1
|
Van Assche E, Hohoff C, Su Atil E, Wissing SM, Serretti A, Fabbri C, Pisanu C, Squassina A, Minelli A, Baune BT. Exploring the use of immunomethylomics in the characterization of depressed patients: A proof-of-concept study. Brain Behav Immun 2025; 123:597-605. [PMID: 39341467 DOI: 10.1016/j.bbi.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
Alterations in DNA methylation and inflammation could represent valid biomarkers for the stratification of patients with major depressive disorder (MDD). This study explored the use of DNA-methylation based immunological cell-type profiles in the context of MDD and symptom severity over time. In 119 individuals with MDD, DNA-methylation was assessed on whole blood using the Illumina Infinium MethylationEPIC 850 k BeadChip. Quality control and data processing, as well as cell type estimation was conducted using the RnBeads package. The cell type composition was estimated using epigenome-wide DNA methylation signatures, applying the Houseman method, considering six cell types (neutrophils, natural killer cells (NK), B cells, CD4+ T cells, CD8+ T cells and monocytes). Two cytokines (IL-6 and IL-1β) and hsCRP were quantified in serum. We performed a hierarchical cluster analysis on the six estimated cell-types and tested the differences between these clusters in relation to the two cytokines and hsCRP, depression severity at baseline, and after 6 weeks of treatment (celecoxib/placebo + vortioxetine). We performed a second cluster analysis with cell-types and cytokines combined. ANCOVA was used to test for differences across clusters. We applied the Bonferroni correction. After quality control, we included 113 participants. Two clusters were identified, cluster 1 was high in CD4+ cells and NK, cluster 2 was high in CD8+ T-cells and B-cells, with similar fractions of neutrophils and monocytes. The clusters were not associated with either of the two cytokines and hsCRP, or depression severity at baseline, but cluster 1 showed higher depression severity after 6 weeks, corrected for baseline (p = 0.0060). The second cluster analysis found similar results: cluster 1 was low in CD8+ T-cells, B-cells, and IL-1β. Cluster 2 was low in CD4+ cells and natural killer cells. Neutrophils, monocytes, IL-6 and hsCRP were not different between the clusters. Participants in cluster 1 showed higher depression severity at baseline than cluster 2 (p = 0.034), but no difference in depression severity after 6 weeks. DNA-methylation based cell-type profiles may be valuable in the immunological characterization and stratification of patients with MDD. Future models should consider the inclusion of more cell-types and cytokines for better a prediction of treatment outcomes.
Collapse
Affiliation(s)
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ecem Su Atil
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Sophia M Wissing
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville VIC, Australia.
| |
Collapse
|
2
|
Jiang W, He Y, Liu Q, Peng S, Ni Y, Zhong X, Guo L. Associations between childhood maltreatment, peripheral immune biomarkers, and psychiatric symptoms in adults: A cohort study of over 138,000 participants. Brain Behav Immun 2025; 123:840-850. [PMID: 39477077 DOI: 10.1016/j.bbi.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Few studies have integrated the impact of individual and cumulative childhood maltreatment on multiple psychiatric symptoms, with the mechanisms underlying these associations largely unknown. This study aims to comprehensively assess the associations between childhood maltreatment, multiple peripheral immune biomarkers, and various psychiatric symptoms in adulthood and to explore whether peripheral immune inflammation plays a mediator role in the associations between childhood maltreatment and psychiatric symptoms in adulthood. METHODS Using data from the UK Biobank, we constructed a retrospective cohort study of 138,915 participants who provided self-reported childhood maltreatment and had peripheral immune biomarkers assessed. We examined seven types of psychiatric symptoms in adulthood, including depressive symptoms, anxiety symptoms, mania, post-traumatic stress disorder (PTSD), psychotic experiences, self-harm, and alcohol use disorder. Logistic regression models were performed to explore the associations between childhood maltreatment, immune biomarkers, and psychiatric symptoms, calculating the average marginal effects for each indicator of childhood maltreatment. Mediation analyses were conducted to determine the extent to which the immune biomarkers could explain the association between childhood maltreatment and psychiatric symptoms in adulthood. Subgroup and sensitivity analyses were also performed. RESULTS Among the participants, 77,937 (56.10 %) were female, with a mean age of 55.91 (SD: 7.73) years at baseline. There were dose-response relationships existed between the accumulation of childhood maltreatment indicators and all seven assessed psychiatric symptoms and multimorbidity in adulthood (e.g., for depressive symptoms, OR = 1.67 [95 %CI, 1.57 to 1.78] for one childhood maltreatment indicator; OR = 2.77 [95 % CI, 2.58 to 2.97] for two; OR = 4.91 [95 % CI, 4.61 to 5.24] for three or more). Emotional abuse and physical neglect showed the strongest average marginal effects on psychiatric symptoms. Levels of C-reactive protein (CRP) and counts of leukocytes and neutrophils were positively associated with depressive symptoms (e.g., OR = 1.13 [95 % CI, 1.08 to 1.17] for CRP level), anxiety symptoms, PTSD, and psychotic experiences. Moreover, levels of CRP partially mediated the association between childhood maltreatment scores and psychiatric symptoms, albeit with a relatively low mediation proportion (0.65 %-1.77 %). CONCLUSIONS Our findings underscore the importance of interventions that address multiple forms of childhood maltreatment to mitigate long-term mental health challenges substantially. While peripheral immunity responses may serve as predictors of mental health problems, they might not to be the primary mechanism through which childhood maltreatment influences psychiatric symptoms in adulthood.
Collapse
Affiliation(s)
- Weiqing Jiang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Yitong He
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Qianyu Liu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Peng
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Ni
- The University of Hong Kong, LKS Faculty of Medicine, Hong Kong Special Administrative Region, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, China.
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Penninx BW, Lamers F, Jansen R, Berk M, Khandaker GM, De Picker L, Milaneschi Y. Immuno-metabolic depression: from concept to implementation. Lancet Reg Health Eur 2025; 48:101166. [DOI: 10.1016/j.lanepe.2024.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Zhou J, Bränn E, Hysaj E, Seitz C, Hou Y, Song H, Bergstedt J, Chang Z, Fang F, Pedersen NL, Valdimarsdóttir UA, Lu D. Association between inflammatory biomarkers before pregnancy and risk of perinatal depression: A prospective cohort study of 4483 women in Sweden. J Affect Disord 2025; 368:477-486. [PMID: 39303887 DOI: 10.1016/j.jad.2024.09.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
AIM Perinatal depression (PND) is a global health concern, affecting millions of childbearing women. Emerging data suggest that inflammation may play a role in the development of PND. Peripheral blood inflammatory biomarkers before pregnancy are widely tested in clinical practice at minimum cost, yet their potential role in PND risk remains unknown. METHODS We conducted a prospective cohort study of 4483 birthing women during 2009-2021 within the LifeGene study with linkage to Swedish registers. Peripheral blood inflammatory biomarkers were profiled at baseline. Cases of PND were identified using validated tools or clinical diagnosis from subsequent pregnancies and postpartum periods. Logistic regression models were employed to assess the associations of each inflammatory biomarker (z scored) with PND. RESULTS We identified 495 (11.0 %) PND cases with an average age of 29.2 years. Pre-pregnancy platelet-to-lymphocyte ratio (PLR) was positively associated [OR, 95 % CI:1.14(1.01,1.27)], while lymphocyte count was inversely associated [OR, 95 % CI: 0.89(0.80,0.98)] with PND. A dose-response relationship was indicated for both PLR and lymphocytes when analyzed in categories based on tertile distribution. These associations appeared more pronounced for postpartum depression than antepartum depression and were independent of psychiatric comorbidities. CONCLUSION With implications for future mechanistic research, these findings suggest that blood levels of lymphocytes and PLR before pregnancy are associated with subsequent risk of PND in a dose-response manner.
Collapse
Affiliation(s)
- Jing Zhou
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Emma Bränn
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elgeta Hysaj
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ying Hou
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jacob Bergstedt
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Unnur A Valdimarsdóttir
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Donghao Lu
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Mosialou I, Kousteni S. From brain to blood and back again: Linking chronic stress, myelopoiesis, and depression. Cell Stem Cell 2024; 31:1721-1723. [PMID: 39642860 DOI: 10.1016/j.stem.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
In this issue of Cell Stem Cell, Mou et al. identified a brain-bone marrow axis reinforcing myelopoiesis and neuroinflammation during psychological stress, culminating in depression. The identification of this pathway provides insights into hematopoietic stem cell homeostasis and regulatory neuronal function with potentially significant implications for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA; Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA; Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Mou R, Ma J, Ju X, Wu Y, Chen Q, Li J, Shang T, Chen S, Yang Y, Li Y, Lv K, Chen X, Zhang Q, Liang T, Feng Y, Lu X. Vasopressin drives aberrant myeloid differentiation of hematopoietic stem cells, contributing to depression in mice. Cell Stem Cell 2024; 31:1794-1812.e10. [PMID: 39442524 DOI: 10.1016/j.stem.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Psychological stress is often linked to depression and can also impact the immune system, illustrating the interconnectedness of mental health and immune function. Hematopoietic stem cells (HSCs) can directly sense neuroendocrine signals in bone marrow and play a fundamental role in the maintenance of immune homeostasis. However, it is unclear how psychological stress impacts HSCs in depression. Here, we report that neuroendocrine factor arginine vasopressin (AVP) promotes myeloid-biased HSC differentiation by activating neutrophils. AVP administration increases neutrophil and Ly6Chi monocyte production by triggering HSCs that rely on intrinsic S100A9 in mice. When stimulated with AVP, neutrophils return to the bone marrow and release interleukin 36G (IL-36G), which interacts with interleukin 1 receptor-like 2 (IL-1RL2) on HSCs to produce neutrophils with high Elane expression that infiltrate the brain and induce neuroinflammation. Together, these findings define HSCs as a relay between psychological stress and myelopoiesis and identify the IL-36G-IL-1RL2 axis as a potential target for depression therapy.
Collapse
Affiliation(s)
- Rong Mou
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Junkai Ma
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Yixin Wu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qiuli Chen
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jinglin Li
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tongyao Shang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Siying Chen
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yue Yang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yue Li
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Kaosheng Lv
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha 410028, Hunan, China
| | - Xuequn Chen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ye Feng
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| | - Xinjiang Lu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Daray FM, Chiapella LC, Grendas LN, Casiani RIÁ, Olaviaga A, Robetto J, Prokopez CR, Carrera Silva EA, Errasti AE, Neupane SP. Peripheral blood cellular immunophenotype in suicidal ideation, suicide attempt, and suicide: a systematic review and meta-analysis. Mol Psychiatry 2024; 29:3874-3892. [PMID: 38802507 DOI: 10.1038/s41380-024-02587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Previous meta-analyses have documented the association of immune-inflammatory pathways with the pathophysiology of Major Depressive Episode (MDE), as reflected by alterations in peripheral blood immune cell counts. However, it remains unclear whether these immunological changes are distinct in individuals experiencing suicidal ideation (SI) or suicidal behavior (SB), beyond the context of an MDE. This systematic review and meta-analysis aimed to examine peripheral immune cell profiles across samples with SI/SB and compare them to healthy controls or patients with MDE. A systematic literature search was conducted in MEDLINE, Embase, and PsycINFO for articles published from inception until June 12, 2023. Two independent reviewers screened the articles for inclusion, extracted data, and assessed the risk of bias using the Newcastle-Ottawa scale. Meta-analyses were performed using a random-effects model to calculate standardized mean differences (SMDs) and 95% confidence intervals (CIs) for immune cell counts or ratios between groups with and without SI/SB. Heterogeneity across studies was assessed using the restricted maximum-likelihood estimator for tau statistic and I2-statistic and tested by the Q test. Publication bias was evaluated using the Egger´s test and funnel plots. Meta-regression analyses were conducted to explore the potential moderating effects of age, gender, current or lifetime SI/SB, and the type of self-harming behavior (SI or SB). The study was registered with PROSPERO (CRD42023433089). The systematic review included 30 studies, with data from 19 studies included in the meta-analyses comprising 139 unique comparisons. Eleven different cell populations or ratios were included, comprising 1973 individuals with SI/SB and 5537 comparison subjects. White blood cell (WBC) and neutrophil counts were higher in individuals with SI/SB than in controls (WBC: SMD = 0.458; 95% CI = 0.367-0.548; p value ≤ 0.001; I2 = 0.002% and; Neutrophils: SMD = 0.581; 95% CI = 0.408-0.753; p < 0.001), indicating an inflammatory process. The neutrophil-to-lymphocyte ratio (NLR) emerged as a potential marker, demonstrating a notable elevation in individuals with SI/SB (SMD = 0.695; 95% CI = 0.054-1.335; p value = 0.033; I2 = 94.281%; Q test p value ≤ 0.001). The elevated NLR appears to be primarily driven by the increase in neutrophil counts, as no significant differences were found in lymphocyte counts between groups. Comparisons among participants with and without SI/SB and depression revealed similar trends with increased NLR, monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) observed in depressed individuals with SI/SB compared to those without SI/SB. Broad alteration in the peripheral immune cell populations and their ratios were observed in individuals with SI/SB, indicating an immune activation or dysfunction. Notably, these immunological changes were also evident when comparing MDE individuals with and without SI/SB, suggesting that such immune dysfunction associated with suicidality cannot be solely attributed to or explained by depressive symptoms. The NLR, MLR, and PLR ratios, in combination with novel immune cellular and protein biomarkers, open new avenues in understanding the immunological underpinnings of SI/SB. These findings highlight the potential utility of immune markers as part of a multi-modal approach for risk stratification and therapeutic monitoring in SI/SB.
Collapse
Affiliation(s)
- Federico M Daray
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.
| | - Luciana Carla Chiapella
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Leandro Nicolás Grendas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Romina Isabel Álvarez Casiani
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Alejandro Olaviaga
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Josefina Robetto
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Cintia Romina Prokopez
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Eugenio Antonio Carrera Silva
- Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Emilse Errasti
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Sudan Prasad Neupane
- National Centre for Suicide Research and Prevention, Institute of Clinical Medicine, University of Oslo, Sognsvannsveien 21, Building 12, 2nd floor. N-0372, Oslo, Norway
| |
Collapse
|
8
|
Liu G, Ma L, Sakamoto A, Fujimura L, Xu D, Zhao M, Wan X, Murayama R, Anzai N, Hashimoto K. Splenic γδ T cells mediate antidepressant and prophylactic actions of arketamine in lipopolysaccharide-induced depression in mice. Pharmacol Biochem Behav 2024; 245:173906. [PMID: 39549733 DOI: 10.1016/j.pbb.2024.173906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits both therapeutic and sustained prophylactic effects in an inflammation-driven model of depression, although the precise mechanisms remain elusive. Given the involvement of γδ T cells in inflammatory processes, this study explored their role in the effects of arketamine. To assess therapeutic outcomes, mice received lipopolysaccharide (LPS:1.0 mg/kg), followed by either arketamine (10 mg/kg) or saline. For prophylactic assessment, arketamine or saline was administered six days prior to LPS exposure. A single dose of LPS (1.0 mg/kg) reduced the proportion of γδ T cells in the spleen but did not affect their levels in the blood, prefrontal cortex, or small intestine. Arketamine mitigated LPS-induced splenomegaly, counteracted the elevation of plasma interleukin-6 levels and the reduction in the proportion of splenic γδ T cells, and alleviated depression-like behavior as assessed by the forced swimming test. Notably, negative correlations were observed between the proportion of splenic γδ T cells and indicators of inflammation and depression. Furthermore, pretreatment with a γδ TCR antibody significantly countered the therapeutic and prophylactic effects of arketamine on LPS-induced changes. These findings highlight a novel role for splenic γδ T cells in inflammation-associated depression and suggest the potential of arketamine as a treatment option. Consequently, γδ T cells may represent a novel therapeutic target for inflammation-related depression. Further studies on the role of γδ T cells in depressed patients with inflammation are warranted.
Collapse
Affiliation(s)
- Guilin Liu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Li Ma
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Akemi Sakamoto
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan
| | - Dan Xu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingming Zhao
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiayun Wan
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Rumi Murayama
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
9
|
Yao H, Liu Y, Wang Y, Xue Y, Jiang S, Sun X, Ji M, Xu Z, Ding J, Hu G, Lu M. Dural Tregs driven by astrocytic IL-33 mitigate depression through the EGFR signals in mPFC neurons. Cell Death Differ 2024:10.1038/s41418-024-01421-3. [PMID: 39592709 DOI: 10.1038/s41418-024-01421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The dura sinus-resident immune cells can influence the process of central neural system (CNS) diseases by communicating with central nerve cells. In clinical, Tregs are also frequently impaired in depression. However, the significance of this relationship remains unknown. In the present study, we found a significant increase in dural Treg populations in mouse models of depression, whereas depleting them by neutralizing antibodies injection could exacerbate depressive phenotypes. Through RNA sequencing, we identified that the antidepressant effects of dural Tregs are at least in part through the production of amphiregulin, increasing the expression of its receptor EGFR in medial prefrontal cortex (mPFC) pyramidal neurons. Furthermore, dural Tregs expressed high levels of ST2, and their expansion in depressed mice depended on astrocyte-derived IL33 secretion. Our study shows that dural Treg signaling can be enhanced by treatment with fluoxetine, highlighting that dural Tregs can be utilized as a potential target cell in major depressive disorder (MDD).
Collapse
Affiliation(s)
- Hang Yao
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- The Second People's Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueping Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - You Xue
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Jiang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xin Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jianhua Ding
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming Lu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
- The Second People's Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Li J, Wang Y, Zhang Y, Liu M, Rong X, Jiang J. Therapeutic potential and mechanisms of stem cells in major depressive disorder: a comprehensive review. Front Pharmacol 2024; 15:1476558. [PMID: 39654612 PMCID: PMC11625547 DOI: 10.3389/fphar.2024.1476558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Depression is a common affective disorder characterized by persistent low mood, diminished interest or pleasure in normally enjoyable activities, disturbances in sleep patterns, and suicidal ideation. Conventional treatments often yield unsatisfactory results and are associated with several adverse effects. However, emerging literature has highlighted the potential of stem cell (SC) transplantation as a promising avenue for treating depression owing to its favorable anti-inflammatory and neurotrophic properties. This review summarizes the therapeutic effects and underlying mechanisms associated with SC transplantation in depression, offering a conceptual framework for the future application of SCs in the clinical treatment of depression.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
11
|
He S, Zhao F, Sun G, Shi Y, Xu T, Zhang Y, Li S, Zhang L, Chu X, Du C, Yang D, Zhang J, Ge C, Huang J, Xie Z, Li H. Development of machine-learning-driven signatures for diagnosing and monitoring therapeutic response in major depressive disorder using integrated immune cell profiles and plasma cytokines. Theranostics 2024; 14:7265-7280. [PMID: 39629120 PMCID: PMC11610142 DOI: 10.7150/thno.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024] Open
Abstract
Background: Diagnosis and treatment efficacy of major depressive disorder (MDD) currently lack stable and reliable biomarkers. Previous research has suggested a potential association between immune cells, cytokines, and the pathophysiology and treatment of MDD. Objective: This study aims to investigate the relationship between immune cells, cytokines, and the diagnosis of MDD and treatment response, further utilizing machine learning algorithms to develop robust diagnostic and treatment response prediction models. Methods: Using mass cytometry by time-of-flight (CyTOF) technology and high-throughput cytokine detection, we analyzed 63 types of immune cells from 134 pre-treatment MDD patients. Among these patients, plasma data for 440 cytokines were obtained from 84 individuals. Additionally, we conducted the same set of immune cell and cytokine analyses on 50 healthy controls (HC). An 8-week follow-up was conducted to observe post-treatment changes in immune cells and cytokines. Results: By combing eight machine-learning algorithms with CyTOF and cytokine data, we constructed a diagnostic model for MDD patient with 16 indicators, achieving an AUC of 0.973 in the internal validation set. Additionally, a treatment response prediction model based 7 cytokines was developed, resulting in an AUC of 0.944 in the internal validation set. Furthermore, Mfuzz time-series analysis revealed that cytokines such as Basic fibroblast growth factor (bFGF), Interleukin 13 (IL-13), and Interleukin 1 receptor, type I (IL1R1) that revert towards normal levels after 8 weeks of treatment, suggesting their potential as therapeutic targets for MDD. Conclusions: Our diagnostic model derived from CyTOF and cytokines demonstrates high diagnostic value. However, relying solely on immune cells may not provide optimal predictions for antidepressant treatment response. In contrast, leveraging cytokines has proven valuable, leading to the construction of a seven-factor treatment response prediction model. Importantly, we observed that several significantly altered cytokines in MDD can normalize following antidepressant treatment, indicating their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shen He
- Department of Psychiatry, Shanghai mental health center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangqiang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yue Shi
- Department of Psychiatry, Shanghai mental health center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlun Xu
- Department of Psychiatry, Shanghai mental health center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Siyuan Li
- Department of Psychiatry, Shanghai mental health center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linna Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Xingkun Chu
- Green Valley Pharmaceutical Technology Co., Ltd., Shanghai 201203, China
| | - Chen Du
- Green Valley Pharmaceutical Technology Co., Ltd., Shanghai 201203, China
| | - Dabing Yang
- Green Valley Pharmaceutical Technology Co., Ltd., Shanghai 201203, China
| | - Jing Zhang
- Green Valley Pharmaceutical Technology Co., Ltd., Shanghai 201203, China
| | - Changrong Ge
- Green Valley Pharmaceutical Technology Co., Ltd., Shanghai 201203, China
| | - Jingjing Huang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huafang Li
- Department of Psychiatry, Shanghai mental health center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
12
|
Monzée J. Evolution of Psychotropic Medication Prescription in Young People: Reflection from the Quebec Experience. PSYCHOTHERAPY AND PSYCHOSOMATICS 2024:1-7. [PMID: 39437747 DOI: 10.1159/000541555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Joël Monzée
- Institut du Développement de l'Enfant et de la Famille, Lac Masson, Québec, Canada
| |
Collapse
|
13
|
Ryan KM, Corrigan M, Murphy TM, McLoughlin DM, Harkin A. Gene expression of kynurenine pathway enzymes in depression and following electroconvulsive therapy. Acta Neuropsychiatr 2024:1-10. [PMID: 39417574 DOI: 10.1017/neu.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aimed to investigate changes in mRNA expression of the kynurenine pathway (KP) enzymes tryptophan 2, 3-dioxygenase (TDO), indoleamine 2, 3-dioxygenase 1 and 2 (IDO1, IDO2), kynurenine aminotransferase 1 and 2 (KAT1, KAT2), kynurenine monooxygenase (KMO) and kynureninase (KYNU) in medicated patients with depression (n = 74) compared to age- and sex-matched healthy controls (n = 55) and in patients with depression after electroconvulsive therapy (ECT). Associations with mood score (24-item Hamilton Depression Rating Scale, HAM-D24), plasma KP metabolites and selected glucocorticoid and inflammatory immune markers known to regulate KP enzyme expression were also explored. METHODS HAM-D24 was used to evaluate depression severity. Whole blood mRNA expression was assessed using quantitative real-time polymerase chain reaction. RESULTS KAT1, KYNU and IDO2 were significantly reduced in patient samples compared to control samples, though results did not survive statistical adjustment for covariates or multiple comparisons. ECT did not alter KP enzyme mRNA expression. Changes in IDO1 and KMO and change in HAM-D24 score post-ECT were negatively correlated in subgroups of patients with unipolar depression (IDO1 only), psychotic depression and ECT responders and remitters. Further exploratory correlative analyses revealed altered association patterns between KP enzyme expression, KP metabolites, NR3C1 and IL-6 in depressed patients pre- and post-ECT. CONCLUSION Further studies are warranted to determine if KP measures have sufficient sensitivity, specificity and predictive value to be integrated into stress and immune associated biomarker panels to aid patient stratification at diagnosis and in predicting treatment response to antidepressant therapy.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Therese M Murphy
- School of Biological, Sports and Health Sciences, Technological University Dublin, Dublin, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
14
|
Petrican R, Chopra S, Murgatroyd C, Fornito A. Sex-Differential Markers of Psychiatric Risk and Treatment Response Based on Premature Aging of Functional Brain Network Dynamics and Peripheral Physiology. Biol Psychiatry 2024:S0006-3223(24)01667-6. [PMID: 39419460 DOI: 10.1016/j.biopsych.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Aging is a multilevel process of gradual decline that predicts morbidity and mortality. Independent investigations have implicated senescence of brain and peripheral physiology in psychiatric risk, but it is unclear whether these effects stem from unique or shared mechanisms. METHODS To address this question, we analyzed clinical, blood chemistry, and resting-state functional neuroimaging data in a healthy aging cohort (n = 427; ages 36-100 years) and 2 disorder-specific samples including patients with early psychosis (100 patients, 16-35 years) and major depressive disorder (MDD) (104 patients, 20-76 years). RESULTS We identified sex-dependent coupling between blood chemistry markers of metabolic senescence (i.e., homeostatic dysregulation), functional brain network aging, and psychiatric risk. In females, premature aging of frontoparietal and somatomotor networks was linked to greater homeostatic dysregulation. It also predicted the severity and treatment resistance of mood symptoms (depression/anxiety [all 3 samples], anhedonia [MDD]) and social withdrawal/behavioral inhibition (avoidant personality disorder [healthy aging], negative symptoms [early psychosis]). In males, premature aging of the default mode, cingulo-opercular, and visual networks was linked to reduced homeostatic dysregulation and predicted the severity and treatment resistance of symptoms relevant to hostility/aggression (antisocial personality disorder [healthy aging], mania/positive symptoms [early psychosis]), impaired thought processes (early psychosis, MDD), and somatic problems (healthy aging, MDD). CONCLUSIONS Our findings identify sexually dimorphic relationships between brain dynamics, peripheral physiology, and risk for psychiatric illness, suggesting that the specificity of putative risk biomarkers and precision therapeutics may be improved by considering sex and other relevant personal characteristics.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom.
| | - Sidhant Chopra
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Li L, Kan W, Zhang Y, Wang T, Yang F, Ji T, Wang G, Du J. Quantitative proteomics combined independent PRM analysis reveals the mitochondrial and synaptic mechanism underlying norisoboldine's antidepressant effects. Transl Psychiatry 2024; 14:400. [PMID: 39358323 PMCID: PMC11447221 DOI: 10.1038/s41398-024-03127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Major depressive disorder (MDD) is a common disease affecting 300 million people worldwide. The existing drugs are ineffective for approximately 30% of patients, so it is urgent to develop new antidepressant drugs with novel mechanisms. Here, we found that norisoboldine (NOR) showed an antidepressant efficacy in the chronic social defeat stress (CSDS) depression model in the tail suspension, forced swimming, and sucrose consumption tests. We then utilized the drug-treated CSDS mice paradigm to segregate and gain differential protein groups of CSDS versus CON (CSDSCON), imipramine (IMI)-treated versus CSDS (IMICSDS), and NOR-treated versus CSDS (NORCSDS) from the prefrontal cortex. These protein expression alterations were first analyzed by ANOVA with p < 0.05. The protein cluster 1 and cluster 3, in which the pattern of protein levels similar to the mood pattern, showed enrichment in functions and localizations related to mitochondrion, ribosome and synapses. Further GO analysis of the common proteins for NORCSDS groups and NORIMI groups supported the findings from ANOVA analysis. We employed Protein-Protein interaction (PPI) analysis to examine the proteins of NORCSDS and NORIMI, revealing an enrichment of the proteins associated with the mitochondrial ribosomal and synaptic functions. Further independent analysis using parallel reaction monitoring (PRM) revealed that Cox7c, Mrp142, Naa30, Ighm, Apoa4, Ssu72, Mrps30, Apoh, Acbd5, and Cdv3, exhibited regulation in the NOR-treated group to support the homeostasis of mitochondrial functions. Additionally, Dcx, Arid1b, Rnf112, and Fam3c, were also observed to undergo modulation in the NOR-treated groups to support the synaptic formation and functions. These findings suggest that the proteins involved in depression treatment exert effects in strengthen the mitochondrial and synaptic functions in the mice PFC. Western blot analysis supported the data that the levels of Mrpl42, Cox7c, Naa30, Rnf112, Dcx Apoa4, Apoh and Fam3c were altered in the CSDS mice, and rescued by NOR treatment, supporting the PRM data. NOR treatment also rescued the NLRP3 inflammasome activation in CSDS mice. In summary, the current proteomic research conducted on the prefrontal cortex has provided valuable insights into the specific and shared molecular mechanisms underlying pathophysiology and treatment to CSDS-induced depression, shedding light on the therapeutic effects of Norisoboldine.
Collapse
Affiliation(s)
- Lei Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Weijing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Yi Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Tianyi Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Feng Yang
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China.
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China.
| |
Collapse
|
16
|
Almulla AF, Abbas Abo Algon A, Tunvirachaisakul C, Al-Hakeim HK, Maes M. T helper-1 activation via interleukin-16 is a key phenomenon in the acute phase of severe, first-episode major depressive disorder and suicidal behaviors. J Adv Res 2024; 64:171-181. [PMID: 37967811 PMCID: PMC11464466 DOI: 10.1016/j.jare.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/16/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Immune-inflammatory pathways in major depressive disorder are confined to the major dysmood disorder (MDMD) phenotype (Maes et al., 2022). No studies have addressed the immune profile of first episode MDMD (FE-MDMD). METHODS This study investigated the immune profiles of 71 patients with the acute phase of first-episode major depressive disorder (FE-MDMD) and 40 healthy controls. We measured 48 cytokines/chemokines/growth factors, classical M1, alternative M2, T helper (Th)-1, Th-2, and Th-17 phenotypes, immune-inflammatory response system (IRS), compensatory immunoregulatory system (CIRS), and neuro-immunotoxicity profiles. RESULTS FE-MDMD patients show significantly activated M1, M2, Th-1, IRS, CIRS, and neurotoxicity, but not Th-2 or Th-17, profiles compared to controls. FE-MDMD is accompanied by Th-1 polarization, while there are no changes in M1/M2 or IRS/CIRS ratios. The top single indicator of FE-MDMD was by far interleukin (IL)-16, followed at a distance by TRAIL, IL-2R, tumor necrosis factor (TNF)-β. The severity of depression and anxiety was strongly associated with IRS (positively) and Th-2 (inversely) profiles, whereas suicidal behavior was associated with M1 activation. Around 56-60% of the variance in depression, anxiety, and suicidal behavior scores was explained by IL-16, platelet-derived growth factor (PDGF) (both positively), and IL-1 receptor antagonist (inversely). Increased neurotoxicity is mainly driven by IL-16, TNF-α, TRAIL, IL-6, and chemokine (CCL2, CCL11, CXCL1, CXCL10) signaling. Antidepressant-treated patients show an increased IRS/CIRS ratio as compared with drug-naïve FE-MDMD patients. CONCLUSIONS FE-MDMD is accompanied by positive regulation of the IRS mainly driven by Th-1 polarization and T cell activation (via binding of IL-16 to CD4), and TNF, chemokine, and growth factor signaling.
Collapse
Affiliation(s)
- Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Abbas Abo Algon
- Research Group of Organic Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
17
|
Magen E, Geishin A, Weizman A, Merzon E, Green I, Magen I, Yakov A, Manor I, Ashkenazi S, Vinker S, Israel A. High rates of mood disorders in patients with chronic idiopathic eosinopenia. Brain Behav Immun Health 2024; 40:100847. [PMID: 39252984 PMCID: PMC11381620 DOI: 10.1016/j.bbih.2024.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Background Mood disorders (MD) are multifactorial disorders. Identifying new biomarkers for the early diagnosis of MD and predicting response to treatment is currently a significant research topic. Both eosinopenia and MD are associated with increased activity of the hypothalamic-pituitary-adrenal axis. The present study, therefore, used a clear definition of chronic idiopathic eosinopenia (CIE) to determine the rate of MD in a large cohort of individuals with CIE. Methods This retrospective population-based, case-control study uses data of seven consecutive years from the database of Leumit Health Services (LHS) - a nationwide health maintenance organization in Israel. Results Participants were 13928 LHS members with CIE and 27858 negative controls. The CIE group exhibited significantly higher rates of MD than the control group throughout the whole study period, except for atypical depressive disorder at baseline. Conclusions CIE might be associated with a higher prevalence of MD. Further basic research should elucidate the pathophysiologic mechanisms linking CIE and MD.
Collapse
Affiliation(s)
- Eli Magen
- Leumit Health Services, Tel Aviv-Yafo, 6473817, Israel
- Medicine A Department, Assuta Ashdod Medical Center affiliated with Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Akim Geishin
- Leumit Health Services, Tel Aviv-Yafo, 6473817, Israel
- Department of Family Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv-Yafo, 6997801, Israel
| | - Abraham Weizman
- Research Unit, Geha Mental Health Center, Petah Tikva, Israel and Laboratory of Biological and Molecular Psychiatry and Felsenstein Medical Research Center, Petah Tikva, Israel
- Department of Psychiatry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eugene Merzon
- Leumit Health Services, Tel Aviv-Yafo, 6473817, Israel
- Adelson School of Medicine, Ariel University, Ariel, 4070000, Israel
| | - Ilan Green
- Leumit Health Services, Tel Aviv-Yafo, 6473817, Israel
- Department of Family Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv-Yafo, 6997801, Israel
| | - Israel Magen
- Medicine A Department, Assuta Ashdod Medical Center affiliated with Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Avi Yakov
- Leumit Health Services, Tel Aviv-Yafo, 6473817, Israel
- Medicine A Department, Assuta Ashdod Medical Center affiliated with Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Iris Manor
- Department of Psychiatry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- ADHD Unit, Geha Mental Health Center, Petah Tikva, Israel
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel, 4070000, Israel
| | - Shlomo Vinker
- Leumit Health Services, Tel Aviv-Yafo, 6473817, Israel
- Department of Family Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv-Yafo, 6997801, Israel
| | - Ariel Israel
- Leumit Health Services, Tel Aviv-Yafo, 6473817, Israel
- Department of Family Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv-Yafo, 6997801, Israel
| |
Collapse
|
18
|
Maes M, Zhou B, Rachayon M, Jirakran K, Sughondhabirom A, Sodsai P, Almulla AF. T cell activation and lowered T regulatory cell numbers are key processes in severe major depressive disorder: Effects of recurrence of illness and adverse childhood experiences. J Affect Disord 2024; 362:62-74. [PMID: 38945402 DOI: 10.1016/j.jad.2024.06.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by increased T helper (Th)1 polarization, T cell activation (e.g., CD71+ and CD40L+), and cannabinoid receptor type 2 bearing CD20+ B cells; and lower T regulatory (Treg) numbers. AIMS To delineate the effects of adverse childhood experiences (ACEs) and recurrence of illness (ROI) on activated T and CB2-bearing B populations, and Tregs, including FoxP3 + CD152+, FoxP3 + GARP+, and FoxP3 + CB1+ cells. METHODS We measured ROI, ACEs, the number of activated T cells, Tregs, and CD20 + CB2+ B cells, in 30 MDD patients and 20 healthy controls. RESULTS A larger part of the variance in the depression phenome (40.8 %) was explained by increased CD20 + CB2+ and activated T cells, and lowered Tregs. ROI and lifetime suicidal behaviors were significantly and positively associated with CD20 + CB2+, CD3 + CD71+, CD3 + CD40L+, CD4 + CD71+, CD4 + CD40L+, and CD4HLADR+ numbers. ROI was significantly correlated with CD8 + CD40L+ numbers. The sum of ACEs was significantly associated with CD20 + CB2+, CD3 + CD40L+, CD4 + 40 L+ numbers, T cell activation (positively) and Treg (inversely) indices. One replicable latent vector could be extracted from activated T cells, lifetime and current suicidal behaviors, number of depressive episodes, and severity of depression, and 48.8 % of its variance was explained by ACEs. CONCLUSIONS ACE-induced activation of T effector and cytotoxic cells and B cells with autoimmune potential, coupled with lowered Treg numbers are a key component of depression. The findings indicate that increasing ROI, the phenome of depression and suicidal behaviors, are caused by autoimmune processes, which are the consequence of ACEs and increasing sensitization of immune responses.
Collapse
Affiliation(s)
- Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand; Maximizing Thai Children's Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Pimpayao Sodsai
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Immunology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
| |
Collapse
|
19
|
Maes M, Rachayon M, Jirakran K, Sughondhabirom A, Almulla AF, Sodsai P. Role of T and B lymphocyte cannabinoid type 1 and 2 receptors in major depression and suicidal behaviours. Acta Neuropsychiatr 2024; 36:287-298. [PMID: 37681553 DOI: 10.1017/neu.2023.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Early flow cytometry studies revealed T cell activation in major depressive disorder (MDD). MDD is characterised by activation of the immune-inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS), including deficits in T regulatory (Treg) cells. This study examines the number of cannabinoid type 1 (CB1) and type 2 (CB2) receptor-bearing T/B lymphocytes in MDD, and the effects of in vitro cannabidiol (CBD) administration on CB1/CB2-bearing immunocytes. Using flow cytometry, we determined the percentage of CD20+CB2+, CD3+CB2+, CD4+CB2+, CD8+CB2+ and FoxP3+CB1+ cells in 19 healthy controls and 29 MDD patients in 5 conditions: baseline, stimulation with anti-CD3/CD28 with or without 0.1 µg/mL, 1.0 µg/mL, or 10.0 µg/mL CBD. CB2+ was significantly higher in CD20+ than CD3+ and CD4+ and CD 8+ cells. Stimulation with anti-CD3/CD8 increases the number of CB2-bearing CD3+, CD4+ and CD8+ cells, as well as CB1-bearing FoxP3+ cells. There was an inverse association between the number of reduced CD4+ CB2+ and IRS profiles, including M1 macrophage, T helper-(Th)-1 and Th-17 phenotypes. MDD is characterised by lowered basal FoxP3+ CB1+% and higher CD20+ CB2+%. 33.2% of the variance in the depression phenome (including severity of depression, anxiety and current suicidal behaviours) is explained by CD20+ CB2+ % (positively) and CD3+ CB2+% (inversely). All five immune cell populations were significantly increased by 10 µg/mL of CBD administration. Reductions in FoxP3+ CB1+% and CD3+ /CD4+ CB2+% contribute to deficits in immune homoeostasis in MDD, while increased CD20+CB2+% may contribute to the pathophysiology of MDD by activating T-independent humoral immunity.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China,Chengdu610072, China
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Korea
| | - Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine, Maximizing Thai Children's Developmental Potential Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Pimpayao Sodsai
- Department of Immunology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
20
|
Wang F, Zhu D, Cao L, Wang S, Tong Y, Xie F, Zhang X, Su P, Wang G. Peripheral CD4 + T helper lymphocytes alterations in major depressive disorder: A systematic review and meta-analysis. Neuroscience 2024; 555:145-155. [PMID: 39059741 DOI: 10.1016/j.neuroscience.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Previous research has shown that patients with major depressive disorder (MDD) develop immune dysfunction. However, the exact alterations of cluster of differentiation (CD)4+ T helper (Th) lymphocytes in MDD remains unclear. This meta-analysis aimed to examine the specific changes in CD4+ Th cells. A comprehensive search of PubMed, EMBASE, Web of Science, and PsycINFO databases was conducted to identify studies investigating CD4+ Th, Th1, Th2, Th17, and T regulatory (Treg) cell counts in the peripheral blood of MDD patients and healthy controls (HCs), covering the period up to June 22, 2024. Our findings revealed that patients with MDD might exhibit higher CD4+ Th cells (SMD=0.26, 95 %CI, 0.02 to 0.50), CD4+/CD8+ cell ratios (SMD=0.51, 95 %CI, 0.14 to 0.89), Th1/Th2 cell ratios (SMD=0.15, 95 %CI, 0.01 to 0.30) and lower Th1 (SMD=-0.17, 95 %CI, -0.30 to -0.03), Th2 (SMD=-0.25, 95 %CI, -0.40 to -0.11), and Treg cells (SMD=-0.69, 95 %CI, -1.27 to -0.11). However, no significant difference was observed in terms of Th17 cells and Th17/Treg cell ratios between MDD patients and the HCs. Heterogeneity was large (I2:18.1-95.2 %), and possible sources of heterogeneity were explored (e.g., age, depression scale, country, and antidepressant use). Our findings indicate that peripheral CD4+ T cells in depressed patients exhibit features of adaptive immune dysfunction, as evidenced by increased CD4+ Th cells and CD4+/CD8+ and decreased Treg cells. These findings offer insights into the underlying mechanism of MDD.
Collapse
Affiliation(s)
- Fan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Dongxue Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Leilei Cao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Shaojie Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Yingying Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Faliang Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Xueying Zhang
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
21
|
Ninla-Aesong P, Kietdumrongwong P, Neupane SP, Puangsri P, Jongkrijak H, Chotipong P, Kaewpijit P. Relative value of novel systemic immune-inflammatory indices and classical hematological parameters in predicting depression, suicide attempts and treatment response. Sci Rep 2024; 14:19018. [PMID: 39152198 PMCID: PMC11329510 DOI: 10.1038/s41598-024-70097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
This study compared the power of the novel inflammatory markers systemic immune inflammation index (SII) and the system inflammation response index (SIRI) versus the classical hematological indices neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and platelet counts in distinguishing between major depressive disorder (MDD) with and without suicide attempts and distinguishing the non-response to selective serotonin reuptake inhibitor (SSRI) treatment. A total of 139 young adult MDD patients and 54 healthy controls (HC) were included. We found that, in comparison to HC, baseline NLR, PLR, SII, and SIRI were significantly higher in MDD patients, but only NLR and SII had area under the ROC curve (AUC) values greater than 0.7. MDD patients with suicide attempts (SA) showed significantly higher baseline MLR and SIRI, and a tendency to increase NLR compared to those without SA. In terms of AUC, sensitivity, and specificity, NLR was better than MLR, SIRI, SII, and PLR in distinguishing SA. Non-responders to SSRI treatment showed a significant increase in baseline platelet count and PLR compared to responders with an AUC greater than 0.7. These findings highlight the potential benefit of combining novel and classical hematological indices in predicting depression, suicide attempts and treatment response.
Collapse
Affiliation(s)
- Putrada Ninla-Aesong
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand.
| | | | - Sudan Prasad Neupane
- National Centre for Suicide Research and Prevention, Institute of Clinical Medicine, University of Oslo, Sognsvannsveien 21, Building 12, 2nd Floor, 0372, Oslo, Norway
| | - Pavarud Puangsri
- Department of Medical Clinical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Haruthai Jongkrijak
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat, Thailand
| | - Potiga Chotipong
- The Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pakin Kaewpijit
- Bangkok Mental Health Rehabilitation and Recovery Center (BMRC), Bangkok Hospital, Bangkok, Thailand
| |
Collapse
|
22
|
Etyemez S, Mehta K, Tutino E, Zaidi A, Atif N, Rahman A, Malik A, Voegtline KM, Surkan PJ, Osborne LM. The immune phenotype of perinatal anxiety in an anxiety-focused behavioral intervention program in Pakistan. Brain Behav Immun 2024; 120:141-150. [PMID: 38777289 DOI: 10.1016/j.bbi.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Dysregulation of the immune system has been associated with psychiatric disorders and pregnancy-related complications, such as perinatal depression. However, the immune characteristics specific to perinatal anxiety remain poorly understood. In this study, our goal was to examine specific immune characteristics related to prenatal anxiety within the context of a randomized controlled trial designed to alleviate anxiety symptoms-the Happy Mother - Healthy Baby (HMHB) study in Rawalpindi, Pakistan. MATERIALS AND METHODS Pregnant women (n = 117) were followed prospectively in the 1st, 2nd, and 3rd trimesters (T1, T2, T3) and at 6 weeks postpartum (PP6). Each visit included a blood draw and anxiety evaluation (as measured by the anxiety subscale of the Hospital Anxiety and Depression Scale - HADS -using a cutoff ≥ 8). We enrolled both healthy controls and participants with anxiety alone; those with concurrent depression were excluded. RESULTS K-means cluster analysis revealed three anxiety clusters: Non-Anxiety, High and Consistent Anxiety, and Decreasing Anxiety. Principal components analysis revealed two distinct clusters of cytokine and chemokine activity. Women within the High and Consistent Anxiety group had significantly elevated chemokine activity across pregnancy (in trimester 1 (β = 0.364, SE = 0.178, t = 2.040, p = 0.043), in trimester 2 (β = 0.332, SE = 0.164, t = 2.020, p = 0.045), and trimester 3 (β = 0.370, SE = 0.179, t = 2.070, p = 0.040) compared to Non-Anxiety group. Elevated chemokine activity was associated with low birthweight (LBW) and small for gestational age (SGA). CONCLUSION Our findings reveal a unique pattern of immune dysregulation in pregnant women with anxiety in a Pakistani population and offer preliminary evidence that immune dysregulation associated with antenatal anxiety may be associated with birth outcomes. The dysregulation in this population is distinct from that in our other studies, indicating that population-level factors other than anxiety may play a substantial role in the differences found. (Clinicaltrials.gov # NCT04566861).
Collapse
Affiliation(s)
- Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Kruti Mehta
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Emily Tutino
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ahmed Zaidi
- Human Development Research Foundation, Rawalpindi, Pakistan
| | - Najia Atif
- Human Development Research Foundation, Rawalpindi, Pakistan
| | - Atif Rahman
- Department of Primary Care and Mental Health, University of Liverpool, Liverpool, United Kingdom
| | - Abid Malik
- Human Development Research Foundation, Rawalpindi, Pakistan
| | - Kristin M Voegtline
- Division of General Pediatrics, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, MD, USA; Department of Population, Family and Reproductive Health, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Pamela J Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Lauren M Osborne
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
23
|
Liu Y, Li C, Ren H, Han K, Wang X, Zang S, Zhao G. The relationship of peripheral blood cell inflammatory biomarkers and psychological stress in unmedicated major depressive disorder. J Psychiatr Res 2024; 176:155-162. [PMID: 38865865 DOI: 10.1016/j.jpsychires.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Recent research has explored the linkage between major depressive disorder (MDD) and inflammation, especially via altered peripheral blood immune markers. However, the relationship between several novel leukocyte-derived ratios (LDR) and psychological stress in MDD remains uncertain. This study aimed to explore the relationship between LDR, clinical characteristics, recent life events, and childhood maltreatment in MDD patients. METHODS A cross-sectional case-control study was conducted involving 59 healthy controls (HC) and 50 unmedicated MDD patients. Subjects underwent psychological assessments and peripheral blood measurements. LDR assessed in this study included neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), white blood cell-to-mean platelet volume ratio (WMR), systemic immune inflammation index (SII), multiplication of neutrophil and monocyte counts (MNM), and systemic inflammation response index (SIRI). RESULTS MDD patients displayed significant alterations in WMR, PLR, and MNM compared to HC, as well as correlations between several LDR and various clinical features (duration of untreated psychosis and dNLR, the nine-item Patient Health Questionnaire and PLR, the 7-item Generalized Anxiety Disorder Questionnaire and SIRI (NLR and dNLR). There was a significant difference in the comparison of WMR in first-episode patients than in recurrent patients. Analyses further revealed an association between Life Event Scale total scores and NLR (dNLR). No correlation was found between Childhood Trauma Questionnaire total (or subscale) scores and LDR. Additionally, WMR and dNLR presented potential predictive value for distinguishing between MDD and HC. CONCLUSION The study concludes that MDD and some clinical features are associated with alterations in some peripheral blood LDR. These findings emphasize the potential role of peripheral blood LDR in the pathogenesis and clinical heterogeneity of MDD.
Collapse
Affiliation(s)
- Yigang Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Honghong Ren
- Department of Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ke Han
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan, Shandong, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuqi Zang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan, Shandong, China
| | - Guoqing Zhao
- Department of Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
24
|
Tsang RSM, Stow D, Kwong ASF, Donnelly NA, Fraser H, Barroso IA, Holmans PA, Owen MJ, Wood ML, van den Bree MBM, Timpson NJ, Khandaker GM. Immunometabolic Blood Biomarkers of Developmental Trajectories of Depressive Symptoms: Findings From the ALSPAC Birth Cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.12.24310330. [PMID: 39040209 PMCID: PMC11261916 DOI: 10.1101/2024.07.12.24310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Studies of longitudinal trends of depressive symptoms in young people could provide insight into aetiologic mechanism, heterogeneity and origin of common cardiometabolic comorbidities for depression. Depression is associated with immunological and metabolic alterations, but immunometabolic characteristics of developmental trajectories of depressive symptoms remain unclear. Using depressive symptoms scores measured on 10 occasions between ages 10 and 25 years in the Avon Longitudinal Study of Parents and Children (n=7302), we identified four distinct trajectories: low-stable (70% of the sample), adolescent-limited (13%), adulthood-onset (10%) and adolescent-persistent (7%). We examined associations of these trajectories with: i) anthropometric, cardiometabolic and psychiatric phenotypes using multivariable regression (n=1709-3410); ii) 67 blood immunological proteins and 57 metabolomic features using empirical Bayes moderated linear models (n=2059 and n=2240 respectively); and iii) 28 blood cell counts and biochemical measures using multivariable regression (n=2256). Relative to the low-stable group, risk of depression and anxiety in adulthood was higher for all other groups, especially in the adolescent-persistent (ORdepression=22.80, 95% CI 15.25-34.37; ORGAD=19.32, 95% CI 12.86-29.22) and adulthood-onset (ORdepression=7.68, 95% CI 5.31-11.17; ORGAD=5.39, 95% CI 3.65-7.94) groups. The three depression-related trajectories vary in their immunometabolic profile, with evidence of little or no alterations in the adolescent-limited group. The adulthood-onset group shows widespread classical immunometabolic changes (e.g., increased immune cell counts and insulin resistance), while the adolescent-persistent group is characterised by higher BMI both in childhood and adulthood with few other immunometabolic changes. These findings point to distinct mechanisms and intervention opportunities for adverse cardiometabolic profile in different groups of young people with depression.
Collapse
Affiliation(s)
- Ruby S M Tsang
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK
| | - Daniel Stow
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Alex S F Kwong
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Nicholas A Donnelly
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon and Wiltshire NHS Mental Health Partnership NHS Trust, Bristol, UK
| | - Holly Fraser
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK
| | - Inês A Barroso
- Exeter Centre of Excellence for Diabetes Research, University of Exeter, UK
| | - Peter A Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Megan L Wood
- School of Psychology, University of Leeds, Leeds, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| |
Collapse
|
25
|
Kölblinger F, Schönthaler EMD, Baranyi A, Stross T, Fellendorf FT, von Lewinski D, Queissner R, Reininghaus EZ, Dalkner N. Better understanding of c-reactive protein and leukocytes in psychiatric inpatients with affective disorders: A biopsychosocial approach. World J Clin Cases 2024; 12:3824-3836. [PMID: 38994278 PMCID: PMC11235465 DOI: 10.12998/wjcc.v12.i19.3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Affective disorders (AD) have been linked to inflammatory processes, although the underlying mechanisms of this relationship are still not fully elucidated. It is hypothesized that demographic, somatic, lifestyle, and personality variables predict inflammatory parameters in AD. AIM To identify biopsychosocial factors contributing to inflammation in AD measured with two parameters, C-reactive protein (CRP) and leukocytes. METHODS This observational study investigated 186 hospital inpatients diagnosed with AD using demographic parameters, serum inflammatory markers, somatic variables, psychological questionnaires, and lifestyle parameters. Hierarchical regression analyses were used to predict inflammatory markers from demographic, somatic, lifestyle, and personality variables. RESULTS Analyses showed that 33.8% of the variance of CRP was explained by body mass index and other somatic medication (e.g. anti-diabetics), age and education, and age of affective disorder diagnosis. For leukocytes, 20.1% of the variance was explained by smoking, diet, metabolic syndrome (MetS), and anti-inflammatory medication (e.g. non-steroidal anti-inflammatory drugs). Other psychiatric or behavioural variables did not reach significance. CONCLUSION Metabolic components seem important, with mounting evidence for a metabolic affective disorder subtype. Lifestyle modifications and psychoeducation should be employed to prevent or treat MetS in AD.
Collapse
Affiliation(s)
- Felix Kölblinger
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Elena MD Schönthaler
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Andreas Baranyi
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Tatjana Stross
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Frederike T Fellendorf
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Dirk von Lewinski
- Clinical Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Robert Queissner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Eva Z Reininghaus
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Nina Dalkner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| |
Collapse
|
26
|
Chang L, Wang T, Qu Y, Fan X, Zhou X, Wei Y, Hashimoto K. Identification of novel endoplasmic reticulum-related genes and their association with immune cell infiltration in major depressive disorder. J Affect Disord 2024; 356:190-203. [PMID: 38604455 DOI: 10.1016/j.jad.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Several lines of evidence point to an interaction between genetic predisposition and environmental factors in the onset of major depressive disorder (MDD). This study is aimed to investigate the pathogenesis of MDD by identifying key biomarkers, associated immune infiltration using bioinformatic analysis and human postmortem sample. METHODS The Gene Expression Omnibus (GEO) database of GSE98793 was adopted to identify hub genes linked to endoplasmic reticulum (ER) stress-related genes (ERGs) in MDD. Another GEO database of GSE76826 was employed to validate the novel target associated with ERGs and immune infiltration in MDD. Moreover, human postmortem sample from MDD patients was utilized to confirm the differential expression analysis of hub genes. RESULTS We discovered 12 ER stress-related differentially expressed genes (ERDEGs). A LASSO Cox regression analysis helped construct a diagnostic model for these ERDEGs, incorporating immune infiltration analysis revealed that three hub genes (ERLIN1, SEC61B, and USP13) show the significant and consistent expression differences between the two groups. Western blot analysis of postmortem brain samples indicated notably higher expression levels of ERLIN1 and SEC61B in the MDD group, with USP13 also tending to increase compared to control group. LIMITATIONS The utilization of the MDD gene chip in this analysis was sourced from the GEO database, which possesses a restricted number of pertinent gene chip samples. CONCLUSIONS These findings indicate that ERDEGs especially including ERLIN1, SEC61B, and USP13 associated the infiltration of immune cells may be potential diagnostic indicators for MDD.
Collapse
Affiliation(s)
- Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Tong Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xinrong Fan
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China; Department of Thyroid and Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
27
|
Xue H, Chen J, Fan W. Assessing the causal relationship between immune cell traits and depression by Mendelian randomization analysis. J Affect Disord 2024; 356:48-53. [PMID: 38593939 DOI: 10.1016/j.jad.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Observational studies suggested that immune system disorder is associated with depression. However, the causal association has not been fully elucidated. Thus, we aim to assess the causality of the associations of immune cell profiles with risk of depression through Mendelian randomization analysis. METHODS We extracted genetic variances of immune cell traits from a large publicly available genome-wide association study (GWAS) involving 3757 participants and depression from a GWAS containing 246,363 cases and 561,190 controls of European ancestry. Inverse variance weighting (IVW) was performed as the MR primary analysis. Simultaneously apply MR-Egger and weighted median as supplementary enhancements to the final result. We further performed heterogeneity and horizontal pleiotropy test to validate the main MR results. RESULTS Five immunophenotypes were identified to be significantly associated with depression risk: CD27 on IgD-CD38dimB cell (OR = 1.019, 95 % CI = 1.010-1.028, P = 1.24 × 10-5), CD45RA-CD4+T cell Absolute Count (OR = 0.974, 95 % CI = 0.962-0.986, P = 3.88 × 10-5), CD40 on CD14-CD16+monocyte (OR = 0.987, 95 % CI = 0.981-0.993, P = 2.1 × 10-4), CD27 on switched memory B cell (OR = 1.015, 95 % CI = 1.006-1.023, P = 2.6 × 10-4), CD27 on IgD-CD38-B cell (OR = 1.017, 95 % CI = 1.008-1.027, P = 3.1 × 10-4). CONCLUSION Our findings shed light on the intricate interaction pattern between the immune system and depression, offering a novel direction for researchers to investigate the underlying biological mechanisms of depression.
Collapse
Affiliation(s)
- Hua Xue
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, Sichuan, China.
| | - Jiajia Chen
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Wenhui Fan
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Front Psychiatry 2024; 15:1422939. [PMID: 38938457 PMCID: PMC11210496 DOI: 10.3389/fpsyt.2024.1422939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Major depressive disorder (MDD) is a recurrent episodic mood disorder that represents the third leading cause of disability worldwide. In MDD, several factors can simultaneously contribute to its development, which complicates its diagnosis. According to practical guidelines, antidepressants are the first-line treatment for moderate to severe major depressive episodes. Traditional treatment strategies often follow a one-size-fits-all approach, resulting in suboptimal outcomes for many patients who fail to experience a response or recovery and develop the so-called "therapy-resistant depression". The high biological and clinical inter-variability within patients and the lack of robust biomarkers hinder the finding of specific therapeutic targets, contributing to the high treatment failure rates. In this frame, precision medicine, a paradigm that tailors medical interventions to individual characteristics, would help allocate the most adequate and effective treatment for each patient while minimizing its side effects. In particular, multi-omic studies may unveil the intricate interplays between genetic predispositions and exposure to environmental factors through the study of epigenomics, transcriptomics, proteomics, metabolomics, gut microbiomics, and immunomics. The integration of the flow of multi-omic information into molecular pathways may produce better outcomes than the current psychopharmacological approach, which targets singular molecular factors mainly related to the monoamine systems, disregarding the complex network of our organism. The concept of system biomedicine involves the integration and analysis of enormous datasets generated with different technologies, creating a "patient fingerprint", which defines the underlying biological mechanisms of every patient. This review, centered on precision medicine, explores the integration of multi-omic approaches as clinical tools for prediction in MDD at a single-patient level. It investigates how combining the existing technologies used for diagnostic, stratification, prognostic, and treatment-response biomarkers discovery with artificial intelligence can improve the assessment and treatment of MDD.
Collapse
Affiliation(s)
- Fabiola Stolfi
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Sinella
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Nembrini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Virginia Landra
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
29
|
Daray FM, Grendas LN, Arena ÁR, Tifner V, Álvarez Casiani RI, Olaviaga A, Chiapella LC, Vázquez G, Penna MB, Hunter F, Prokopez CR, Carrera Silva EA, Errasti AE. Decoding the inflammatory signature of the major depressive episode: insights from peripheral immunophenotyping in active and remitted condition, a case-control study. Transl Psychiatry 2024; 14:254. [PMID: 38866753 PMCID: PMC11169351 DOI: 10.1038/s41398-024-02902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
Depression is a prevalent and incapacitating condition with a significant impact on global morbidity and mortality. Although the immune system's role in its pathogenesis is increasingly recognized, there is a lack of comprehensive understanding regarding the involvement of innate and adaptive immune cells. To address this gap, we conducted a multicenter case-control study involving 121 participants matched for sex and age. These participants had either an active (or current) major depressive episode (MDE) (39 cases) or a remitted MDE (40 cases), including individuals with major depressive disorder or bipolar disorder. We compared these 79 patients to 42 healthy controls (HC), analyzing their immunological profiles. In blood samples, we determined the complete cell count and the monocyte subtypes and lymphocyte T-cell populations using flow cytometry. Additionally, we measured a panel of cytokines, chemokines, and neurotrophic factors in the plasma. Compared with HC, people endorsing a current MDE showed monocytosis (p = 0.001), increased high-sensitivity C-reactive protein (p = 0.002), and erythrocyte sedimentation rate (p = 0.003), and an altered proportion of specific monocyte subsets. CD4 lymphocytes presented increased median percentages of activation markers CD69+ (p = 0.007) and exhaustion markers PD1+ (p = 0.013) and LAG3+ (p = 0.014), as well as a higher frequency of CD4+CD25+FOXP3+ regulatory T cells (p = 0.003). Additionally, patients showed increased plasma levels of sTREM2 (p = 0.0089). These changes are more likely state markers, indicating the presence of an ongoing inflammatory response during an active MDE. The Random Forest model achieved remarkable classification accuracies of 83.8% for MDE vs. HC and 70% for differentiating active and remitted MDE. Interestingly, the cluster analysis identified three distinct immunological profiles among MDE patients. Cluster 1 has the highest number of leukocytes, mainly given by the increment in lymphocyte count and the lowest proinflammatory cytokine levels. Cluster 3 displayed the most robust inflammatory pattern, with high levels of TNFα, CX3CL1, IL-12p70, IL-17A, IL-23, and IL-33, associated with the highest level of IL-10, as well as β-NGF and the lowest level for BDNF. This profile is also associated with the highest absolute number and percentage of circulating monocytes and the lowest absolute number and percentage of circulating lymphocytes, denoting an active inflammatory process. Cluster 2 has some cardinal signs of more acute inflammation, such as elevated levels of CCL2 and increased levels of proinflammatory cytokines such as IL-1β, IFNγ, and CXCL8. Similarly, the absolute number of monocytes is closer to a HC value, as well as the percentage of lymphocytes, suggesting a possible initiation of the inflammatory process. The study provides new insights into the immune system's role in MDE, paving the ground for replication prospective studies targeting the development of diagnostic and prognostic tools and new therapeutic targets.
Collapse
Affiliation(s)
- Federico Manuel Daray
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.
| | - Leandro Nicolás Grendas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Hospital General de Agudos "Dr. Teodoro Álvarez", Ciudad de Buenos Aires, Argentina
| | - Ángeles Romina Arena
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Vera Tifner
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Romina Isabel Álvarez Casiani
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Hospital General de Agudos "Dr. Teodoro Álvarez", Ciudad de Buenos Aires, Argentina
| | - Alejandro Olaviaga
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Hospital General de Agudos "Dr. Cosme Argerich", Ciudad de Buenos Aires, Argentina
| | - Luciana Carla Chiapella
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Gustavo Vázquez
- Queen's University Medical School Kingston, Kingston, ON, Canada
| | - Melina Bianca Penna
- Hospital General de Agudos "Dr. Teodoro Álvarez", Ciudad de Buenos Aires, Argentina
| | - Fernando Hunter
- Hospital General de Agudos "José María Ramos Mejía", Ciudad de Buenos Aires, Argentina
| | - Cintia Romina Prokopez
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Hospital Neuropsiquiátrico "Dr. Braulio A. Moyano", Ciudad de Buenos Aires, Argentina
| | - Eugenio Antonio Carrera Silva
- Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina, Ciudad de Buenos Aires, Argentina.
| | - Andrea Emilse Errasti
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
30
|
Poletti S, Mazza MG, Benedetti F. Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry 2024; 14:247. [PMID: 38851764 PMCID: PMC11162479 DOI: 10.1038/s41398-024-02921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are highly disabling illnesses defined by different psychopathological, neuroimaging, and cognitive profiles. In the last decades, immune dysregulation has received increasing attention as a central factor in the pathophysiology of these disorders. Several aspects of immune dysregulations have been investigated, including, low-grade inflammation cytokines, chemokines, cell populations, gene expression, and markers of both peripheral and central immune activation. Understanding the distinct immune profiles characterizing the two disorders is indeed of crucial importance for differential diagnosis and the implementation of personalized treatment strategies. In this paper, we reviewed the current literature on the dysregulation of the immune response system focusing our attention on studies using inflammatory markers to discriminate between MDD and BD. High heterogeneity characterized the available literature, reflecting the heterogeneity of the disorders. Common alterations in the immune response system include high pro-inflammatory cytokines such as IL-6 and TNF-α. On the contrary, a greater involvement of chemokines and markers associated with innate immunity has been reported in BD together with dynamic changes in T cells with differentiation defects during childhood which normalize in adulthood, whereas classic mediators of immune responses such as IL-4 and IL-10 are present in MDD together with signs of immune-senescence.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Guo Z, Xie Z, Wang P, Li S, Xin X, Wang X. The moderating effect of physical activity on the relationship between neutrophil count and depressive symptoms. Sci Rep 2024; 14:12647. [PMID: 38825659 PMCID: PMC11144697 DOI: 10.1038/s41598-024-63432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024] Open
Abstract
Variations in immune cell counts can trigger depressive symptoms, while physical activity effectively reduces the risk and severity of depressive symptoms. This study, based on the NHANES database, analyzes the relationship between neutrophil count and depressive symptoms and explores the moderating effect of physical activity on this relationship. Cross-sectional data from the NHANES database were extracted, including immune cell counts, PHQ-9 scores for self-assessment of depressive symptoms, and Global Physical Activity Questionnaire (GPAQ) scores (PA). The interrelations among physical activity, neutrophil count, and depressive symptoms were analyzed. After controlling for confounding factors, neutrophil count was found to have a significant role in identifying depressive symptoms with an odds ratio (OR) [95% Confidence Interval (CI)] = 1.13 [1.02, 1.251]; the moderating effect of physical activity on the impact of neutrophil count on depressive symptoms was statistically significant (coefficient = -0.0028, P < 0.05). Neutrophil count may be a significant factor in identifying depressive symptoms in adults. As an effective moderating factor, physical activity can mitigate the impact of neutrophil count on depressive symptoms to a certain extent.
Collapse
Affiliation(s)
- Zhaohui Guo
- Shanghai University of Sport, Shanghai, 200438, China
| | - Zhenwen Xie
- Shanghai University of Sport, Shanghai, 200438, China
| | - Peng Wang
- Shanghai University of Sport, Shanghai, 200438, China
| | - Shufan Li
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xin Xin
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xing Wang
- Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
32
|
Rachayon M, Jirakran K, Sodsai P, Sughondhabirom A, Maes M. T cell activation and deficits in T regulatory cells are associated with major depressive disorder and severity of depression. Sci Rep 2024; 14:11177. [PMID: 38750122 PMCID: PMC11096341 DOI: 10.1038/s41598-024-61865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Major depressive disorder (MDD) is associated with T cell activation, but no studies have examined the combined effects of T cell activation and deficits in T regulatory (Treg) cells on the severity of acute phase MDD. Using flow cytometry, we determined the percentage and median fluorescence intensity of CD69, CD71, CD40L, and HLADR-bearing CD3+, CD4+, and CD8+ cells, and cannabinoid type 1 receptor (CB1), CD152 and GARP (glycoprotein A repetitions predominant)-bearing CD25+ FoxP3 T regulatory (Treg) cells in 30 MDD patients and 20 healthy controls in unstimulated and stimulated (anti-CD3/CD28) conditions. Based on cytokine levels, we assessed M1 macrophage, T helper (Th)-1 cell, immune-inflammatory response system (IRS), T cell growth, and neurotoxicity immune profiles. We found that the immune profiles (including IRS and neurotoxicity) were significantly predicted by decreased numbers of CD152 or GARP-bearing CD25+ FoxP3 cells or CD152 and GARP expression in combination with increases in activated T cells (especially CD8+ CD40L+ percentage and expression). MDD patients showed significantly increased numbers of CD3+ CD71+, CD3+ CD40L+, CD4+ CD71+, CD4+ CD40L+, CD4+ HLADR+, and CD8+ HLADR+ T cells, increased CD3+ CD71+, CD4+ CD71+ and CD4+ HLADR+ expression, and lowered CD25+ FoxP3 expression and CD25+ FoxP+ CB1+ numbers as compared with controls. The Hamilton Depression Rating Scale score was strongly predicted (between 30 and 40% of its variance) by a lower number of CB1 or GARP-bearing Treg cells and one or more activated T cell subtypes (especially CD8+ CD40L+). In conclusion, increased T helper and cytotoxic cell activation along with decreased Treg homeostatic defenses are important parts of MDD that lead to enhanced immune responses and, as a result, neuroimmunotoxicity.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Maximizing Children's Developmental Potential, Chulalongkorn University, Bangkok, Thailand
| | - Pimpayao Sodsai
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
33
|
Lorenzo EC, Figueroa JE, Demirci DA, El-Tayyeb F, Huggins BJ, Illindala M, Bartley JM, Haynes L, Diniz BS. Unraveling the association between major depressive disorder and senescent biomarkers in immune cells of older adults: a single-cell phenotypic analysis. FRONTIERS IN AGING 2024; 5:1376086. [PMID: 38665228 PMCID: PMC11043554 DOI: 10.3389/fragi.2024.1376086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Background: Little is known about the prevalence of cellular senescence among immune cells (i.e., immune cells expressing senescence markers, iSCs) nor is there a gold-standard to efficiently measure iSCs. Major depressive disorder (MDD) in older adults has been associated with many hallmarks of senescence in whole blood, leukocytes, and plasma, supporting a strong connection between iSCs and MDD. Here, we investigated the prevalence and phenotype of iSCs in older adults with MDD. Using a single-cell phenotypic approach, circulating immune cells were examined for iSC biomarkers and their relationship to depression and inflammation. Results: PBMCs from older adults with MDD (aged 69.75 ± 5.23 years) and healthy controls (aged 71.25 ± 8.8 years) were examined for immune subset distribution and senescence biomarkers (i.e., lack of proliferation, senescence-associated heterochromatin foci (SAHF), and DNA damage). Dual-expression of SAHF and DNA damage was categorized by low, intermediate, and high expression. A significant increase in the number of high expressing total PBMCs (p = 0.01), monocytes (p = 0.008), a trending increase in the number of high expressing CD4 T cells (p = 0.06) was observed overall in those with MDD. There was also a significantly lower proportion of intermediate expressing cells in monocytes and CD4 T cells in MDD (p = 0.01 and p = 0.05, respectively). Correlation analysis revealed associations between iSCs and mRNA expression of factors related to SASP and immune cell function. Conclusion: MDD is associated with increased senescent cell biomarkers in immune cell populations delineated by distinct levels of SAHF and DNA damage. Inflammatory markers might serve as potent indicators of iSC burden in MDD.
Collapse
Affiliation(s)
- Erica C. Lorenzo
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Jovany E. Figueroa
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
- Ponce Health Sciences University School of Medicine, Ponce, PR, United States
| | - Derya A. Demirci
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Ferris El-Tayyeb
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Billy J. Huggins
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Medha Illindala
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Jenna M. Bartley
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Laura Haynes
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Breno S. Diniz
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
34
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
35
|
Yang J, Zhang S, Wu Q, Chen P, Dai Y, Long J, Wu Y, Lin Y. T cell-mediated skin-brain axis: Bridging the gap between psoriasis and psychiatric comorbidities. J Autoimmun 2024; 144:103176. [PMID: 38364575 DOI: 10.1016/j.jaut.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Psoriasis, a chronic inflammatory skin condition, is often accompanied by psychiatric comorbidities such as anxiety, depression, suicidal ideation, and other mental disorders. Psychological disorders may also play a role in the development and progression of psoriasis. The intricate interplay between the skin diseases and the psychiatric comorbidities is mediated by the 'skin-brain axis'. Understanding the mechanisms underlying psoriasis and psychiatric comorbidities can help improve the efficacy of treatment by breaking the vicious cycle of diseases. T cells and related cytokines play a key role in the pathogenesis of psoriasis and psychiatric diseases, and are crucial components of the 'skin-brain axis'. Apart from damaging the blood-brain barrier (BBB) directly, T cells and secreted cytokines could interact with the hypothalamic-pituitary-adrenal axis (HPA axis) and the sympathetic nervous system (SNS) to exacerbate skin diseases or mental disorders. However, few reviews have systematically summarized the roles and mechanisms of T cells in the interaction between psoriasis and psychiatric comorbidities. In this review, we discussed several key T cells and their roles in the 'skin-brain axis', with a focus on the mechanisms underlying the interplay between psoriasis and mental commodities, to provide data that might help develop effective strategies for the treatment of both psoriasis and psychiatric comorbidities.
Collapse
Affiliation(s)
- Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qixuan Wu
- Mental Health Services, Blacktown Hospital, Blacktow, NSW, 2148, Australia
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
36
|
Zhang T, Wang J, Wang Y, He L, Lv S, Wang Y, Li W. Wenyang-Tianjing-Jieyu Decoction Improves Depression Rats of Kidney Yang Deficiency Pattern by Regulating T Cell Homeostasis and Inflammation Level. Neuropsychiatr Dis Treat 2024; 20:631-647. [PMID: 38545129 PMCID: PMC10966763 DOI: 10.2147/ndt.s445636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024] Open
Abstract
Purpose Chronic inflammation is one of the key mechanisms of depression. Wenyang-Tianjin-Jie Decoction (WTJD) is an effective antidepressant found in the course of diagnosis and treatment, but the mechanism of therapeutic effect is not clear. The study aimed to evaluate the efficacy of WTJD in the kidney yang deficiency (KYD) type of depression rats and reveal its mechanisms. Materials and Methods We selected forty 6-week-old male Sprague-Dawley rats for the study. We established a KYD [Phellodendron amurense Rupr (Huangbai) solution oral gavage and 4°C environments; 8 weeks] type of depression (chronic unpredictable mild stimulus; 6 weeks) rat model first. After successful modeling, we used WTJD or fluoxetine on rats for 3 weeks. Then we evaluated the depression and KYD behavior. Finally, we observed the expression of key inflammatory factors and proteins in peripheral blood and hippocampus, and further investigated the immune balance of Th17/Treg and Th1/Th2 cells and the activity of their main regulatory pathways JAK2/STAT3 and TLR4/TRAF6/NF-κB. Results The imbalance of Th17/Treg and Th1/Th2 cells in rats were related to KYD and depressive symptoms. Through this study, we found that WTJD can inhibit the activity of JAK2/STAT3 and TLR4/TRAF6/NF-κB pathways, balance Th17/Treg and Th1/Th2 cell homeostasis, regulate the levels of inflammatory factors in the hippocampus and peripheral blood, and reverse KYD and depression. Conclusion This study confirmed that WTJD had a reliable effect on depression rats with KYD, and its mechanism was to regulate the immune homeostasis of hippocampal T cells and related inflammatory factors to improve KYD and depression symptoms in rats.
Collapse
Affiliation(s)
- Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Linxi He
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Shangbin Lv
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yiran Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
37
|
Beydoun HA, Beydoun MA, Wassertheil-Smoller S, Saquib N, Manson JE, Snetselaar L, Weiss J, Zonderman AB, Brunner R. Depressive symptoms and antidepressant use in relation to white blood cell count among postmenopausal women from the Women's Health Initiative. Transl Psychiatry 2024; 14:157. [PMID: 38514652 PMCID: PMC10958010 DOI: 10.1038/s41398-024-02872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammation can play a role in the pathophysiology of depression, and specific types of antidepressants may have inflammatory or anti-inflammatory properties. Furthermore, depression and antidepressant use has been linked to white blood cell (WBC) count, a routinely measured inflammatory marker. We examined the cross-sectional and longitudinal relationships of depressive symptoms and/or antidepressant use with WBC count among postmenopausal women. Analyses of cross-sectional data at enrollment were performed on 125,307 participants, 50-79 years of age, from the Women's Health Initiative Clinical Trials and Observational Studies who met eligibility criteria, and a subset of those with 3-year follow-up data were examined for longitudinal relationships. Depressive symptoms were defined using the Burnam Algorithm whereas antidepressant use was defined using therapeutic class codes. WBC count (Kcell/ml) was obtained through laboratory evaluations of fasting blood samples. Multivariable regression modeling was performed taking sociodemographic, lifestyle and health characteristics into consideration. At enrollment, nearly 85% were non-users of antidepressants with no depressive symptoms, 5% were antidepressant users with no depressive symptoms, 9% were non-users of antidepressants with depressive symptoms, and 2% were users of antidepressants with depressive symptoms. In fully-adjusted models, cross-sectional relationships were observed whereby women in the 2nd (OR = 1.06, 95% CI: 1.01, 1.13), 3rd (OR = 1.06, 95% CI: 1.00, 1.12) or 4th (OR = 1.10, 95% CI: 1.05, 1.17) quartiles of WBC count were more likely to exhibit depressive symptoms, and women in the 4th quartile were more likely to be users of antidepressants (OR = 1.07, 95% CI: 1.00, 1.15), compared to women in the 1st quartile. Compared to women who exhibited no depressive symptoms at either visit, those with consistent depressive symptoms at enrollment and at 3-year follow-up had faster decline in WBC count (β = -0.73, 95% CI: -1.33, -0.14) over time. No significant bidirectional relationships were observed between changes in depressive symptoms score and WBC count over time. In conclusion, depressive symptoms and/or antidepressant use were cross-sectionally related to higher WBC counts among postmenopausal women. Further evaluation of observed relationships is needed in the context of prospective cohort studies involving older adult men and women, with repeated measures of depression, antidepressant use, and WBC count.
Collapse
Affiliation(s)
- Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA.
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA.
| | - May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | | | - Nazmus Saquib
- College of Medicine, Sulaiman AlRajhi University, Al Bukairiyah, Kingdom of Saudi Arabia
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Jordan Weiss
- Department of Demography, UC Berkeley, Berkeley, CA, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Robert Brunner
- Department of Family and Community Medicine (Emeritus), School of Medicine, University of Nevada (Reno), Reno, NV, USA
| |
Collapse
|
38
|
Xiang Y, Luo X. Extrapulmonary Comorbidities Associated with Chronic Obstructive Pulmonary Disease: A Review. Int J Chron Obstruct Pulmon Dis 2024; 19:567-578. [PMID: 38476124 PMCID: PMC10927883 DOI: 10.2147/copd.s447739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Most patients with chronic obstructive pulmonary disease (COPD) suffer from at least one additional, clinically relevant chronic disease. To a degree, the high global prevalence and mortality rate of COPD is closely related to its extrapulmonary effects. Moreover, the various of comorbidities of COPD and itself interact with each other, resulting in diverse clinical manifestations and individual differences, and thus further influencing the prognosis as well as healthcare burden of COPD patients. This is closely related to the common risk factors of chronic diseases (aging, smoking, inactivity, etc.). Additionally, some pathophysiological mechanisms caused by COPD, including the systemic inflammatory response, hypoxia, oxidative stress, and others, also have an impact on other systems. But comprehensive management and medical interventions have not yet been established. The clinicians should improve their knowledge and skills in diagnosing as well as treating the comorbidities of COPD, and then aim to develop more individualized, efficient diagnostic and therapeutic strategies for different patients to achieve greater clinical benefits. In this article, we will review the risk factors, mechanisms, and treatment strategies for extrapulmonary comorbidities in chronic obstructive pulmonary disease, including cardiovascular diseases, diabetes, anemia, osteoporosis, emotional disorders, and gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Yurong Xiang
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610000, People’s Republic of China
| | - Xiaobin Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| |
Collapse
|
39
|
Cavanagh JT. Anti-inflammatory Drugs in the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:217-231. [PMID: 38112963 DOI: 10.1007/7854_2023_459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The last two decades have seen a flourishing of research into the immunobiology of psychiatric phenotypes, in particular major depressive disorder. Both preclinical and clinical data have highlighted pathways and possible mechanisms that might link changes in immunobiology, most especially inflammation, to clinically relevant behaviour. From a therapeutics perspective, a major impetus has been the action of Biologics, often monoclonal antibodies, that target specific cytokines acting as "molecular scalpels" helping to uncover the actions of those proteins. These interventions have been associated with improvements in mood and related symptoms. There are now enough studies and participants to permit meta-analytic analyses of the actions of these and other anti-inflammatory agents.In this chapter, the focus is on the evidence for the role of inflammation biology in depression and the meta-analytic data from trials. The putative mechanisms that might underpin the antidepressant effect of anti-inflammatory drugs are also explored. Lastly, I describe the more stubborn difficulties around heterogeneity, deep phenotyping and stratification as well as improved animal models and greater understanding of the biology that might be addressed by future studies.
Collapse
Affiliation(s)
- Jonathan T Cavanagh
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
40
|
Lange K, Pham C, Fedyszyn IE, Cook F, Burgner DP, Olsson CA, Downes M, Priest N, Mansell T, Tang MLK, Ponsonby AL, Symeonides C, Loughman A, Vuillermin P, Kerr JA, Gray L, Sly PD, Lycett K, Carlin JB, Saffery R, Wake M, O'Connor M. Emotional symptoms and inflammatory biomarkers in childhood: Associations in two Australian birth cohorts. J Affect Disord 2024; 344:356-364. [PMID: 37832736 DOI: 10.1016/j.jad.2023.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND An increasing body of evidence supports associations between inflammation and mental health difficulties, but the onset and directionality of these relationships are unclear. METHODS Data sources: Barwon Infant Study (BIS; n = 500 4-year-olds) and Longitudinal Study of Australian Children (LSAC; n = 1099 10-13-year-olds). MEASURES Strengths and Difficulties Questionnaire emotional symptoms at 4, 10-11 and 12-13 years, and circulating levels of two inflammatory biomarkers, high-sensitivity C-reactive protein (hsCRP) and glycoprotein acetyls (GlycA), at 4 and 11-12 years. ANALYSIS Adjusted quantile regression models examining cross-sectional associations between emotional symptoms and inflammation in 4-year-olds (BIS), and cross-lagged associations in 10-13-year-olds (LSAC). RESULTS We identified a small association between higher emotional symptoms at 10-11 years and higher GlycA levels a year later (standardised coefficient β = 0.09; 95%CI: 0.02 to 0.15). Sex-stratified analyses revealed this association was stronger for boys (β = 0.13; 95%CI: 0.04 to 0.21) than girls (β = 0.01; 95%CI: -0.09 to 0.11). These associations were not observed for hsCRP. There was little evidence of an association between higher GlycA or hsCRP at 11-12 years and emotional symptoms a year later, or cross-sectional associations between emotional symptoms and hsCRP or GlycA at 4 years. LIMITATIONS A single time-point of biomarker collection in late childhood precluded adjustment for baseline inflammatory biomarkers. CONCLUSIONS Our results support the direction of association from emotional symptoms to inflammation in late childhood, with potential sex differences. This adds to the body of evidence that addressing emotional symptoms in childhood is a major priority in optimising overall health throughout the life course.
Collapse
Affiliation(s)
- Katherine Lange
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia.
| | - Cindy Pham
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia
| | - Izabela E Fedyszyn
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Melbourne School of Population and Global Health, Parkville, VIC, Australia
| | - Fallon Cook
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - David P Burgner
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia; Monash University, Department of Paediatrics, Clayton, VIC, Australia
| | - Craig A Olsson
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia; Deakin University, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, Burwood, VIC, Australia
| | - Marnie Downes
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Naomi Priest
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Australian National University, Centre for Social Research and Methods, Canberra, ACT, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Melbourne School of Population and Global Health, Parkville, VIC, Australia; University of Melbourne, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Royal Children's Hospital, Parkville, VIC, Australia; Minderoo Foundation, Perth, WA, Australia
| | - Amy Loughman
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Geelong, VIC, Australia
| | - Peter Vuillermin
- Deakin University, School of Medicine, Geelong, VIC, Australia; Barwon Health, Child Health Research Unit, Geelong, VIC, Australia
| | - Jessica A Kerr
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia; University of Otago, Department of Psychological Medicine, Christchurch, New Zealand
| | - Lawrence Gray
- Deakin University, School of Medicine, Geelong, VIC, Australia; Barwon Health, Child Health Research Unit, Geelong, VIC, Australia
| | - Peter D Sly
- University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
| | - Kate Lycett
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia; Deakin University, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, Burwood, VIC, Australia
| | - John B Carlin
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia
| | - Melissa Wake
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia; University of Auckland, Liggins Institute, Grafton, Auckland, New Zealand
| | - Meredith O'Connor
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Department of Paediatrics, Parkville, VIC, Australia; University of Melbourne, Melbourne Graduate School of Education, Parkville, VIC, Australia
| |
Collapse
|
41
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|