1
|
Vaškevičius A, Baronas D, Leitans J, Kvietkauskaitė A, Rukšėnaitė A, Manakova E, Toleikis Z, Kaupinis A, Kazaks A, Gedgaudas M, Mickevičiūtė A, Juozapaitienė V, Schiöth HB, Jaudzems K, Valius M, Tars K, Gražulis S, Meyer-Almes FJ, Matulienė J, Zubrienė A, Dudutienė V, Matulis D. Targeted anticancer pre-vinylsulfone covalent inhibitors of carbonic anhydrase IX. eLife 2024; 13:RP101401. [PMID: 39688904 DOI: 10.7554/elife.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
We designed novel pre-drug compounds that transform into an active form that covalently modifies particular His residue in the active site, a difficult task to achieve, and applied to carbonic anhydrase (CAIX), a transmembrane protein, highly overexpressed in hypoxic solid tumors, important for cancer cell survival and proliferation because it acidifies tumor microenvironment helping invasion and metastases processes. The designed compounds have several functionalities: (1) primary sulfonamide group recognizing carbonic anhydrases (CA), (2) high-affinity moieties specifically recognizing CAIX among all CA isozymes, and (3) forming a covalent bond with the His64 residue. Such targeted covalent compounds possess both high initial affinity and selectivity for the disease target protein followed by complete irreversible inactivation of the protein via covalent modification. Our designed prodrug candidates bearing moderately active pre-vinylsulfone esters or weakly active carbamates optimized for mild covalent modification activity to avoid toxic non-specific modifications and selectively target CAIX. The lead inhibitors reached 2 pM affinity, the highest among known CAIX inhibitors. The strategy could be used for any disease drug target protein bearing a His residue in the vicinity of the active site.
Collapse
Affiliation(s)
- Aivaras Vaškevičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Denis Baronas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Janis Leitans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Agnė Kvietkauskaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Audronė Rukšėnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elena Manakova
- Department of Protein - DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Zigmantas Toleikis
- Sector of Biocatalysis, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vaida Juozapaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Saulius Gražulis
- Sector of Crystallography and Chemical Informatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Darmstadt, Germany
| | - Jurgita Matulienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Dudutienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Koba Y, Nakamoto M, Nagao M, Miura Y, Matsusaki M. Intrinsic Synergy and Selectivity for the Inhibition of Cancer Cell Growth Generated by a Polymer Ligand of Proximal Enzymes. NANO LETTERS 2024; 24:14206-14214. [PMID: 39388612 DOI: 10.1021/acs.nanolett.4c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A fundamental understanding of the design of polymer ligands of proximal enzymes is essential for the precise targeting of cancer cells, but it is still in its infancy. In this study, we systematically investigated the contribution of the chain length, ligand density, and ligand ratio of proximal enzyme-targeted polymers to the efficacy, synergy, and selectivity for the inhibition of cancer cell proliferation. The results revealed that employing a moderate chain length as a scaffold allowed for an intrinsically high efficacy and synergy of proximal enzyme-targeted polymers, in contrast to single enzyme-targeted polymers that prefer longer chain length for efficacy. The synergy obtained in proximal enzyme targeting was not provided by the combination of the corresponding small molecules. Moreover, the maturation of the synergistic efficacy of the proximal enzyme-targeted polymers also improved selectivity. This study proposes a rational design for polymer inhibitors and/or ligands for cancer cells with a high efficacy and selectivity.
Collapse
Affiliation(s)
- Yuki Koba
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Ronca R, Supuran CT. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189120. [PMID: 38801961 DOI: 10.1016/j.bbcan.2024.189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Carbonic anhydrases (CAs), are metallo-enzymes implicated in several pathophysiological processes where tissue pH regulation is required. CA IX is a tumor-associated CA isoform induced by hypoxia and involved in the adaptation of tumor cells to acidosis. Indeed, several tumor-driving pathways can induce CA IX expression, and this in turn has been associated to cancer cells invasion and metastatic features as well as to induction of stem-like features, drug resistance and recurrence. After its functional and structural characterization CA IX targeting approaches have been developed to inhibit its activity in neoplastic tissues, and to date this field has seen an incredible acceleration in terms of therapeutic options and biological readouts. Small molecules inhibitors, hybrid/dual targeting drugs, targeting antibodies and adoptive (CAR-T based) cell therapy have been developed at preclinical level, whereas a sulfonamide CA IX inhibitor and an antibody entered Phase Ib/II clinical trials for the treatment and imaging of different solid tumors. Here recent advances on CA IX biology and pharmacology in cancer, and its therapeutic targeting will be discussed.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
4
|
Koyuncu I, Temiz E, Güler EM, Durgun M, Yuksekdag O, Giovannuzzi S, Supuran CT. Effective Anticancer Potential of a New Sulfonamide as a Carbonic Anhydrase IX Inhibitor Against Aggressive Tumors. ChemMedChem 2024; 19:e202300680. [PMID: 38323458 DOI: 10.1002/cmdc.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
This study examines efficiency of a newly synthesized sulfonamide derivative 2-bromo-N-(4-sulfamoylphenyl)propanamide (MMH-1) on the inhibition of Carbonic Anhydrase IX (CA IX), which is overexpressed in many solid tumors including breast cancer. The inhibitory potential of MMH-1 compound against its four major isoforms, including cytosolic isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII, was evaluated. To this context, the cytotoxic effect of MMH-1 on cancer and normal cells was tested and found to selectively affect MDA-MB-231 cells. MMH-1 reduced cell proliferation by holding cells in the G0/G1 phase (72 %) and slowed the cells' wound healing capacity. MMH-1 inhibited CA IX under both hypoxic and normoxic conditions and altered the morphology of triple negative breast cancer cells. In MDA-MB-231 cells, inhibition of CA IX was accompanied by a decrease in extracellular pH acidity (7.2), disruption of mitochondrial membrane integrity (80 %), an increase in reactive oxygen levels (25 %), and the triggering of apoptosis (40 %). In addition, the caspase cascade (CASP-3, -8, -9) was activated in MDA-MB-231 cells, triggering both the extrinsic and intrinsic apoptotic pathways. The expression of pro-apoptotic regulatory proteins (Bad, Bax, Bid, Bim, Cyt-c, Fas, FasL, TNF-a, TNF-R1, HTRA, SMAC, Casp-3, -8, P21, P27, and P53) was increased, while the expression of anti-apoptotic proteins, apoptosis inhibitor proteins (IAPs), and heat shock proteins (HSPs) (Bcl-2, Bcl-w, cIAP-2, HSP27, HSP60, HSP70, Survivin, Livin, and XIAP) was decreased. These results propose that the MMH-1 compound could triggers apoptosis in MDA-MB-231 cells via the pH/MMP/ROS pathway through the inhibition of CA IX. This compound is thought to have high potential and promising anticancer properties in the treatment of aggressive tumors.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey Tel
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Simone Giovannuzzi
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| |
Collapse
|
5
|
Beckers C, Pruschy M, Vetrugno I. Tumor hypoxia and radiotherapy: A major driver of resistance even for novel radiotherapy modalities. Semin Cancer Biol 2024; 98:19-30. [PMID: 38040401 DOI: 10.1016/j.semcancer.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Hypoxia in solid tumors is an important predictor of poor clinical outcome to radiotherapy. Both physicochemical and biological processes contribute to a reduced sensitivity of hypoxic tumor cells to ionizing radiation and hypoxia-related treatment resistances. A conventional low-dose fractionated radiotherapy regimen exploits iterative reoxygenation in between the individual fractions, nevertheless tumor hypoxia still remains a major hurdle for successful treatment outcome. The technological advances achieved in image guidance and highly conformal dose delivery make it nowadays possible to prescribe larger doses to the tumor as part of single high-dose or hypofractionated radiotherapy, while keeping an acceptable level of normal tissue complication in the co-irradiated organs at risk. However, we insufficiently understand the impact of tumor hypoxia to single high-doses of RT and hypofractionated RT. So-called FLASH radiotherapy, which delivers ionizing radiation at ultrahigh dose rates (> 40 Gy/sec), has recently emerged as an important breakthrough in the radiotherapy field to reduce normal tissue toxicity compared to irradiation at conventional dose rates (few Gy/min). Not surprisingly, oxygen consumption and tumor hypoxia also seem to play an intriguing role for FLASH radiotherapy. Here we will discuss the role of tumor hypoxia for radiotherapy in general and in the context of novel radiotherapy treatment approaches.
Collapse
Affiliation(s)
- Claire Beckers
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Irene Vetrugno
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Chen Y, Wu L, Li Y, Zheng J, Zhong S, Gu S, Chen J. Necrotizing apoptosis-related genes prognosis and treatment effect analysis of osteosarcoma in children. J Gene Med 2024; 26:e3646. [PMID: 38100138 DOI: 10.1002/jgm.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Immune cell homeostasis plays a crucial role in cancer research and therapeutic response. While chemotherapy and immunotherapy hold promise in treating osteosarcoma (OS), identifying patients who are likely to respond would significantly improve clinical practices. Necroptosis, a fundamental mechanism mediating chemotherapy and immunotherapy efficacy, offers valuable insights. In this context, subtypes based on necroptosis-related genes have been established to predict the response of OS patients to immunotherapy and chemotherapy. METHODS We conducted a high-throughput screening test to identify necroptosis-associated genes that regulate the development of osteosarcoma. Subsequently, the ConsensusClusterPlus package was employed to classify OS patients into subtypes, enabling comparisons of prognosis and clinical information between these subtypes. Patients from the TARGET-OS and GSE21257 datasets were stratified into high-risk and low-risk groups, and their prognoses were compared. Additionally, we assessed the accuracy of the Risk Scoring Model in predicting prognosis, identified independent prognostic factors and explored potential chemotherapeutic agents and immunotherapy drugs. RESULTS Through the intersection of expression profiles from the TARGET-OS and GSE21257 datasets, we have identified a total of 92 genes associated with necroptosis. Based on differences in the expression of these genes, patients were divided into three subtypes, and we investigated the differences in tumor-infiltrating immune cells, immune-related pathways, and prognosis among these subtypes. Our nomogram effectively differentiated subtypes with distinct responses to chemotherapy and immunotherapy. The established signature demonstrated superior prediction ability compared with single clinical indicators. CONCLUSIONS This pioneering study unveils the prognostic role of necroptosis-related genes in OS patients, providing a promising alternative for prognostic prediction in clinical disease management. Moreover, our findings highlight the significance of immune cell homeostasis in cancer research and therapeutic response, underscoring its relevance in advancing current treatment strategies.
Collapse
Affiliation(s)
| | - Ling Wu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Yunyan Li
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Jika Zheng
- Ningbo Women and Children's Hospital, Ningbo, China
| | | | - Shirong Gu
- Department of Orthopaedics, LiHuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jingyang Chen
- Department of Orthopaedics, LiHuili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
7
|
McDonald PC, Dedhar S. Co-vulnerabilities of inhibiting carbonic anhydrase IX in ferroptosis-mediated tumor cell death. Front Mol Biosci 2023; 10:1327310. [PMID: 38099193 PMCID: PMC10720035 DOI: 10.3389/fmolb.2023.1327310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The tumour-associated carbonic anhydrases (CA) IX and XII are upregulated by cancer cells to combat cellular and metabolic stress imparted by hypoxia and acidosis in solid tumours. Owing to its tumour-specific expression and function, CAIX is an attractive therapeutic target and this has driven intense efforts to develop pharmacologic agents to target its activity, including small molecule inhibitors. Many studies in multiple solid tumour models have demonstrated that targeting CAIX activity with the selective CAIX/XII inhibitor, SLC-0111, results in anti-tumour efficacy, particularly when used in combination with chemotherapy or immune checkpoint blockade, and has now advanced to the clinic. However, it has been observed that sustainability and durability of CAIX inhibition, even in combination with chemotherapy agents, is limited by the occurrence of adaptive resistance, resulting in tumour recurrence. Importantly, the data from these models demonstrates that CAIX inhibition may sensitize tumour cells to cytotoxic drugs and evidence now points to ferroptosis, an iron-dependent form of regulated cell death (RCD) that results from accumulation of toxic levels of phospholipid peroxidation as a major mechanism involved in CAIX-mediated sensitization to cancer therapy. In this mini-review, we discuss recent advances demonstrating the mechanistic role CAIX plays in sensitizing cancer cells to ferroptosis.
Collapse
Affiliation(s)
- Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Venkateswaran G, McDonald PC, Chafe SC, Brown WS, Gerbec ZJ, Awrey SJ, Parker SJ, Dedhar S. A Carbonic Anhydrase IX/SLC1A5 Axis Regulates Glutamine Metabolism Dependent Ferroptosis in Hypoxic Tumor Cells. Mol Cancer Ther 2023; 22:1228-1242. [PMID: 37348875 PMCID: PMC10543979 DOI: 10.1158/1535-7163.mct-23-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
The ability of tumor cells to alter their metabolism to support survival and growth presents a challenge to effectively treat cancers. Carbonic anhydrase IX (CAIX) is a hypoxia-induced, metabolic enzyme that plays a crucial role in pH regulation in tumor cells. Recently, through a synthetic lethal screen, we identified CAIX to play an important role in redox homeostasis. In this study, we show that CAIX interacts with the glutamine (Gln) transporter, solute carrier family 1 member 5 (SLC1A5), and coordinately functions to maintain redox homeostasis through the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis. Inhibition of CAIX increases Gln uptake by SLC1A5 and concomitantly increases GSH levels. The combined inhibition of CAIX activity and Gln metabolism or the GSH/GPX4 axis results in an increase in lipid peroxidation and induces ferroptosis, both in vitro and in vivo. Thus, this study demonstrates cotargeting of CAIX and Gln metabolism as a potential strategy to induce ferroptosis in tumor cells.
Collapse
Affiliation(s)
- Geetha Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shawn C. Chafe
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Wells S. Brown
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Zachary J. Gerbec
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shannon J. Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Seth J. Parker
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Chu Z, Zhu M, Luo Y, Hu Y, Feng X, Wang H, Sunagawa M, Liu Y. PTBP1 plays an important role in the development of gastric cancer. Cancer Cell Int 2023; 23:195. [PMID: 37670313 PMCID: PMC10478210 DOI: 10.1186/s12935-023-03043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Polypyrimidine tract binding protein 1 (PTBP1) has been found to play an important role in the occurrence and development of various tumors. At present, the role of PTBP1 in gastric cancer (GC) is still unknown and worthy of further investigation. METHODS We used bioinformatics to analyze the expression of PTBP1 in patients with GC. Cell proliferation related experiments were used to detect cell proliferation after PTBP1 knockdown. Skeleton staining, scanning electron microscopy and transmission electron microscopy were used to observe the changes of actin skeleton. Proliferation and actin skeleton remodeling signaling pathways were detected by Western Blots. The relationship between PTBP1 and proliferation of gastric cancer cells was further detected by subcutaneous tumor transplantation. Finally, tissue microarray data from clinical samples were used to further explore the expression of PTBP1 in patients with gastric cancer and its correlation with prognosis. RESULTS Through bioinformatics studies, we found that PTBP1 was highly expressed in GC patients and correlated with poor prognosis. Cell proliferation and cycle analysis showed that PTBP1 down-regulation could significantly inhibit cell proliferation. The results of cell proliferation detection related experiments showed that PTBP1 down-regulation could inhibit the division and proliferation of GC cells. Furthermore, changes in the morphology of the actin skeleton of cells showed that PTBP1 down-regulation inhibited actin skeletal remodeling in GC cells. Western Blots showed that PTBP1 could regulate proliferation and actin skeleton remodeling signaling pathways. In addition, we constructed PTBP1 Cas9-KO mouse model and performed xenograft assays to further confirm that down-regulation of PTBP1 could inhibit the proliferation of GC cells. Finally, tissue microarray was used to further verify the close correlation between PTBP1 and poor prognosis in patients with GC. CONCLUSIONS Our study demonstrates for the first time that PTBP1 may affect the proliferation of GC cells by regulating actin skeleton remodeling. In addition, PTBP1 is closely related to actin skeleton remodeling and proliferation signaling pathways. We suppose that PTBP1 might be a potential target for the treatment of GC.
Collapse
Affiliation(s)
- Zewen Chu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Miao Zhu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yaqi Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Xinyi Feng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Haibo Wang
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| | - Masataka Sunagawa
- Department of physiology, School of Medicine, Showa University, Tokyo, Japan.
| | - Yanqing Liu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| |
Collapse
|
10
|
Pascetta SA, Kirsh SM, Cameron M, Uniacke J. Pharmacological inhibition of neuropeptide Y receptors Y1 and Y5 reduces hypoxic breast cancer migration, proliferation, and signaling. BMC Cancer 2023; 23:494. [PMID: 37264315 DOI: 10.1186/s12885-023-10993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Neuropeptide Y (NPY) is an abundant neurohormone in human breast carcinomas that acts on a class of G-protein coupled receptors, of which NPY1R and NPY5R are the most highly expressed. This abundance is exploited for cancer imaging, but there is interest in pharmacological inhibition of the NPYRs to interrogate their functional relevance in breast cancer. We previously reported that NPY1R and NPY5R mRNA abundance is increased by hypoxia inducible factors, which sensitizes these receptors to NPY stimulation leading to enhanced migration and proliferation. METHODS/RESULTS Here, we measured the effects of NPY1R and NPY5R antagonists in normoxia and hypoxia on migration, proliferation, invasion, and signaling in 2D and 3D models of breast cancer cell lines MDA-MB-231 and MCF7. Antagonizing NPY1R and/or NPY5R in hypoxia compared to normoxia more greatly reduced MAPK signaling, cell proliferation, cell migration and invasion, and spheroid growth and invasion. The estrogen receptor positive MCF7 cells were significantly less invasive in 3D spheres when NPY5R was specifically inhibited. There were some discrepancies in the responses of each cell line to the isoform-specific antagonists and oxygen availability, therefore further investigations are required to dissect the intricacies of NPYR signaling dynamics. In human breast tumor tissue, we show via immunofluorescence that NPY5R protein levels and colocalization with hypoxia correlate with advanced cancer, and NPY1R protein correlates with adverse outcomes. CONCLUSIONS Antagonizing the NPYRs has been implicated as a treatment for a wide variety of diseases. Therefore, these antagonists may aid in the development of novel cancer therapeutics and patient-based treatment plans.
Collapse
Affiliation(s)
- Sydney A Pascetta
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Sarah M Kirsh
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Makenna Cameron
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - James Uniacke
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
11
|
Audero MM, Carvalho TMA, Ruffinatti FA, Loeck T, Yassine M, Chinigò G, Folcher A, Farfariello V, Amadori S, Vaghi C, Schwab A, Reshkin SJ, Cardone RA, Prevarskaya N, Fiorio Pla A. Acidic Growth Conditions Promote Epithelial-to-Mesenchymal Transition to Select More Aggressive PDAC Cell Phenotypes In Vitro. Cancers (Basel) 2023; 15:cancers15092572. [PMID: 37174038 PMCID: PMC10177299 DOI: 10.3390/cancers15092572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is characterized by an acidic microenvironment, which contributes to therapeutic failure. So far there is a lack of knowledge with respect to the role of the acidic microenvironment in the invasive process. This work aimed to study the phenotypic and genetic response of PDAC cells to acidic stress along the different stages of selection. To this end, we subjected the cells to short- and long-term acidic pressure and recovery to pHe 7.4. This treatment aimed at mimicking PDAC edges and consequent cancer cell escape from the tumor. The impact of acidosis was assessed for cell morphology, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) via functional in vitro assays and RNA sequencing. Our results indicate that short acidic treatment limits growth, adhesion, invasion, and viability of PDAC cells. As the acid treatment progresses, it selects cancer cells with enhanced migration and invasion abilities induced by EMT, potentiating their metastatic potential when re-exposed to pHe 7.4. The RNA-seq analysis of PANC-1 cells exposed to short-term acidosis and pHe-selected recovered to pHe 7.4 revealed distinct transcriptome rewiring. We describe an enrichment of genes relevant to proliferation, migration, EMT, and invasion in acid-selected cells. Our work clearly demonstrates that upon acidosis stress, PDAC cells acquire more invasive cell phenotypes by promoting EMT and thus paving the way for more aggressive cell phenotypes.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | | | - Federico Alessandro Ruffinatti
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Thorsten Loeck
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Maya Yassine
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
| | - Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Antoine Folcher
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
| | - Valerio Farfariello
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
| | - Samuele Amadori
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Chiara Vaghi
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
| | - Natalia Prevarskaya
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
| | - Alessandra Fiorio Pla
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
12
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Carbonic Anhydrase IX Controls Vulnerability to Ferroptosis in Gefitinib-Resistant Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1367938. [PMID: 36760347 PMCID: PMC9904911 DOI: 10.1155/2023/1367938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI, such as gefitinib) in lung cancer continues to be a major problem. Recent studies have shown the promise of ferroptosis-inducing therapy in EGFR-TKI resistant cancer, but have not been translated into clinical benefits. Here, we identified carbonic anhydrase IX (CA9) was upregulated in gefitinib-resistant lung cancer. Then we measured the cell viability, intracellular reactive oxygen species (ROS) levels, and labile iron levels after the treatment of ferroptosis inducer erastin. We found that CA9 confers resistance to ferroptosis-inducing drugs. Mechanistically, CA9 is involved in the inhibition of transferrin endocytosis and the stabilization of ferritin, leading to resistance to ferroptosis. Targeting CA9 promotes iron uptake and release, thus triggering gefitinib-resistant cell ferroptosis. Notably, CA9 inhibitor enhances the ferroptosis-inducing effect of cisplatin on gefitinib-resistant cells, thus eliminating resistant cells in heterogeneous tumor tissues. Taken together, CA9-targeting therapy is a promising approach to improve the therapeutic effect of gefitinib-resistant lung cancer by inducing ferroptosis.
Collapse
|
14
|
Eloranta K, Pihlajoki M, Liljeström E, Nousiainen R, Soini T, Lohi J, Cairo S, Wilson DB, Parkkila S, Heikinheimo M. SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration. Front Oncol 2023; 13:1118268. [PMID: 36776327 PMCID: PMC9909558 DOI: 10.3389/fonc.2023.1118268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Background In response to hypoxia, tumor cells undergo transcriptional reprogramming including upregulation of carbonic anhydrase (CA) IX, a metalloenzyme that maintains acid-base balance. CAIX overexpression has been shown to correlate with poor prognosis in various cancers, but the role of this CA isoform in hepatoblastoma (HB) has not been examined. Methods We surveyed the expression of CAIX in HB specimens and assessed the impact of SLC-0111, a CAIX inhibitor, on cultured HB cells in normoxic and hypoxic conditions. Results CAIX immunoreactivity was detected in 15 out of 21 archival pathology HB specimens. The CAIX-positive cells clustered in the middle of viable tumor tissue or next to necrotic areas. Tissue expression of CAIX mRNA was associated with metastasis and poor clinical outcome of HB. Hypoxia induced a striking upregulation of CAIX mRNA and protein in three HB cell models: the immortalized human HB cell line HUH6 and patient xenograft-derived lines HB-295 and HB-303. Administration of SLC-0111 abrogated the hypoxia-induced upregulation of CAIX and decreased HB cell viability, both in monolayer and spheroid cultures. In addition, SLC-0111 reduced HB cell motility in a wound healing assay. Transcriptomic changes triggered by SLC-0111 administration differed under normoxic vs. hypoxic conditions, although SLC-0111 elicited upregulation of several tumor suppressor genes under both conditions. Conclusion Hypoxia induces CAIX expression in HB cells, and the CAIX inhibitor SLC-0111 has in vitro activity against these malignant cells.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,*Correspondence: Marjut Pihlajoki,
| | - Emmi Liljeström
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stefano Cairo
- Xentech, Evry, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy,Champions Oncology, Hackensack, NJ, United States
| | - David B. Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,FICAN Mid, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| |
Collapse
|
15
|
Ni F, Wu C, Xu P, Wang P, Fortin Y, Arbour M, Masson L, L’Abbé D, Acel A, Gosselin M, Lenferink AE. Unique epitope-antibody interactions in the intrinsically disordered proteoglycan-like domain of human carbonic anhydrase IX defined by high-resolution NMR combined with yeast surface display. MAbs 2023; 15:2248672. [PMID: 37622732 PMCID: PMC10461516 DOI: 10.1080/19420862.2023.2248672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Carbonic anhydrase (CA)-IX is an extracellular enzyme that is essential in the adaptation of tumor cells to their increasingly more hypoxic and acidic microenvironment. Within the family of carbonic anhydrases, CA-IX is unique in that it is the only CA with an N-terminal intrinsically disordered region (IDR) containing a proteoglycan (PG)-like domain. This PG-like IDR has been described to be instrumental in CA-IX's enzyme activity, as well as tumor cell motility and invasion. We have characterized the antibody-epitope interactions of two novel and unique antibodies (11H9 and 12H8) that are specific for the human CA-IX's IDR. Binding interactions of these antibodies to the intact IDR were studied by surface plasmon resonance and high-resolution nuclear magnetic resonance (NMR) spectroscopy, while the specific epitopes were determined by both NMR and yeast surface display (YSD). Our data show that 12H8 binds to the N-terminus of CA-IX, while 11H9 has a high affinity for an epitope located in the central region of the IDR containing three GEEDLP repeats in a manner that is different from the previously described M75 antibody. Titration NMR spectroscopy using CA-IX's entire IDR in addition identified a secondary epitope of 11H9 at the beginning of the PG-like domain that remains exposed and available for further binding events after the engagement at its primary epitope at the center of the PG-like domain. Transverse relaxation optimized NMR spectroscopy of 11H9-F(Ab) in complex with the CA-IX IDR outlines structural rigidification of a linear epitope, while the rest of the IDR remains largely unstructured upon complex formation. This study illustrates how high-resolution NMR and YSD are used as complementary tools for a comprehensive characterization of antibody-epitope interactions involving intrinsically unstructured antigen domains with highly repetitive sequences.
Collapse
Affiliation(s)
- Feng Ni
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Ping Xu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Ping Wang
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Melanie Arbour
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Luke Masson
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Denis L’Abbé
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mylene Gosselin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Anne E.G. Lenferink
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Wang Q, Wang K, Tan X, Li Z, Wang H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol 2022; 13:1064033. [PMID: 36591235 PMCID: PMC9800621 DOI: 10.3389/fimmu.2022.1064033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metalloproteinases (MPs) is a large family of proteinases with metal ions in their active centers. According to the different domains metalloproteinases can be divided into a variety of subtypes mainly including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with Thrombospondin Motifs (ADAMTS). They have various functions such as protein hydrolysis, cell adhesion and remodeling of extracellular matrix. Metalloproteinases expressed in multiple types of cancers and participate in many pathological processes involving tumor genesis and development, invasion and metastasis by regulating signal transduction and tumor microenvironment. In this review, based on the current research progress, we summarized the structure of MPs, their expression and especially immunomodulatory role and mechanisms in cancers. Additionally, a relevant and timely update of recent advances and future directions were provided for the diagnosis and immunotherapy targeting MPs in cancers.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| |
Collapse
|
17
|
Clemente-González C, Carnero A. Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers (Basel) 2022; 14:5930. [PMID: 36497411 PMCID: PMC9738438 DOI: 10.3390/cancers14235930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
During tumor growth, the delivery of oxygen to cells is impaired due to aberrant or absent vasculature. This causes an adaptative response that activates the expression of genes that control several essential processes, such as glycolysis, neovascularization, immune suppression, and the cancer stemness phenotype, leading to increased metastasis and resistance to therapy. Hypoxic tumor cells also respond to an altered hypoxic microenvironment by secreting vesicles, factors, cytokines and nucleic acids that modify not only the immediate microenvironment but also organs at distant sites, allowing or facilitating the attachment and growth of tumor cells and contributing to metastasis. Hypoxia induces the release of molecules of different biochemical natures, either secreted or inside extracellular vesicles, and both tumor cells and stromal cells are involved in this process. The mechanisms by which these signals that can modify the premetastatic niche are sent from the primary tumor site include changes in the extracellular matrix, recruitment and activation of different stromal cells and immune or nonimmune cells, metabolic reprogramming, and molecular signaling network rewiring. In this review, we will discuss how hypoxia might alter the premetastatic niche through different signaling molecules.
Collapse
Affiliation(s)
- Cynthia Clemente-González
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Koba Y, Nakamoto M, Matsusaki M. Fabrication of a Polymeric Inhibitor of Proximal Metabolic Enzymes in Hypoxia for Synergistic Inhibition of Cancer Cell Proliferation, Survival, and Migration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51790-51797. [PMID: 36375210 DOI: 10.1021/acsami.2c16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since conventional molecular targeted drugs often result in side effects, the development of novel molecular targeted drugs with both high efficacy and selectivity is desired. Simultaneous inhibition of metabolically and spatiotemporally related proteins/enzymes is a promising strategy for improving therapeutic interventions in cancer treatment. Herein, we report a poly-α-l-glutamate-based polymer inhibitor that simultaneously targets proximal transmembrane enzymes under hypoxia, namely, carbonic anhydrase IX (CAIX) and zinc-dependent metalloproteinases. A polymer incorporating two types of inhibitors more effectively inhibited the proliferation and migration of human breast cancer cells than a combination of two polymers functionalized exclusively with either inhibitor. Synergistic inhibition of cancer cells would occur owing to the hetero-multivalent interactions of the polymer with proximate enzymes on the cancer cell membrane. Our results highlight the potential of polymer-based cancer therapeutics.
Collapse
Affiliation(s)
- Yuki Koba
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
19
|
Cheng T, Shan G, Yang H, Gu J, Lu C, Xu F, Ge D. Development of a ferroptosis-based model to predict prognosis, tumor microenvironment, and drug response for lung adenocarcinoma with weighted genes co-expression network analysis. Front Pharmacol 2022; 13:1072589. [PMID: 36467089 PMCID: PMC9712758 DOI: 10.3389/fphar.2022.1072589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 08/17/2023] Open
Abstract
Objective: The goal of this study was to create a risk model based on the ferroptosis gene set that affects lung adenocarcinoma (LUAD) patients' prognosis and to investigate the potential underlying mechanisms. Material and Methods: A cohort of 482 LUAD patients from the TCGA database was used to develop the prognostic model. We picked the module genes from the ferroptosis gene set using weighted genes co-expression network analysis (WGCNA). The least absolute shrinkage and selection operator (LASSO) and univariate cox regression were used to screen the hub genes. Finally, the multivariate Cox analysis constructed a risk prediction score model. Three other cohorts of LUAD patients from the GEO database were included to validate the prediction ability of our model. Furthermore, the differentially expressed genes (DEG), immune infiltration, and drug sensitivity were analyzed. Results: An eight-gene-based prognostic model, including PIR, PEBP1, PPP1R13L, CA9, GLS2, DECR1, OTUB1, and YWHAE, was built. The patients from the TCGA database were classified into the high-RS and low-RS groups. The high-RS group was characterized by poor overall survival (OS) and less immune infiltration. Based on clinical traits, we separated the patients into various subgroups, and RS had remarkable prediction performance in each subgroup. The RS distribution analysis demonstrated that the RS was significantly associated with the stage of the LUAD patients. According to the study of immune cell infiltration in both groups, patients in the high-RS group had a lower abundance of immune cells, and less infiltration was associated with worse survival. Besides, we discovered that the high-RS group might not respond well to immune checkpoint inhibitors when we analyzed the gene expression of immune checkpoints. However, drug sensitivity analysis suggested that high-RS groups were more sensitive to common LUAD agents such as Afatinib, Erlotinib, Gefitinib, and Osimertinib. Conclusion: We constructed a novel and reliable ferroptosis-related model for LUAD patients, which was associated with prognosis, immune cell infiltration, and drug sensitivity, aiming to shed new light on the cancer biology and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Barbaro JM, Jaureguiberry-Bravo M, Sidoli S, Berman JW. Morphine disrupts macrophage functions even during HIV infection. J Leukoc Biol 2022; 112:1317-1328. [PMID: 36205434 PMCID: PMC9677813 DOI: 10.1002/jlb.3ma0522-273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 12/24/2022] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) is a debilitating comorbidity that reduces quality of life in 15-40% of people with HIV (PWH) taking antiretroviral therapy (ART). Opioid use has been shown to increase neurocognitive deficits in PWH. Monocyte-derived macrophages (MDMs) harbor HIV in the CNS even in PWH on ART. We hypothesized that morphine (MOR), a metabolite of heroin, further dysregulates functional processes in MDMs to increase neuropathogenesis. We found that, in uninfected and HIV-infected primary human MDMs, MOR activates these cells by increasing phagocytosis and up-regulating reactive oxygen species. Effects of MOR on phagocytosis were dependent on μ-opioid receptor activity and were mediated, in part, by inhibited lysosomal degradation of phagocytized substrates. All results persisted when cells were treated with both MOR and a commonly prescribed ART cocktail, suggesting minimal impact of ART during opioid exposure. We then performed mass spectrometry in HIV-infected MDMs treated with or without MOR to determine proteomic changes that suggest additional mechanisms by which opioids affect macrophage homeostasis. Using downstream pathway analyses, we found that MOR dysregulates ER quality control and extracellular matrix invasion. Our data indicate that MOR enhances inflammatory functions and impacts additional cellular processes in HIV-infected MDMs to potentially increases neuropathogenesis in PWH using opioids.
Collapse
Affiliation(s)
- John M. Barbaro
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Matias Jaureguiberry-Bravo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
21
|
Matulienė J, Žvinys G, Petrauskas V, Kvietkauskaitė A, Zakšauskas A, Shubin K, Zubrienė A, Baranauskienė L, Kačenauskaitė L, Kopanchuk S, Veiksina S, Paketurytė-Latvė V, Smirnovienė J, Juozapaitienė V, Mickevičiūtė A, Michailovienė V, Jachno J, Stravinskienė D, Sližienė A, Petrošiūtė A, Becker HM, Kazokaitė-Adomaitienė J, Yaromina A, Čapkauskaitė E, Rinken A, Dudutienė V, Dubois LJ, Matulis D. Picomolar fluorescent probes for compound affinity determination to carbonic anhydrase IX expressed in live cancer cells. Sci Rep 2022; 12:17644. [PMID: 36271018 PMCID: PMC9586938 DOI: 10.1038/s41598-022-22436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/14/2022] [Indexed: 01/18/2023] Open
Abstract
Numerous human cancers, especially hypoxic solid tumors, express carbonic anhydrase IX (CAIX), a transmembrane protein with its catalytic domain located in the extracellular space. CAIX acidifies the tumor microenvironment, promotes metastases and invasiveness, and is therefore considered a promising anticancer target. We have designed a series of high affinity and high selectivity fluorescein-labeled compounds targeting CAIX to visualize and quantify CAIX expression in cancer cells. The competitive binding model enabled the determination of common CA inhibitors' dissociation constants for CAIX expressed in exponentially growing cancer cells. All tested sulfonamide compounds bound the proliferating cells with similar affinity as to recombinantly purified CAIX. The probes are applicable for the design of selective drug-like compounds for CAIX and the competition strategy could be applied to other drug targets.
Collapse
Affiliation(s)
- Jurgita Matulienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Gediminas Žvinys
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Agnė Kvietkauskaitė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Audrius Zakšauskas
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Kirill Shubin
- grid.419212.d0000 0004 0395 6526Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006 Latvia
| | - Asta Zubrienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Lina Baranauskienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Lina Kačenauskaitė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Sergei Kopanchuk
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Santa Veiksina
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Vaida Paketurytė-Latvė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Joana Smirnovienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Vaida Juozapaitienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Vilma Michailovienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Jelena Jachno
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Dovilė Stravinskienė
- grid.6441.70000 0001 2243 2806Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Aistė Sližienė
- grid.6441.70000 0001 2243 2806Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Agnė Petrošiūtė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, 01217 Dresden, Germany
| | - Justina Kazokaitė-Adomaitienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania ,grid.430814.a0000 0001 0674 1393Present Address: Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ala Yaromina
- grid.5012.60000 0001 0481 6099The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Reproduction, Maastricht University, Universiteitssingel 50/23, 6200 MD Maastricht, The Netherlands
| | - Edita Čapkauskaitė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Ago Rinken
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Virginija Dudutienė
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Ludwig J Dubois
- grid.5012.60000 0001 0481 6099The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Reproduction, Maastricht University, Universiteitssingel 50/23, 6200 MD Maastricht, The Netherlands
| | - Daumantas Matulis
- grid.6441.70000 0001 2243 2806Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
22
|
Russell S, Xu L, Kam Y, Abrahams D, Ordway B, Lopez AS, Bui MM, Johnson J, Epstein T, Ruiz E, Lloyd MC, Swietach P, Verduzco D, Wojtkowiak J, Gillies RJ. Proton export upregulates aerobic glycolysis. BMC Biol 2022; 20:163. [PMID: 35840963 PMCID: PMC9287933 DOI: 10.1186/s12915-022-01340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the "Warburg Effect." It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. RESULTS To test this hypothesis, we stably transfected lowly glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton-exporting systems: either PMA1 (plasma membrane ATPase 1, a yeast H+-ATPase) or CA-IX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher-grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. CONCLUSIONS Therefore, cancer cells which increase export of H+ equivalents subsequently increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards an upregulation of aerobic glycolysis, a Warburg phenotype. Overall, we have shown that the traditional understanding of cancer cells favoring glycolysis and the subsequent extracellular acidification is not always linear. Cells which can, independent of metabolism, acidify through proton exporter activity can sufficiently drive their metabolism towards glycolysis providing an important fitness advantage for survival.
Collapse
Affiliation(s)
- Shonagh Russell
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Liping Xu
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Yoonseok Kam
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 9505 USA
| | - Dominique Abrahams
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Bryce Ordway
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Alex S. Lopez
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Marilyn M. Bui
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Joseph Johnson
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Department, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Mark C. Lloyd
- Inspirata, Inc., One North Dale Mabry Hwy. Suite 600, Tampa, FL 33609 USA
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Daniel Verduzco
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Jonathan Wojtkowiak
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Robert J. Gillies
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| |
Collapse
|
23
|
Cancer Therapeutic Targeting of Hypoxia Induced Carbonic Anhydrase IX: From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14143297. [PMID: 35884358 PMCID: PMC9322110 DOI: 10.3390/cancers14143297] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor hypoxia remains a significant problem in the effective treatment of most cancers. Tumor cells within hypoxic niches tend to be largely resistant to most therapeutic modalities, and adaptation of the cells within the hypoxic microenvironment imparts the cells with aggressive, invasive behavior. Thus, a major goal of successful cancer therapy should be the eradication of hypoxic tumor cells. Carbonic Anhydrase IX (CAIX) is an exquisitely hypoxia induced protein, selectively expressed on hypoxic tumor cells, and thus has garnered significant attention as a therapeutic target. In this Commentary, we discuss the current status of targeting CAIX, and future strategies for effective, durable cancer treatment. Abstract Carbonic Anhydrase IX (CAIX) is a major metabolic effector of tumor hypoxia and regulates intra- and extracellular pH and acidosis. Significant advances have been made recently in the development of therapeutic targeting of CAIX. These approaches include antibody-based immunotherapy, as well as use of antibodies to deliver toxic and radioactive payloads. In addition, a large number of small molecule inhibitors which inhibit the enzymatic activity of CAIX have been described. In this commentary, we highlight the current status of strategies targeting CAIX in both the pre-clinical and clinical space, and discuss future perspectives that leverage inhibition of CAIX in combination with additional targeted therapies to enable effective, durable approaches for cancer therapy.
Collapse
|
24
|
Peña L, Jiménez C, Arancibia R, Angeli A, Supuran CT. Heterobimetallic complexes containing organometallic acylhydrazone ligands as potential inhibitors of human carbonic anhydrases. J Inorg Biochem 2022; 232:111814. [DOI: 10.1016/j.jinorgbio.2022.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
|
25
|
Stevens RP, Alexeyev MF, Kozhukhar N, Pastukh V, Paudel SS, Bell J, Tambe DT, Stevens T, Lee JY. Carbonic anhydrase IX proteoglycan-like and intracellular domains mediate pulmonary microvascular endothelial cell repair and angiogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L48-L57. [PMID: 35672011 DOI: 10.1152/ajplung.00337.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lungs of patients with acute respiratory distress syndrome (ARDS) have hyperpermeable capillaries that must undergo repair in an acidic microenvironment. Pulmonary microvascular endothelial cells (PMVECs) have an acid-resistant phenotype, in part due to carbonic anhydrase IX (CA IX). CA IX also facilitates PMVEC repair by promoting aerobic glycolysis, migration, and network formation. Molecular mechanisms of how CA IX performs such a wide range of functions are unknown. CA IX is comprised of four domains known as the proteoglycan-like (PG), catalytic (CA), transmembrane (TM), and intracellular (IC) domains. We hypothesized that the PG and CA domains mediate PMVEC pH homeostasis and repair, and the IC domain regulates aerobic glycolysis and PI3k/Akt signaling. The functions of each CA IX domain were investigated using PMVEC cell lines that express either a full-length CA IX protein or a CA IX protein harboring a domain deletion. We found that the PG domain promotes intracellular pH homeostasis, migration, and network formation. The CA and IC domains mediate Akt activation but negatively regulate aerobic glycolysis. The IC domain also supports migration while inhibiting network formation. Finally, we show that exposure to acidosis suppresses aerobic glycolysis and migration, even though intracellular pH is maintained in PMVECs. Thus, we report that 1) The PG and IC domains mediate PMVEC migration and network formation, 2) the CA and IC domains support PI3K/Akt signaling, and 3) acidosis impairs PMVEC metabolism and migration independent of intracellular pH homeostasis.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Jessica Bell
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Dhananjay T Tambe
- Department of Mechanical, Aerospace, and Biomedical Engineering, College of Medicine, University of South Alabama, Mobile, Alabama, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama, United States.,Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
26
|
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Marciniak B, Drozda R, Kontek R. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J Enzyme Inhib Med Chem 2022; 37:1278-1298. [PMID: 35506234 PMCID: PMC9090362 DOI: 10.1080/14756366.2022.2052868] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases IX and CAXII (CAIX/CAXII) are transmembrane zinc metalloproteins that catalyze a very basic but crucial physiological reaction: the conversion of carbon dioxide into bicarbonate with a release of the proton. CA, especially CAIX and CAXII isoforms gained the attention of many researchers interested in anticancer drug design due to pivotal functions of enzymes in the cancer cell metastasis and response to hypoxia, and their expression restricted to malignant cells. This offers an opportunity to develop new targeted therapies with fewer side effects. Continuous efforts led to the discovery of a series of diverse compounds with the most abundant sulphonamide derivatives. Here we review current knowledge considering small molecule and antibody-based targeting of CAIX/CAXII in cancer.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland.,Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Somdutt Mujwar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| |
Collapse
|
27
|
Proximity labeling methods for proteomic analysis of membrane proteins. J Proteomics 2022; 264:104620. [DOI: 10.1016/j.jprot.2022.104620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
28
|
Bonardi A, Bua S, Combs J, Lomelino C, Andring J, Osman SM, Toti A, Di Cesare Mannelli L, Gratteri P, Ghelardini C, McKenna R, Nocentini A, Supuran CT. The three-tails approach as a new strategy to improve selectivity of action of sulphonamide inhibitors against tumour-associated carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2022; 37:930-939. [PMID: 35306936 PMCID: PMC8942523 DOI: 10.1080/14756366.2022.2053526] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human (h) carbonic anhydrase (CAs, EC 4.2.1.1) isoforms IX and XII were recently confirmed as anticancer targets against solid hypoxic tumours. The “three-tails approach” has been proposed as an extension of the forerunner “tail” and “dual-tail approach” to fully exploit the amino acid differences at the medium/outer active site rims among different hCAs and to obtain more isoform-selective inhibitors. Many three-tailed inhibitors (TTIs) showed higher selectivity against the tumour-associated isoforms hCA IX and XII with respect to the off-targets hCA I and II. X-ray crystallography studies were performed to investigate the binding mode of four TTIs in complex with a hCA IX mimic. The ability of the most potent and selective TTIs to reduce in vitro the viability of colon cancer (HT29), prostate adenocarcinoma (PC3), and breast cancer (ZR75-1) cell lines was evaluated in normoxic (21% O2) and hypoxic (3% O2) conditions demonstrating relevant anti-proliferative effects.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Florence, Italy
| | - Silvia Bua
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jacob Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alessandra Toti
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Paola Gratteri
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Florence, Italy
| | - Carla Ghelardini
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alessio Nocentini
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| |
Collapse
|
29
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
30
|
Understanding metabolic alterations and heterogeneity in cancer progression through validated immunodetection of key molecular components: a case of carbonic anhydrase IX. Cancer Metastasis Rev 2022; 40:1035-1053. [PMID: 35080763 PMCID: PMC8825433 DOI: 10.1007/s10555-021-10011-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
Cancer metabolic heterogeneity develops in response to both intrinsic factors (mutations leading to activation of oncogenic pathways) and extrinsic factors (physiological and molecular signals from the extracellular milieu). Here we review causes and consequences of metabolic alterations in cancer cells with focus on hypoxia and acidosis, and with particular attention to carbonic anhydrase IX (CA IX). CA IX is a cancer-associated enzyme induced and activated by hypoxia in a broad range of tumor types, where it participates in pH regulation as well as in molecular mechanisms supporting cancer cells’ invasion and metastasis. CA IX catalyzes reversible conversion of carbon dioxide to bicarbonate ion plus proton and cooperates with a spectrum of molecules transporting ions or metabolites across the plasma membrane. Thereby CA IX contributes to extracellular acidosis as well as to buffering intracellular pH, which is essential for cell survival, metabolic performance, and proliferation of cancer cells. Since CA IX expression pattern reflects gradients of oxygen, pH, and other intratumoral factors, we use it as a paradigm to discuss an impact of antibody quality and research material on investigating metabolic reprogramming of tumor tissue. Based on the validation, we propose the most reliable CA IX-specific antibodies and suggest conditions for faithful immunohistochemical analysis of molecules contributing to heterogeneity in cancer progression.
Collapse
|
31
|
Horikawa M, Sabe H, Onodera Y. Dual roles of AMAP1 in the transcriptional regulation and intracellular trafficking of carbonic anhydrase IX. Transl Oncol 2022; 15:101258. [PMID: 34742153 PMCID: PMC8577137 DOI: 10.1016/j.tranon.2021.101258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The cell-surface enzyme carbonic anhydrase IX (CAIX/CA9) promotes tumor growth, survival, invasion, and metastasis, mainly via its pH-regulating functions. Owing to its tumor-specific expression, CAIX-targeting antibodies/chemicals are utilized for therapeutic and diagnostic purposes. However, mechanisms of CAIX trafficking, which affects such CAIX-targeting modalities remain unclear. In this study, roles of the AMAP1-PRKD2 pathway, which mediates integrin recycling of invasive cancer cells, in CAIX trafficking were investigated. METHODS Using highly invasive MDA-MB-231 breast cancer cells, the physical association and colocalization of endogenous proteins were analyzed by immunoprecipitation and immunofluorescence, protein/mRNA levels were quantified by western blotting/qPCR, and cell-surface transport and intracellular/extracellular pH regulation were measured by biotin-labeling and fluorescent dye-based assays, respectively. The correlation between mRNA levels and patients' prognoses was analyzed using a TCGA breast cancer dataset. RESULTS AMAP1 associated with the CAIX protein complex, and they colocalized at the plasma membrane and tubulovesicular structures. AMAP1 knockdown reduced total/surface CAIX, induced its lysosomal accumulation and degradation, and affected intracellular/extracellular pH. PRKD2 knockdown excluded AMAP1 from the CAIX complex and reduced total CAIX in a lysosome-dependent manner. Unexpectedly, AMAP1 knockdown also reduced CAIX mRNA. AMAP1 interacted with PIAS3, which stabilizes HIF-1α, a transcriptional regulator of CA9. AMAP1 knockdown inhibited the PIAS3-HIF-1α interaction and destabilized the HIF-1α protein. High-ASAP1 (AMAP1-encoding gene) together with high-PIAS3 correlated with high-CA9 and an unfavorable prognosis in breast cancer. CONCLUSION The AMAP1-PRKD2 pathway regulates CAIX trafficking, and modulates its total/surface expression. The AMAP1-PIAS3 interaction augments CA9 transcription by stabilizing HIF-1α, presumably contributing to an unfavorable prognosis.
Collapse
Affiliation(s)
- Mei Horikawa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Yasuhito Onodera
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
32
|
Sheff JG, Kelly JF, Robotham A, Sulea T, Malenfant F, L'Abbé D, Duchesne M, Pelletier A, Lefebvre J, Acel A, Parat M, Gosselin M, Wu C, Fortin Y, Baardsnes J, Van Faassen H, Awrey S, Chafe SC, McDonald PC, Dedhar S, Lenferink AEG. Hydrogen-deuterium exchange mass spectrometry reveals three unique binding responses of mAbs directed to the catalytic domain of hCAIX. MAbs 2021; 13:1997072. [PMID: 34812124 PMCID: PMC8632303 DOI: 10.1080/19420862.2021.1997072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.
Collapse
Affiliation(s)
- Joey G Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John F Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Denis L'Abbé
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mélanie Duchesne
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jean Lefebvre
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Marie Parat
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mylene Gosselin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Henk Van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Anne E G Lenferink
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Lenferink AEG, McDonald PC, Cantin C, Grothé S, Gosselin M, Baardsnes J, Banville M, Lachance P, Robert A, Cepero-Donates Y, Radinovic S, Salois P, Parat M, Oamari H, Dulude A, Patel M, Lafrance M, Acel A, Bousquet-Gagnon N, L'Abbé D, Pelletier A, Malenfant F, Jaramillo M, O'Connor-Mccourt M, Wu C, Durocher Y, Duchesne M, Gadoury C, Marcil A, Fortin Y, Paul-Roc B, Acchione M, Chafe SC, Nemirovsky O, Lau J, Bénard F, Dedhar S. Isolation and characterization of monoclonal antibodies against human carbonic anhydrase-IX. MAbs 2021; 13:1999194. [PMID: 34806527 PMCID: PMC8632296 DOI: 10.1080/19420862.2021.1999194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation. One of these proteins is carbonic anhydrase (CA)IX, a zinc-containing extracellular membrane bound enzyme that has been shown to play a critical role in the maintenance of a neutral intracellular pH (pHi), allowing tumor cells to survive and thrive in these harsh conditions. Although CAIX has been considered a promising cancer target, only two antibody-based therapeutics have been clinically tested so far. To fill this gap, we generated a series of novel monoclonal antibodies (mAbs) that specifically recognize the extracellular domain (ECD) of human CAIX. Here we describe the biophysical and functional properties of a set of antibodies against the CAIX ECD domain and their applicability as: 1) suitable for development as an antibody-drug-conjugate, 2) an inhibitor of CAIX enzyme activity, or 3) an imaging/detection antibody. The results presented here demonstrate the potential of these specific hCAIX mAbs for further development as novel cancer therapeutic and/or diagnostic tools.
Collapse
Affiliation(s)
- Anne E G Lenferink
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Christiane Cantin
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Suzanne Grothé
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Mylene Gosselin
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Myriam Banville
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Paul Lachance
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Alma Robert
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Yuneivy Cepero-Donates
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Stevo Radinovic
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Patrick Salois
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Marie Parat
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Hafida Oamari
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Annie Dulude
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Mehul Patel
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Martin Lafrance
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Nathalie Bousquet-Gagnon
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Denis L'Abbé
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Maria Jaramillo
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Maureen O'Connor-Mccourt
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Mélanie Duchesne
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Yves Fortin
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Beatrice Paul-Roc
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Maurizio Acchione
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Joseph Lau
- Department of Molecular Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Francois Bénard
- Department of Molecular Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, Canada
| |
Collapse
|
34
|
Janoniene A, Mazutis L, Matulis D, Petrikaite V. Inhibition of Carbonic Anhydrase IX Suppresses Breast Cancer Cell Motility at the Single-Cell Level. Int J Mol Sci 2021; 22:11571. [PMID: 34769000 PMCID: PMC8584155 DOI: 10.3390/ijms222111571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein Carbonic Anhydrase IX (CA IX), which is expressed in various hypoxic solid tumors in order to maintain proper pH, is also related to cancer cell adhesion, invasion, and metastasis processes. Here, we investigated whether CA IX inhibition by a highly CA IX selective agent benzenesulfonamide VD11-4-2 triggers changes in individual cell motility. We seeded breast cancer cells on an extracellular matrix-coated glass-bottomed dish and in a microfluidic device with a gradient flow of epidermal growth factor (EGF), tracked individual cell movement, calculated their migration speeds, and/or followed movement direction. Our results showed that the inhibitor VD11-4-2 decreased the speed of CA IX positive breast cancer cells by 20-26% while not affecting non-cancerous cell migration. The inhibitor suppressed the cell migration velocity increment and hindered cells from reaching their maximum speed. VD11-4-2 also reduced CA IX, expressing cell movement towards the growth factor as a chemoattractant. Such a single cell-based migration assay enabled the comprehensive investigation of the cell motility and revealed that VD11-4-2 shows the ability to suppress breast cancer cell migration at a lower concentration than previously tested CA IX inhibitors.
Collapse
Affiliation(s)
| | | | | | - Vilma Petrikaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (A.J.); (L.M.); (D.M.)
| |
Collapse
|
35
|
Liu S, Liu D, Liu J, Liu J, Zhong M. miR-29a-3p promotes migration and invasion in ameloblastoma via Wnt/β-catenin signaling by targeting catenin beta interacting protein 1. Head Neck 2021; 43:3911-3921. [PMID: 34636093 DOI: 10.1002/hed.26888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Ameloblastoma (AB) is a common epithelial odontogenic tumor. The Wnt/β-catenin pathway has been found to be related to AB invasion. METHODS The alteration expression of microRNAs (miRNAs) and messenger RNAs (mRNAs) was performed by miRNA and mRNA microarray analysis and validated by quantitative real-time polymerase chain reaction (RT-PCR). The effects of miR-29a-3p on migration and invasion in AB cells were evaluated by a transwell assay. Bioinformatic prediction was conducted using the miRSystem and validated by quantitative RT-PCR, western blot, and a luciferase reporter assay. RESULTS miR-29a-3p was overexpressed in AB tissues, which promoted the migration and invasion of AB cells in vitro. Catenin beta interacting protein 1 (CTNNBIP1), a negative regulator of the Wnt/β-catenin pathway, was predicted to be a target of miR-29a-3p. miR-29a-3p inhibited the expression of CTNNBIP1 and promoted the expression of the downstream molecules of the Wnt/β-catenin pathway. CONCLUSIONS miR-29a-3p promoted migration and invasion in AB via Wnt/β-catenin signaling by targeting CTNNBIP1.
Collapse
Affiliation(s)
- Sai Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dongjuan Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiayi Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ming Zhong
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
36
|
Kim JH, Hwang GH, Kim HJ, Jeon S, Shin BA. Acer mono Extract Inhibits Invasive Activities and G1/S Transition of HT1080 Fibrosarcoma Cells. Chonnam Med J 2021; 57:185-190. [PMID: 34621638 PMCID: PMC8485087 DOI: 10.4068/cmj.2021.57.3.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/08/2022] Open
Abstract
Acer mono is known to contain bioactive substances that exhibit beneficial effects in osteoporosis, gastric ulcers, hepatic damage, and pathologic angiogenesis. The current study aimed to investigate the effects of Acer mono extract on the invasive activities and cell-cycle progression of human fibrosarcoma cells. Cytotoxicity of Acer mono extract was assessed by MTT assay, in-vitro invasiveness of HT1080 fibrosarcoma cells was measured using matrigel assay, expression of invasion- and cell-cycle-related proteins was analyzed by western blot analysis, and that of E2F target genes was quantified using qRT-PCR. Acer mono extract did not show distinct cytotoxicity in the experimental concentrations used. Invasiveness of HT1080 fibrosarcoma cells and expression of cyclin D1 and CDK4 in them were significantly reduced in a dose-dependent manner after treatment with Acer mono extract. Acer mono extract showed inhibitory effects on the G1/S transition during cell-cycle progression; the active phosphorylated Rb protein level was decreased, and expression of E2F target genes was downregulated by the Acer mono extract. Our data collectively demonstrated that Acer mono extract exerts inhibitory effects on the invasiveness and cell-cycle progression of HT1080 human fibrosarcoma cells.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Korea
| | - Gwang Ha Hwang
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Jung Kim
- College of Pharmacy, Mokpo National University, Mokpo, Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Korea
| | - Boo Ahn Shin
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
37
|
Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids 2021; 54:543-558. [PMID: 34436666 DOI: 10.1007/s00726-021-03063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a biochemical and a functional point of view. However, limited data are currently available on the characterization of their post-translational modifications (PTMs) and the functional implication of these structural changes in the tumor environment. In this review, we summarize existing literature data on PTMs of hCA IX and hCA XII, such as disulphide bond formation, phosphorylation, O-/N-linked glycosylation, acetylation and ubiquitination, highlighting, when possible, their specific role in cancer pathological processes.
Collapse
|
38
|
Chafe SC, Vizeacoumar FS, Venkateswaran G, Nemirovsky O, Awrey S, Brown WS, McDonald PC, Carta F, Metcalfe A, Karasinska JM, Huang L, Muthuswamy SK, Schaeffer DF, Renouf DJ, Supuran CT, Vizeacoumar FJ, Dedhar S. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. SCIENCE ADVANCES 2021; 7:7/35/eabj0364. [PMID: 34452919 PMCID: PMC8397268 DOI: 10.1126/sciadv.abj0364] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 05/23/2023]
Abstract
The metabolic mechanisms involved in the survival of tumor cells within the hypoxic niche remain unclear. We carried out a synthetic lethal CRISPR screen to identify survival mechanisms governed by the tumor hypoxia-induced pH regulator carbonic anhydrase IX (CAIX). We identified a redox homeostasis network containing the iron-sulfur cluster enzyme, NFS1. Depletion of NFS1 or blocking cyst(e)ine availability by inhibiting xCT, while targeting CAIX, enhanced ferroptosis and significantly inhibited tumor growth. Suppression of CAIX activity acidified intracellular pH, increased cellular reactive oxygen species accumulation, and induced susceptibility to alterations in iron homeostasis. Mechanistically, inhibiting bicarbonate production by CAIX or sodium-driven bicarbonate transport, while targeting xCT, decreased adenosine 5'-monophosphate-activated protein kinase activation and increased acetyl-coenzyme A carboxylase 1 activation. Thus, an alkaline intracellular pH plays a critical role in suppressing ferroptosis, a finding that may lead to the development of innovative therapeutic strategies for solid tumors to overcome hypoxia- and acidosis-mediated tumor progression and therapeutic resistance.
Collapse
Affiliation(s)
- Shawn C Chafe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Geetha Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Wells S Brown
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Fabrizio Carta
- NEUROFARBA Department, University of Florence, Via U. Schiff 6, Florence 50019, Italy
| | | | | | - Ling Huang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Senthil K Muthuswamy
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC V3Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC V3Z 1M9, Canada
- Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E67, Canada
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence, Via U. Schiff 6, Florence 50019, Italy
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Cancer Research Department, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4E5, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
39
|
Di Pompo G, Cortini M, Baldini N, Avnet S. Acid Microenvironment in Bone Sarcomas. Cancers (Basel) 2021; 13:cancers13153848. [PMID: 34359749 PMCID: PMC8345667 DOI: 10.3390/cancers13153848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Although rare, malignant bone sarcomas have devastating clinical implications for the health and survival of young adults and children. To date, efforts to identify the molecular drivers and targets have focused on cancer cells or on the interplay between cancer cells and stromal cells in the tumour microenvironment. On the contrary, in the current literature, the role of the chemical-physical conditions of the tumour microenvironment that may be implicated in sarcoma aggressiveness and progression are poorly reported and discussed. Among these, extracellular acidosis is a well-recognized hallmark of bone sarcomas and promotes cancer growth and dissemination but data presented on this topic are fragmented. Hence, we intended to provide a general and comprehensive overview of the causes and implications of acidosis in bone sarcoma. Abstract In bone sarcomas, extracellular proton accumulation is an intrinsic driver of malignancy. Extracellular acidosis increases stemness, invasion, angiogenesis, metastasis, and resistance to therapy of cancer cells. It reprograms tumour-associated stroma into a protumour phenotype through the release of inflammatory cytokines. It affects bone homeostasis, as extracellular proton accumulation is perceived by acid-sensing ion channels located at the cell membrane of normal bone cells. In bone, acidosis results from the altered glycolytic metabolism of bone cancer cells and the resorption activity of tumour-induced osteoclasts that share the same ecosystem. Proton extrusion activity is mediated by extruders and transporters located at the cell membrane of normal and transformed cells, including vacuolar ATPase and carbonic anhydrase IX, or by the release of highly acidic lysosomes by exocytosis. To date, a number of investigations have focused on the effects of acidosis and its inhibition in bone sarcomas, including studies evaluating the use of photodynamic therapy. In this review, we will discuss the current status of all findings on extracellular acidosis in bone sarcomas, with a specific focus on the characteristics of the bone microenvironment and the acid-targeting therapeutic approaches that are currently being evaluated.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Margherita Cortini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
40
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Kazokaitė-Adomaitienė J, Becker HM, Smirnovienė J, Dubois LJ, Matulis D. Experimental Approaches to Identify Selective Picomolar Inhibitors for Carbonic Anhydrase IX. Curr Med Chem 2021; 28:3361-3384. [PMID: 33138744 DOI: 10.2174/0929867327666201102112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) regulate pH homeostasis via the reversible hydration of CO2, thereby emerging as essential enzymes for many vital functions. Among 12 catalytically active CA isoforms in humans, CA IX has become a relevant therapeutic target because of its role in cancer progression. Only two CA IX inhibitors have entered clinical trials, mostly due to low affinity and selectivity properties. OBJECTIVE The current review presents the design, development, and identification of the selective nano- to picomolar CA IX inhibitors VD11-4-2, VR16-09, and VD12-09. METHODS AND RESULTS Compounds were selected from our database, composed of over 400 benzensulfonamides, synthesized at our laboratory, and tested for their binding to 12 human CAs. Here we discuss the CA CO2 hydratase activity/inhibition assay and several biophysical techniques, such as fluorescent thermal shift assay and isothermal titration calorimetry, highlighting their contribution to the analysis of compound affinity and structure- activity relationships. To obtain sufficient amounts of recombinant CAs for inhibitor screening, several gene cloning and protein purification strategies are presented, including site-directed CA mutants, heterologous CAs from Xenopus oocytes, and native endogenous CAs. The cancer cell-based methods, such as clonogenicity, extracellular acidification, and mass spectrometric gas-analysis are reviewed, confirming nanomolar activities of lead inhibitors in intact cancer cells. CONCLUSIONS Novel CA IX inhibitors are promising derivatives for in vivo explorations. Furthermore, the simultaneous targeting of several proteins involved in proton flux upon tumor acidosis and the disruption of transport metabolons might improve cancer management.
Collapse
Affiliation(s)
- Justina Kazokaitė-Adomaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joana Smirnovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Netherlands
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
42
|
The Carbonic Anhydrase Inhibitor E7070 Sensitizes Glioblastoma Cells to Radio- and Chemotherapy and Reduces Tumor Growth. Mol Neurobiol 2021; 58:4520-4534. [PMID: 34085182 DOI: 10.1007/s12035-021-02437-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023]
Abstract
Glioblastomas (GBMs), the most common and lethal primary brain tumor, show inherent infiltrative nature and high molecular heterogeneity that make complete surgical resection unfeasible and unresponsive to conventional adjuvant therapy. Due to their fast growth rate even under hypoxic and acidic conditions, GBM cells can conserve the intracellular pH at physiological range by overexpressing membrane-bound carbonic anhydrases (CAs). The synthetic sulfonamide E7070 is a potent inhibitor of CAs that harbors putative anticancer properties; however, this drug has still not been tested in GBMs. The present study aimed to evaluate the effects of E7070 on CA9 and CA12 enzymes in GBM cells as well as in the tumor cell growth, migration, invasion, and resistance to radiotherapy and chemotherapy. We found that E7070 treatment significantly reduced tumor cell growth and increased radio- and chemotherapy efficacy against GBM cells under hypoxia. Our data suggests that E7070 has therapeutic potential as a radio-chemo-sensitizing in drug-resistant GBMs, representing an attractive strategy to improve the adjuvant therapy. We showed that CA9 and CA12 represent potentially valuable therapeutic targets that should be further investigated as useful diagnostic and prognostic biomarkers for GBM tailored therapy.
Collapse
|
43
|
Gillies RJ. Cancer heterogeneity and metastasis: life at the edge. Clin Exp Metastasis 2021; 39:15-19. [PMID: 33999364 DOI: 10.1007/s10585-021-10101-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023]
Abstract
There is abundant evidence that the phenotype of cells the tumor at the stromal interface is distinct from the tumor cells that are within the core. Molecular phenotyping of cells at the edge show that they express higher levels of proteins associated with elevated glycolytic metabolism, including GLUT-1, HIF-1, and CA-IX. An end product of glycolysis is the production of acid, and acidosis of tumors is strongly associated with increased metastatic potential across a wide variety of tumor types. The molecular machinery promoting this export of acid is being defined, with close collaboration between carbonic anhydrases, sodium dependent bicarbonate and monocarboxylate transporters. Neutralization of this acidity can prevent local invasion and metastasis, and this has led to the "acid-mediated invasion hypothesis" wherein export of acid from the tumor into the stroma leads to matrix remodeling, which can promote local invasion.
Collapse
Affiliation(s)
- Robert J Gillies
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
44
|
Alabi A, Xia XD, Gu HM, Wang F, Deng SJ, Yang N, Adijiang A, Douglas DN, Kneteman NM, Xue Y, Chen L, Qin S, Wang G, Zhang DW. Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis. Nat Commun 2021; 12:1889. [PMID: 33767172 PMCID: PMC7994674 DOI: 10.1038/s41467-021-22167-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
Plasma low-density lipoprotein (LDL) is primarily cleared by LDL receptor (LDLR). LDLR can be proteolytically cleaved to release its soluble ectodomain (sLDLR) into extracellular milieu. However, the proteinase responsible for LDLR cleavage is unknown. Here we report that membrane type 1-matrix metalloproteinase (MT1-MMP) co-immunoprecipitates and co-localizes with LDLR and promotes LDLR cleavage. Plasma sLDLR and cholesterol levels are reduced while hepatic LDLR is increased in mice lacking hepatic MT1-MMP. Opposite effects are observed when MT1-MMP is overexpressed. MT1-MMP overexpression significantly increases atherosclerotic lesions, while MT1-MMP knockdown significantly reduces cholesteryl ester accumulation in the aortas of apolipoprotein E (apoE) knockout mice. Furthermore, sLDLR is associated with apoB and apoE-containing lipoproteins in mouse and human plasma. Plasma levels of sLDLR are significantly increased in subjects with high plasma LDL cholesterol levels. Thus, we demonstrate that MT1-MMP promotes ectodomain shedding of hepatic LDLR, thereby regulating plasma cholesterol levels and the development of atherosclerosis.
Collapse
Affiliation(s)
- Adekunle Alabi
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Dan Xia
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Hong-Mei Gu
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Faqi Wang
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shi-Jun Deng
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nana Yang
- Experimental Center for Medical Research, Weifang Medical University, Weifang, China
| | - Ayinuer Adijiang
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Donna N Douglas
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Norman M Kneteman
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yazhuo Xue
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Li Chen
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Guiqing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Da-Wei Zhang
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
45
|
Carbonic Anhydrase IX Promotes Human Cervical Cancer Cell Motility by Regulating PFKFB4 Expression. Cancers (Basel) 2021; 13:cancers13051174. [PMID: 33803236 PMCID: PMC7967120 DOI: 10.3390/cancers13051174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy. Abstract Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. In this study, CAIX overexpression in SiHa cells increased cell migration and epithelial-to-mesenchymal transition (EMT). Silencing CAIX in the Caski cell line decreased the motility of cells and EMT. Furthermore, the RNA-sequencing analysis identified a target gene, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB4), which is influenced by CAIX overexpression and knockdown. A positive correlation was found between CAIX expression and PFKFB4 levels in the cervical cancer of the TCGA database. Mechanistically, CAIX overexpression activated the phosphorylation of extracellular signal-regulated kinases (ERKs) to induce EMT and promote cell migration. In clinical results, human cervical cancer patients with CAIXhigh/PFKFB4high expression in the late stage had higher rates of lymph node metastasis and the shortest survival time. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy.
Collapse
|
46
|
Kast RE. Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:481-488. [PMID: 33689795 DOI: 10.1016/j.pharma.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Over one hundred clinical trials since 2005 have failed to significantly improve the prognosis of glioblastoma. Since 2005, the standard of care has been maximal resection followed by 60Gy irradiation over six weeks with daily temozolomide. With this, a median survival of 2 years can be expected. This short paper reviewed how the pharmacodynamic attributes of an EMA/FDA approved, cheap, generic drug to treat pain, celecoxib, intersect with pathophysiological elements driving glioblastoma growth, such that growth drive inhibition can be expected from celecoxib. The two main attributes of celecoxib are carbonic anhydrase inhibition and cyclooxygenase-2 inhibition. Both attributes individually have been in active study as adjuncts during current cancer treatment, including that of glioblastoma. That research is briefly reviewed here. This paper concludes from the collected data, that starting celecoxib, 600 to 800mg twice daily before surgery and continuing it through the chemoirradiation phase of treatment would be a low-risk intervention with sound rationale.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC study centre, 05401 Burlington, VT, USA.
| |
Collapse
|
47
|
Di Fiore A, Supuran CT, Scaloni A, De Simone G. Human carbonic anhydrases and post-translational modifications: a hidden world possibly affecting protein properties and functions. J Enzyme Inhib Med Chem 2021; 35:1450-1461. [PMID: 32648529 PMCID: PMC7470082 DOI: 10.1080/14756366.2020.1781846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human carbonic anhydrases (CAs) have become a well-recognized target for the design of inhibitors and activators with biomedical applications. Accordingly, an enormous amount of literature is available on their biochemical, functional and structural aspects. Nevertheless post-translational modifications (PTMs) occurring on these enzymes and their functional implications have been poorly investigated so far. To fill this gap, in this review we have analysed all PTMs occurring on human CAs, as deriving from the search in dedicated databases, showing a widespread occurrence of modification events in this enzyme family. By combining these data with sequence alignments, inspection of 3 D structures and available literature, we have summarised the possible functional implications of these PTMs. Although in some cases a clear correlation between a specific PTM and the CA function has been highlighted, many modification events still deserve further dedicated studies.
Collapse
Affiliation(s)
- Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-National Research Council, Napoli, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | | |
Collapse
|
48
|
Dual Acting Carbon Monoxide Releasing Molecules and Carbonic Anhydrase Inhibitors Differentially Modulate Inflammation in Human Tenocytes. Biomedicines 2021; 9:biomedicines9020141. [PMID: 33535611 PMCID: PMC7912830 DOI: 10.3390/biomedicines9020141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Sustained oxidative stress and inflammation have been reported as the major factors responsible for the failure of tendon healing during rotator cuff tears (RCTs) and rotator cuff disease (RCD). Although, their therapeutic management remains still challenging. Carbonic anhydrases (CAs) are involved in many pathological conditions, and the overexpression of both CA9 and 12 in inflamed joints has been recently reported. Consequently, a selective CA9/12 inhibition could be a feasible strategy for improving tendon recovery after injury. In addition, since carbon monoxide (CO) has been proven to have an important role in modulating inflammation, CO releasing molecules (CORMs) can be also potentially suitable compounds. The present study aims at evaluating five newly synthesized dual-mode acting CA inhibitors (CAIs)-CORMs compounds, belonging to two chemical scaffolds, on tendon-derived human primary cells under H2O2 stimulation in comparison with Meloxicam. Our results show that compounds 2 and 7 are the most promising of the series in counteracting oxidative stress-induced cytotoxicity and display a better profile in terms of enhanced viability, decreased LDH release, and augmented tenocyte proliferation compared to Meloxicam. Moreover, compound 7, as a potent superoxide scavenger, exerts its action inhibiting NF-ĸB translocation and downregulating iNOS, whereas compound 2 is more effective in increasing collagen I deposition. Taken together, our data highlight a potential role of CA in RCTs and RCD and the prospective effectiveness of compounds acting as CAI-CORM during inflammation.
Collapse
|
49
|
Wassel MM, Ragab A, Elhag Ali GA, Mehany AB, Ammar YA. Novel adamantane-pyrazole and hydrazone hybridized: Design, synthesis, cytotoxic evaluation, SAR study and molecular docking simulation as carbonic anhydrase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Tobys D, Kowalski LM, Cziudaj E, Müller S, Zentis P, Pach E, Zigrino P, Blaeske T, Höning S. Inhibition of clathrin-mediated endocytosis by knockdown of AP-2 leads to alterations in the plasma membrane proteome. Traffic 2020; 22:6-22. [PMID: 33225555 DOI: 10.1111/tra.12770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, clathrin-mediated endocytosis (CME) is a central pathway for the internalization of proteins from the cell surface, thereby contributing to the maintenance of the plasma membrane protein composition. A key component for the formation of endocytic clathrin-coated vesicles (CCVs) is AP-2, as it sequesters cargo membrane proteins, recruits a multitude of other endocytic factors and initiates clathrin polymerization. Here, we inhibited CME by depletion of AP-2 and explored the consequences for the plasma membrane proteome. Quantitative analysis revealed accumulation of major constituents of the endosomal-lysosomal system reflecting a block in retrieval by compensatory CME. The noticeable enrichment of integrins and blockage of their turnover resulted in severely impaired cell migration. Rare proteins such as the anti-cancer drug target CA9 and tumor markers (CD73, CD164, CD302) were significantly enriched. The AP-2 knockdown attenuated the global endocytic capacity, but clathrin-independent entry pathways were still operating, as indicated by persistent internalization of specific membrane-spanning and GPI-anchored receptors (PVR, IGF1R, CD55, TNAP). We hypothesize that blocking AP-2 function and thus inhibiting CME may be a novel approach to identify new druggable targets, or to increase their residence time at the plasma membrane, thereby increasing the probability for efficient therapeutic intervention.
Collapse
Affiliation(s)
- David Tobys
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lisa Maria Kowalski
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Eva Cziudaj
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Stefan Müller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Peter Zentis
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Elke Pach
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tobias Blaeske
- Department of Plant Physiology and Biochemistry, University of Constance, Constance, Germany
| | - Stefan Höning
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|