1
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
2
|
Zhang Y, Cai Y, Jin X, Wu Q, Bai F, Liu J. Persistent glucose consumption under antibiotic treatment protects bacterial community. Nat Chem Biol 2024:10.1038/s41589-024-01708-z. [PMID: 39138382 DOI: 10.1038/s41589-024-01708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Antibiotics typically induce major physiological changes in bacteria. However, their effect on nutrient consumption remains unclear. Here we found that Escherichia coli communities can sustain normal levels of glucose consumption under a broad range of antibiotics. The community-living resulted in a low membrane potential in the bacteria, allowing slow antibiotic accumulation on treatment and better adaptation. Through multi-omics analysis, we identified a prevalent adaptive response characterized by the upregulation of lipid synthesis, which substantially contributes to sustained glucose consumption. The consumption was maintained by the periphery region of the community, thereby restricting glucose penetration into the community interior. The resulting spatial heterogeneity in glucose availability protected the interior from antibiotic accumulation in a membrane potential-dependent manner, ensuring rapid recovery of the community postantibiotic treatment. Our findings unveiled a community-level antibiotic response through spatial regulation of metabolism and suggested new strategies for antibiotic therapies.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Yumin Cai
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xin Jin
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Qile Wu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Pepin X, Arora S, Borges L, Cano-Vega M, Carducci T, Chatterjee P, Chen G, Cristofoletti R, Dallmann A, Delvadia P, Dressman J, Fotaki N, Gray E, Heimbach T, Holte Ø, Kijima S, Kotzagiorgis E, Lennernäs H, Lindahl A, Loebenberg R, Mackie C, Malamatari M, McAllister M, Mitra A, Moody R, Mudie D, Musuamba Tshinanu F, Polli JE, Rege B, Ren X, Rullo G, Scherholz M, Song I, Stillhart C, Suarez-Sharp S, Tannergren C, Tsakalozou E, Veerasingham S, Wagner C, Seo P. Parameterization of Physiologically Based Biopharmaceutics Models: Workshop Summary Report. Mol Pharm 2024; 21:3697-3731. [PMID: 38946085 PMCID: PMC11304397 DOI: 10.1021/acs.molpharmaceut.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.
Collapse
Affiliation(s)
- Xavier Pepin
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Sumit Arora
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luiza Borges
- ANVISA, SIA Trecho 5́, Guara, Brasília, Federal District 71205-050, Brazil
| | - Mario Cano-Vega
- Drug
Product Technologies, Amgen Inc., Thousand Oaks, California 91320-1799, United
States
| | - Tessa Carducci
- Analytical
Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Parnali Chatterjee
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Grace Chen
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Rodrigo Cristofoletti
- College
of Pharmacy, University of Florida, 6550 Sanger Rd., Orlando, Florida 32827, United States
| | - André Dallmann
- Bayer
HealthCare SAS, 59000 Lille, France, on behalf of Bayer
AG, Pharmacometrics/Modeling and Simulation, Systems Pharmacology
& Medicine, PBPK, Leverkusen, Germany
| | - Poonam Delvadia
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Nikoletta Fotaki
- University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Elizabeth Gray
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Øyvind Holte
- Norwegian Medical Products Agency, Oslo 0213, Norway
| | - Shinichi Kijima
- Office
of New Drug V, Pharmaceuticals and Medical
Devices Agency (PMDA), Tokyo 100-0013, Japan
| | - Evangelos Kotzagiorgis
- European Medicines Agency (EMA), Domenico Scarlattilaan 6, Amsterdam 1083 HS, The Netherlands
| | - Hans Lennernäs
- Translational
Drug Discovery and Development, Department of Pharmaceutical Bioscience, Uppsala University, Uppsala 751 05, Sweden
| | | | - Raimar Loebenberg
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmontonton T6G 2E1, Canada
| | - Claire Mackie
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maria Malamatari
- Medicines & Healthcare Products Regulatory Agency, 10 S Colonnade, London SW1W 9SZ, United Kingdom
| | - Mark McAllister
- Global
Biopharmaceutics, Drug Product Design, Pfizer, Sandwich CT13 9NJ, United Kingdom
| | - Amitava Mitra
- Clinical
Pharmacology, Kura Oncology Inc., Boston, Massachusetts 02210, United States
| | - Rebecca Moody
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Deanna Mudie
- Global
Research and Development, Small Molecules, Lonza, 63045 NE Corporate
Pl., Bend, Oregon 97701, United States
| | - Flora Musuamba Tshinanu
- Belgian Federal Agency for Medicines and Health Products, Galileelaan 5/03, Brussel 1210, Belgium
| | - James E. Polli
- School
of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhagwant Rege
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Xiaojun Ren
- PK
Sciences/Translational Medicine, BioMedical Research, Novartis, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Gregory Rullo
- Regulatory
CMC, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Megerle Scherholz
- Pharmaceutical
Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Ivy Song
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Cordula Stillhart
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Sandra Suarez-Sharp
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Christer Tannergren
- Biopharmaceutics
Science, New Modalities & Parenteral Product Development, Pharmaceutical
Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - Eleftheria Tsakalozou
- Division
of Quantitative Methods and Modeling, Office of Research and Standards,
Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20903-1058, United
States
| | - Shereeni Veerasingham
- Pharmaceutical
Drugs Directorate (PDD), Health Canada, 1600 Scott St., Ottawa K1A 0K9, Canada
| | - Christian Wagner
- Global
Drug Product Development, Global CMC Development, the Healthcare Business of Merck KGaA, Darmstadt D-64293, Germany
| | - Paul Seo
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| |
Collapse
|
4
|
Yee SW, Macdonald CB, Mitrovic D, Zhou X, Koleske ML, Yang J, Buitrago Silva D, Rockefeller Grimes P, Trinidad DD, More SS, Kachuri L, Witte JS, Delemotte L, Giacomini KM, Coyote-Maestas W. The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics. Mol Cell 2024; 84:1932-1947.e10. [PMID: 38703769 PMCID: PMC11382353 DOI: 10.1016/j.molcel.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christian B Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Darko Mitrovic
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 12121 Solna, Stockholm, Stockholm County 114 28, Sweden
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Megan L Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dina Buitrago Silva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Rockefeller Grimes
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donovan D Trinidad
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Swati S More
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 12121 Solna, Stockholm, Stockholm County 114 28, Sweden.
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA.
| |
Collapse
|
5
|
Bayer J, Högger P. Review of the pharmacokinetics of French maritime pine bark extract (Pycnogenol ®) in humans. Front Nutr 2024; 11:1389422. [PMID: 38757126 PMCID: PMC11096517 DOI: 10.3389/fnut.2024.1389422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The French maritime pine bark extract Pycnogenol® is a proprietary product from Pinus pinaster Aiton. It complies with the quality specifications in the United States Pharmacopeia monograph "Pine extract" in the section of dietary supplements. Pycnogenol® is standardized to contain 65-75% procyanidins which are a variety of biopolymers consisting of catechin and epicatechin monomeric units. The effects of Pycnogenol® have been researched in a multitude of human studies. The basis for any in vivo activity is the bioavailability of constituents and metabolites of the extract. General principles of compound absorption, distribution, metabolism and elimination as well as specific data from studies with Pycnogenol® are summarized and discussed in this review. Based on plasma concentration profiles it can be concluded that low molecular weight constituents of the extract, such as catechin, caffeic and ferulic acid, taxifolin are readily absorbed from the small intestine into systemic circulation. Procyanidin oligomers and polymers are subjected to gut microbial degradation in the large intestine yielding small bioavailable metabolites such as 5-(3',4'-dihydroxyphenyl)-γ-valerolactone. After intake of Pycnogenol®, constituents and metabolites have been also detected in blood cells, synovial fluid and saliva indicating a substantial distribution in compartments other than serum. In studies simultaneously investigating concentrations in different specimen, a preferential distribution of individual compounds has been observed, e.g., of ferulic acid and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone into synovial fluid compared to serum. The main route of elimination of constituents and metabolites of the French pine bark extract is the renal excretion. The broad knowledge accumulated regarding the pharmacokinetics of compounds and metabolites of Pycnogenol® constitute a rational basis for effects characterized on a cellular level and observed in human clinical studies.
Collapse
Affiliation(s)
| | - Petra Högger
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Chidley C, Darnell AM, Gaudio BL, Lien EC, Barbeau AM, Vander Heiden MG, Sorger PK. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. Nat Cell Biol 2024; 26:825-838. [PMID: 38605144 PMCID: PMC11098743 DOI: 10.1038/s41556-024-01402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Blocking the import of nutrients essential for cancer cell proliferation represents a therapeutic opportunity, but it is unclear which transporters to target. Here we report a CRISPR interference/activation screening platform to systematically interrogate the contribution of nutrient transporters to support cancer cell proliferation in environments ranging from standard culture media to tumours. We applied this platform to identify the transporters of amino acids in leukaemia cells and found that amino acid transport involves high bidirectional flux dependent on the microenvironment composition. While investigating the role of transporters in cystine starved cells, we uncovered a role for serotonin uptake in preventing ferroptosis. Finally, we identified transporters essential for cell proliferation in subcutaneous tumours and found that levels of glucose and amino acids can restrain proliferation in that environment. This study establishes a framework for systematically identifying critical cellular nutrient transporters, characterizing their function and exploring how the tumour microenvironment impacts cancer metabolism.
Collapse
Affiliation(s)
- Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin L Gaudio
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M Barbeau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Wilson DM, Driedger DJ, Liu DY, Keerthisinghe S, Hermann A, Bieniossek C, Linington RG, Britton RA. Targeted sampling of natural product space to identify bioactive natural product-like polyketide macrolides. Nat Commun 2024; 15:2534. [PMID: 38514617 PMCID: PMC10958047 DOI: 10.1038/s41467-024-46721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Polyketide or polyketide-like macrolides (pMLs) continue to serve as a source of inspiration for drug discovery. However, their inherent structural and stereochemical complexity challenges efforts to explore related regions of chemical space more broadly. Here, we report a strategy termed the Targeted Sampling of Natural Product space (TSNaP) that is designed to identify and assess regions of chemical space bounded by this important class of molecules. Using TSNaP, a family of tetrahydrofuran-containing pMLs are computationally assembled from pML inspired building blocks to provide a large collection of natural product-like virtual pMLs. By scoring functional group and volumetric overlap against their natural counterparts, a collection of compounds are prioritized for targeted synthesis. Using a modular and stereoselective synthetic approach, a library of polyketide-like macrolides are prepared to sample these unpopulated regions of pML chemical space. Validation of this TSNaP approach by screening this library against a panel of whole-cell biological assays, reveals hit rates exceeding those typically encountered in small molecule libraries. This study suggests that the TSNaP approach may be more broadly useful for the design of improved chemical libraries for drug discovery.
Collapse
Affiliation(s)
- Darryl M Wilson
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Daniel J Driedger
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Sandra Keerthisinghe
- Center for High-Throughput Chemical Biology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Adrian Hermann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Center for High-Throughput Chemical Biology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Robert A Britton
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
8
|
Day NJ, Santucci P, Gutierrez MG. Host cell environments and antibiotic efficacy in tuberculosis. Trends Microbiol 2024; 32:270-279. [PMID: 37709598 DOI: 10.1016/j.tim.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The aetiologic agent of tuberculosis (TB), Mycobacterium tuberculosis (Mtb), can survive, persist, and proliferate in a variety of heterogeneous subcellular compartments. Therefore, TB chemotherapy requires antibiotics crossing multiple biological membranes to reach distinct subcellular compartments and target these bacterial populations. These compartments are also dynamic, and our understanding of intracellular pharmacokinetics (PK) often represents a challenge for antitubercular drug development. In recent years, the development of high-resolution imaging approaches in the context of host-pathogen interactions has revealed the intracellular distribution of antibiotics at a new level, yielding discoveries with important clinical implications. In this review, we describe the current knowledge regarding cellular PK of antibiotics and the complexity of drug distribution within the context of TB. We also discuss the recent advances in quantitative imaging and highlight their applications for drug development in the context of how intracellular environments and microbial localisation affect TB treatment efficacy.
Collapse
Affiliation(s)
- Nathan J Day
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
9
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
10
|
Huang Q, Chen Y, Zhang W, Xia X, Li H, Qin M, Gao H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J Control Release 2024; 366:519-534. [PMID: 38182059 DOI: 10.1016/j.jconrel.2023.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Despite the increasing global incidence of brain disorders, achieving sufficient delivery towards the central nervous system (CNS) remains a formidable challenge in terms of translating into improved clinical outcomes. The brain is highly safeguarded by physiological barriers, primarily the blood-brain barrier (BBB), which routinely excludes most therapeutics from entering the brain following systemic administration. Among various strategies investigated to circumvent this challenge, intranasal administration, a noninvasive method that bypasses the BBB to allow direct access of drugs to the CNS, has been showing promising results. Nanotechnology-based drug delivery systems, in particular, have demonstrated remarkable capacities in overcoming the challenges posed by nose-to-brain drug delivery and facilitating targeted drug accumulation within the brain while minimizing side effects of systemic distribution. This review comprehensively summarizes the barriers of nose-to-brain drug delivery, aiming to enhance our understanding of potential physiological obstacles and improve the efficacy of nasal delivery in future trials. We then highlight cutting-edge nanotechnology-based studies that enhance nose-to-brain drug delivery in three key aspects, demonstrating substantial potential for improved treatment of brain diseases. Furthermore, the attention towards clinical studies will ease the regulatory approval process for nasal administration of nanomedicines targeting brain disease.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yongke Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Weiwei Zhang
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan 610500, China
| | - Xue Xia
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Sharma K, Koundal S, Chadha P, Saini HS. Assessment of textile industry effluent (untreated and microbially treated) induced genotoxic, haematological, biochemical, histopathological and ultrastructural alterations in fresh water fish Channa punctata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112086-112103. [PMID: 37824055 DOI: 10.1007/s11356-023-30057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
The unregulated expulsion of untreated textile water into water bodies is a major hazard to aquatic ecosystems. The present investigation was contrived to estimate the impact of textile dye bath effluent (untreated and microbially treated) on fish Channa punctata. Untreated effluent-exposed fish showed extremely altered behaviour (air gulping, erratic and speedy movements, increased opercular activity) and morphology (deposition of dyes on skin and scales, high pigmentation, mucus exudation). Significantly increased micronuclei (1.61-, 1.28-, 1.38-fold) and aberrant cell frequency (1.37-, 1.45-, 1.28-fold) was observed in untreated group as compared to treated group after 15, 30, and 45 days of exposure. Tail length, % tail intensity, tail moment and olive tail moment were also enhanced in all the exposed tissues. However, maximum damage was noticed in gill tissues showing 1.19-, 1.37-, 1.34- and 1.50-fold increased TL, %TI, TM and OTM in untreated group as compared to treated group after 45 days of exposure. On comparing untreated and treated groups, increased blood parameters and significantly reduced white blood cell count (WBC) were noticed in treated group. Significantly enhanced alterations in biochemical parameters were also analysed in untreated group. Reduced alterations in enzymological levels of fishes exposed to treated effluent indicate lesser toxic nature of the degraded metabolites of dye. Histological analysis in fishes exposed to untreated effluent showed several deformities in liver (necrosis, congestion, fusion of cells and melanomacrophage infiltration) and gill tissues (necrosis, bending of lamellae and severe aneurysm). Scanning electron microscopy (SEM) analysis further reaffirmed the pathologies observed in histological analysis. Fewer structural alterations were noticed in treated effluent fishes. The results concluded that untreated effluent inflicted toxicity potential on morphology as well as physiological defects in fish, and the severity increased with increasing duration of exposure, whereas reduction in toxicity in microbially treated groups can be analysed for aquacultural purposes owing to their lesser toxic nature.
Collapse
Affiliation(s)
- Khushboo Sharma
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Satish Koundal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pooja Chadha
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| | | |
Collapse
|
12
|
Gil-Pichardo A, Sánchez-Ruiz A, Colmenarejo G. Analysis of metabolites in human gut: illuminating the design of gut-targeted drugs. J Cheminform 2023; 15:96. [PMID: 37833792 PMCID: PMC10571276 DOI: 10.1186/s13321-023-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Gut-targeted drugs provide a new drug modality besides that of oral, systemic molecules, that could tap into the growing knowledge of gut metabolites of bacterial or host origin and their involvement in biological processes and health through their interaction with gut targets (bacterial or host, too). Understanding the properties of gut metabolites can provide guidance for the design of gut-targeted drugs. In the present work we analyze a large set of gut metabolites, both shared with serum or present only in gut, and compare them with oral systemic drugs. We find patterns specific for these two subsets of metabolites that could be used to design drugs targeting the gut. In addition, we develop and openly share a Super Learner model to predict gut permanence, in order to aid in the design of molecules with appropriate profiles to remain in the gut, resulting in molecules with putatively reduced secondary effects and better pharmacokinetics.
Collapse
Affiliation(s)
- Alberto Gil-Pichardo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain.
| |
Collapse
|
13
|
Young RJ. Today's drug discovery and the shadow of the rule of 5. Expert Opin Drug Discov 2023; 18:965-972. [PMID: 37378429 DOI: 10.1080/17460441.2023.2228199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION The rule of 5 developed by Lipinski et al., a landmark and prescient piece of scholarship, focused the minds of drug hunters by systematically characterizing the physical make-up of drug molecules for the first time, noting many sub-optimal compounds identified by high-throughput screening practices. Its profound influence on thinking and practices, whilst providing benefit, perhaps etched the guidelines too strongly in the minds of some drug hunters who applied the bounds too literally without understanding the implications of the underlying statistics. AREAS COVERED This opinion is based on recent key developments that take thinking, measurements, and standards beyond those first set out, particularly the influences of molecular weight and the understanding, measurement, and calculation of lipophilicity. EXPERT OPINION Techniques and technologies for physicochemical estimations set new standards. It is timely to celebrate the significance and influence of the rule of 5, whilst taking thinking to new levels with better characterizations. The shadow of the rule of 5 may be long, but it is not dark, as new measurements, predictions and principles emerge as guiding lights in the design and prioritization of higher-quality molecules redefining the meaning of beyond the rule of 5.
Collapse
Affiliation(s)
- Robert J Young
- Blue Burgundy (Drug Discovery Consultancy) Ltd, Bedford, UK
| |
Collapse
|
14
|
Li Y, Zhou Z, Chen S, Pang X, Wu C, Li H, Zhang Y. Mitochondria-targeting fluorescent sensor with high photostability and permeability for visualizing viscosity in mitochondrial malfunction, inflammation, and AD models. Anal Chim Acta 2023; 1250:340967. [PMID: 36898810 DOI: 10.1016/j.aca.2023.340967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Viscosity changes in mitochondria are closely associated with numerous cellular processes and diseases. Currently available fluorescence probes used in mitochondrial viscosity imaging are not very photostable or sufficiently permeable. Herein, a highly photostable and permeable mitochondria-targeting red fluorescent probe (Mito-DDP) was designed and synthesized for viscosity sensing. Viscosity was imaged in living cells using a confocal laser scanning microscope, and the results suggested that Mito-DDP penetrated the membrane and stained the living cells. Importantly, practical applications of Mito-DDP were demonstrated: viscosity visualization was realized for mitochondrial malfunction, cellular and zebrafish inflammation, and Drosophila Alzheimer's disease models, i.e., for subcellular organelles, cells, and organisms. The excellent analytical and bioimaging performance of Mito-DDP in vivo makes it an effective tool for exploring the physiological and pathological effects of viscosity.
Collapse
Affiliation(s)
- Yaqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China; Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zile Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shiying Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Xiao Pang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
15
|
Balk F, Hollender J, Schirmer K. Investigating the bioaccumulation potential of anionic organic compounds using a permanent rainbow trout liver cell line. ENVIRONMENT INTERNATIONAL 2023; 174:107798. [PMID: 36965398 DOI: 10.1016/j.envint.2023.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Permanent rainbow trout (Oncorhynchus mykiss) cell lines represent potential in vitro alternatives to experiments with fish. We here developed a method to assess the bioaccumulation potential of anionic organic compounds in fish, using the rainbow trout liver-derived RTL-W1 cell line. Based on the availability of high quality in vivo bioconcentration (BCF) and biomagnification (BMF) data and the substances' charge state at physiological pH, four anionic compounds were selected: pentachlorophenol (PCP), diclofenac (DCF), tecloftalam (TT) and benzotriazol-tert-butyl-hydroxyl-phenyl propanoic acid (BHPP). The fish cell line acute toxicity assay (OECD TG249) was used to derive effective concentrations 50 % and non-toxic exposure concentrations to determine exposure concentrations for bioaccumulation experiments. Bioaccumulation experiments were performed over 48 h with a total of six time points, at which cell, medium and plastic fractions were sampled and measured using high resolution tandem mass spectrometry after online solid phase extraction. Observed cell internal concentrations were over-predicted by KOW-derived predictions while pH-dependent octanol-water partitioning (DOW) and membrane lipid-water partitioning (DMLW) gave better predictions of cell internal concentrations. Measured medium and cell internal concentrations at steady state were used to calculate RTL-W1-based BCF, which were compared to DOW- or DMLW-based model approaches and in vivo data. With the exception of PCP, the cell-derived BCF best compared to DOW-based model predictions, which were higher than predictions based on DMLW. All methods predicted the in vivo BCF for diclofenac well. For PCP, the cell-derived BCF was lowest although all BCF predictions underestimated the in vivo BCF by ≥ 1 order of magnitude. The RTL-W1 cells, and all other prediction methods, largely overestimated in vivo BMF, which were available for PCP, TT and BHPP. We conclude that the RTL-W1 cell line can supplement BCF predictions for anionic compounds. For BMF estimations, however, in vitro-in vivo extrapolations need adaptation or a multiple cell line approach.
Collapse
Affiliation(s)
- Fabian Balk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland.
| |
Collapse
|
16
|
Truong JK, Li J, Li Q, Pachura K, Rao A, Gumber S, Fuchs CD, Feranchak AP, Karpen SJ, Trauner M, Dawson PA. Active enterohepatic cycling is not required for the choleretic actions of 24-norUrsodeoxycholic acid in mice. JCI Insight 2023; 8:e149360. [PMID: 36787187 PMCID: PMC10070106 DOI: 10.1172/jci.insight.149360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The pronounced choleretic properties of 24-norUrsodeoxycholic acid (norUDCA) to induce bicarbonate-rich bile secretion have been attributed to its ability to undergo cholehepatic shunting. The goal of this study was to identify the mechanisms underlying the choleretic actions of norUDCA and the role of the bile acid transporters. Here, we show that the apical sodium-dependent bile acid transporter (ASBT), organic solute transporter-α (OSTα), and organic anion transporting polypeptide 1a/1b (OATP1a/1b) transporters are dispensable for the norUDCA stimulation of bile flow and biliary bicarbonate secretion. Chloride channels in biliary epithelial cells provide the driving force for biliary secretion. In mouse large cholangiocytes, norUDCA potently stimulated chloride currents that were blocked by siRNA silencing and pharmacological inhibition of calcium-activated chloride channel transmembrane member 16A (TMEM16A) but unaffected by ASBT inhibition. In agreement, blocking intestinal bile acid reabsorption by coadministration of an ASBT inhibitor or bile acid sequestrant did not impact norUDCA stimulation of bile flow in WT mice. The results indicate that these major bile acid transporters are not directly involved in the absorption, cholehepatic shunting, or choleretic actions of norUDCA. Additionally, the findings support further investigation of the therapeutic synergy between norUDCA and ASBT inhibitors or bile acid sequestrants for cholestatic liver disease.
Collapse
Affiliation(s)
- Jennifer K. Truong
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jianing Li
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Qin Li
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kimberly Pachura
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Anuradha Rao
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sanjeev Gumber
- Division of Pathology and Laboratory Medicine, Yerkes National Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claudia Daniela Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew P. Feranchak
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Saul J. Karpen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Paul A. Dawson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
18
|
Zhou T, Liu Y, Lei K, Liu J, Hu M, Guo L, Guo Y, Ye Q. A "Trojan Horse" Strategy: The Preparation of Bile Acid-Modifying Irinotecan Hydrochloride Nanoliposomes for Liver-Targeted Anticancer Drug Delivery System Study. Molecules 2023; 28:molecules28041577. [PMID: 36838565 PMCID: PMC9963329 DOI: 10.3390/molecules28041577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The bile acid transport system is a natural physiological cycling process between the liver and the small intestine, occurring approximately 6-15 times during the day. There are various bile acid transporter proteins on hepatocytes that specifically recognize bile acids for transport. Therefore, in this paper, a novel liposome, cholic acid-modified irinotecan hydrochloride liposomes (named CA-CPT-11-Lip), was prepared based on the "Trojan horse" strategy. The liposomes preparation process was optimized, and some important quality indicators were investigated. The distribution of irinotecan hydrochloride in mice was then analyzed by high-performance liquid chromatography (HPLC), and the toxicity of liposomes to hepatocellular carcinoma cells (HepG-2) was evaluated in vitro. As a result, CA-CPT-11-Lip was successfully prepared. It was spherical with a particle size of 154.16 ± 4.92 nm, and the drug loading and encapsulation efficiency were 3.72 ± 0.04% and 82.04 ± 1.38%, respectively. Compared with the conventional liposomes (without cholic acid modification, named CPT-11-Lip), CA-CPT-11-Lip had a smaller particle size and higher encapsulation efficiency, and the drug accumulation in the liver was more efficient, enhancing the anti-hepatocellular carcinoma activity of irinotecan hydrochloride. The novel nanoliposome modified by cholic acid may help to expand the application of irinotecan hydrochloride in the treatment of hepatocellular carcinoma and construct the drug delivery system mode of drug liver targeting.
Collapse
Affiliation(s)
- Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (Y.G.); (Q.Y.); Tel.: +86-13980570716 (Q.Y.)
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (Y.G.); (Q.Y.); Tel.: +86-13980570716 (Q.Y.)
| |
Collapse
|
19
|
Yang L, Sun Z, Zhang S, Sun Y, Li H. Chiral Transport in Nanochannel Based Artificial Drug Transporters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205274. [PMID: 36464638 DOI: 10.1002/smll.202205274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Indexed: 06/17/2023]
Abstract
The precise regulation of chiral drug transmembrane transport can be achieved through drug transporters in living organisms. However, implementing this process in vitro is still a formidable challenge due to the complexity of the biological systems that control drug enantiomeric transport. Herein, a facile and feasible strategy is employed to construct chiral L-tyrosine-modified nanochannels (L-Tyr nanochannels) based on polyethylene terephthalate film, which could enhance the chiral recognition of propranolol isomers (R-/S-PPL) for transmembrane transport. Moreover, conventional fluorescence spectroscopy, patch-clamp technology, laser scanning confocal microscopy, and picoammeter technology are employed to evaluate the performance of nanochannels. The results show that the L-Tyr nanochannel have better chiral selectivity for R-/S-PPL compared with the L-tryptophan (L-Trp) channel, and the chiral selectivity coefficient is improved by about 4.21-fold. Finally, a detailed theoretical analysis of the chirality selectivity mechanism is carried out. The findings would not only enrich the basic theory research related to chiral drug transmembrane transport, but also provide a new idea for constructing artificial channels to separate chiral drugs.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhongyue Sun
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, P. R. China
| | - Siyun Zhang
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
20
|
The Strange Case: The Unsymmetric Cisplatin-Based Pt(IV) Prodrug [Pt(CH 3COO)Cl 2(NH 3) 2(OH)] Exhibits Higher Cytotoxic Activity with respect to Its Symmetric Congeners due to Carrier-Mediated Cellular Uptake. Bioinorg Chem Appl 2022; 2022:3698391. [PMID: 36620349 PMCID: PMC9822769 DOI: 10.1155/2022/3698391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 01/01/2023] Open
Abstract
The biological behavior of the axially unsymmetric antitumor prodrug (OC-6-44)-acetatodiamminedichloridohydroxidoplatinum(IV), 2, was deeply investigated and compared with that of analogous symmetric Pt(IV) complexes, namely, dihydroxido 1 and diacetato 3, which have a similar structure. The complexes were tested on a panel of human tumor cell lines. Complex 2 showed an anomalous higher cytotoxicity (similar to that of cisplatin) with respect to their analogues 1 and 3. Their reduction potentials, reduction kinetics, lipophilicity, and membrane affinity are compared. Cellular uptake and DNA platination of Pt(IV) complexes were deeply investigated in the sensitive A2780 human ovarian cancer cell line and in the corresponding resistant A2780cisR subline. The unexpected activity of 2 appears to be related to its peculiar cellular accumulation and not to a different rate of reduction or a different efficacy in DNA platination and/or efficiency in apoptosis induction. Although the exact mechanism of cell uptake is not fully deciphered, a series of naïve experiments indicates an energy-dependent, carrier-mediated transport: the organic cation transporters (OCTs) are the likely proteins involved.
Collapse
|
21
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
22
|
Maslowska-Jarzyna K, Bąk KM, Zawada B, Chmielewski MJ. pH-Dependent transport of amino acids across lipid bilayers by simple monotopic anion carriers. Chem Sci 2022; 13:12374-12381. [PMID: 36382290 PMCID: PMC9629080 DOI: 10.1039/d2sc04346g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2023] Open
Abstract
The transport of amino acids across lipid membranes is vital for the proper functioning of every living cell. In spite of that, examples of synthetic transporters that can facilitate amino acid transport are rare. This is mainly because at physiological conditions amino acids predominantly exist as highly polar zwitterions and proper shielding of their charged termini, which is necessary for fast diffusion across lipophilic membranes, requires complex and synthetically challenging heteroditopic receptors. Here we report the first simple monotopic anion receptor, dithioamide 1, that efficiently transports a variety of natural amino acids across lipid bilayers at physiological pH. Mechanistic studies revealed that the receptor rapidly transports deprotonated amino acids, even though at pH 7.4 these forms account for less than 3% of the total amino acid concentration. We also describe a new fluorescent assay for the selective measurement of the transport of deprotonated amino acids into liposomes. The new assay allowed us to study the pH-dependence of amino acid transport and elucidate the mechanism of transport by 1, as well as to explain its exceptionally high activity. With the newly developed assay we screened also four other representative examples of monotopic anion transporters, of which two showed promising activity. Our results imply that heteroditopic receptors are not necessary for achieving high amino acid transport activities and that many of the previously reported anionophores might be active amino acid transporters. Based on these findings, we propose a new strategy for the development of artificial amino acid transporters with improved properties.
Collapse
Affiliation(s)
- Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Bartłomiej Zawada
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| |
Collapse
|
23
|
Computational Studies on Selected Macrolides Active against Escherichia coli Combined with the NMR Study of Tylosin A in Deuterated Chloroform. Molecules 2022; 27:molecules27217280. [PMID: 36364103 PMCID: PMC9654277 DOI: 10.3390/molecules27217280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022] Open
Abstract
Although many antibiotics are active against Gram-positive bacteria, fewer also show activity against Gram-negative bacteria. Here, we present a combination of in silico (electron ion-interaction potential, molecular docking, ADMET), NMR, and microbiological investigations of selected macrolides (14-membered, 15-membered, and 16-membered), aiming to discover the pattern of design for macrolides active against Gram-negative bacteria. Although the conformational studies of 14-membered and 15-membered macrolides are abundant in the literature, 16-membered macrolides, and their most prominent representative tylosin A, have received relatively little research attention. We therefore report the complete 1H and 13C NMR assignment of tylosin A in deuterated chloroform, as well as its 3D solution structure determined through molecular modelling (conformational search) and 2D ROESY NMR. Additionally, due to the degradation of tylosin A in deuterated chloroform, other species were also detected in 1D and 2D NMR spectra. We additionally studied the anti-bacterial activity of tylosin A and B against selected Gram-positive and Gram-negative bacteria.
Collapse
|
24
|
Dey D, Nunes-Alves A, Wade RC, Schreiber G. Diffusion of small molecule drugs is affected by surface interactions and crowder proteins. iScience 2022; 25:105088. [PMID: 36157590 PMCID: PMC9490042 DOI: 10.1016/j.isci.2022.105088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Crowded environments are known to affect the diffusion of macromolecules, but their effects on the diffusion of small molecules are largely uncharacterized. We investigate how three protein crowders, bovine serum albumin (BSA), hen egg-white lysozyme, and myoglobin, influence the diffusion rates and interactions of four small molecules: fluorescein, and three drugs, doxorubicin, glycogen synthase kinase-3 inhibitor SB216763, and quinacrine. Using Line-FRAP measurements, Brownian dynamics simulations, and molecular docking, we find that the diffusion rates of the small molecules are highly affected by self-aggregation, interactions with the proteins, and surface adsorption. The diffusion of fluorescein is decreased because of its interactions with the protein crowders and their surface adsorption. Protein crowders increase the diffusion rates of doxorubicin and SB216763 by reducing surface interactions and self-aggregation, respectively. Quinacrine diffusion was not affected by protein crowders. The mechanistic insights gained here may assist in optimization of compounds for higher mobility in complex macromolecular environments.
Collapse
Affiliation(s)
- Debabrata Dey
- Department of Biomolecular Sciences, Weizmann Institute of Science, Israel
| | - Ariane Nunes-Alves
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Israel
| |
Collapse
|
25
|
Sousa CF, Kamal MAM, Richter R, Elamaldeniya K, Hartmann RW, Empting M, Lehr CM, Kalinina OV. Modeling the Effect of Hydrophobicity on the Passive Permeation of Solutes across a Bacterial Model Membrane. J Chem Inf Model 2022; 62:5023-5033. [PMID: 36214845 DOI: 10.1021/acs.jcim.2c00767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Passive diffusion across biomembranes is an important mechanism of permeation for multiple drugs, including antibiotics. However, this process is frequently neglected while studying drug uptake and, in our view, warrants further investigation. Here, we apply molecular dynamics simulations to investigate the impact of changes in molecular hydrophobicity on the permeability of a series of inhibitors of the quorum sensing of Pseudomonas aeruginosa, previously discovered by us, across a membrane model. Overall, we show that permeation across this membrane model does not correlate with the molecule's hydrophobicity. We demonstrate that using a simple model for permeation, based on the difference between the maximum and minimum of the free energy profile, outperforms the inhomogeneous solubility-diffusion model, yielding a permeability ranking that better agrees with the experimental results, especially for hydrophobic permeants. The calculated differences in permeability could not explain differences in in bacterio activity. Nevertheless, substantial differences in molecular orientation along the permeation pathway correlate with the in bacterio activity, emphasizing the importance of analyzing, at an atomistic level, the permeation pathway of these solutes.
Collapse
Affiliation(s)
- Carla F Sousa
- Drug Bioinformatics Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany
| | - Mohamed A M Kamal
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Pharmacy, Saarland University, Saarbrücken66123, Germany
| | - Robert Richter
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany
| | - Kalanika Elamaldeniya
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Center for Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - Rolf W Hartmann
- Department of Pharmacy, Saarland University, Saarbrücken66123, Germany.,German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig, Saarbrücken66123, Germany.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken66123, Germany
| | - Martin Empting
- Department of Pharmacy, Saarland University, Saarbrücken66123, Germany.,Antiviral & Antivirulence Drugs Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig, Saarbrücken66123, Germany
| | - Claus-Michael Lehr
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Pharmacy, Saarland University, Saarbrücken66123, Germany
| | - Olga V Kalinina
- Drug Bioinformatics Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Center for Bioinformatics, Saarland University, Saarbrücken66123, Germany.,Medical Faculty, Saarland University, Homburg66421, Germany
| |
Collapse
|
26
|
Munro LJ, Kell DB. Analysis of a Library of Escherichia coli Transporter Knockout Strains to Identify Transport Pathways of Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11081129. [PMID: 36009997 PMCID: PMC9405208 DOI: 10.3390/antibiotics11081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a major global healthcare issue. Antibiotic compounds cross the bacterial cell membrane via membrane transporters, and a major mechanism of antibiotic resistance is through modification of the membrane transporters to increase the efflux or reduce the influx of antibiotics. Targeting these transporters is a potential avenue to combat antibiotic resistance. In this study, we used an automated screening pipeline to evaluate the growth of a library of 447 Escherichia coli transporter knockout strains exposed to sub-inhibitory concentrations of 18 diverse antimicrobials. We found numerous knockout strains that showed more resistant or sensitive phenotypes to specific antimicrobials, suggestive of transport pathways. We highlight several specific drug-transporter interactions that we identified and provide the full dataset, which will be a useful resource in further research on antimicrobial transport pathways. Overall, we determined that transporters are involved in modulating the efficacy of almost all the antimicrobial compounds tested and can, thus, play a major role in the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Lachlan Jake Munro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: or
| |
Collapse
|
27
|
Domínguez-Arca V, Sabín J, García-Río L, Bastos M, Taboada P, Barbosa S, Prieto G. On the structure and stability of novel cationic DPPC liposomes doped with gemini surfactants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
Membrane transporter identification and modulation via adaptive laboratory evolution. Metab Eng 2022; 72:376-390. [DOI: 10.1016/j.ymben.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
|
29
|
Zhang S, Thompson JP, Xia J, Bogetti AT, York F, Skillman AG, Chong LT, LeBard DN. Mechanistic Insights into Passive Membrane Permeability of Drug-like Molecules from a Weighted Ensemble of Trajectories. J Chem Inf Model 2022; 62:1891-1904. [PMID: 35421313 PMCID: PMC9044451 DOI: 10.1021/acs.jcim.1c01540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Passive permeability
of a drug-like molecule is a critical property
assayed early in a drug discovery campaign that informs a medicinal
chemist how well a compound can traverse biological membranes, such
as gastrointestinal epithelial or restrictive organ barriers, so it
can perform a specific therapeutic function. However, the challenge
that remains is the development of a method, experimental or computational,
which can both determine the permeation rate and provide mechanistic
insights into the transport process to help with the rational design
of any given molecule. Typically, one of the following three methods
are used to measure the membrane permeability: (1) experimental permeation
assays acting on either artificial or natural membranes; (2) quantitative
structure–permeability relationship models that rely on experimental
values of permeability or related pharmacokinetic properties of a
range of molecules to infer those for new molecules; and (3) estimation
of permeability from the Smoluchowski equation, where free energy
and diffusion profiles along the membrane normal are taken as input
from large-scale molecular dynamics simulations. While all these methods
provide estimates of permeation coefficients, they provide very little
information for guiding rational drug design. In this study, we employ
a highly parallelizable weighted ensemble (WE) path sampling strategy,
empowered by cloud computing techniques, to generate unbiased permeation
pathways and permeability coefficients for a set of drug-like molecules
across a neat 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine
membrane bilayer. Our WE method predicts permeability coefficients
that compare well to experimental values from an MDCK-LE cell line
and PAMPA assays for a set of drug-like amines of varying size, shape,
and flexibility. Our method also yields a series of continuous permeation
pathways weighted and ranked by their associated probabilities. Taken
together, the ensemble of reactive permeation pathways, along with
the estimate of the permeability coefficient, provides a clearer picture
of the microscopic underpinnings of small-molecule membrane permeation.
Collapse
Affiliation(s)
- She Zhang
- OpenEye Scientific, Santa Fe, New Mexico 87508, United States
| | - Jeff P Thompson
- OpenEye Scientific, Santa Fe, New Mexico 87508, United States
| | - Junchao Xia
- OpenEye Scientific, Santa Fe, New Mexico 87508, United States
| | - Anthony T Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Forrest York
- OpenEye Scientific, Santa Fe, New Mexico 87508, United States
| | | | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David N LeBard
- OpenEye Scientific, Santa Fe, New Mexico 87508, United States
| |
Collapse
|
30
|
Gabano E, Ferraris C, Osella D, Battaglia LS, Ravera M. Formulations of highly antiproliferative hydrophobic Pt(IV) complexes into lipidic nanoemulsions as delivery vehicles. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Halbach K, Aulhorn S, Lechtenfeld OJ, Lecluse M, Leippe S, Reemtsma T, Seiwert B, Wagner S, König J, Luckenbach T. Zebrafish Oatp1d1 Acts as a Cellular Efflux Transporter of the Anionic Herbicide Bromoxynil. Chem Res Toxicol 2022; 35:315-325. [PMID: 34990119 DOI: 10.1021/acs.chemrestox.1c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toxicokinetics (TK) of ionic compounds in the toxico-/pharmacological model zebrafish embryo (Danio rerio) depend on absorption, distribution, metabolism, and elimination (ADME) processes. Previous research indicated involvement of transport proteins in the TK of the anionic pesticide bromoxynil in zebrafish embryos. We here explored the interaction of bromoxynil with the organic anion-transporting polypeptide zebrafish Oatp1d1. Mass spectrometry imaging revealed accumulation of bromoxynil in the gastrointestinal tract of zebrafish embryos, a tissue known to express Oatp1d1. In contrast to the Oatp1d1 reference substrate bromosulfophthalein (BSP), which is actively taken up by transfected HEK293 cells overexpressing zebrafish Oatp1d1, those cells accumulated less bromoxynil than empty vector-transfected control cells. This indicates cellular efflux of bromoxynil by Oatp1d1. This was also seen for diclofenac but not for carbamazepine, examined for comparison. Correspondingly, internal concentrations of bromoxynil and diclofenac in the zebrafish embryo were increased when coexposed with BSP, inhibiting the activities of various transporter proteins, including Oatp1d1. The effect of BSP on accumulation of bromoxynil and diclofenac was enhanced in further advanced embryo stages, indicating increased efflux activity in those stages. An action of Oatp1d1 as an efflux transporter of ionic environmental compounds in zebrafish embryos should be considered in future TK assessments.
Collapse
Affiliation(s)
- Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Silke Aulhorn
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Oliver Jens Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Marion Lecluse
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Sophia Leippe
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, D-04317 Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, D-04317 Leipzig, Germany
| |
Collapse
|
32
|
Combined Pharmacophore and Grid-Independent Molecular Descriptors (GRIND) Analysis to Probe 3D Features of Inositol 1,4,5-Trisphosphate Receptor (IP 3R) Inhibitors in Cancer. Int J Mol Sci 2021; 22:ijms222312993. [PMID: 34884798 PMCID: PMC8657927 DOI: 10.3390/ijms222312993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca2+ signaling plays a pivotal role in different cellular processes, including cell proliferation and cell death. Remodeling Ca2+ signals by targeting the downstream effectors is considered an important hallmark in cancer progression. Despite recent structural analyses, no binding hypothesis for antagonists within the IP3-binding core (IBC) has been proposed yet. Therefore, to elucidate the 3D structural features of IP3R modulators, we used combined pharmacoinformatic approaches, including ligand-based pharmacophore models and grid-independent molecular descriptor (GRIND)-based models. Our pharmacophore model illuminates the existence of two hydrogen-bond acceptors (2.62 Å and 4.79 Å) and two hydrogen-bond donors (5.56 Å and 7.68 Å), respectively, from a hydrophobic group within the chemical scaffold, which may enhance the liability (IC50) of a compound for IP3R inhibition. Moreover, our GRIND model (PLS: Q2 = 0.70 and R2 = 0.72) further strengthens the identified pharmacophore features of IP3R modulators by probing the presence of complementary hydrogen-bond donor and hydrogen-bond acceptor hotspots at a distance of 7.6-8.0 Å and 6.8-7.2 Å, respectively, from a hydrophobic hotspot at the virtual receptor site (VRS). The identified 3D structural features of IP3R modulators were used to screen (virtual screening) 735,735 compounds from the ChemBridge database, 265,242 compounds from the National Cancer Institute (NCI) database, and 885 natural compounds from the ZINC database. After the application of filters, four compounds from ChemBridge, one compound from ZINC, and three compounds from NCI were shortlisted as potential hits (antagonists) against IP3R. The identified hits could further assist in the design and optimization of lead structures for the targeting and remodeling of Ca2+ signals in cancer.
Collapse
|
33
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
34
|
Salcedo-Sora JE, Robison ATR, Zaengle-Barone J, Franz KJ, Kell DB. Membrane Transporters Involved in the Antimicrobial Activities of Pyrithione in Escherichia coli. Molecules 2021; 26:molecules26195826. [PMID: 34641370 PMCID: PMC8510280 DOI: 10.3390/molecules26195826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pyrithione (2-mercaptopyridine-N-oxide) is a metal binding modified pyridine, the antibacterial activity of which was described over 60 years ago. The formulation of zinc-pyrithione is commonly used in the topical treatment of certain dermatological conditions. However, the characterisation of the cellular uptake of pyrithione has not been elucidated, although an unsubstantiated assumption has persisted that pyrithione and/or its metal complexes undergo a passive diffusion through cell membranes. Here, we have profiled specific membrane transporters from an unbiased interrogation of 532 E. coli strains of knockouts of genes encoding membrane proteins from the Keio collection. Two membrane transporters, FepC and MetQ, seemed involved in the uptake of pyrithione and its cognate metal complexes with copper, iron, and zinc. Additionally, the phenotypes displayed by CopA and ZntA knockouts suggested that these two metal effluxers drive the extrusion from the bacterial cell of potentially toxic levels of copper, and perhaps zinc, which hyperaccumulate as a function of pyrithione. The involvement of these distinct membrane transporters contributes to the understanding of the mechanisms of action of pyrithione specifically and highlights, more generally, the important role that membrane transporters play in facilitating the uptake of drugs, including metal-drug compounds.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| | - Amy T. R. Robison
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
| | - Jacqueline Zaengle-Barone
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
| | - Katherine J. Franz
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| |
Collapse
|
35
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
36
|
Adla SK, Tonduru AK, Kronenberger T, Kudova E, Poso A, Huttunen KM. Neurosteroids: Structure-Uptake Relationships and Computational Modeling of Organic Anion Transporting Polypeptides (OATP)1A2. Molecules 2021; 26:5662. [PMID: 34577133 PMCID: PMC8472597 DOI: 10.3390/molecules26185662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023] Open
Abstract
In this study, we investigated the delivery of synthetic neurosteroids into MCF-7 human breast adenocarcinoma cells via Organic Anionic Transporting Polypeptides (OATPs) (pH 7.4 and 5.5) to identify the structural components required for OATP-mediated cellular uptake and to get insight into brain drug delivery. Then, we identified structure-uptake relationships using in-house developed OATP1A2 homology model to predict binding sites and modes for the ligands. These binding modes were studied by molecular dynamics simulations to rationalize the experimental results. Our results show that carboxylic acid needs to be at least at 3 carbon-carbon bonds distance from amide bond at the C-3 position of the androstane skeleton and have an amino group to avoid efflux transport. Replacement of hydroxyl group at C-3 with any of the 3, 4, and 5-carbon chained terminal carboxylic groups improved the affinity. We attribute this to polar interactions between carboxylic acid and side-chains of Lys33 and Arg556. The additional amine group showed interactions with Glu172 and Glu200. Based on transporter capacities and efficacies, it could be speculated that the functionalization of acetyl group at the C-17 position of the steroidal skeleton might be explored further to enable OAT1A2-mediated delivery of neurosteroids into the cells and also across the blood-brain barrier.
Collapse
Affiliation(s)
- Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic;
| | - Arun Kumar Tonduru
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
| | - Thales Kronenberger
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
- Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic;
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
- Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
| |
Collapse
|
37
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
38
|
Paul R, Paul S. Translocation of Endo-Functionalized Molecular Tubes across Different Lipid Bilayers: Atomistic Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10376-10387. [PMID: 34415773 DOI: 10.1021/acs.langmuir.1c01594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Various artificial receptors, such as calixarenes, cyclodextrins, cucurbit[n]urils, and their acyclic compounds, pliiar[n]arenes, deep cavitands, and molecular tweezers, can permeate the lipid membranes and they are used as drug carriers to improve the drug solubility, stability, and bioavailability. Inspired by these, we have employed atomistic molecular dynamics simulation to examine the effects of endo-functionalized molecular tubes or naphthotubes (host-1a and host-1b) on seven different types of model lipid bilayers and the permeation properties of these receptors through these model lipid bilayers. Lipid types include six model lipid bilayers (POPC, POPE, DOPC, POPG, DPPE, POPE/POPG) and one realistic membrane (Yeast). We observe that these receptors are spontaneously translocated toward these model lipid bilayer head regions and do not proceed further into these lipid bilayer tail regions (reside at the interface between lipid head and lipid tail region), except for the DPPE-containing systems. In the DPPE model lipid bilayer-containing systems (1a-dppe and 1b-dppe), receptor molecules are only adsorbed on the bilayer surface and reside at the interface between lipid head and water. This finding is also supported by the biased free-energy profiles of these translocation processes. Passive transport of these receptors may be possible through these model lipid bilayers (due to low barrier height), except for DPPE bilayer-containing systems (that have a very high energy barrier at the center). The results from these simulations provide insight into the biocompatibility of host-1a or host-1b in microscopic detail. Based on this work, more research is needed to fully comprehend the role of these synthesized receptors as a prospective drug carrier.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
39
|
Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, Bender E, Digles D, Dürrenberger F, Heitman LH, IJzerman AP, Kell DB, Kickinger S, Körzö D, Leippe P, Licher T, Manolova V, Rizzetto R, Sassone F, Scarabottolo L, Schlessinger A, Schneider V, Sijben HJ, Steck AL, Sundström H, Tremolada S, Wilhelm M, Wright Muelas M, Zindel D, Steppan CM, Superti-Furga G. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front Pharmacol 2021; 12:722889. [PMID: 34447313 PMCID: PMC8383457 DOI: 10.3389/fphar.2021.722889] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily represents the biggest family of transporters with important roles in health and disease. Despite being attractive and druggable targets, the majority of SLCs remains understudied. One major hurdle in research on SLCs is the lack of tools, such as cell-based assays to investigate their biological role and for drug discovery. Another challenge is the disperse and anecdotal information on assay strategies that are suitable for SLCs. This review provides a comprehensive overview of state-of-the-art cellular assay technologies for SLC research and discusses relevant SLC characteristics enabling the choice of an optimal assay technology. The Innovative Medicines Initiative consortium RESOLUTE intends to accelerate research on SLCs by providing the scientific community with high-quality reagents, assay technologies and data sets, and to ultimately unlock SLCs for drug discovery.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Helena Batoulis
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Felix Bärenz
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Eckhard Bender
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Daniela Digles
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Laura H. Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stefanie Kickinger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Daniel Körzö
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas Licher
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | | | | | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vanessa Schneider
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | | | | | | | | | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Diana Zindel
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Claire M. Steppan
- Pfizer Worldwide Research, Development and Medical, Groton, MA, United States
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Distribution of ion pairs into a bilayer lipid membrane and its effect on the ionic permeability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183724. [PMID: 34364888 DOI: 10.1016/j.bbamem.2021.183724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
This work reports the distribution constant of a target ion and a counter-ion between an aqueous phase and an artificial bilayer lipid membrane (BLM) and its influence to the ionic permeability through a BLM. A theoretical formula for ionic permeability through a BLM based on the distribution of the target ion and the counter-ion is also proposed and validated by analyzing the flux of a fluorescent cation [rhodamine 6G (R6G+)] through the BLM in the presence of counter-ions (X- = Br-, BF4-, and ClO4-). The transmembrane flux was evaluated by simultaneous measurement of the transmembrane current density and the transmembrane fluorescence intensity as a function of the membrane potential. The distribution constant of R6G+ and X- between the aqueous and BLM phases was determined by a liposome-extraction method. The measured ionic permeability exhibited non-linear dependent on the aqueous concentration of R6G+ or X-, but proportional to the concentration of R6G+ and X- inside the BLM evaluated from the distribution constant of R6G+ and X-. The proportionality demonstrates that the distribution of cations and anions between the aqueous and BLM phases dominates the flux of ion transport through the BLM. The proposed formula can express the dependence of the transmembrane current on the membrane potential and the concentrations of R6G+ and X- in the aqueous phase.
Collapse
|
41
|
Holden L, Burke CS, Cullinane D, Keyes TE. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol 2021; 2:1021-1049. [PMID: 34458823 PMCID: PMC8341117 DOI: 10.1039/d1cb00049g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Transition metal luminophores are emerging as important tools for intracellular imaging and sensing. Their putative suitability for such applications has long been recognised but poor membrane permeability and cytotoxicity were significant barriers that impeded early progress. In recent years, numerous effective routes to overcoming these issues have been reported, inspired in part, by advances and insights from the pharmaceutical and drug delivery domains. In particular, the conjugation of biomolecules but also other less natural synthetic species, from a repertoire of functional motifs have granted membrane permeability and cellular targeting. Such motifs can also reduce cytotoxicity of transition metal complexes and offer a valuable avenue to circumvent such problems leading to promising metal complex candidates for application in bioimaging, sensing and diagnostics. The advances in metal complex probes permeability/targeting are timely, as, in parallel, over the past two decades significant technological advances in luminescence imaging have occurred. In particular, super-resolution imaging is enormously powerful but makes substantial demands of its imaging contrast agents and metal complex luminophores frequently possess the photophysical characteristics to meet these demands. Here, we review some of the key vectors that have been conjugated to transition metal complex luminophores to promote their use in intra-cellular imaging applications. We evaluate some of the most effective strategies in terms of membrane permeability, intracellular targeting and what impact these approaches have on toxicity and phototoxicity which are important considerations in a luminescent contrast or sensing agent.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Christopher S Burke
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - David Cullinane
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| |
Collapse
|
42
|
Luo H, Lu L, Liu N, Li Q, Yang X, Zhang Z. Curcumin loaded sub-30 nm targeting therapeutic lipid nanoparticles for synergistically blocking nasopharyngeal cancer growth and metastasis. J Nanobiotechnology 2021; 19:224. [PMID: 34320999 PMCID: PMC8317404 DOI: 10.1186/s12951-021-00966-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023] Open
Abstract
Systemic chemotherapy is still the primary treatment for advanced-stage nasopharyngeal carcinoma (NPC), but only limited therapeutic success has been achieved in the past decade because of drug resistance and systemic toxicity. Curcumin (Cur) is an effective alternative to chemotherapeutics because it showed remarkable therapeutic potential in the treatment of NPC. However, lack of tissue specificity and poor penetration in solid tumors are the major obstacles to effective therapy. Therefore, in this work, a self-assembled sub-30 nm therapeutic lipid nanoparticle loaded with Cur, named as Cur@α-NTP-LN, was constructed, specifically targeting scavenger receptor class B member 1 (SR-B1) and enhancing its therapeutic effects on NPC in vivo. Our results showed that Cur@α-NTP-LNs were effective and superior to free Cur on NPC cell-specific targeting, suppressing cell proliferation and inducing cell apoptosis. In vivo and ex vivo optical imaging revealed that Cur@α-NTP-LNs exerted high targeting efficiency, specifically accumulating in NPC xenograft tumors and delivering Cur into the tumor center after systemic administration. Furthermore, Cur@α-NTP-LNs exhibited a remarkable inhibitory effect on the growth of NPC subcutaneous tumors, with over 71 and 47% inhibition compared to Cur- and α-NTP-LNs-treated groups, respectively. In addition, Cur@α-NTP-LNs almost blocked NPC metastasis in a lung metastasis model of NPC and significantly improved the survival rate. Thus, the sub-30 nm Cur@α-NTP-LNs enhanced the solubility of Cur and demonstrated the ability of targeted Cur delivery into the center of the solid NPC tumor, performing synergistic inhibitory effects on the growth of NPC tumor and its metastasis with high efficiency. ![]()
Collapse
Affiliation(s)
- Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lisen Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ni Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingqing Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
43
|
Santucci P, Greenwood DJ, Fearns A, Chen K, Jiang H, Gutierrez MG. Intracellular localisation of Mycobacterium tuberculosis affects efficacy of the antibiotic pyrazinamide. Nat Commun 2021; 12:3816. [PMID: 34155215 PMCID: PMC8217510 DOI: 10.1038/s41467-021-24127-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
To be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.
Collapse
Affiliation(s)
- Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Daniel J Greenwood
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.,Institute of Molecular Systems Biology, ETH, Zurich, Switzerland
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth, AU, Australia
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, AU, Australia. .,Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
44
|
Tomas-Hernandez S, Blanco J, Garcia-Vallvé S, Pujadas G, Ojeda-Montes MJ, Gimeno A, Arola L, Minghetti L, Beltrán-Debón R, Mulero M. Anti-Inflammatory and Immunomodulatory Effects of the Grifola frondosa Natural Compound o-Orsellinaldehyde on LPS-Challenged Murine Primary Glial Cells. Roles of NF-κβ and MAPK. Pharmaceutics 2021; 13:806. [PMID: 34071571 PMCID: PMC8229786 DOI: 10.3390/pharmaceutics13060806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
In response to foreign or endogenous stimuli, both microglia and astrocytes adopt an activated phenotype that promotes the release of pro-inflammatory mediators. This inflammatory mechanism, known as neuroinflammation, is essential in the defense against foreign invasion and in normal tissue repair; nevertheless, when constantly activated, this process can become detrimental through the release of neurotoxic factors that amplify underlying disease. In consequence, this study presents the anti-inflammatory and immunomodulatory properties of o-orsellinaldehyde, a natural compound found by an in silico approach in the Grifola frondosa mushroom, in astrocytes and microglia cells. For this purpose, primary microglia and astrocytes were isolated from mice brain and cultured in vitro. Subsequently, cells were exposed to LPS in the absence or presence of increasing concentrations of this natural compound. Specifically, the results shown that o-orsellinaldehyde strongly inhibits the LPS-induced inflammatory response in astrocytes and microglia by decreasing nitrite formation and downregulating iNOS and HO-1 expression. Furthermore, in microglia cells o-orsellinaldehyde inhibits NF-κB activation; and potently counteracts LPS-mediated p38 kinase and JNK phosphorylation (MAPK). In this regard, o-orsellinaldehyde treatment also induces a significant cell immunomodulation by repolarizing microglia toward the M2 anti-inflammatory phenotype. Altogether, these results could partially explain the reported beneficial effects of G. frondosa extracts on inflammatory conditions.
Collapse
Affiliation(s)
- Sarah Tomas-Hernandez
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - Jordi Blanco
- Physiology Unit, Laboratory of Toxicology and Environmental Health, Research in Neurobehavior and Health (NEUROLAB), School of Medicine, IISPV, Universitat Rovira i Virgili (URV), 43202 Tarragona, Catalonia, Spain;
| | - Santiago Garcia-Vallvé
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - Gerard Pujadas
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - María José Ojeda-Montes
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Aleix Gimeno
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, 08020 Barcelona, Catalonia, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain;
| | - Luisa Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain;
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain;
| |
Collapse
|
45
|
Batta G, Kárpáti L, Henrique GF, Tóth G, Tarapcsák S, Kovacs T, Zakany F, Mándity IM, Nagy P. Statin-boosted cellular uptake and endosomal escape of penetratin due to reduced membrane dipole potential. Br J Pharmacol 2021; 178:3667-3681. [PMID: 33908640 DOI: 10.1111/bph.15509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Cell penetrating peptides are promising tools for delivery of cargo into cells, but factors limiting or facilitating their cellular uptake are largely unknown. We set out to study the effect of the biophysical properties of the cell membrane on the uptake of penetratin, a cell penetrating peptide. EXPERIMENTAL APPROACH Using labelling with pH-insensitive and pH-sensitive dyes, the kinetics of cellular uptake and endo-lysosomal escape of penetratin were studied by flow cytometry. KEY RESULTS We report that escape of penetratin from acidic endo-lysosomal compartments is retarded compared with its total cellular uptake. The membrane dipole potential, known to alter transmembrane transport of charged molecules, is shown to be negatively correlated with the concentration of penetratin in the cytoplasmic compartment. Treatment of cells with therapeutically relevant concentrations of atorvastatin, an inhibitor of HMG-CoA reductase and cholesterol synthesis, significantly increased endosomal escape of penetratin in two different cell types. This effect of atorvastatin correlated with its ability to decrease the membrane dipole potential. CONCLUSION AND IMPLICATIONS These results highlight the importance of the dipole potential in regulating cellular uptake of cell penetrating peptides and suggest a clinically relevant way of boosting this process.
Collapse
Affiliation(s)
- Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Levente Kárpáti
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Gabriela Fulaneto Henrique
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gabriella Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István M Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
46
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
47
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
48
|
Cecchini C, Pannilunghi S, Tardy S, Scapozza L. From Conception to Development: Investigating PROTACs Features for Improved Cell Permeability and Successful Protein Degradation. Front Chem 2021; 9:672267. [PMID: 33959589 PMCID: PMC8093871 DOI: 10.3389/fchem.2021.672267] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/22/2021] [Indexed: 01/16/2023] Open
Abstract
Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional degraders that specifically eliminate targeted proteins by hijacking the ubiquitin-proteasome system (UPS). This modality has emerged as an orthogonal approach to the use of small-molecule inhibitors for knocking down classic targets and disease-related proteins classified, until now, as "undruggable." In early 2019, the first targeted protein degraders reached the clinic, drawing attention to PROTACs as one of the most appealing technology in the drug discovery landscape. Despite these promising results, PROTACs are often affected by poor cellular permeability due to their high molecular weight (MW) and large exposed polar surface area (PSA). Herein, we report a comprehensive record of PROTAC design, pharmacology and thermodynamic challenges and solutions, as well as some of the available strategies to enhance cellular uptake, including suggestions of promising biological tools for the in vitro evaluation of PROTACs permeability toward successful protein degradation.
Collapse
Affiliation(s)
- Carlotta Cecchini
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Pharmaceutical Biochemistry/Chemistry, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sara Pannilunghi
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Pharmaceutical Biochemistry/Chemistry, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sébastien Tardy
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Pharmaceutical Biochemistry/Chemistry, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Pharmaceutical Biochemistry/Chemistry, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
49
|
Grixti JM, Ayers D, Day PJR. An Analysis of Mechanisms for Cellular Uptake of miRNAs to Enhance Drug Delivery and Efficacy in Cancer Chemoresistance. Noncoding RNA 2021; 7:27. [PMID: 33923485 PMCID: PMC8167612 DOI: 10.3390/ncrna7020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Up until recently, it was believed that pharmaceutical drugs and their metabolites enter into the cell to gain access to their targets via simple diffusion across the hydrophobic lipid cellular membrane, at a rate which is based on their lipophilicity. An increasing amount of evidence indicates that the phospholipid bilayer-mediated drug diffusion is in fact negligible, and that drugs pass through cell membranes via proteinaceous membrane transporters or carriers which are normally used for the transportation of nutrients and intermediate metabolites. Drugs can be targeted to specific cells and tissues which express the relevant transporters, leading to the design of safe and efficacious treatments. Furthermore, transporter expression levels can be manipulated, systematically and in a high-throughput manner, allowing for considerable progress in determining which transporters are used by specific drugs. The ever-expanding field of miRNA therapeutics is not without its challenges, with the most notable one being the safe and effective delivery of the miRNA mimic/antagonist safely to the target cell cytoplasm for attaining the desired clinical outcome, particularly in miRNA-based cancer therapeutics, due to the poor efficiency of neo-vascular systems revolting around the tumour site, brought about by tumour-induced angiogenesis. This acquisition of resistance to several types of anticancer drugs can be as a result of an upregulation of efflux transporters expression, which eject drugs from cells, hence lowering drug efficacy, resulting in multidrug resistance. In this article, the latest available data on human microRNAs has been reviewed, together with the most recently described mechanisms for miRNA uptake in cells, for future therapeutic enhancements against cancer chemoresistance.
Collapse
Affiliation(s)
- Justine M. Grixti
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD 2080, Malta
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| | - Philip J. R. Day
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| |
Collapse
|
50
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|