1
|
Lim LM, Lee YC, Lin TW, Hong ZX, Hsu WC, Ke HL, Hwang DY, Chung WY, Li WM, Lin HH, Kuo HT, Huang AM. NTRK3 exhibits a pro-oncogenic function in upper tract urothelial carcinomas. Kaohsiung J Med Sci 2024; 40:445-455. [PMID: 38593276 DOI: 10.1002/kjm2.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Neurotrophic receptor tyrosine kinase 3 (NTRK3) has pleiotropic functions: it acts not only as an oncogene in breast and gastric cancers but also as a dependence receptor in tumor suppressor genes in colon cancer and neuroblastomas. However, the role of NTRK3 in upper tract urothelial carcinoma (UTUC) is not well documented. This study investigated the association between NTRK3 expression and outcomes in UTUC patients and validated the results in tests on UTUC cell lines. A total of 118 UTUC cancer tissue samples were examined to evaluate the expression of NTRK3. Survival curves were generated using Kaplan-Meier estimates, and Cox regression models were used for investigating survival outcomes. Higher NTRK3 expression was correlated with worse progression-free survival, cancer-specific survival, and overall survival. Moreover, the results of an Ingenuity Pathway Analysis suggested that NTRK3 may interact with the PI3K-AKT-mTOR signaling pathway to promote cancer. NTRK3 downregulation in BFTC909 cells through shRNA reduced cellular migration, invasion, and activity in the AKT-mTOR pathway. Furthermore, the overexpression of NTRK3 in UM-UC-14 cells promoted AKT-mTOR pathway activity, cellular migration, and cell invasion. From these observations, we concluded that NTRK3 may contribute to aggressive behaviors in UTUC by facilitating cell migration and invasion through its interaction with the AKT-mTOR pathway and the expression of NTRK3 is a potential predictor of clinical outcomes in cases of UTUC.
Collapse
Affiliation(s)
- Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Xuan Hong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - Wen-Yu Chung
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Hui-Hui Lin
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Tien Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - A-Mei Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
3
|
Meiners F, Hinz B, Boeckmann L, Secci R, Sueto S, Kuepfer L, Fuellen G, Barrantes I. Computational identification of natural senotherapeutic compounds that mimic dasatinib based on gene expression data. Sci Rep 2024; 14:6286. [PMID: 38491064 PMCID: PMC10943199 DOI: 10.1038/s41598-024-55870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
The major risk factor for chronic disease is chronological age, and age-related chronic diseases account for the majority of deaths worldwide. Targeting senescent cells that accumulate in disease-related tissues presents a strategy to reduce disease burden and to increase healthspan. The senolytic combination of the tyrosine-kinase inhibitor dasatinib and the flavonol quercetin is frequently used in clinical trials aiming to eliminate senescent cells. Here, our goal was to computationally identify natural senotherapeutic repurposing candidates that may substitute dasatinib based on their similarity in gene expression effects. The natural senolytic piperlongumine (a compound found in long pepper), and the natural senomorphics parthenolide, phloretin and curcumin (found in various edible plants) were identified as potential substitutes of dasatinib. The gene expression changes underlying the repositioning highlight apoptosis-related genes and pathways. The four compounds, and in particular the top-runner piperlongumine, may be combined with quercetin to obtain natural formulas emulating the dasatinib + quercetin formula.
Collapse
Affiliation(s)
- Franziska Meiners
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venerology, University Medical Center Rostock, Strempelstr. 13, 18057, Rostock, Germany
| | - Riccardo Secci
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Salem Sueto
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany.
| | - Israel Barrantes
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Treccarichi S, Failla P, Vinci M, Musumeci A, Gloria A, Vasta A, Calabrese G, Papa C, Federico C, Saccone S, Calì F. UNC5C: Novel Gene Associated with Psychiatric Disorders Impacts Dysregulation of Axon Guidance Pathways. Genes (Basel) 2024; 15:306. [PMID: 38540364 PMCID: PMC10970690 DOI: 10.3390/genes15030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.
Collapse
Affiliation(s)
- Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Pinella Failla
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Angelo Gloria
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Anna Vasta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Giuseppe Calabrese
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Carla Papa
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| |
Collapse
|
5
|
Stringer JM, Alesi LR, Winship AL, Hutt KJ. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life. Hum Reprod Update 2023; 29:434-456. [PMID: 36857094 PMCID: PMC10320496 DOI: 10.1093/humupd/dmad005] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Regulated cell death is a fundamental component of numerous physiological processes; spanning from organogenesis in utero, to normal cell turnover during adulthood, as well as the elimination of infected or damaged cells throughout life. Quality control through regulation of cell death pathways is particularly important in the germline, which is responsible for the generation of offspring. Women are born with their entire supply of germ cells, housed in functional units known as follicles. Follicles contain an oocyte, as well as specialized somatic granulosa cells essential for oocyte survival. Follicle loss-via regulated cell death-occurs throughout follicle development and life, and can be accelerated following exposure to various environmental and lifestyle factors. It is thought that the elimination of damaged follicles is necessary to ensure that only the best quality oocytes are available for reproduction. OBJECTIVE AND RATIONALE Understanding the precise factors involved in triggering and executing follicle death is crucial to uncovering how follicle endowment is initially determined, as well as how follicle number is maintained throughout puberty, reproductive life, and ovarian ageing in women. Apoptosis is established as essential for ovarian homeostasis at all stages of development and life. However, involvement of other cell death pathways in the ovary is less established. This review aims to summarize the most recent literature on cell death regulators in the ovary, with a particular focus on non-apoptotic pathways and their functions throughout the discrete stages of ovarian development and reproductive life. SEARCH METHODS Comprehensive literature searches were carried out using PubMed and Google Scholar for human, animal, and cellular studies published until August 2022 using the following search terms: oogenesis, follicle formation, follicle atresia, oocyte loss, oocyte apoptosis, regulated cell death in the ovary, non-apoptotic cell death in the ovary, premature ovarian insufficiency, primordial follicles, oocyte quality control, granulosa cell death, autophagy in the ovary, autophagy in oocytes, necroptosis in the ovary, necroptosis in oocytes, pyroptosis in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and parthanatos in oocytes. OUTCOMES Numerous regulated cell death pathways operate in mammalian cells, including apoptosis, autophagic cell death, necroptosis, and pyroptosis. However, our understanding of the distinct cell death mediators in each ovarian cell type and follicle class across the different stages of life remains the source of ongoing investigation. Here, we highlight recent evidence for the contribution of non-apoptotic pathways to ovarian development and function. In particular, we discuss the involvement of autophagy during follicle formation and the role of autophagic cell death, necroptosis, pyroptosis, and parthanatos during follicle atresia, particularly in response to physiological stressors (e.g. oxidative stress). WIDER IMPLICATIONS Improved knowledge of the roles of each regulated cell death pathway in the ovary is vital for understanding ovarian development, as well as maintenance of ovarian function throughout the lifespan. This information is pertinent not only to our understanding of endocrine health, reproductive health, and fertility in women but also to enable identification of novel fertility preservation targets.
Collapse
Affiliation(s)
- Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Lee H, Wilson D, Bunting KV, Kotecha D, Jackson T. Repurposing digoxin for geroprotection in patients with frailty and multimorbidity. Ageing Res Rev 2023; 86:101860. [PMID: 36682465 DOI: 10.1016/j.arr.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The geroscience hypothesis proposes biological hallmarks of ageing are modifiable. Increasing evidence supports targeting these hallmarks with therapeutics could prevent and ameliorate age-related conditions - collectively termed "geroprotector drugs". Cellular senescence is a hallmark with considerable potential to be modified with geroprotector drugs. Senotherapeutics are drugs that target cellular senescence for therapeutic benefit. Repurposing commonly used medications with secondary geroprotector properties is a strategy of interest to promote incorporation of geroprotector drugs into clinical practice. One candidate is the cardiac glycoside digoxin. Evidence in mouse models of pulmonary fibrosis, Alzheimer's disease, arthritis and atherosclerosis support digoxin as a senotherapeutic agent. Proposed senolytic mechanisms are upregulation of intrinsic apoptotic pathways and promoting intracellular acidification. Digoxin also appears to have a senomorphic mechanism - altering the T cell pool to ameliorate pro-inflammatory SASP. Despite being widely prescribed to treat atrial fibrillation and heart failure, often in multimorbid older adults, it is not known whether digoxin exerts senotherapeutic effects in humans. Further cellular and animal studies, and ultimately clinical trials with participation of pre-frail older adults, are required to identify whether digoxin has senotherapeutic effect at low dose. This paper reviews the biological mechanisms identified in preliminary cellular and animal studies that support repurposing digoxin as a geroprotector in patients with frailty and multimorbidity.
Collapse
Affiliation(s)
- Helena Lee
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK.
| | - Daisy Wilson
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK
| | - Karina V Bunting
- Institute of Cardiovascular Sciences, University of Birmingham, Medical School, Vincent Drive, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2GW, UK
| | - Dipak Kotecha
- Institute of Cardiovascular Sciences, University of Birmingham, Medical School, Vincent Drive, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2GW, UK
| | - Thomas Jackson
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK
| |
Collapse
|
7
|
Díaz MM, Tsenkina Y, Arizanovska D, Mehlen P, Liebl DJ. DCC/netrin-1 regulates cell death in oligodendrocytes after brain injury. Cell Death Differ 2023; 30:397-406. [PMID: 36456775 PMCID: PMC9950151 DOI: 10.1038/s41418-022-01091-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Hallmark pathological features of brain trauma are axonal degeneration and demyelination because myelin-producing oligodendrocytes (OLs) are particularly vulnerable to injury-induced death signals. To reveal mechanisms responsible for this OL loss, we examined a novel class of "death receptors" called dependence receptors (DepRs). DepRs initiate pro-death signals in the absence of their respective ligand(s), yet little is known about their role after injury. Here, we investigated whether the deleted in colorectal cancer (DCC) DepR contributes to OL loss after brain injury. We found that administration of its netrin-1 ligand is sufficient to block OL cell death. We also show that upon acute injury, DCC is upregulated while netrin-1 is downregulated in perilesional tissues. Moreover, after genetically silencing pro-death activity using DCCD1290N mutant mice, we observed greater OL survival, greater myelin integrity, and improved motor function. Our findings uncover a novel role for the netrin-1/DCC pathway in regulating OL loss in the traumatically injured brain.
Collapse
Affiliation(s)
- Madelen M Díaz
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yanina Tsenkina
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université de Lyon1, Lyon, France.
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Zhou Z, Fan B, Cheng H, Wang M, Xie J, Zou M, Yang Y. A Systematic Analysis of the Role of Unc-5 Netrin Receptor A (UNC5A) in Human Cancers. Biomolecules 2022; 12:biom12121826. [PMID: 36551254 PMCID: PMC9775303 DOI: 10.3390/biom12121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Unc-5 netrin receptor A (UNC5A), a netrin family receptor, plays a key role in neuronal development and subsequent differentiation. Recently, studies have found that UNC5A plays an important role in multiple cancers, such as bladder cancer, non-small cell lung carcinoma, and colon cancer but its pan-cancer function is largely unknown. Herein, the R software and multiple databases or online websites (The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), The Tumor Immune Estimation Resource (TIMER), The Gene Set Cancer Analysis (GSCA), Gene Expression Profiling Interactive Analysis (GEPIA), and cBioPortal etc.) were utilized to examine the role of UNC5A in pan-cancer. UNC5A was found to be highly expressed across multiple human cancer tissues and cells, was linked to clinical outcomes of patients, and was a potential pan-cancer biomarker. The mutational landscape of UNC5A exhibited that patients with UNC5A mutations had poorer progress free survival (PFS) in head and neck squamous cell carcinoma (HNSC) and prostate adenocarcinoma (PRAD). Furthermore, UNC5A expression was associated with tumor mutation burden (TMB), neoantigen, tumor microenvironment (TME), tumor microsatellite instability (MSI), immunomodulators, immune infiltration, DNA methylation, immune checkpoint (ICP) genes, and drug responses. Our results suggest the potential of UNC5A as a pan-cancer biomarker and an efficient immunotherapy target, which may also guide drug selection for some specific cancer types in clinical practice.
Collapse
Affiliation(s)
- Zonglang Zhou
- Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Bingfu Fan
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou 310000, China
| | - Hongrong Cheng
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Ming Wang
- Department of Endocrinology, Yongding Hospital, Suzhou 215000, China
| | - Jun Xie
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Correspondence: (J.X.); (M.Z.); (Y.Y.)
| | - Mingyuan Zou
- Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (J.X.); (M.Z.); (Y.Y.)
| | - Yi Yang
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Correspondence: (J.X.); (M.Z.); (Y.Y.)
| |
Collapse
|
9
|
Zhu M, Bai L, Liu X, Peng S, Xie Y, Bai H, Yu H, Wang X, Yuan P, Ma R, Lin J, Wu L, Huang M, Li Y, Luo Y. Silence of a dependence receptor CSF1R in colorectal cancer cells activates tumor-associated macrophages. J Immunother Cancer 2022; 10:jitc-2022-005610. [PMID: 36600555 PMCID: PMC9730427 DOI: 10.1136/jitc-2022-005610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colony-stimulating factor 1 receptor (CSF1R), a classic tyrosine kinase receptor, has been identified as a proto-oncogene in multiple cancers. The CSF1/CSF1R axis is essential for the survival and differentiation of M2-phenotype tumor-associated macrophages (M2 TAMs). However, we found here that the CSF1R expression was abnormally down-regulated in colorectal cancer (CRC), and its biological functions and underlying mechanisms have become elusive in CRC progression. METHODS The expression of class III receptor tyrosine kinases in CRC and normal intestinal mucosa was accessed using The Cancer Genome Atlas and Gene Expression Omnibus datasets and was further validated by our tested cohort. CSF1R was reconstructed in CRC cells to identify its biological functions in vitro and in vivo. We compared CSF1R expression and methylation differences between CRC cells and macrophages. Furthermore, a co-culture system was used to mimic a competitive mechanism between CSF1R-overexpressed CRC cells and M2-like macrophages. We utilized a CSF1R inhibitor PLX3397 to ablate M2 TAMs and evaluated its efficacy on CRC treatment in animal models. RESULTS We found here that the CSF1R is silenced in CRC, and the reintroduced expression of the receptor in CRC cells can be cleaved by caspases and constrain tumor growth in vitro and in vivo, functioning as a tumor suppressor gene. We further identified CSF1R as a novel dependence receptor, which has the potential to act as either a tumor suppressor gene or an oncogene, depending on its activated state. In CRC tumors, CSF1R expression is enriched in TAMs, and its expression is associated with poor prognosis in patients ith CRC. In a co-culture system, CRC cells expressing CSF1R compete with M2-like macrophages for CSF1R ligands, resulting in a decrease in CSF1R activation and cell proliferation in macrophages. Blocking CSF1R by PLX3397 could deplete M2 TAMs and augments CD8+ T cell infiltration, effectively inhibiting tumor growth and metastasis and improving responses to chemotherapy and immunotherapy. CONCLUSION Our findings revealed that CSF1R is a novel identified dependence receptor silenced in CRC. The silence abalienates its ligands to stimulate CSF1R expressed on M2 TAMs, which is an appealing therapeutic target for M2 TAM depletion and CRC treatment.
Collapse
Affiliation(s)
- Mingxuan Zhu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangliang Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxia Liu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoyong Peng
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yumo Xie
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Bai
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Yuan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Ma
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinxin Lin
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Meijin Huang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingjie Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Somatic mutations in DCC are associated with genomic instability and favourable outcomes in melanoma patients treated with immune checkpoint inhibitors. Br J Cancer 2022; 127:1411-1423. [PMID: 35871235 PMCID: PMC9553921 DOI: 10.1038/s41416-022-01921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Deleted in colorectal cancer (DCC) encodes a transmembrane dependence receptor and is frequently mutated in melanoma. The associations of DCC mutation with chromosomal instability and immunotherapeutic efficacy in melanoma are largely uncharacterised. METHODS We performed an integrated study based on biological experiments and multi-dimensional data types, including genomic, transcriptomic and clinical immune checkpoint blockade (ICB)-treated melanoma cohorts from public databases. RESULTS DCC mutation was significantly correlated with the tumour mutational burden (TMB) in The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and ICB-treated melanoma cohorts. DCC expression levels were correlated with DNA damage response and repair (DDR) pathways responsive to irradiation (IR) in the Malme-3M and SK-MEL-2 cell lines. In the TCGA cohort, DCC-mutated samples presented more neoantigens, higher proportions of infiltrating antitumour immunocytes and lower proportions of infiltrating pro-tumour immunocytes than DCC wild-type samples. DCC-mutated samples were significantly enriched in activated immune response and DDR pathways. Furthermore, patients harbouring mutated DCC treated with ICB showed remarkable clinical benefits in terms of the response rate and overall survival. CONCLUSIONS Somatic mutations in DCC are associated with improved clinical outcomes in ICB-treated melanoma patients. Once further validated, the DCC mutational status can improve patient selection for clinical practice and future study enrolment.
Collapse
|
11
|
Rother N, Yanginlar C, Pieterse E, Hilbrands L, van der Vlag J. Microparticles in Autoimmunity: Cause or Consequence of Disease? Front Immunol 2022; 13:822995. [PMID: 35514984 PMCID: PMC9065258 DOI: 10.3389/fimmu.2022.822995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
Microparticles (MPs) are small (100 nm - 1 um) extracellular vesicles derived from the plasma membrane of dying or activated cells. MPs are important mediators of intercellular communication, transporting proteins, nucleic acids and lipids from the parent cell to other cells. MPs resemble the state of their parent cells and are easily accessible when released into the blood or urine. MPs also play a role in the pathogenesis of different diseases and are considered as potential biomarkers. MP isolation and characterization is technically challenging and results in different studies are contradictory. Therefore, uniform guidelines to isolate and characterize MPs should be developed. Our understanding of MP biology and how MPs play a role in different pathological mechanisms has greatly advanced in recent years. MPs, especially if derived from apoptotic cells, possess strong immunogenic properties due to the presence of modified proteins and nucleic acids. MPs are often found in patients with autoimmune diseases where MPs for example play a role in the break of immunological tolerance and/or induction of inflammatory conditions. In this review, we describe the main techniques to isolate and characterize MPs, define the characteristics of MPs generated during cell death, illustrate different mechanism of intercellular communication via MPs and summarize the role of MPs in pathological mechanisms with a particular focus on autoimmune diseases.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
12
|
The concept of intrinsic versus extrinsic apoptosis. Biochem J 2022; 479:357-384. [PMID: 35147165 DOI: 10.1042/bcj20210854] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.
Collapse
|
13
|
Russell SA, Laws KM, Bashaw GJ. Frazzled/Dcc acts independently of Netrin to promote germline survival during Drosophila oogenesis. Development 2021; 148:dev199762. [PMID: 34910816 PMCID: PMC8722396 DOI: 10.1242/dev.199762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.
Collapse
Affiliation(s)
| | - Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Niklander SE, Lambert DW, Hunter KD. Senescent Cells in Cancer: Wanted or Unwanted Citizens. Cells 2021; 10:cells10123315. [PMID: 34943822 PMCID: PMC8699088 DOI: 10.3390/cells10123315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
Over recent decades, the field of cellular senescence has attracted considerable attention due to its association with aging, the development of age-related diseases and cancer. Senescent cells are unable to proliferate, as the pathways responsible for initiating the cell cycle are irreversibly inhibited. Nevertheless, senescent cells accumulate in tissues and develop a pro-inflammatory secretome, known as the senescence-associated secretory phenotype (SASP), which can have serious deleterious effects if not properly regulated. There is increasing evidence suggesting senescent cells contribute to different stages of carcinogenesis in different anatomical sites, mainly due to the paracrine effects of the SASP. Thus, a new therapeutic field, known as senotherapeutics, has developed. In this review, we aim to discuss the molecular mechanisms underlying the senescence response and its relationship with cancer development, focusing on the link between senescence-related inflammation and cancer. We will also discuss different approaches to target senescent cells that might be of use for cancer treatment.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar 2520000, Chile
- Correspondence: ; Tel.: +56-(32)2845108
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Oral Biology and Pathology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
15
|
Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int J Mol Sci 2021; 22:ijms222111718. [PMID: 34769149 PMCID: PMC8584162 DOI: 10.3390/ijms222111718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.
Collapse
|
16
|
Thielhelm TP, Goncalves S, Welford SM, Mellon EA, Cohen ER, Nourbakhsh A, Fernandez-Valle C, Telischi F, Ivan ME, Dinh CT. Understanding the Radiobiology of Vestibular Schwannomas to Overcome Radiation Resistance. Cancers (Basel) 2021; 13:4575. [PMID: 34572805 PMCID: PMC8467596 DOI: 10.3390/cancers13184575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Vestibular schwannomas (VS) are benign tumors arising from cranial nerve VIII that account for 8-10% of all intracranial tumors and are the most common tumors of the cerebellopontine angle. These tumors are typically managed with observation, radiation therapy, or microsurgical resection. Of the VS that are irradiated, there is a subset of tumors that are radioresistant and continue to grow; the mechanisms behind this phenomenon are not fully understood. In this review, the authors summarize how radiation causes cellular and DNA injury that can activate (1) checkpoints in the cell cycle to initiate cell cycle arrest and DNA repair and (2) key events that lead to cell death. In addition, we discuss the current knowledge of VS radiobiology and how it may contribute to clinical outcomes. A better understanding of VS radiobiology can help optimize existing treatment protocols and lead to new therapies to overcome radioresistance.
Collapse
Affiliation(s)
- Torin P Thielhelm
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin R Cohen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32816, USA
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
17
|
Δ40p53 isoform up-regulates netrin-1/UNC5B expression and potentiates netrin-1 pro-oncogenic activity. Proc Natl Acad Sci U S A 2021; 118:2103319118. [PMID: 34470826 DOI: 10.1073/pnas.2103319118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Netrin-1, a secreted protein recently characterized as a relevant cancer therapeutic target, is the antiapoptotic ligand of the dependence receptors deleted in colorectal carcinoma and members of the UNC5H family. Netrin-1 is overexpressed in several aggressive cancers where it promotes cancer progression by inhibiting cell death induced by its receptors. Interference of its binding to its receptors has been shown, through the development of a monoclonal neutralizing antinetrin-1 antibody (currently in phase II of clinical trial), to actively induce apoptosis and tumor growth inhibition. The transcription factor p53 was shown to positively regulate netrin-1 gene expression. We show here that netrin-1 could be a target gene of the N-terminal p53 isoform Δ40p53, independent of full-length p53 activity. Using stable cell lines, harboring wild-type or null-p53, in which Δ40p53 expression could be finely tuned, we prove that Δ40p53 binds to and activates the netrin-1 promoter. In addition, we show that forcing immortalized human skeletal myoblasts to produce the Δ40p53 isoform, instead of full-length p53, leads to the up-regulation of netrin-1 and its receptor UNC5B and promotes cell survival. Indeed, we demonstrate that netrin-1 interference, in the presence of Δ40p53, triggers apoptosis in cancer and primary cells, leading to tumor growth inhibition in preclinical in vivo models. Finally, we show a positive correlation between netrin-1 and Δ40p53 gene expression in human melanoma and colorectal cancer biopsies. Hence, we propose that inhibition of netrin-1 binding to its receptors should be a promising therapeutic strategy in human tumors expressing high levels of Δ40p53.
Collapse
|
18
|
Zhu Y, Li Y, Nakagawara A. UNC5 dependence receptor family in human cancer: A controllable double-edged sword. Cancer Lett 2021; 516:28-35. [PMID: 34077783 DOI: 10.1016/j.canlet.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
UNC5 receptor family (UNC5A-D) have been identified as dependence receptors whose functions depend on the availability of their ligand netrin-1. Through binding to netrin-1, these receptors transmit signals for cell survival, migration and differentiation, and participate in diverse physiological and pathological processes. In the lack of netrin-1, however, these receptors initiate apoptosis-inducing signal. Accumulating evidence reveals that netrin-1 and its receptors play a role in tumorigenesis and tumor progression. The expression of UNC5 receptor family is down-regulated in a variety of human tumors. Expression aberrance of UNC5 receptor family in tumors is caused by diverse mechanisms including genomic, epigenetic, transcriptional and post-transcriptional regulation. Notably, blocking netrin-1 binding to its receptors induces apoptotic cell death in tumor cells. In this review, we describe the characters and roles of UNC5 family members in tumorigenesis and tumor progression, discussing the regulatory mechanisms underlying down-regulation of UNC5 family members as well as recent implications of targeting netrin-1/UNC5 on potential clinical application for cancer treatment.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| | - Yuanyuan Li
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Akira Nakagawara
- Kyushu International Heavy Particle Beam Cancer Radiotherapy Center (SAGA HIMAT Foundation), Tosu, Japan.
| |
Collapse
|
19
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
20
|
Lee CS, Kim S, Hwang G, Song J. Deubiquitinases: Modulators of Different Types of Regulated Cell Death. Int J Mol Sci 2021; 22:4352. [PMID: 33919439 PMCID: PMC8122337 DOI: 10.3390/ijms22094352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The mechanisms and physiological implications of regulated cell death (RCD) have been extensively studied. Among the regulatory mechanisms of RCD, ubiquitination and deubiquitination enable post-translational regulation of signaling by modulating substrate degradation and signal transduction. Deubiquitinases (DUBs) are involved in diverse molecular pathways of RCD. Some DUBs modulate multiple modalities of RCD by regulating various substrates and are powerful regulators of cell fate. However, the therapeutic targeting of DUB is limited, as the physiological consequences of modulating DUBs cannot be predicted. In this review, the mechanisms of DUBs that regulate multiple types of RCD are summarized. This comprehensive summary aims to improve our understanding of the complex DUB/RCD regulatory axis comprising various molecular mechanisms for diverse physiological processes. Additionally, this review will enable the understanding of the advantages of therapeutic targeting of DUBs and developing strategies to overcome the side effects associated with the therapeutic applications of DUB modulators.
Collapse
Affiliation(s)
- Choong-Sil Lee
- Integrated OMICS for Biomedical Science, World Class University, Yonsei University, Seoul 120-749, Korea;
| | - Seungyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; (S.K.); (G.H.)
| | - Gyuho Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; (S.K.); (G.H.)
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; (S.K.); (G.H.)
| |
Collapse
|
21
|
Wojtowicz WM, Vielmetter J, Fernandes RA, Siepe DH, Eastman CL, Chisholm GB, Cox S, Klock H, Anderson PW, Rue SM, Miller JJ, Glaser SM, Bragstad ML, Vance J, Lam AW, Lesley SA, Zinn K, Garcia KC. A Human IgSF Cell-Surface Interactome Reveals a Complex Network of Protein-Protein Interactions. Cell 2021; 182:1027-1043.e17. [PMID: 32822567 PMCID: PMC7440162 DOI: 10.1016/j.cell.2020.07.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed ∼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for “orphan” receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets. Human IgSF interactome reveals complex network of cell-surface protein interactions Phylogenetic homology analysis predicts protein-protein interactions ∼380 previously unknown protein-protein interactions identified Deorphanization of receptors and new binding partners for well-studied receptors
Collapse
Affiliation(s)
- Woj M Wojtowicz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H Siepe
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catharine L Eastman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory B Chisholm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah Cox
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Heath Klock
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Paul W Anderson
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Sarah M Rue
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jessica J Miller
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Scott M Glaser
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Melisa L Bragstad
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Julie Vance
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Annie W Lam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Scott A Lesley
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Sesen J, Driscoll J, Shah N, Moses-Gardner A, Luiselli G, Alexandrescu S, Zurakowski D, Baxter PA, Su JM, Pricola Fehnel K, Smith ER. Neogenin is highly expressed in diffuse intrinsic pontine glioma and influences tumor invasion. Brain Res 2021; 1762:147348. [PMID: 33571520 DOI: 10.1016/j.brainres.2021.147348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Jessica Driscoll
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Nishali Shah
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Alexander Moses-Gardner
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Gabrielle Luiselli
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - David Zurakowski
- Department of Surgery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Patricia A Baxter
- Texas Children's Hospital/Baylor College of Medicine, 77030 Houston, TX, USA
| | - Jack M Su
- Texas Children's Hospital/Baylor College of Medicine, 77030 Houston, TX, USA
| | - Katie Pricola Fehnel
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA.
| |
Collapse
|
23
|
Huang Y, Zhang Z, Miao M, Kong C. The intracellular domain of UNC5B facilities proliferation and metastasis of bladder cancer cells. J Cell Mol Med 2020; 25:2121-2135. [PMID: 33345442 PMCID: PMC7882925 DOI: 10.1111/jcmm.16172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
The intracellular domain of UNC5B contains both death domain and caspase‐3 cleavage site, and is regarded as a functional domain that mediates apoptosis. However, in our previous studies, we found that the death domain of UNC5B in bladder cancer cells could not be activated to promote apoptosis. In this study, different UNC5B truncates (residue 399‐945, residue 412‐945) were created to explore whether the caspase‐3 cleavage site (site 412), as another potential functional domain of its intracellular portion, could be activated to induce apoptosis in bladder cancer cells. Using mass spectrometry, we acquired a comprehensive and detailed identification of differentially expressed proteins by overexpressing UNC5B and its truncates. Protein‐protein‐interaction (PPI) network analysis was also applied to investigate the aggregation of related proteins and predict the functional changes. EDU assay, apoptosis, xenograft tumour implantation, migration, invasion and tumour metastasis were performed to comprehensively identify the effects of UNC5B truncates on bladder cancer cells. We demonstrate that the intracellular domain of UNC5B promotes cell proliferation in vitro and tumour formation in vivo, by binding to a large number of ribosomal proteins. The overexpression of intracellular domain also facilitates cells to migrate, invade and metastasize by interacting with fibronectin, beta‐catenin and vimentin. In addition, we reveal that overexpressing the intracellular domain of UNC5B cannot bind or activate cleaved caspase‐3 to trigger apoptosis in bladder cancer cells.
Collapse
Affiliation(s)
- Yexiang Huang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Miao Miao
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Tsenkina Y, Tapanes SA, Díaz MM, Titus DJ, Gajavelli S, Bullock R, Atkins CM, Liebl DJ. EphB3 interacts with initiator caspases and FHL-2 to activate dependence receptor cell death in oligodendrocytes after brain injury. Brain Commun 2020; 2:fcaa175. [PMID: 33305261 PMCID: PMC7713998 DOI: 10.1093/braincomms/fcaa175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Clinical trials examining neuroprotective strategies after brain injury, including those targeting cell death mechanisms, have been underwhelming. This may be in part due to an incomplete understanding of the signalling mechanisms that induce cell death after traumatic brain injury. The recent identification of a new family of death receptors that initiate pro-cell death signals in the absence of their ligand, called dependence receptors, provides new insight into the factors that contribute to brain injury. Here, we show that blocking the dependence receptor signalling of EphB3 improves oligodendrocyte cell survival in a murine controlled cortical impact injury model, which leads to improved myelin sparing, axonal conductance and behavioural recovery. EphB3 also functions as a cysteine-aspartic protease substrate, where the recruitment of injury-dependent adaptor protein Dral/FHL-2 together with capsase-8 or -9 leads to EphB3 cleavage to initiate cell death signals in murine and human traumatic brain-injured patients, supporting a conserved mechanism of cell death. These pro-apoptotic responses can be blocked via exogenous ephrinB3 ligand administration leading to improved oligodendrocyte survival. In short, our findings identify a novel mechanism of oligodendrocyte cell death in the traumatically injured brain that may reflect an important neuroprotective strategy in patients.
Collapse
Affiliation(s)
- Yanina Tsenkina
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen A Tapanes
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Madelen M Díaz
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David J Titus
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shyam Gajavelli
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ross Bullock
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
25
|
Fields C, Levin M. Why isn't sex optional? Stem-cell competition, loss of regenerative capacity, and cancer in metazoan evolution. Commun Integr Biol 2020; 13:170-183. [PMID: 33403054 PMCID: PMC7746248 DOI: 10.1080/19420889.2020.1838809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Animals that can reproduce vegetatively by fission or budding and also sexually via specialized gametes are found in all five primary animal lineages (Bilateria, Cnidaria, Ctenophora, Placozoa, Porifera). Many bilaterian lineages, including roundworms, insects, and most chordates, have lost the capability of vegetative reproduction and are obligately gametic. We suggest a developmental explanation for this evolutionary phenomenon: obligate gametic reproduction is the result of germline stem cells winning a winner-take-all competition with non-germline stem cells for control of reproduction and hence lineage survival. We develop this suggestion by extending Hamilton's rule, which factors the relatedness between parties into the cost/benefit analysis that underpins cooperative behaviors, to include similarity of cellular state. We show how coercive or deceptive cell-cell signaling can be used to make costly cooperative behaviors appear less costly to the cooperating party. We then show how competition between stem-cell lineages can render an ancestral combination of vegetative reproduction with facultative sex unstable, with one or the other process driven to extinction. The increased susceptibility to cancer observed in obligately-sexual lineages is, we suggest, a side-effect of deceptive signaling that is exacerbated by the loss of whole-body regenerative abilities. We suggest a variety of experimental approaches for testing our predictions.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| |
Collapse
|
26
|
Wu S, Guo X, Zhou J, Zhu X, Chen H, Zhang K, Lu Y, Chen Y. High expression of UNC5B enhances tumor proliferation, increases metastasis, and worsens prognosis in breast cancer. Aging (Albany NY) 2020; 12:17079-17098. [PMID: 32902412 PMCID: PMC7521535 DOI: 10.18632/aging.103639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
UNC-5 Homolog B (UNC5B) is a member of the dependence receptor family that regulates cell survival and apoptosis in a ligand-dependent manner. UNC5B plays an important role in the development of multiple cancers, including colorectal, bladder, and thyroid cancer. However, the exact expression pattern and mechanism of UNC5B in breast cancer have not been well elucidated. Here, we showed that UNC5B expression was significantly upregulated in breast cancer using bioinformatics analysis and experimental validation. High UNC5B expression was correlated with poor overall survival in breast cancer patients. UNC5B knockdown inhibited breast cancer cell proliferation and metastasis and compromised PI3K/Akt signaling activation. In summary, UNC5B is a promising diagnostic and prognostic biomarker and targeting UNC5B is a potential strategy for individualized breast cancer treatment.
Collapse
Affiliation(s)
- Shijie Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xinyue Guo
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jiaojiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xuan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Huihui Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yuexin Lu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
27
|
Integrative Analysis of Gene Expression and Regulatory Network Interaction Data Reveals the Protein Kinase C Family of Serine/Threonine Receptors as a Significant Druggable Target for Parkinson's Disease. J Mol Neurosci 2020; 71:466-480. [PMID: 32728898 DOI: 10.1007/s12031-020-01669-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the ventral midbrain dopaminergic neurons, resulting in motor defects mainly tremor, rigidity, and bradykinesia along with a wide array of non-motor symptoms. The current study is focused on determining the potential druggable targets of PD by consolidating gene expression profiling and network methodology. Initially, the differentially expressed genes were established from which the central network was constructed by assimilating the interacting partners. Investigating the topological parameters of the network, the genes SYT1, CXCR4, CDC42, KIT, RET, DRD2, NTN1, PRKACB, KDR, NR4A2, SLC18A2, CCK, TH, KCNJ6, and TAC1 were identified as the hub genes and can be explored as potential candidate genes for PD therapeutics. Gene ontology and cluster analysis of the hub genes has provided further insights about the pathophysiology of the disease. Among the hub genes, PRKACB is observed in relatively all the enriched pathways which are modulated by G protein-coupled receptors through protein kinases. Further, we noticed SYT1 as a novel biomarker for PD. Moreover, the regulatory network was constructed with the hub genes as seed nodes with associated transcription factors (TFs) and microRNA (miRNAs). In this analysis, we identified MYC as the major TF and the miRNAs miR-21, miR-155, miR-7, and miR26A1 have a significant role in modulating the hub genes. Briefly, these significant hub genes and their enriched pathways, TFs, and miRNAs have aided in the better understanding of molecular mechanisms underlying PD and its potential core target genes.
Collapse
|
28
|
Polyomavirus Small T Antigen Induces Apoptosis in Mammalian Cells through the UNC5B Pathway in a PP2A-Dependent Manner. J Virol 2020; 94:JVI.02187-19. [PMID: 32404521 DOI: 10.1128/jvi.02187-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/02/2020] [Indexed: 11/20/2022] Open
Abstract
UNC5B is a dependence receptor that promotes survival in the presence of its ligand, netrin-1, while inducing cell death in its absence. The receptor has an important role in the development of the nervous and vascular systems. It is also involved in the normal turnover of intestinal epithelium. Netrin-1 and UNC5B are deregulated in multiple cancers, including colorectal, neuroblastoma, and breast tumors. However, the detailed mechanism of UNC5B function is not fully understood. We have utilized the murine polyomavirus small T antigen (PyST) as a tool to study UNC5B-mediated apoptosis. PyST is known to induce mitotic arrest followed by extensive cell death in mammalian cells. Our results show that the expression of PyST increases mRNA levels of UNC5B by approximately 3-fold in osteosarcoma cells (U2OS) and also stabilizes UNC5B at the posttranslational level. Furthermore, UNC5B is upregulated predominantly in those cells that undergo mitotic arrest upon PyST expression. Interestingly, although its expression was previously reported to be regulated by p53, our data show that the increase in UNC5B levels by PyST is p53 independent. The posttranslational stabilization of UNC5B by PyST is regulated by the interaction of PyST with PP2A. We also show that netrin-1 expression, which is known to inhibit UNC5B apoptotic activity, promotes survival of PyST-expressing cells. Our results thus suggest an important role of UNC5B in small-T antigen-induced mitotic catastrophe that also requires PP2A.IMPORTANCE UNC5B, PP2A, and netrin-1 are deregulated in a variety of cancers. UNC5B and PP2A are regarded as tumor suppressors, as they promote apoptosis and are deleted or mutated in many cancers. In contrast, netrin-1 promotes survival by inhibiting dependence receptors, including UNC5B, and is upregulated in many cancers. Here, we show that UNC5B-mediated apoptosis can occur independently of p53 but in a PP2A-dependent manner. A substantial percentage of cancers arise due to p53 mutations and are insensitive to chemotherapeutic treatments that activate p53. Unexpectedly, treatment of cancers having functional p53 with many conventional drugs leads to the upregulation of netrin-1 through activated p53, which is counterintuitive. Therefore, understanding the p53-independent mechanisms of the netrin-UNC5B axis, such as those involving PP2A, assumes greater clinical significance. Anticancer strategies utilizing anti-netrin-1 antibody treatment are already in clinical trials.
Collapse
|
29
|
Boussouar A, Tortereau A, Manceau A, Paradisi A, Gadot N, Vial J, Neves D, Larue L, Battistella M, Leboeuf C, Lebbé C, Janin A, Mehlen P. Netrin-1 and Its Receptor DCC Are Causally Implicated in Melanoma Progression. Cancer Res 2020; 80:747-756. [PMID: 31806640 DOI: 10.1158/0008-5472.can-18-1590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/25/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022]
Abstract
Deleted in colorectal cancer (DCC), the receptor for the multifunctional cue netrin-1, acts as a tumor suppressor in intestinal cancer and lung metastasis by triggering cancer cell death when netrin-1 is lowly expressed. Recent genomic data highlighted that DCC is the third most frequently mutated gene in melanoma; we therefore investigated whether DCC could act as a melanoma tumor suppressor. Reexpressing DCC in human melanoma cell lines promoted tumor cell death and tumor growth inhibition in xenograft mouse models. Genetic silencing of DCC prodeath activity in a BRAFV600E mouse model increased the proportion of mice with melanoma, further supporting that DCC is a melanoma tumor suppressor. Netrin-1 expression was elevated in melanoma compared with benign melanocytic lesions. Upregulation of netrin-1 in the skin cells of a BRAFV600E-mutated murine model reduced cancer cell death and promoted melanoma progression. Therapeutic antibody blockade of netrin-1 combined with dacarbazine increased overall survival in several mouse melanoma models. Together, these data support that interfering with netrin-1 could be a viable therapeutic approach in patients with netrin-1-expressing melanoma. SIGNIFICANCE: Netrin-1 and its receptor DCC regulate melanoma progression, suggesting therapeutic targeting of this signaling axis as a viable option for melanoma treatment.
Collapse
Affiliation(s)
- Amina Boussouar
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Antonin Tortereau
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Ambroise Manceau
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Andrea Paradisi
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Jonathan Vial
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR3347, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Maxime Battistella
- Université Paris Diderot, Inserm, UMR_S1165, Paris, France, Laboratoire de pathologie, Hôpital Saint Louis, APHP, Paris, France
| | - Christophe Leboeuf
- Université Paris Diderot, Inserm, UMR_S1165, Paris, France, Laboratoire de pathologie, Hôpital Saint Louis, APHP, Paris, France
| | - Celeste Lebbé
- Service de dermatologie, Hôpital Saint Louis, APHP, Paris, France
| | - Anne Janin
- Université Paris Diderot, Inserm, UMR_S1165, Paris, France, Laboratoire de pathologie, Hôpital Saint Louis, APHP, Paris, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France. .,Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| |
Collapse
|
30
|
Stone TW. Dependence and Guidance Receptors-DCC and Neogenin-In Partial EMT and the Actions of Serine Proteases. Front Oncol 2020; 10:94. [PMID: 32117748 PMCID: PMC7010924 DOI: 10.3389/fonc.2020.00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Epithelial-Mesenchymal Transition (EMT) is an important concept in understanding the processes of oncogenesis, especially with respect to the relationship between cell proliferation and metastatic properties such as spontaneous cell motility, chemotaxic migration and tissue invasion. EMT is now recognized as a more complex phenomenon than an all-or-nothing event, in which different components of the EMT may have distinct roles in the physio-pathological regulation of cell function and which may in turn depend on differential interactions with cell constituents and metabolic products. This mini-review summarizes recent work on the induction of cancer properties in parallel with the presence of EMT activities in the presence of serine proteases, with the focus on those tumor suppressors known as "dependence" receptors such as neogenin and Deleted in Colorectal Cancer (DCC). It is concluded that various forms of partial EMT should be given more detailed investigation and consideration as the results could have valuable implications for the development of disease-specific and patient-specific therapies.
Collapse
|
31
|
Abstract
In spite of the high metabolic cost of cellular production, the brain contains only a fraction of the neurons generated during embryonic development. In the rodent cerebral cortex, a first wave of programmed cell death surges at embryonic stages and affects primarily progenitor cells. A second, larger wave unfolds during early postnatal development and ultimately determines the final number of cortical neurons. Programmed cell death in the developing cortex is particularly dependent on neuronal activity and unfolds in a cell-specific manner with precise temporal control. Pyramidal cells and interneurons adjust their numbers in sync, which is likely crucial for the establishment of balanced networks of excitatory and inhibitory neurons. In contrast, several other neuronal populations are almost completely eliminated through apoptosis during the first two weeks of postnatal development, highlighting the importance of programmed cell death in sculpting the mature cerebral cortex.
Collapse
Affiliation(s)
- Fong Kuan Wong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
32
|
Kremen1-induced cell death is regulated by homo- and heterodimerization. Cell Death Discov 2019; 5:91. [PMID: 31069116 PMCID: PMC6494814 DOI: 10.1038/s41420-019-0175-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 01/16/2023] Open
Abstract
In multicellular organisms, cell death pathways allow the removal of abnormal or unwanted cells. Their dysregulation can lead either to excessive elimination or to inappropriate cell survival. Evolutionary constraints ensure that such pathways are strictly regulated in order to restrain their activation to the appropriate context. We have previously shown that the transmembrane receptor Kremen1 behaves as a dependence receptor, triggering cell death unless bound to its ligand Dickkopf1. In this study, we reveal that Kremen1 apoptotic signaling requires homodimerization of the receptor. Dickkopf1 binding inhibits Kremen1 multimerization and alleviates cell death, whereas forced dimerization increases apoptotic signaling. Furthermore, we show that Kremen2, a paralog of Kremen1, which bears no intrinsic apoptotic activity, binds and competes with Kremen1. Consequently, Kremen2 is a very potent inhibitor of Kremen1-induced cell death. Kremen1 was proposed to act as a tumor suppressor, preventing cancer cell survival in a ligand-poor environment. We found that KREMEN2 expression is increased in a large majority of cancers, suggesting it may confer increased survival capacity. Consistently, low KREMEN2 expression is a good prognostic for patient survival in a variety of cancers.
Collapse
|
33
|
Dong D, Zhang L, Bai C, Ma N, Ji W, Jia L, Zhang A, Zhang P, Ren L, Zhou Y. UNC5D, suppressed by promoter hypermethylation, inhibits cell metastasis by activating death-associated protein kinase 1 in prostate cancer. Cancer Sci 2019; 110:1244-1255. [PMID: 30632669 PMCID: PMC6447834 DOI: 10.1111/cas.13935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer (PCa) death primarily occurs due to metastasis of the cells, but little is known about the underlying molecular mechanisms. This study aimed to evaluate the expression of UNC5D, a newly identified tumor suppressor gene, analyze its epigenetic alterations, and elucidate its functional relevance to PCa metastasis. Meta‐analysis of publicly available microarray datasets revealed that UNC5D expression was frequently downregulated in PCa tissues and inversely associated with PCa metastasis. These results were verified in clinical specimens by real‐time PCR and immunohistochemistry assays. Through methylation analysis, the downregulated expression of UNC5D in PCa tissues and cell lines was found to be attributable to the hypermethylation of the promoter. A negative correlation was observed between methylation and UNC5D mRNA expression in PCa samples. The ectopic expression of UNC5D in PCa cells effectively reduced their ability to migrate and invade both in vitro and in vivo, and siRNA‐mediated knockdown of UNC5D yielded consistent results. UNC5D can recruit and activate death‐associated protein kinase 1, which remained to be essential for its metastatic suppressor function. In conclusion, these results suggested that UNC5D as a novel putative metastatic suppressor gene that is commonly down‐regulated by hypermethylation in PCa.
Collapse
Affiliation(s)
- Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Lufang Zhang
- Department of Laboratory, Aviation General Hospital, Beijing, China
| | - Changsen Bai
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Na Ma
- Cancer Biobank, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Wei Ji
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Li Jia
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Aimin Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Pengyu Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Li Ren
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Yunli Zhou
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
34
|
A Cell Proliferation and Inflammatory Signature Is Induced by Lawsonia intracellularis Infection in Swine. mBio 2019; 10:mBio.01605-18. [PMID: 30696739 PMCID: PMC6355989 DOI: 10.1128/mbio.01605-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lawsonia intracellularis causes porcine proliferative enteropathy. This is an enteric disease characterized by thickening of the wall of the ileum that leads to decreased growth of animals and diarrhea. In this study, we investigated the host response to L. intracellularis infection by performing transcriptomic and pathway analysis of intestinal tissue samples from groups of infected and noninfected animals at 14, 21, and 28 days postchallenge. At the peak of infection, when animals developed the most severe lesions, infected animals had higher levels of several gene transcripts involved in cellular proliferation and inflammation, including matrix metalloproteinase-7 (MMP7), transglutaminase-2 (TGM2), and oncostatin M (OSM). Histomorphology also revealed general features of intestinal inflammation. This study identified important pathways associated with the host response in developing and resolving lesions due to L. intracellularis infection.IMPORTANCE Lawsonia intracellularis is among the most important enteric pathogens of swine, and it can also infect other mammalian species. Much is still unknown regarding its pathogenesis and the host response, especially at the site of infection. In this study, we uncovered several novel genes and pathways associated with infection. Differentially expressed transcripts, in addition to histological changes in infected tissue, revealed striking similarities between L. intracellularis infection and cellular proliferation mechanisms described in some cancers and inflammatory diseases of the gastrointestinal tract. This research sheds important light into the pathogenesis of L. intracellularis and the host response associated with the lesions caused by infection.
Collapse
|
35
|
McNair K, Forrest CM, Vincenten MCJ, Darlington LG, Stone TW. Serine protease modulation of Dependence Receptors and EMT protein expression. Cancer Biol Ther 2018; 20:349-367. [PMID: 30403907 PMCID: PMC6370372 DOI: 10.1080/15384047.2018.1529109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022] Open
Abstract
Expression of the tumour suppressor Deleted in Colorectal Cancer (DCC) and the related protein neogenin is reduced by the mammalian serine protease chymotrypsin or the bacterial serine protease subtilisin, with increased cell migration. The present work examines whether these actions are associated with changes in the expression of cadherins, β-catenin and vimentin, established markers of the Epithelial-Mesenchymal Transition (EMT) which has been linked with cell migration and tumour metastasis. The results confirm the depletion of DCC and neogenin and show that chymotrypsin and subtilisin also reduce expression of β-catenin in acutely prepared tissue sections but not in human mammary adenocarcinoma MCF-7 or MDA-MB-231 cells cultured in normal media, or primary normal human breast cells. A loss of β-catenin was also seen in low serum media but transfecting cells with a dcc-containing plasmid induced resistance. E-cadherin was not consistently affected but vimentin was induced by low serum-containing media and was increased by serine proteases in MCF-7 and MDA-MB-231 cells in parallel with increased wound closure. Vimentin might contribute to the promotion of cell migration. The results suggest that changes in EMT proteins depend on the cells or tissues concerned and do not parallel the expression of DCC and neogenin. The increased cell migration induced by serine proteases is not consistently associated with the expression of the EMT proteins implying either that the increased migration may be independent of EMT or supporting the view that EMT is not itself consistently related to migration. (241).
Collapse
Affiliation(s)
- Kara McNair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Caroline M. Forrest
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria C. J. Vincenten
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Trevor W. Stone
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- The Kennedy Institute, University of Oxford, Oxford UK
| |
Collapse
|
36
|
Wang H, Boussouar A, Mazelin L, Tauszig-Delamasure S, Sun Y, Goldschneider D, Paradisi A, Mehlen P. The Proto-oncogene c-Kit Inhibits Tumor Growth by Behaving as a Dependence Receptor. Mol Cell 2018; 72:413-425.e5. [DOI: 10.1016/j.molcel.2018.08.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 04/20/2018] [Accepted: 08/23/2018] [Indexed: 11/15/2022]
|
37
|
Bhat SA, Gurtoo S, Deolankar SC, Fazili KM, Advani J, Shetty R, Prasad TSK, Andrabi S, Subbannayya Y. A network map of netrin receptor UNC5B-mediated signaling. J Cell Commun Signal 2018; 13:121-127. [PMID: 30084000 DOI: 10.1007/s12079-018-0485-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
UNC-5 Homolog B (UNC5B) is a member of the dependence receptor family. This family of receptors can induce two opposite intracellular signaling cascades depending on the presence or absence of the ligand and is thus capable of driving two opposing processes. UNC5B signaling has been implicated in several cancers, where it induces cell death in the absence of its ligand Netrin-1 and promotes cell survival in its presence. In addition, inhibition of Netrin-1 ligand has been reported to decrease invasiveness and angiogenesis in tumors. UNC5B signaling pathway has also been reported to be involved in several processes such as neural development, developmental angiogenesis and inflammatory processes. However, literature pertaining to UNC5B signaling is scarce and scattered. Considering the importance of UNC5B signaling, we developed a resource of signaling events mediated by UNC5B. Using data mined from published literature, we compiled an integrated pathway map consisting of 88 UNC5B-mediated signaling events and 55 proteins. These signaling events include 27 protein-protein interaction events, 33 catalytic events involving various post-translational modifications, 9 events of UNC5B-mediated protein activation/inhibition, 27 gene regulation events and 2 events of translocation. This pathway resource has been made available to the research community through NetPath ( http://www.netpath.org /), a manually curated resource of signaling pathways (Database URL: http://www.netpath.org/pathways?path_id=NetPath_172 ). The current resource provides a foundation for the understanding of UNC5B-mediated cellular responses. The development of resource will serve researchers to explore the mechanisms of UNC-5B signaling in cancers.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Sumrati Gurtoo
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, 575 018, India
| | | | | | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Rohan Shetty
- Department of Surgical Oncology. Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575 018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, 575 018, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Shaida Andrabi
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India.
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, 575 018, India.
| |
Collapse
|
38
|
Negulescu A, Mehlen P. Dependence receptors – the dark side awakens. FEBS J 2018; 285:3909-3924. [DOI: 10.1111/febs.14507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ana‐Maria Negulescu
- Apoptosis, Cancer and Development Laboratory – Equipe labelisée “La Ligue” LabEx DEVweCAN INSERM U1052 – CNRS UMR5286 Centre de Cancérologie de Lyon Centre Léon Bérard Université Claude Bernard Lyon‐1 Université de Lyon France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory – Equipe labelisée “La Ligue” LabEx DEVweCAN INSERM U1052 – CNRS UMR5286 Centre de Cancérologie de Lyon Centre Léon Bérard Université Claude Bernard Lyon‐1 Université de Lyon France
| |
Collapse
|
39
|
Kreitman M, Noronha A, Yarden Y. Irreversible modifications of receptor tyrosine kinases. FEBS Lett 2018; 592:2199-2212. [PMID: 29790151 DOI: 10.1002/1873-3468.13095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023]
Abstract
Each group of the 56 receptor tyrosine kinases (RTK) binds with one or more soluble growth factors and coordinates a vast array of cellular functions. These outcomes are tightly regulated by inducible post-translational events, such as tyrosine phosphorylation, ubiquitination, ectodomain shedding, and regulated intramembrane proteolysis. Because of the delicate balance required for appropriate RTK function, cells may become pathogenic upon dysregulation of RTKs themselves or their post-translational covalent modifications. For example, reduced ectodomain shedding and decreased ubiquitination of the cytoplasmic region, both of which enhance growth factor signals, characterize malignant cells. Whereas receptor phosphorylation and ubiquitination are reversible, proteolytic cleavage events are irreversible, and either modification might alter the subcellular localization of RTKs. Herein, we focus on ectodomain shedding by metalloproteinases (including ADAM family proteases), cleavage within the membrane or cytoplasmic regions of RTKs (by gamma-secretases and caspases, respectively), and complete receptor proteolysis in lysosomes and proteasomes. Roles of irreversible modifications in RTK signaling, pathogenesis, and pharmacology are highlighted.
Collapse
Affiliation(s)
- Matthew Kreitman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Abstract
Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA.
| |
Collapse
|
41
|
Kim MS, Suh KW, Hong S, Jin W. TrkC promotes colorectal cancer growth and metastasis. Oncotarget 2018; 8:41319-41333. [PMID: 28455963 PMCID: PMC5522271 DOI: 10.18632/oncotarget.17289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/03/2017] [Indexed: 01/01/2023] Open
Abstract
The current work reveals that TrkC receptor is crucial to many aspects of tumorigenicity and metastasis of cancer. However, with only a few exceptions, such as colorectal cancer (CRC), where suppressing tumorigenic and metastatic ability via expression of TrkC as tumor suppressor have been proposed. These diverse lines of evidence led us to investigate whether TrkC is involved in CRC progression. By using mouse models and molecular biology analyses, we demonstrate that TrkC acts as an activator in tumorigenicity and metastasis of colorectal cancer. In this study, TrkC was frequently overexpressed in CRC cells, patients’ tumor samples and an azoxymethane/dextran sulphate sodium-induced mouse model of colitis-associated CRCs. TrkC expression was associated with a high-grade CRC phenotype, leading to significantly poorer survival. Also, TrkC expression promoted the acquisition of motility and invasiveness in CRC. Moreover, TrkC increased the ability to form tumor spheroids, a property associated with cancer stem cells. Importantly, knockdown of TrkC in malignant mouse or human CRC cells inhibited tumor growth and metastasis in a mouse xenograft model. Furthermore, TrkC enhanced metastatic potential and induced proliferation by aberrant gain of AKT activation and suppression of transforming growth factor (TGF)-β signalling. Interestingly, TrkC not only modulated the actions of TGF-β type II receptor, but also attenuated expression of this receptor. These findings reveal an unexpected physiological role of TrkC in the pathogenesis of CRC. Therefore, TrkC is a potential target for designing effective therapeutic strategies for CRC development.
Collapse
Affiliation(s)
- Min Soo Kim
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| | - Kwang Wook Suh
- Department of Surgery, Ajou University School of Medicine, Yeongto-gu, Suwon 443-380, Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| | - Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea.,Gachon Medical Research Institute, Gil Medical Center, Incheon, 405-760, Korea
| |
Collapse
|
42
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
43
|
Abstract
Resistance to chemotherapeutic drugs exemplifies the greatest hindrance to effective treatment of cancer patients. The molecular mechanisms responsible have been investigated for over 50 years and have revealed the lack of a single cause, but instead, multiple mechanisms including induced expression of membrane transporters that pump drugs out of cells (multidrug resistance (MDR) phenotype), changes in the glutathione system, and altered metabolism. Treatment of cancer patients/cancer cells with chemotherapeutic agents and/or molecularly targeted drugs is accompanied by acquisition of resistance to the treatment administered. Chemotherapeutic agent resistance was initially assumed to be due to induction of mutations leading to a resistant phenotype. While this has occurred for molecularly targeted drugs, it is clear that drugs selectively targeting tyrosine kinases (TKs) cause the acquisition of mutational changes and resistance to inhibition. The first TK to be targeted, Bcr-Abl, led to the generation of several drugs including imatinib, dasatinib, and sunitinib that provided a rich understanding of this phenomenon. It became clear that mutations alone were not the only cause of resistance. Additional mechanisms were involved, including alternative splicing, alternative/compensatory signaling pathways, and epigenetic changes. This review will focus on resistance to tyrosine kinase inhibitors (TKIs), receptor TK (RTK)-directed antibodies, and antibodies that inactivate specific RTK ligands. New approaches and concepts aimed at avoiding the generation of drug resistance will be examined. Many RTKs, including the IGF-1R, are dependence receptors that induce ligand-independent apoptosis. How this signaling paradigm has implications on therapeutic strategies will also be considered.
Collapse
|
44
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Citation(s) in RCA: 3959] [Impact Index Per Article: 659.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
45
|
Villanueva AA, Falcón P, Espinoza N, R LS, Milla LA, Hernandez-SanMiguel E, Torres VA, Sanchez-Gomez P, Palma V. The Netrin-4/ Neogenin-1 axis promotes neuroblastoma cell survival and migration. Oncotarget 2018; 8:9767-9782. [PMID: 28038459 PMCID: PMC5354769 DOI: 10.18632/oncotarget.14213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Neogenin-1 (NEO1) is a transmembrane receptor involved in axonal guidance, angiogenesis, neuronal cell migration and cell death, during both embryonic development and adult homeostasis. It has been described as a dependence receptor, because it promotes cell death in the absence of its ligands (Netrin and Repulsive Guidance Molecule (RGM) families) and cell survival when they are present. Although NEO1 and its ligands are involved in tumor progression, their precise role in tumor cell survival and migration remain unclear. Public databases contain extensive information regarding the expression of NEO1 and its ligands Netrin-1 (NTN1) and Netrin-4 (NTN4) in primary neuroblastoma (NB) tumors. Analysis of this data revealed that patients with high expression levels of both NEO1 and NTN4 have a poor survival rate. Accordingly, our analyses in NB cell lines with different genetic backgrounds revealed that knocking-down NEO1 reduces cell migration, whereas silencing of endogenous NTN4 induced cell death. Conversely, overexpression of NEO1 resulted in higher cell migration in the presence of NTN4, and increased apoptosis in the absence of ligand. Increased apoptosis was prevented when utilizing physiological concentrations of exogenous Netrin-4. Likewise, cell death induced after NTN4 knock-down was rescued when NEO1 was transiently silenced, thus revealing an important role for NEO1 in NB cell survival. In vivo analysis, using the chicken embryo chorioallantoic membrane (CAM) model, showed that NEO1 and endogenous NTN4 are involved in tumor extravasation and metastasis. Our data collectively demonstrate that endogenous NTN4/NEO1 maintain NB growth via both pro-survival and pro-migratory molecular signaling.
Collapse
Affiliation(s)
- Andrea A Villanueva
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Paulina Falcón
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Natalie Espinoza
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Luis Solano R
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Luis A Milla
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Current address: School of Medicine, Universidad de Santiago, Santiago, Chile
| | | | - Vicente A Torres
- Institute for Research in Dental Sciences and Advanced Center for Chronic Diseases (ACCDiS), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
46
|
Hishiki T, Mise N, Harada K, Ihara F, Takami M, Saito T, Terui K, Nakata M, Komatsu S, Yoshida H, Motohashi S. Invariant natural killer T infiltration in neuroblastoma with favorable outcome. Pediatr Surg Int 2018; 34:195-201. [PMID: 29018959 DOI: 10.1007/s00383-017-4189-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor immunity has been suggested to play a key role in clinical and biological behavior of neuroblastomas. Given that CD1-restricted invariant natural killer T (iNKT) cells enhance both innate and acquired tumor immunity, we investigated the expression of the iNKT-cell-specific T-cell receptor Vα24-Jα18 in neuroblastoma tissues and its correlation with clinical and biological characteristics. METHODS Using real- time quantitative PCR, we quantified the expression of Vα24-Jα18 in untreated tumor samples from 107 neuroblastoma cases followed in our institution and analyzed the correlation between the presence of infiltrated iNKT cells and clinical characteristics or patients' outcome. RESULTS Vα24-Jα18 receptor was detected in 62 untreated cases (57.9%). The expression was significantly higher in stages 1, 2, 3, or 4S (P = 0.0099), in tumors with low or intermediate risk (P = 0.0050), with high TrkA expression (P = 0.0229), with favorable histology (P = 0.0026), with aneuploidy (P = 0.0348), and in younger patients (P = 0.0036). The overall survival rate was significantly higher in patients with iNKT-cell infiltration (log-rank; P = 0.0089). CONCLUSIONS Since tumor-infiltrating iNKT cells were predominantly observed in neuroblastomas undergoing spontaneous differentiation and/or regression, we suggest that iNKT cells might play a key role in these processes.
Collapse
Affiliation(s)
- Tomoro Hishiki
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Division of Pediatric Surgical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Naoko Mise
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuaki Harada
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Fumie Ihara
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mariko Takami
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takeshi Saito
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Keita Terui
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mitsuyuki Nakata
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shugo Komatsu
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideo Yoshida
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
47
|
H1/pHGFK1 nanoparticles exert anti-tumoural and radiosensitising effects by inhibition of MET in glioblastoma. Br J Cancer 2018; 118:522-533. [PMID: 29348487 PMCID: PMC5830599 DOI: 10.1038/bjc.2017.461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background: The therapeutic resistance to ionising radiation (IR) and anti-angiogenesis mainly impair the prognosis of patients with glioblastoma. The primary and secondary MET aberrant activation is one crucial factor for these resistances. The kringle 1 domain of hepatocyte growth factor (HGFK1), an angiogenic inhibitor, contains a high-affinity binding domain of MET; however, its effects on glioblastoma remain elusive. Methods: We formed the nanoparticles consisting of a folate receptor-targeted nanoparticle-mediated HGFK1 gene (H1/pHGFK1) and studied its anti-tumoural and radiosensitive activities in both subcutaneous and orthotopic human glioma cell-xenografted mouse models. We then elucidated its molecular mechanisms in human glioblastoma cell lines in vitro. Results: We demonstrated for the first time that peritumoural injection of H1/pHGFK1 nanoparticles significantly inhibited tumour growth and prolonged survival in tumour-bearing mice, as well as enhanced the anti-tumoural efficacies of IR in vivo by reducing Ki-67 expression, enhancing TUNEL staining-indicated apoptotic indexes, reducing microvascular intensity and reversing IR-induced MET overexpression in tumour tissues. Furthermore, we showed that HGFK1 suppressed the proliferation and induced cell apoptosis and enhanced sensitivity to IR in glioblastoma cell lines, mainly by suppressing the activities of MET receptor, down-regulating ATM-Chk2 axis but up-regulating Chk1. Conclusions: H1/pHGFK1 exerts anti-tumoural and radiosensitive activities mainly through the inhibition and reversal of IR-induced MET and ATM–Chk2 axis activities in glioblastoma. H1/pHGFK1 nanoparticles are a potential radiosensitiser and angiogenic inhibitor for glioblastoma treatment.
Collapse
|
48
|
Yao D, Wang P, Zhang J, Fu L, Ouyang L, Wang J. Deconvoluting the relationships between autophagy and metastasis for potential cancer therapy. Apoptosis 2018; 21:683-98. [PMID: 27003389 DOI: 10.1007/s10495-016-1237-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is a highly conserved lysosome-dependent degradation process that may digest some long-lived proteins and damaged organelles. As an essential homeostasis maintaining system in normal cells, autophagy plays a key role in several pathological settings, especially cancer. Metastasis, known as a crucial hallmark of cancer progression, is the primary cause of cancer lethality. The role of autophagy in metastasis is quite complex as supportive evidence has indicated both pro-metastatic and anti-metastatic functions of autophagy. Autophagy can inhibit metastasis by restricting necrosis and mediating autophagic cell death, whereas it may also promote metastasis by enhancing cancer cell fitness in response to stress. Moreover, the function of autophagy is context- and stage-dependent. Specifically, during the early steps of metastasis, autophagy mainly serves as a suppressor, while it plays a pro-metastatic role in the later steps. Here, we focus on highlighting the dual roles of autophagy in metastasis and address the molecular mechanisms involved in this process, which may provide a new insight into cancer biology. While, we also summarize several anti-metastatic agents manipulating autophagy, in the hope of shedding light on exploration of potential novel drugs for future cancer therapy.
Collapse
Affiliation(s)
- Dahong Yao
- State Key Laboratory of Biotherapy & Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy & Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Leilei Fu
- State Key Laboratory of Biotherapy & Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy & Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
49
|
Assis-Nascimento P, Tsenkina Y, Liebl DJ. EphB3 signaling induces cortical endothelial cell death and disrupts the blood-brain barrier after traumatic brain injury. Cell Death Dis 2018; 9:7. [PMID: 29311672 PMCID: PMC5849033 DOI: 10.1038/s41419-017-0016-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/20/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
Damage to the cerebrovascular network is a major contributor to dysfunction in patients suffering from traumatic brain injury (TBI). Vessels are composed of lumen-forming endothelial cells that associate closely with both glial and neuronal units to establish a functional blood–brain barrier (BBB). Under normal physiological conditions, these vascular units play important roles in central nervous system (CNS) homeostasis by delivering oxygen and nutrients while filtering out molecules and cells that could be harmful; however, after TBI this system is disrupted. Here, we describe a novel role for a class of receptors, called dependence receptors, in regulating vessel stability and BBB integrity after CCI injury in mice. Specifically, we identified that EphB3 receptors function as a pro-apoptotic dependence receptor in endothelial cells (ECs) that contributes to increased BBB damage after CCI injury. In the absence of EphB3, we observed increased endothelial cell survival, reduced BBB permeability and enhanced interactions of astrocyte-EC membranes. Interestingly, the brain’s response to CCI injury is to reduce EphB3 levels and its ligand ephrinB3; however, the degree and timing of those reductions limit the protective response of the CNS. We conclude that EphB3 is a negative regulator of cell survival and BBB integrity that undermine tissue repair, and represents a protective therapeutic target for TBI patients.
Collapse
Affiliation(s)
- Poincyane Assis-Nascimento
- The Miami Project to Cure Paralysis, Department of Neurological surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL, 33136, USA
| | - Yanina Tsenkina
- The Miami Project to Cure Paralysis, Department of Neurological surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL, 33136, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurological surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL, 33136, USA.
| |
Collapse
|
50
|
Toque HA, Fernandez-Flores A, Mohamed R, Caldwell RB, Ramesh G, Caldwell RW. Netrin-1 is a novel regulator of vascular endothelial function in diabetes. PLoS One 2017; 12:e0186734. [PMID: 29059224 PMCID: PMC5653335 DOI: 10.1371/journal.pone.0186734] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/08/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Netrin-1, a secreted laminin-like protein identified as an axon guidance molecule, has been shown to be of critical importance in the cardiovascular system. Recent studies have revealed pro-angiogenic, anti-apoptotic and anti-inflammatory properties of netrin-1 as well as cardioprotective actions against myocardial injury in diabetic mice. AIM To examine the role of netrin-1 in diabetes-and high glucose (HG)-induced vascular endothelial dysfunction (VED) using netrin-1 transgenic mice (Tg3) and cultured bovine aortic endothelial cells (BAEC). MAIN OUTCOME Overexpression of netrin-1 prevented diabetes-induced VED in aorta from diabetic mice and netrin-1 treatment attenuated HG-induced impairment of nitric oxide synthase (NOS) function in BAECs. METHODS AND RESULTS Experiments were performed in Tg3 and littermate control (WT) mice rendered diabetic with streptozotocin (STZ) and in BAECs treated with HG (25 mmol/L). Levels of netrin-1 and its receptor DCC, markers of inflammation and apoptosis and vascular function were assessed in aortas from diabetic and non-diabetic Tg3 and WT mice. Vascular netrin-1 in WT mice was reduced under diabetic conditions. Aortas from non-diabetic Tg3 and WT mice showed similar maximum endothelium-dependent relaxation (MEDR) (83% and 87%, respectively). MEDR was markedly impaired in aorta from diabetic WT mice (51%). This effect was significantly blunted in Tg3 diabetic aortas (70%). Improved vascular relaxation in Tg3 diabetic mice was associated with increased levels of phospho-ERK1/2 and reduced levels of oxidant stress, NFκB, COX-2, p16INK4A, cleaved caspase-3 and p16 and p53 mRNA. Netrin-1 treatment prevented the HG-induced decrease in NO production and elevation of oxidative stress and apoptosis in BAECs. CONCLUSIONS Diabetes decreases aortic levels of netrin-1. However, overexpression of netrin-1 attenuates diabetes-induced VED and limits the reduction of NO levels, while increasing expression of p-ERK1/2, and suppressing oxidative stress and inflammatory and apoptotic processes. Enhancement of netrin-1 function may be a useful therapeutic means for preventing vascular dysfunction in diabetes.
Collapse
Affiliation(s)
- Haroldo A. Toque
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
- * E-mail:
| | - Aracely Fernandez-Flores
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Riyaz Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Ruth B. Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Ganesan Ramesh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - R. William Caldwell
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| |
Collapse
|