesting that there may be a delicate balance between immune suppression and stimulation when utilizing them for immunotherapy. Therefore, a thorough understanding of the molecular mechanisms underlying the role of exosomes in cancer progression is essential. This review focuses on the molecular mechanisms driving exosome function and their impact on the tumor microenvironment (TME), highlighting the intricate balance between immune suppression and activation that must be navigated in exosome-based therapies. Additionally, it underscores the challenges and ongoing efforts to optimize exosome-based immunotherapies, thereby making a significant contribution to the advancement of cancer immunotherapy research.
Collapse
Affiliation(s)
- Jiayi Chen
- School of Life SciencesJilin UniversityChangchunChina
| | - Siyuan Hu
- School of Life SciencesJilin UniversityChangchunChina
| | - Jiayi Liu
- School of Life SciencesJilin UniversityChangchunChina
| | - Hao Jiang
- School of Life SciencesJilin UniversityChangchunChina
| | - Simiao Wang
- School of Life SciencesJilin UniversityChangchunChina
| | - Zhaogang Yang
- School of Life SciencesJilin UniversityChangchunChina
| |
Collapse
|
22
|
Huang S, Shi J, Shen J, Fan X. Metabolic reprogramming of neutrophils in the tumor microenvironment: Emerging therapeutic targets. Cancer Lett 2025; 612:217466. [PMID: 39862916 DOI: 10.1016/j.canlet.2025.217466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production. However, within the TME featured by hypoxic and nutrient-deprived conditions, they shift to altered anaerobic glycolysis, lipid metabolism, mitochondrial metabolism and amino acid metabolism to perform their immunosuppressive functions and facilitate tumor progression. Targeting neutrophils within the TME is a promising therapeutic approach. Yet, focusing on their metabolic pathways presents a novel strategy to enhance cancer immunotherapy. This review synthesizes the current understanding of neutrophil metabolic reprogramming in the TME, with an emphasis on the underlying molecular mechanisms and signaling pathways. Studying neutrophil metabolism in the TME poses challenges, such as their short lifespan and the metabolic complexity of the environment, necessitating the development of advanced research methodologies. This review also discusses emerging solutions to these challenges. In conclusion, given their integral role in the TME, targeting the metabolic pathways of neutrophils could offer a promising avenue for cancer therapy.
Collapse
Affiliation(s)
- Shiyun Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
23
|
Ye J, Wang H, Zheng J, Ning S, Zhu D, Shi J, Shi R. Cold Exposure Therapy Enhances Single-Atom Nanozyme-Mediated Cancer Vaccine Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11752-11763. [PMID: 39945542 DOI: 10.1021/acsami.4c20487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Single-atom nanozymes are highly effective in the preparation of tumor vaccines (TV) due to their superior peroxidase (POD) activity and excellent biocompatibility. However, the immunosuppressive environment within tumors can diminish the efficacy of these vaccines. Cold exposure (CE) therapy, a noninvasive and straightforward antitumor method, not only suppresses tumor metabolism but also ameliorates the immunosuppressive tumor milieu. In this study, we developed personalized TV using copper single-atom nanozyme (Cu SAZ) and enhanced their long-term antitumor efficacy by introducing CE. We initially synthesized the Cu SAZ via high-temperature carbonization, which demonstrated robust POD activity and photothermal characteristics. Upon exposure to 808 nm laser irradiation, the nanozyme generated reactive oxygen species (ROS) and heat, inducing immunogenic cell death in 4T1 breast cancer cells or CT26 colon cancer cells and facilitating TV production. In our in vivo tumor prevention and treatment model, we noted that CE significantly boosted the efficacy of the TV. The primary mechanism involves CE's ability to lower the ratio of myeloid-derived suppressor cells (MDSCs), decrease glucose metabolism in tumor cells, and increase the proportions of CD8+ T cells and memory T cells. Collectively, our findings offer promising avenues for designing innovative TV systems.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen 518100, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongwei Wang
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen 518100, China
| | - Jingzhi Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Daoming Zhu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Runze Shi
- The Second Ward of Breast Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin 150086, China
| |
Collapse
|
24
|
Goswami MT, Weh E, Subramanya S, Weh KM, Durumutla HB, Hager H, Miller N, Chaudhury S, Andren A, Sajjakulnukit P, Zhang L, Besirli CG, Lyssiotis CA, Wubben TJ. Glutamine catabolism supports amino acid biosynthesis and suppresses the integrated stress response to promote photoreceptor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.26.582525. [PMID: 38586045 PMCID: PMC10996599 DOI: 10.1101/2024.03.26.582525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Photoreceptor loss results in vision loss in many blinding diseases, and metabolic dysfunction underlies photoreceptor degeneration. So, exploiting photoreceptor metabolism is an attractive strategy to prevent vision loss. Yet, the metabolic pathways that maintain photoreceptor health remain largely unknown. Here, we investigated the dependence of photoreceptors on glutamine (Gln) catabolism. Gln is converted to glutamate via glutaminase (GLS), so mice lacking GLS in rod photoreceptors were generated to inhibit Gln catabolism. Loss of GLS produced rapid rod photoreceptor degeneration. In vivo metabolomic methodologies and metabolic supplementation identified Gln catabolism as critical for glutamate and aspartate biosynthesis. Concordant with this amino acid deprivation, the integrated stress response (ISR) was activated with protein synthesis attenuation, and inhibiting the ISR delayed photoreceptor loss. Furthermore, supplementing asparagine, which is synthesized from aspartate, delayed photoreceptor degeneration. Hence, Gln catabolism is integral to photoreceptor health, and these data reveal a novel metabolic axis in these metabolically-demanding neurons.
Collapse
Affiliation(s)
- Moloy T. Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Shubha Subramanya
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Hima Bindu Durumutla
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter Sajjakulnukit
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J. Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Sun L, Cui ZG, Feng Q, Muhammad JS, Jin YJ, Zhao S, Zhou L, Wu CAI. Fenvalerate exposure induces AKT/AMPK-dependent alterations in glucose metabolism in hepatoma cells. Front Pharmacol 2025; 16:1540567. [PMID: 40070568 PMCID: PMC11893604 DOI: 10.3389/fphar.2025.1540567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Background Fenvalerate (Fen) is a synthetic pyrethroid insecticide significantly associated with an increased risk of type 2 diabetes. Tumor cells exhibit a shift in glucose metabolism, known as the Warburg effect. Accordingly, we aimed to elucidate whether Fen interferes with insulin signaling and affects hepatoma cell metabolism. Methods The cells were subjected to Fen to assess glucose uptake, acidification, oxygen consumption, and ATP production. ROS generation, mitochondrial membrane potentials, and protein expression were evaluated by flow cytometry, immunofluorescence microscopy, and western blot analyses. Results Our results demonstrated that Fen promotes glucose uptake, lactate production, and ATP generation in various cancer cells. Moreover, Fen enhanced insulin receptor phosphorylation and upregulated p-AKT/p-AMPK expression. Fen enhanced insulin receptor sensitivity and endocytosis via reactive oxygen species generation rather than the PP2B pathway. Additionally, the antioxidants N-acetyl-L-cysteine and ascorbic acid reversed the Fen-induced increase in glycolysis. Finally, chronic Fen exposure protected hepatoma cells against metformin-induced cell death via the AKT/AMPK pathway. Conclusion These findings raise concerns regarding the safety of Fen and its potential role in altering cancer cell metabolism, affecting insulin signaling and treating drug resistance, thereby necessitating further research.
Collapse
Affiliation(s)
- Lu Sun
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, Japan
| | - Qianwen Feng
- Biocytogen Phaceuticals, Daxing Bio-Medicine Industry Park, Beijing, China
| | - Jibran Sualeh Muhammad
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Yu-Jie Jin
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Lingqi Zhou
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cheng-AI Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
26
|
Lee J, Roh JL. Ferroptosis: iron release mechanisms in the bioenergetic process. Cancer Metastasis Rev 2025; 44:36. [PMID: 40000477 DOI: 10.1007/s10555-025-10252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of cell death, has been the focus of extensive research over the past decade, leading to the elucidation of key molecules and mechanisms involved in this process. While several studies have highlighted iron sources for the Fenton reaction, the predominant mechanism for iron release in ferroptosis has been identified as ferritinophagy, which occurs in response to iron starvation. However, much of the existing literature has concentrated on lipid peroxidation rather than on the mechanisms of iron release. This review proposes three distinct mechanisms of iron mobilization: ferritinophagy, reductive pathways with selective gating of ferritin pores, and quinone-mediated iron mobilization. Notably, the latter two mechanisms operate independently of iron starvation and rely primarily on reductants such as NADH and O2•-. The inhibition of the respiratory chain, particularly under the activation of α-ketoglutarate dehydrogenase, leads to the accumulation of these reductants, which in turn promotes iron release from ferritin and indirectly inhibits AMP-activated protein kinase through excessive iron levels. In this work, we delineate the intricate relationship between iron mobilization and bioenergetic processes under conditions of oxidative stress. Furthermore, this review aims to enhance the understanding of the connections between ferroptosis and these mechanisms.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
27
|
Ramsay S, Hyvärinen E, González-Arriagada W, Salo T, Ajudarte Lopes M, Mikkonen JJW, Kashyap B, Kullaa AM. Radiation-induced changes in salivary metabolite profile and pathways in head and neck cancer patients. Clin Oral Investig 2025; 29:145. [PMID: 39982563 PMCID: PMC11845554 DOI: 10.1007/s00784-025-06225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
INTRODUCTION This longitudinal study assessed the salivary metabolic profile in patients with head and neck cancer (HNC) treated with radiotherapy (RT). This study aims to investigate salivary metabolites and biological oral pathways induced by RT. METHODS Clinical data and unstimulated whole-mouth saliva (USWMS) were obtained from 45 HNC patients before, during, and one week after the RT. Data was also collected from 30 healthy controls. NMR spectroscopy identified and quantified 24 metabolites. Spearman's rank correlation analysis and pathway enrichment analysis (MetaboAnalyst 6.0) was performed to check the effect of cancer therapy on the correlation and pathways of different salivary metabolites. RESULTS Of 24 metabolites identified, 17 salivary metabolites showed a consistent decrease in the concentration during and after treatment of HNC patients. The metabolite proline decreased, whereas fucose and 1,2-Propanediol were increased in the saliva causing altered redox balance and abnormal fucosylation in HNC patients compared to controls. Spearman correlation analysis indicated changes between pyruvate and some other metabolites, including alanine, trimethylamine, choline, taurine, and succinate, during RT. Five pathways (Pyruvate metabolism; Glycolysis / Gluconeogenesis; Glycine, serine, and threonine metabolism; Glyoxylate and dicarboxylate metabolism; and Alanine, aspartate and glutamate metabolism) are affected, demonstrating the metabolic dysregulation due to RT. The pyruvate metabolism was overpresented with the high Pathway Impact score. CONCLUSION Salivary metabolomics analysis revealed significant alterations in the metabolic profile of HNC patients undergoing RT, providing valuable insights into treatment-induced oral pathobiological changes. Alterations in salivary pathways during RT suggest disturbances in redox homeostasis, oxidative stress, and inflammation. The ability to monitor salivary metabolites and pathways non-invasively holds promise to personalized medicine in HNC treatment by enabling early detection of treatment-related toxicities, monitoring treatment response, and tailoring interventions to patient needs.
Collapse
Affiliation(s)
- Saga Ramsay
- Institute of Dentistry, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70210, Finland
- Educational Dental Clinic, Kuopio University Hospital, The Wellbeing Services County of North Savo, Kuopio, Finland
| | - Eelis Hyvärinen
- Institute of Dentistry, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70210, Finland
- Educational Dental Clinic, Kuopio University Hospital, The Wellbeing Services County of North Savo, Kuopio, Finland
| | - Wilfredo González-Arriagada
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile
- Centro de Investigación E Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Tuula Salo
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, ClinicumHelsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
- CAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Marcio Ajudarte Lopes
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Sao Paulo, CEP, 13414-018, Brazil
| | - Jopi J W Mikkonen
- Institute of Dentistry, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70210, Finland
| | - Bina Kashyap
- Institute of Dentistry, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70210, Finland
| | - Arja M Kullaa
- Institute of Dentistry, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70210, Finland.
- Educational Dental Clinic, Kuopio University Hospital, The Wellbeing Services County of North Savo, Kuopio, Finland.
| |
Collapse
|
28
|
Wu H, Zhang J, Wang Q, Li Z, Li L, Xie Y. Metformin combined with CB-839 specifically inhibits KRAS-mutant ovarian cancer. Sci Rep 2025; 15:6072. [PMID: 39972191 PMCID: PMC11840008 DOI: 10.1038/s41598-025-90963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 02/21/2025] Open
Abstract
KRAS mutations can cause metabolic reprogramming in ovarian cancer, leading to an increased metastatic capacity. This study investigated the metabolic reprogramming changes induced by KRAS mutations in ovarian cancer and the mechanism of action of metformin combined with a glutaminase 1 inhibitor (CB-839). KRAS-mutant ovarian cancer accounted for 14% of ovarian cancers. The expression of glucose metabolism-related (PFKFB3, HK2, GLUT1, and PDK2) and glutamine metabolism-related enzymes (GLS1 and ASCT2) was elevated in KRAS-mutant ovarian cancer cells compared with that in wild-type cells. KRAS-mutant cells had a higher aerobic oxidative capacity than did wild-type cells. Metformin inhibited proliferation, the expression of glucose metabolism-related enzymes, and the aerobic oxidative capacity of KRAS-mutant cells compared with those of control cells. Furthermore, it enhanced the expression of glutamine metabolism-related enzymes in KRAS-mutant cells. Metformin combined with CB-839 inhibited the proliferation and aerobic oxidation of KRAS-mutant cells to a greater extent than that observed in wild-type cells. Additionally, the inhibitory effects of metformin and CB-839 in the KRAS-mutant ovarian cancer NOD-SCID mouse model were significantly stronger than those in the drug-alone group. KRAS mutations lead to enhanced glucose and glutamine metabolism in ovarian cancer cells, which was inhibited by metformin combined with CB-839.
Collapse
Affiliation(s)
- Han Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jialin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiujie Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zijiao Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Linlin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ya Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
29
|
Shen X, Chen Y, Tang Y, Lu P, Liu M, Mao T, Weng Y, Yu F, Liu Y, Tang Y, Wang L, Niu N, Xue J. Targeting pancreatic cancer glutamine dependency confers vulnerability to GPX4-dependent ferroptosis. Cell Rep Med 2025; 6:101928. [PMID: 39879992 DOI: 10.1016/j.xcrm.2025.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) relies heavily on glutamine (Gln) utilization to meet its metabolic and biosynthetic needs. How epigenetic regulators contribute to the metabolic flexibility and PDAC's response and adaptation to Gln scarcity in the tumor milieu remains largely unknown. Here, we elucidate that prolonged Gln restriction or treatment with the Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), leads to growth inhibition and ferroptosis program activation in PDAC. A CRISPR-Cas9 screen identifies an epigenetic regulator, Paxip1, which promotes H3K4me3 upregulation and Hmox1 transcription upon DON treatment. Additionally, ferroptosis-related repressors (e.g., Slc7a11 and Gpx4) are increased as an adaptive response, thereby predisposing PDAC cells to ferroptosis upon Gln deprivation. Moreover, DON sensitizes PDAC cells to GPX4 inhibitor-induced ferroptosis, both in vitro and in patient-derived xenografts (PDXs). Taken together, our findings reveal that targeting Gln dependency confers susceptibility to GPX4-dependent ferroptosis via epigenetic remodeling and provides a combination strategy for PDAC therapy.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China.
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
McManus RM, Komes MP, Griep A, Santarelli F, Schwartz S, Ramón Perea J, Schlachetzki JCM, Bouvier DS, Khalil MA, Lauterbach MA, Heinemann L, Schlüter T, Pour MS, Lovotti M, Stahl R, Duthie F, Rodríguez-Alcázar JF, Schmidt SV, Spitzer J, Noori P, Maillo A, Boettcher A, Herron B, McConville J, Gomez-Cabrero D, Tegnér J, Glass CK, Hiller K, Latz E, Heneka MT. NLRP3-mediated glutaminolysis controls microglial phagocytosis to promote Alzheimer's disease progression. Immunity 2025; 58:326-343.e11. [PMID: 39904338 DOI: 10.1016/j.immuni.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Activation of the NLRP3 inflammasome has been implicated in the pathogenesis of Alzheimer's disease (AD) via the release of IL-1β and ASC specks. However, whether NLRP3 is involved in pathways beyond this remained unknown. Here, we found that Aβ deposition in vivo directly triggered NLRP3 activation in APP/PS1 mice, which model many features of AD. Loss of NLRP3 increased glutamine- and glutamate-related metabolism and increased expression of microglial Slc1a3, which was associated with enhanced mitochondrial and metabolic activity. The generation of α-ketoglutarate during this process impacted cellular function, including increased clearance of Aβ peptides as well as epigenetic and gene transcription changes. This pathway was conserved between murine and human cells. Critically, we could mimic this effect pharmacologically using NLRP3-specific inhibitors, but only with chronic NLRP3 inhibition. Together, these data demonstrate an additional role for NLRP3, where it can modulate mitochondrial and metabolic function, with important downstream consequences for the progression of AD.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Max P Komes
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Angelika Griep
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Francesco Santarelli
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | | | - Juan Ramón Perea
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid 28049, Spain
| | - Johannes C M Schlachetzki
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David S Bouvier
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367 Belvaux, Luxembourg; Laboratoire National de Santé (LNS), National Center of Pathology (NCP), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Michelle-Amirah Khalil
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Mario A Lauterbach
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Lea Heinemann
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Titus Schlüter
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Mehran Shaban Pour
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Marta Lovotti
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Rainer Stahl
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Fraser Duthie
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | | | - Susanne V Schmidt
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Jasper Spitzer
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Peri Noori
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Maillo
- Translational Bioinformatics Unit, Navarrabiomed, Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
| | - Andreas Boettcher
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Brian Herron
- Regional Neuropathology Service, Institute of Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Grosvenor Road, Belfast BT12 6BL, Northern Ireland
| | | | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarrabiomed, Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain; Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Science for Life Laboratory, Tomtebodavagen 23A, 17165, Solna, Sweden
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367 Belvaux, Luxembourg; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Ji L, Wang D, Zhuo G, Chen Z, Wang L, Zhang Q, Wan Y, Liu G, Pan Y. Spatial Metabolomics and Transcriptomics Reveal Metabolic Reprogramming and Cellular Interactions in Nasopharyngeal Carcinoma with High PD-1 Expression and Therapeutic Response. Theranostics 2025; 15:3035-3054. [PMID: 40083932 PMCID: PMC11898293 DOI: 10.7150/thno.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/29/2025] [Indexed: 03/16/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a heterogeneous cancer with variable therapeutic responses, highlighting the need to better understand the molecular factors influencing treatment outcomes. This study aims to explore spatially metabolic and gene expression alterations in NPC patients with different therapeutic responses and PD-1 expression levels. Methods: This study employs spatial metabolomics (SM) and spatial transcriptomics (ST) to investigate significant alterations in metabolic pathways and metabolites in NPC patients exhibiting therapeutic sensitivity or elevated programmed death 1 (PD-1) expression. The spatial distribution of various cell types within the TME and their complex interactions were also investigated. Identified prognostic targets were validated using public datasets from TCGA, and further substantiated by in vitro functional analyses. Results: SM analysis revealed substantial reprogramming in lipid metabolism, branched-chain amino acid (BCAA) metabolism, and glutamine metabolism, which were closely associated with therapeutic response and PD-1 expression. ST analysis highlighted the critical role of interactions between precursor T cells and malignant epithelial cells in modulating therapeutic response in NPC. Notably, six key genes involved in BCAA metabolism (IL4I1, OXCT1, BCAT2, DLD, ALDH1B1, HADH) were identified in distinguishing patients with therapeutic sensitivity from those with therapeutic resistance. Functional validation of DLD and IL4I1 revealed that gene silencing significantly inhibited NPC cell proliferation, colony formation, wound healing, and invasion. Silencing DLD or IL4I1 induced cell cycle arrest. Reduction in α-Ketomethylvaleric acid (KMV) levels was demonstrated upon IL4I1 silencing. Immunohistochemical analysis further confirmed that high expression of these six genes was significantly associated with poor prognosis in NPC patients, a trend corroborated by data from the TCGA head and neck cancer cohort. Conclusions: This study highlights the pivotal roles of key molecular players in therapeutic response in NPC, providing compelling evidence for their potential application as prognostic biomarkers and therapeutic targets, thereby contributing to precision oncology strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Lili Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Molecular Diagnostics, Wuhan 430071, China
| | - Dujuan Wang
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, Dongguan 523960, China
| | - Guangzheng Zhuo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zhe Chen
- Department of Otolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Molecular Diagnostics, Wuhan 430071, China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yuhang Wan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Molecular Diagnostics, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
32
|
Pan J, Lin Y, Liu X, Zhang X, Liang T, Bai X. Harnessing amino acid pathways to influence myeloid cell function in tumor immunity. Mol Med 2025; 31:44. [PMID: 39905317 PMCID: PMC11796060 DOI: 10.1186/s10020-025-01099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Amino acids are pivotal regulators of immune cell metabolism, signaling pathways, and gene expression. In myeloid cells, these processes underlie their functional plasticity, enabling shifts between pro-inflammatory, anti-inflammatory, pro-tumor, and anti-tumor activities. Within the tumor microenvironment, amino acid metabolism plays a crucial role in mediating the immunosuppressive functions of myeloid cells, contributing to tumor progression. This review delves into the mechanisms by which specific amino acids-glutamine, serine, arginine, and tryptophan-regulate myeloid cell function and polarization. Furthermore, we explore the therapeutic potential of targeting amino acid metabolism to enhance anti-tumor immunity, offering insights into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jiongli Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Lin
- Health Science Center, Ningbo University, Ningbo, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Tecson MB, Geluz C, Cruz Y, Greene ER. Glutamine Synthetase: Diverse Regulation and Functions of an Ancient Enzyme. Biochemistry 2025; 64:547-554. [PMID: 39844577 PMCID: PMC11800386 DOI: 10.1021/acs.biochem.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Glutamine synthetase (GS) is a ubiquitous enzyme central to nitrogen metabolism, catalyzing the ATP-dependent formation of glutamine from glutamate and ammonia. Positioned at the intersection of nitrogen metabolism with carbon metabolism, the activity of GS is subject to sophisticated regulation. While the intricate regulatory pathways that govern Escherichia coli GS were established long ago, recent work has demonstrated that homologues are controlled by multiple distinct regulatory patterns, such as the metabolite induced oligomeric state formation in archaeal GS by 2-oxoglutarate. Such work was enabled in large part by advances in cryo-electron microscopy (cryoEM) that allowed greater structural access to this large enzyme complex, such as assessment of the large heterogeneous oligomeric states of GS and protein-interactor-GS complexes. This perspective highlights recent advances in understanding GS regulation, focusing on the dynamic interplay between its oligomeric state, metabolite binding, and protein interactors. These interactions modulate GS activity, influencing cellular processes such as nitrogen assimilation, carbon metabolism, and stress responses. Furthermore, we explore the emerging concept of GS "moonlighting" functions, revealing its roles in palmitoylation, cell cycle regulation, and ion channel modulation. These diverse functions highlight a newfound versatility of GS beyond its primary catalytic role and suggest complex roles in health and disease that warrant further study.
Collapse
Affiliation(s)
| | | | - Yuly Cruz
- Department of Chemistry and
Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, United States
| | - Eric R. Greene
- Department of Chemistry and
Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, United States
| |
Collapse
|
34
|
Zuo CY, Zhang CS, Zhang HX, Gou CY, Lei H, Tian FW, Wang ZX, Yin HY, Yu SG. Moxibustion Alleviates Inflammation via SIRT5-mediated Post-translational Modification and Macrophage Polarization. Inflammation 2025:10.1007/s10753-025-02239-y. [PMID: 39899130 DOI: 10.1007/s10753-025-02239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Macrophage polarisation is influenced by Sirtuin5 (SIRT5), which is crucial for regulating anti-inflammatory processes. Moxibustion, a traditional Chinese medicine therapy, exerts anti-inflammatory effects by altering the succinate/α-ketoglutarate (α-KG) ratio, an indicator of the M1 to M2 macrophage shift. Glutamate dehydrogenase 1 (GLUD1), a key enzyme involved in α-KG production, is desuccinylated by SIRT5. Currently, the potential influence of moxibustion on SIRT5-GLUD1-α-KG-mediated macrophage polarization in inflammatory diseases remains unexplored. C57BL/6 J and Sirt5 knockout mice were used as complete Freund's adjuvant (CFA)-induced adjuvant arthritis models. Moxibustion and acupoint injections of MC3482 were administered. Paw capacity asssays and ELISA were performed to quantify inflammatory effects and the expression of succinate, and α-KG expressions. Flow cytometry (FCM) and immunofluorescence were used to assesss the expression of M1- and M2-like macrophages. LC-MS/MS-based proteomic analysis was performed, and GLUD1 was identified desuccinylated protein associated with SIRT5. Western blotting and immunoprecipitation (IP) were used to detect SIRT5, GLUD1, and succinylated GLUD1expressions. Moxibustion and the SIRT5-mediated desuccinylation inhibitor MC3482 decreased inflammation by increasing the number of M2 macrophages and reducing the number of M1 macrophage in the CFA model. The potential mechanism may be related to the effects of moxibustion and SIRT5 inhibition, which inverted succinate and α-KG levels in the CFA group, resulting in low succinate, high α-KG, and increased GLUD1 succinylation after treatment. These findings suggest that the anti-inflammatory effects moxibustion are related to the impact of macrophage conversion after SIRT5-mediated post-translational modification.
Collapse
Affiliation(s)
- Chuan-Yi Zuo
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Han-Xiao Zhang
- Faculty of Medicine, Université Paris-Saclay, 94800, Villejuif, France
| | - Chun-Yan Gou
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Hong Lei
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Feng-Wei Tian
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Zhu-Xing Wang
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| | - Shu-Guang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
35
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
36
|
Zhu L, Liu YP, Yuan-Wang, Sun BX, Huang YT, Zhao JK, Liu JF, Yu LM, Wang HS. E3 ubiquitin ligase SYVN1 as a promising therapeutic target for diverse human diseases. Pharmacol Res 2025; 212:107603. [PMID: 39818260 DOI: 10.1016/j.phrs.2025.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Numerous studies conducted in recent years indicate that mammalian E3 ubiquitin ligases serve as key regulators in the maintenance of cellular homeostasis by targeting the ubiquitination of substrate proteins and activating downstream signaling pathways. SYVN1, an E3 ubiquitin ligase, is characterized by its significant functions in regulating various biological processes, including molecular mechanisms related to gene expression, signaling pathways, and cell death, among others. Consequently, SYVN1 plays a crucial role in both normal human physiology and the pathogenesis of various diseases, such as oncogenesis, cardiovascular disorders, immune regulation, skeletal anomalies, and neurological diseases. This review synthesizes recent findings regarding the physiological and pathophysiological roles of SYVN1, offering new insights into potential strategies for the prevention and treatment of human diseases, as well as suggesting avenues for future drug development. In this Review, we summarize the latest findings regarding the physiological and pathophysiological roles of SYVN1, elucidating the mechanisms by which SYVN1 can regulate the progression of various diseases in humans. These important findings provide new avenues for further investigation of SYVN1 protein, new insights into potential strategies to prevent and treat human diseases, and new directions for future drug development.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian, Liaoning 116000, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuan-Wang
- Graduate School of Dalian Medical University, Dalian, Liaoning 116000, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Bo-Xuan Sun
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Ji-Kai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| | - Hui-Shan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
37
|
Huang Z, Liu B, Li X, Jin C, Hu Q, Zhao Z, Sun Y, Wang Q. RUNX2 enhances bladder cancer progression by promoting glutamine metabolism. Neoplasia 2025; 60:101120. [PMID: 39733689 PMCID: PMC11743350 DOI: 10.1016/j.neo.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Bladder cancer is a prevalent malignancy within the urinary system. Prior research has suggested that glutamine metabolism plays a crucial role in driving bladder cancer progression. However, the precise molecular mechanism governing glutamine metabolism in bladder cancer is still inadequately understood. The research revealed a significant correlation between high levels of RUNX2 and SLC7A6 and advanced clinical stage, as well as poor prognosis, in bladder cancer patients. Furthermore, manipulating the levels of RUNX2 through overexpression or silencing demonstrated a significant impact on glutamine and bladder cancer progression. Mechanically, RUNX2 regulates the transcription of SLC7A6, resulting in enhanced glutamine metabolism and promoting the progression of bladder cancer. Overall, this research affirms the crucial function of RUNX2 as a key transcription factor to promoting glutamine and cancer development through modulation of SLC7A6. Targeting RUNX2 could represent a promising therapeutic approach for addressing aberrant glutamine metabolism in bladder cancer.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Urology, The First Affiliated Hospital of Yangtze University, JingZhou, Hubei Province, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Yangtze University, JingZhou, Hubei Province, China
| | - Xiaoju Li
- Department of Urology, The First Affiliated Hospital of Yangtze University, JingZhou, Hubei Province, China
| | - Chenghua Jin
- Department of Urology, The First Affiliated Hospital of Yangtze University, JingZhou, Hubei Province, China
| | - Quansen Hu
- Department of Urology, The First Affiliated Hospital of Yangtze University, JingZhou, Hubei Province, China
| | - Zhiwei Zhao
- Department of Urology, The First Affiliated Hospital of Yangtze University, JingZhou, Hubei Province, China
| | - Yimin Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, JingZhou, Hubei Province, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, JingZhou, Hubei Province, China.
| |
Collapse
|
38
|
Song XQ, Yu TJ, Ou-Yang Y, Ding JH, Jiang YZ, Shao ZM, Xiao Y. Copy number amplification of FLAD1 promotes the progression of triple-negative breast cancer through lipid metabolism. Nat Commun 2025; 16:1241. [PMID: 39890808 PMCID: PMC11785949 DOI: 10.1038/s41467-025-56458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is known for frequent copy number alterations (CNAs) and metabolic reprogramming. However, the mechanism by which CNAs of metabolic genes drive distinct metabolic reprogramming and affect disease progression remains unclear. Through an integrated analysis of our TNBC multiomic dataset (n = 465) and subsequent experimental validation, we identify copy number amplification of the metabolic gene flavin-adenine dinucleotide synthetase 1 (FLAD1) as a crucial genetic event that drives TNBC progression. Mechanistically, FLAD1, but not its enzymatically inactive mutant, upregulates the enzymatic activity of FAD-dependent lysine-specific demethylase 1 (LSD1). LSD1 subsequently promotes the expression of sterol regulatory element-binding protein 1 (SREBP1) by demethylating dimethyl histone H3 lysine 9 (H3K9me2). The upregulation of SREBP1 enhances the expression of lipid biosynthesis genes, ultimately facilitating the progression of TNBC. Clinically, pharmacological inhibition of the FLAD1/LSD1/SREBP1 axis effectively suppresses FLAD1-induced tumor progression. Moreover, LSD1 inhibitor enhances the therapeutic effect of doxorubicin and sacituzumab govitecan (SG). In conclusion, our findings reveal the CNA-derived oncogenic signalling axis of FLAD1/LSD1/SREBP1 and present a promising treatment strategy for TNBC.
Collapse
Affiliation(s)
- Xiao-Qing Song
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| | - Yang Ou-Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Jia-Han Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
39
|
Ghiglione N, Abbo D, Bushunova A, Costamagna A, Porporato PE, Martini M. Metabolic plasticity in pancreatic cancer: The mitochondrial connection. Mol Metab 2025; 92:102089. [PMID: 39736443 PMCID: PMC11846432 DOI: 10.1016/j.molmet.2024.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity in pancreatic cancer significantly impacts patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. SCOPE OF THE REVIEW This review explores the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC. We discuss the significance of mitophagy dysregulation in PDAC pathogenesis, emphasizing its influence on treatment responses and prognosis. Furthermore, we analyze the impact of mitochondrial dynamics alterations, including fission and fusion processes, on PDAC progression and tumorigenesis. MAJOR CONCLUSION Targeting mitochondrial metabolism holds promise for advancing PDAC therapeutics. Ongoing clinical trials underscore the therapeutic potential of modulating key regulators of mitochondrial dynamics and mitophagy. Despite inherent challenges, these approaches offer diverse strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Noemi Ghiglione
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Damiano Abbo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Anastasia Bushunova
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy.
| |
Collapse
|
40
|
Zhang D, Wang Y, Yu P, Sun J, Li J, Hu Y, Meng X, Li J, Xiang L. Scutellarein inhibits lung cancer growth by inducing cell apoptosis and inhibiting glutamine metabolic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118999. [PMID: 39490431 DOI: 10.1016/j.jep.2024.118999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi, a widely used Chinese medicinal herb, has shown effectiveness against lung cancer. Scutellarein, a key component of Scutellaria baicalensis, also demonstrates anticancer properties in lung cancer. However, the underlying mechanisms have not yet been clarified. AIM OF THE STUDY This study aimed to investigate the effects of scutellarein in the treatment of NSCLC and its underlying mechanisms. METHODS This study explored the effects of scutellarein on non-small cell lung cancer (NSCLC) and its mechanisms. A Lewis lung cancer mouse model was established to assess scutellarein's anticancer activity in vivo. Additionally, the compound's effects on cell proliferation, colony formation, migration, and apoptosis were evaluated in vitro using A549 and H1299 lung cancer cells. Metabolomics analysis was conducted to identify changes in cellular metabolism due to scutellarein, while molecular docking and western blotting techniques were employed to elucidate the molecular mechanisms of its anti-lung cancer effects. RESULTS Scutellarein significantly inhibited lung cancer xenograft tumor growth. In vitro studies showed that scutellarein suppressed migration and colony formation in A549 and H1299 cells, induced cell cycle arrest, and triggered cell apoptosis. Notably, scutellarein profoundly altered amino acid metabolism, particularly affecting glutamine metabolites. It affected key glutamine transporters ASCT2 and LAT1, as well as glutaminase GLS1, leading to their reduced expression. CONCLUSION Scutellarein effectively inhibits lung cancer growth both in vivo and in vitro by inducing cell apoptosis and downregulating the glutamine metabolic pathway.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apigenin/pharmacology
- Apigenin/therapeutic use
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Glutamine/metabolism
- Cell Proliferation/drug effects
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- A549 Cells
- Cell Line, Tumor
- Mice, Inbred C57BL
- Cell Movement/drug effects
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Mice
- Molecular Docking Simulation
- Xenograft Model Antitumor Assays
- Scutellaria baicalensis/chemistry
- Minor Histocompatibility Antigens/metabolism
- Male
- Amino Acid Transport System ASC/metabolism
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinwen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yingfan Hu
- The School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Juan Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
41
|
Khan T, Nagarajan M, Kang I, Wu C, Wangpaichitr M. Targeting Metabolic Vulnerabilities to Combat Drug Resistance in Cancer Therapy. J Pers Med 2025; 15:50. [PMID: 39997327 PMCID: PMC11856717 DOI: 10.3390/jpm15020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Drug resistance remains a significant barrier to effective cancer therapy. Cancer cells evade treatment by reprogramming their metabolism, switching from glycolysis to oxidative phosphorylation (OXPHOS), and relying on alternative carbon sources such as glutamine. These adaptations not only enable tumor survival but also contribute to immune evasion through mechanisms such as reactive oxygen species (ROS) generation and the upregulation of immune checkpoint molecules like PD-L1. This review explores the potential of targeting metabolic weaknesses in drug-resistant cancers to enhance therapeutic efficacy. Key metabolic pathways involved in resistance, including glycolysis, glutamine metabolism, and the kynurenine pathway, are discussed. The combination of metabolic inhibitors with immune checkpoint inhibitors (ICIs), particularly anti-PD-1/PD-L1 therapies, represents a promising approach to overcoming both metabolic and immune evasion mechanisms. Clinical trials combining metabolic and immune therapies have shown early promise, but further research is needed to optimize treatment combinations and identify biomarkers for patient selection. In conclusion, targeting cancer metabolism in combination with immune checkpoint blockade offers a novel approach to overcoming drug resistance, providing a potential pathway to improved outcomes in cancer therapy. Future directions include personalized treatments based on tumor metabolic profiles and expanding research to other tumor types.
Collapse
Affiliation(s)
- Taranatee Khan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Manojavan Nagarajan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Irene Kang
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
- Department of Surgery, Division of Thoracic Surgery, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
42
|
Xu J, Yu Y, Li S, Qiu F. Global Trends in Research of Amino Acid Metabolism in T Lymphocytes in Recent 15 Years: A Bibliometric Analysis. J Immunol Res 2025; 2025:3393342. [PMID: 39950085 PMCID: PMC11824865 DOI: 10.1155/jimr/3393342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/20/2024] [Indexed: 02/16/2025] Open
Abstract
Amino acid metabolism in T cells determines the therapeutic efficacy of T-cell-targeting drugs. To assess the direction of amino acid metabolism in T cells and construct related knowledge structure, we performed a bibliometric analysis aiming at amino acid metabolism in T cells utilizing studies publicized in recent 15 years. Three hundred thirty-seven related studies were downloaded from the Web of Science Core Collection (WoSCC), and the information on countries, institutes, and authors was collected and analyzed. In addition, the present research status and future trends were explored according to the results yielded from the analysis of cited references and keywords. This study revealed that publications regarding amino acid metabolism in T cells gradually increased each year. The USA is the top producer and most influential country in this field. Recent research has focused on the correlation between the metabolism of several amino acids and regulatory T cells (Tregs) and CD8+ T cells. Overall, this research offers a comprehensive exhibition on the field of amino acid metabolism in T cells, which will help researchers to study this domain more effectively and intuitively.
Collapse
Affiliation(s)
- Jiaona Xu
- Department of Rehabilitation, Hangzhou Geriatric Hospital, Hangzhou 310022, China
| | - Yinan Yu
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310018, China
| | - Fanghui Qiu
- Department of Rehabilitation, Hangzhou Geriatric Hospital, Hangzhou 310022, China
| |
Collapse
|
43
|
Guo ZX, Ma JL, Zhang JQ, Yan LL, Zhou Y, Mao XL, Li SW, Zhou XB. Metabolic reprogramming and immunological changes in the microenvironment of esophageal cancer: future directions and prospects. Front Immunol 2025; 16:1524801. [PMID: 39925801 PMCID: PMC11802498 DOI: 10.3389/fimmu.2025.1524801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Esophageal cancer (EC) is the seventh-most prevalent cancer worldwide and is a significant contributor to cancer-related mortality. Metabolic reprogramming in tumors frequently coincides with aberrant immune function alterations, and extensive research has demonstrated that perturbations in energy metabolism within the tumor microenvironment influence the occurrence and progression of esophageal cancer. Current treatment modalities for esophageal cancer primarily include encompass chemotherapy and a limited array of targeted therapies, which are hampered by toxicity and drug resistance issues. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, has exhibited promising results; however, a substantial proportion of patients remain unresponsive. The optimization of these immunotherapies requires further investigation. Mounting evidence underscores the importance of modulating metabolic traits within the tumor microenvironment (TME) to augment anti-tumor immunotherapy. Methods We selected relevant studies on the metabolism of the esophageal cancer tumor microenvironment and immune cells based on our searches of MEDLINE and PubMed, focusing on screening experimental articles and reviews related to glucose metabolism, amino acid metabolism, and lipid metabolism, as well their interactions with tumor cells and immune cells, published within the last five years. We analyzed and discussed these studies, while also expressing our own insights and opinions. Results A total of 137 articles were included in the review: 21 articles focused on the tumor microenvironment of esophageal cancer, 33 delved into research related to glucose metabolism and tumor immunology, 30 introduced amino acid metabolism and immune responses, and 17 focused on the relationship between lipid metabolism in the tumor microenvironment and both tumor cells and immune cells. Conclusion This article delves into metabolic reprogramming and immune alterations within the TME of EC, systematically synthesizes the metabolic characteristics of the TME, dissects the interactions between tumor and immune cells, and consolidates and harnesses pertinent immunotherapy targets, with the goal of enhancing anti-tumor immunotherapy for esophageal cancer and thereby offering insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Xun Guo
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jia-Li Ma
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-Ling Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ying Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
44
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
45
|
Yang Y, Pei T, Liu C, Cao M, Hu X, Yuan J, Chen F, Guo B, Hong Y, Liu J, Li B, Li X, Wang H. Glutamine metabolic competition drives immunosuppressive reprogramming of intratumour GPR109A + myeloid cells to promote liver cancer progression. Gut 2025; 74:255-269. [PMID: 38981667 DOI: 10.1136/gutjnl-2024-332429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE The metabolic characteristics of liver cancer drive considerable hurdles to immune cells function and cancer immunotherapy. However, how metabolic reprograming in the tumour microenvironment impairs the antitumour immune response remains unclear. DESIGN Human samples and multiple murine models were employed to evaluate the correlation between GPR109A and liver cancer progression. GPR109A knockout mice, immune cells depletion and primary cell coculture models were used to determine the regulation of GPR109A on tumour microenvironment and identify the underlying mechanism responsible for the formation of intratumour GPR109A+myeloid cells. RESULTS We demonstrate that glutamine shortage in liver cancer tumour microenvironment drives an immunosuppressive GPR109A+myeloid cells infiltration, leading to the evasion of immune surveillance. Blockade of GPR109A decreases G-MDSCs and M2-like TAMs abundance to trigger the antitumour responses of CD8+ T cells and further improves the immunotherapy efficacy against liver cancer. Mechanistically, tumour cells and tumour-infiltrated myeloid cells compete for glutamine uptake via the transporter SLC1A5 to control antitumour immunity, which disrupts the endoplasmic reticulum (ER) homoeostasis and induces unfolded protein response of myeloid cells to promote GPR109A expression through IRE1α/XBP1 pathway. The restriction of glutamine uptake in liver cancer cells, as well as the blockade of IRE1α/XBP1 signalling or glutamine supplementation, can eliminate the immunosuppressive effects of GPR109A+ myeloid cells and slow down tumour progression. CONCLUSION Our findings identify the immunometabolic crosstalk between liver cancer cells and myeloid cells facilitates tumour progression via a glutamine metabolism/ER stress/GPR109A axis, suggesting that GPR109A can be exploited as an immunometabolic checkpoint and putative target for cancer treatment.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianduo Pei
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaobao Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingtao Cao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Hu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yuan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqian Chen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao Guo
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuemei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jibin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Bin Li
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medicine University, Shanghai, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Choucair K, Elliott A, Oberley MJ, Walker P, Salama AK, Saeed A, Mamdani H, Uprety D, El-Deiry WS, Beltran H, Liu SV, Kim C, Naqash AR, Lou E, Chen L, Saeed A. Molecular and immune landscape of tumours in geriatric patients with non-small cell lung cancer, melanoma and renal cell carcinoma. BMJ ONCOLOGY 2025; 4:e000551. [PMID: 39885940 PMCID: PMC11751915 DOI: 10.1136/bmjonc-2024-000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Objective Cancer patients aged ≥80 years present unique characteristics affecting response to immune checkpoint inhibitors (ICIs), with unidentified molecular differences. This study aimed to explore potential biomarkers of response to ICI in patients ≥80 years. Methods and analysis We analysed tumour samples (n=24 123) from patients ≥80 (versus<80) with non-small cell lung cancer (NSCLC), melanoma (MEL), and renal cell cancer (RCC). Using gene expression deconvolution, we investigated differences in tumour microenvironment (TIME) composition. Then, using next-generation sequencing and programmed death-ligand 1 (PD-L1) assessment, we evaluated gene expression differences between age groups and across tumour types, with a focus on ageing-related processes such as DNA damage response (DDR), immune checkpoint (IC) and metabolism-related genes. In a subset of patients ≥80 (n=1013), gene clustering and differential gene expression analyses were carried out to identify potential tumour-type specific expression patterns in responders to ICI. Results Significant differences in TIME composition were seen in patients with NSCLC and MEL. In patients ≥80, tumour mutational burden was lower in patients with NSCLC, higher in MEL and RCC had fewer PD-L1+tumours. DDR, IC and metabolism-related gene enrichments were distinct in patients ≥80. In patients ≥80 treated with ICIs (n=1013), there were no significant differences in survival between gene clusters, but differential gene expression analysis identified potential tumour-type specific expression patterns in responders. Conclusion Our findings reveal tumour type-specific expression profiles, TIMEs and response signatures to ICIs in patients ≥80, supporting further biomarker investigations in this population.
Collapse
Affiliation(s)
- Khalil Choucair
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| | | | | | | | | | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hirva Mamdani
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Dipesh Uprety
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Wafik S El-Deiry
- Medical Oncology, Brown University, Providence, Rhode Island, USA
| | | | | | - Chul Kim
- Georgetown University, Washington, Washington, USA
| | - Abdul Rafeh Naqash
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Emil Lou
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lujia Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anwaar Saeed
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Ma Q, Zhang W, Wu K, Shi L. The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy. Mol Cancer 2025; 24:14. [PMID: 39806421 PMCID: PMC11727292 DOI: 10.1186/s12943-024-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities. Given that cancer cells rely on these metabolic changes to sustain cell growth and survival, targeting these processes may represent a promising therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Qinglong Ma
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
48
|
Qiao J, Yu Z, Zhou H, Wang W, Wu H, Ye J. The Pentose Phosphate Pathway: From Mechanisms to Implications for Gastrointestinal Cancers. Int J Mol Sci 2025; 26:610. [PMID: 39859324 PMCID: PMC11765532 DOI: 10.3390/ijms26020610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, and tumor microenvironment (TME) of GI cancers by modulating redox homeostasis and providing precursors for nucleotide biosynthesis. Targeting PPP enzymes and their regulatory axis has been a potential strategy in anti-GI cancer therapies. In this review, we summarize the regulatory mechanisms of PPP enzymes, elucidate the relationships between the PPP and TME's elements, and discuss the therapeutic potential of targeting the PPP in GI cancers.
Collapse
Affiliation(s)
- Jincheng Qiao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Zhengchen Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Han Zhou
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Wankun Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Hao Wu
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
| |
Collapse
|
49
|
Shi Y, Zheng H, Wang T, Zhou S, Zhao S, Li M, Cao B. Targeting KRAS: from metabolic regulation to cancer treatment. Mol Cancer 2025; 24:9. [PMID: 39799325 PMCID: PMC11724471 DOI: 10.1186/s12943-024-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance. Here, we review the metabolic reprogramming of glucose, glutamine, and lipids regulated by oncogenic KRAS, with an emphasis on recent insights into the relationship between changes in metabolic mechanisms driven by KRAS mutant and related advances in targeted therapy. We also focus on advances in KRAS inhibitor discovery and related treatment strategies in colorectal, pancreatic, and non-small cell lung cancer, including current clinical trials. Therefore, this review provides an overview of the current understanding of metabolic mechanisms associated with KRAS mutation and related therapeutic strategies, aiming to facilitate the understanding of current challenges in KRAS-driven cancer and to support the investigation of therapeutic strategies.
Collapse
Affiliation(s)
- Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China
| | - Shengpu Zhou
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China.
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
50
|
Ewida H, Benson H, Tareq S, Ahmed MS. Molecular Targets and Small Molecules Modulating Acetyl Coenzyme A in Physiology and Diseases. ACS Pharmacol Transl Sci 2025; 8:36-46. [PMID: 39816789 PMCID: PMC11729435 DOI: 10.1021/acsptsci.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Acetyl coenzyme A (acetyl-CoA), a pivotal regulatory metabolite, is a product of numerous catabolic reactions and a substrate for various anabolic responses. Its role extends to crucial physiological processes, such as glucose homeostasis and free fatty acid utilization. Moreover, acetyl-CoA plays a significant part in reshaping the metabolic microenvironment and influencing the progression of several diseases and conditions, including cancer, insulin resistance, diabetes, heart failure, fear, and neuropathic pain. This Review delves into the role of acetyl-CoA in both physiological and pathological conditions, shedding light on the key players in its formation within the cytosol. We specifically focus on the physiological impact of malonyl-CoA decarboxylase (MCD), acetyl-CoA synthetase2 (ACSS2), and ATP-citrate lyase (ACLY) on metabolism, glucose homeostasis, free fatty acid utilization, and post-translational modification cellular processes. Additionally, we present the pathological implications of MCD, ACSS2, and ACLY in various clinical manifestations. This Review also explores the potential and limitations of targeting MCD, ACSS2, and ACLY using small molecules in different clinical settings.
Collapse
Affiliation(s)
- Heba Ewida
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
- Department
of Biochemistry, Faculty of Pharmacy, Future
University in Egypt, Cairo 11835, Egypt
| | - Harrison Benson
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| | - Syed Tareq
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| | - Mahmoud Salama Ahmed
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| |
Collapse
|