1
|
Zhang W, Sloan A, Prévost J, Tamming L, Raman S, Pfeifle A, Gravel C, Chen W, Hashem AM, Wu J, Cao J, Johnston MJW, Wang L, Sauve S, Rosu-Myles M, Kobasa D, Safronetz D, Li X. Dissecting Immunological Mechanisms Underlying Influenza Viral Nucleoprotein-induced Mucosal Immunity Against Diverse Viral Strains. Emerg Microbes Infect 2024:2427792. [PMID: 39508450 DOI: 10.1080/22221751.2024.2427792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The nucleoprotein (NP) of type A influenza virus (IAV) is highly conserved across all virus strains, making it an attractive candidate antigen for universal vaccines. While various studies have explored NP-induced mucosal immunity, here we interrogated the mechanistic differences between intramuscular (IM) and intranasal (IN) delivery of a recombinant adenovirus carrying NP fused with a bifunctional CD40 ligand. Despite being less effective than IM delivery in inducing systemic cellular immune responses and antibody-dependent cellular cytotoxicity (ADCC), IN immunization elicited superior antigen-specific recall humoral and cellular response in the nasal associated lymphoid tissue (NALT) of the upper respiratory tract, the initial site of immune recognition and elimination of inhaled pathogens. IN vaccination also induced significantly stronger pulmonary T cell responses in the lower respiratory tract than IM vaccination, in particular the CD8 T cells. Moreover, blocking lymphocyte circulation abrogated IM but not IN immunization induced protection, illustrating the critical role of local memory immune response upon viral infection. Notably, the CD40-targeted nasal delivery not only improved the magnitude but also the breadth of protection, including against lethal challenge with a newly isolated highly pathogenic avian H5N1 strain. These findings are informative for the design of universal mucosal vaccines, where the predominant mode of protection is independent of neutralizing antibodies.
Collapse
Affiliation(s)
- Wanyue Zhang
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Angela Sloan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jérémie Prévost
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Levi Tamming
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sathya Raman
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Annabelle Pfeifle
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON, Canada
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jianguo Wu
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael J W Johnston
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Chemistry, Carlton University, Ottawa, On, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Simon Sauve
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Fuchs J, Hübner J, Schmidt A, Irrgang P, Maier C, Vieira Antão A, Oltmanns F, Thirion C, Lapuente D, Tenbusch M. Evaluation of adenoviral vector Ad19a encoding RSV-F as novel vaccine against respiratory syncytial virus. NPJ Vaccines 2024; 9:205. [PMID: 39472590 PMCID: PMC11522487 DOI: 10.1038/s41541-024-01001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants and toddlers. Since natural infections do not induce persistent immunity, there is the need of vaccines providing long-term protection. Here, we evaluated a new adenoviral vector (rAd) vaccine based on the rare serotype rAd19a and compared the immunogenicity and efficacy to the highly immunogenic rAd5. Given as an intranasal boost in DNA primed mice, both vectors encoding the F protein provided efficient protection against a subsequent RSV infection. However, intramuscular immunization with rAd19a vectors provoked vaccine-enhanced disease after RSV infection compared to non-vaccinated animals. While mucosal IgA antibodies and tissue-resident memory T-cells in intranasally vaccinated mice rapidly control RSV replication, a strong anamnestic systemic T-cell response in absence of local immunity might be the reason for immune-mediated enhanced disease. Our study highlighted the potential benefits of developing effective mucosal against respiratory pathogens.
Collapse
Affiliation(s)
- Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Julian Hübner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Clara Maier
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | | | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054, Erlangen, Germany.
| |
Collapse
|
3
|
Vatzia E, Paudyal B, Dema B, Carr BV, Sedaghat-Rostami E, Gubbins S, Sharma B, Moorhouse E, Morris S, Ulaszewska M, MacLoughlin R, Salguero FJ, Gilbert SC, Tchilian E. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. NPJ Vaccines 2024; 9:188. [PMID: 39397062 PMCID: PMC11471855 DOI: 10.1038/s41541-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Current influenza vaccines are strain-specific and require frequent updates to combat new strains, making a broadly protective influenza vaccine (BPIV) highly desirable. A promising strategy is to induce T-cell responses against internal proteins conserved across influenza strains. In this study, pH1N1 pre-exposed pigs were immunized by aerosol using viral vectored vaccines (ChAdOx2 and MVA) expressing matrix (M1) and nucleoprotein (NP). Following H3N2 challenge, all immunizations (M1, NP or NPM1) reduced lung pathology, but M1 alone offered the greatest protection. NP or NPM1 immunization induced both T-cell and antibody responses. M1 immunization generated no detectable antibodies but elicited M1-specific T-cell responses, suggesting T cell-mediated protection. Additionally, a single aerosol immunization with the ChAdOx vaccine encoding M1, NP and neuraminidase reduced lung pathology. These findings provide insights into BPIV development using a relevant large natural host, the pig.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
5
|
Muir A, Paudyal B, Schmidt S, Sedaghat-Rostami E, Chakravarti S, Villanueva-Hernández S, Moffat K, Polo N, Angelopoulos N, Schmidt A, Tenbusch M, Freimanis G, Gerner W, Richard AC, Tchilian E. Single-cell analysis reveals lasting immunological consequences of influenza infection and respiratory immunization in the pig lung. PLoS Pathog 2024; 20:e1011910. [PMID: 39024231 PMCID: PMC11257366 DOI: 10.1371/journal.ppat.1011910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The pig is a natural host for influenza viruses and integrally involved in virus evolution through interspecies transmissions between humans and swine. Swine have many physiological, anatomical, and immunological similarities to humans, and are an excellent model for human influenza. Here, we employed single cell RNA-sequencing (scRNA-seq) and flow cytometry to characterize the major leukocyte subsets in bronchoalveolar lavage (BAL), twenty-one days after H1N1pdm09 infection or respiratory immunization with an adenoviral vector vaccine expressing hemagglutinin and nucleoprotein with or without IL-1β. Mapping scRNA-seq clusters from BAL onto those previously described in peripheral blood facilitated annotation and highlighted differences between tissue resident and circulating immune cells. ScRNA-seq data and functional assays revealed lasting impacts of immune challenge on BAL populations. First, mucosal administration of IL-1β reduced the number of functionally active Treg cells. Second, influenza infection upregulated IFI6 in BAL cells and decreased their susceptibility to virus replication in vitro. Our data provide a reference map of porcine BAL cells and reveal lasting immunological consequences of influenza infection and respiratory immunization in a highly relevant large animal model for respiratory virus infection.
Collapse
Affiliation(s)
- Andrew Muir
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | | | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Anna Schmidt
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
6
|
Vieira Antão A, Oltmanns F, Schmidt A, Viherlehto V, Irrgang P, Rameix-Welti MA, Bayer W, Lapuente D, Tenbusch M. Filling two needs with one deed: a combinatory mucosal vaccine against influenza A virus and respiratory syncytial virus. Front Immunol 2024; 15:1376395. [PMID: 38975350 PMCID: PMC11224462 DOI: 10.3389/fimmu.2024.1376395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFβ or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses.
Collapse
Affiliation(s)
- Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vera Viherlehto
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), Institut national de la santé et de la recherche médicale (INSERM), Montigny-le-Bretonneux, France
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Kim DH, Lee WW. IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance. Immune Netw 2024; 24:e21. [PMID: 38974214 PMCID: PMC11224669 DOI: 10.4110/in.2024.24.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Cancer Research Institute, Seoul 03080, Korea
- Institute of Endemic Diseases and Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
8
|
Silva F, Boal-Carvalho I, Williams N, Chabert M, Niu C, Hedhili D, Choltus H, Liaudet N, Gaïa N, Karenovics W, Francois P, Schmolke M. Identification of a short sequence motif in the influenza A virus pathogenicity factor PB1-F2 required for inhibition of human NLRP3. J Virol 2024; 98:e0041124. [PMID: 38567952 PMCID: PMC11092369 DOI: 10.1128/jvi.00411-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
Influenza A virus infection activates the NLRP3 inflammasome, a multiprotein signaling complex responsible for the proteolytic activation and release of the proinflammatory cytokine IL-1β from monocytes and macrophages. Some influenza A virus (IAV) strains encode a short 90-amino acid peptide (PB1-F2) on an alternative open reading frame of segment 2, with immunomodulatory activity. We recently demonstrated that contemporary IAV PB1-F2 inhibits the activation of NLRP3, potentially by NEK7-dependent activation. PB1-F2 binds to NLRP3 with its C-terminal 50 amino acids, but the exact binding motif was unknown. On the NLRP3 side, the interface is formed through the leucine-rich-repeat (LRR) domain, potentially in conjunction with the pyrin domain. Here, we took advantage of PB1-F2 sequences from IAV strains with either weak or strong NLRP3 interaction. Sequence comparison and structure prediction using Alphafold2 identified a short four amino acid sequence motif (TQGS) in PB1-F2 that defines NLRP3-LRR binding. Conversion of this motif to that of the non-binding PB1-F2 suffices to lose inhibition of NLRP3 dependent IL-1β release. The TQGS motif further alters the subcellular localization of PB1-F2 and its colocalization with NLRP3 LRR and pyrin domain. Structural predictions suggest the establishment of additional hydrogen bonds between the C-terminus of PB1-F2 and the LRR domain of NLRP3, with two hydrogen bonds connecting to threonine and glutamine of the TQGS motif. Phylogenetic data show that the identified NLRP3 interaction motif in PB1-F2 is widely conserved among recent IAV-infecting humans. Our data explain at a molecular level the specificity of NLRP3 inhibition by influenza A virus. IMPORTANCE Influenza A virus infection is accompanied by a strong inflammatory response and high fever. The human immune system facilitates the swift clearance of the virus with this response. An essential signal protein in the proinflammatory host response is IL-1b. It is released from inflammatory macrophages, and its production and secretion depend on the function of NLRP3. We had previously shown that influenza A virus blocks NLRP3 activation by the expression of a viral inhibitor, PB1-F2. Here, we demonstrate how this short peptide binds to NLRP3 and provide evidence that a four amino acid stretch in PB1-F2 is necessary and sufficient to mediate this binding. Our data identify a new virus-host interface required to block one signaling path of the innate host response against influenza A virus.
Collapse
Affiliation(s)
- Filo Silva
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Inês Boal-Carvalho
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Nathalia Williams
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Mehdi Chabert
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Chengyue Niu
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Dalila Hedhili
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Hélèna Choltus
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Nicolas Liaudet
- Bioimaging Core Facility, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Patrice Francois
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
- Thoracic Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
- Geneva Center for inflammation research, Medical Faculty, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Hoffmann JP, Srivastava A, Yang H, Iwanaga N, Remcho TP, Hewes JL, Sharoff R, Song K, Norton EB, Kolls JK, McCombs JE. Vaccine-elicited IL-1R signaling results in Th17 TRM-mediated immunity. Commun Biol 2024; 7:433. [PMID: 38594380 PMCID: PMC11003962 DOI: 10.1038/s42003-024-06138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Lung tissue resident memory (TRM) cells are thought to play crucial roles in lung host defense. We have recently shown that immunization with the adjuvant LTA1 (derived from the A1 domain of E. coli heat labile toxin) admixed with OmpX from K. pneumoniae can elicit antigen specific lung Th17 TRM cells that provide serotype independent immunity to members of the Enterobacteriaceae family. However, the upstream requirements to generate these cells are unclear. Single-cell RNA-seq showed that vaccine-elicited Th17 TRM cells expressed high levels of IL-1R1, suggesting that IL-1 family members may be critical to generate these cells. Using a combination of genetic and antibody neutralization approaches, we show that Th17 TRM cells can be generated independent of caspase-1 but are compromised when IL-1α is neutralized. Moreover IL-1α could serve as a molecular adjuvant to generate lung Th17 TRM cells independent of LTA1. Taken together, these data suggest that IL-1α plays a major role in vaccine-mediated lung Th17 TRM generation.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Akhilesh Srivastava
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Haoran Yang
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Naoki Iwanaga
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - T Parks Remcho
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jenny L Hewes
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Rayshma Sharoff
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth B Norton
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Janet E McCombs
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
10
|
Oltmanns F, Vieira Antão A, Irrgang P, Viherlehto V, Jörg L, Schmidt A, Wagner JT, Rückert M, Flohr AS, Geppert CI, Frey B, Bayer W, Gravekamp C, Tenbusch M, Gaipl U, Lapuente D. Mucosal tumor vaccination delivering endogenous tumor antigens protects against pulmonary breast cancer metastases. J Immunother Cancer 2024; 12:e008652. [PMID: 38458636 PMCID: PMC10921546 DOI: 10.1136/jitc-2023-008652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Generally, early-stage breast cancer has a good prognosis. However, if it spreads systemically, especially with pulmonary involvement, prospects worsen dramatically. Importantly, tumor-infiltrating T cells contribute to tumor control, particularly intratumoral T cells with a tissue-resident memory phenotype are associated with an improved clinical outcome. METHODS Here, we use an adenoviral vector vaccine encoding endogenous tumor-associated antigens adjuvanted with interleukin-1β to induce tumor-specific tissue-resident memory T cells (TRM) in the lung for the prevention and treatment of pulmonary metastases in the murine 4T1 breast cancer model. RESULTS The mucosal delivery of the vaccine was highly efficient in establishing tumor-specific TRM in the lung. Concomitantly, a single mucosal vaccination reduced the growth of pulmonary metastases and improved the survival in a prophylactic treatment. Vaccine-induced TRM contributed to these protective effects. In a therapeutic setting, the vaccination induced a pronounced T cell infiltration into metastases but resulted in only a minor restriction of the disease progression. However, in combination with stereotactic radiotherapy, the vaccine increased the survival time and rate of tumor-bearing mice. CONCLUSION In summary, our study demonstrates that mucosal vaccination is a promising strategy to harness the power of antitumor TRM and its potential combination with state-of-the-art treatments.
Collapse
Affiliation(s)
- Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Vera Viherlehto
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Leticia Jörg
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ann-Sophie Flohr
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carol Imanuel Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Claudia Gravekamp
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
11
|
Ruhl A, Antão AV, Dietschmann A, Radtke D, Tenbusch M, Voehringer D. STAT6-induced production of mucus and resistin-like molecules in lung Club cells does not protect against helminth or influenza A virus infection. Eur J Immunol 2024; 54:e2350558. [PMID: 37855177 DOI: 10.1002/eji.202350558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -β, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.
Collapse
Affiliation(s)
- Andreas Ruhl
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Axel Dietschmann
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Radtke
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Van Den Eeckhout B, Ballegeer M, De Clercq J, Burg E, Saelens X, Vandekerckhove L, Gerlo S. Rethinking IL-1 Antagonism in Respiratory Viral Infections: A Role for IL-1 Signaling in the Development of Antiviral T Cell Immunity. Int J Mol Sci 2023; 24:15770. [PMID: 37958758 PMCID: PMC10650641 DOI: 10.3390/ijms242115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
IL-1R integrates signals from IL-1α and IL-1β, and it is widely expressed across tissues and immune cell types. While the expression pattern and function of IL-1R within the innate immune system is well studied, its role in adaptive immunity, particularly within the CD8 T cell compartment, remains underexplored. Here, we show that CD8 T cells dynamically upregulate IL-1R1 levels during priming by APCs, which correlates with their proliferation status and the acquisition of an effector phenotype. Notably, this IL-1 sensitivity persists in memory CD8 T cells of both mice and humans, influencing effector cytokine production upon TCR reactivation. Furthermore, our study highlights that antiviral effector and tissue-resident CD8 T cell responses against influenza A virus infection become impaired in the absence of IL-1 signaling. Altogether, these data support the exploitation of IL-1 activity in the context of T cell vaccination strategies and warrant consideration of the impact of clinical IL-1 inhibition on the rollout of T cell immunity.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9820 Ghent, Belgium
| | - Marlies Ballegeer
- VIB Center for Medical Biotechnology, 9052 Ghent, Belgium; (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Jozefien De Clercq
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Elianne Burg
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, 9052 Ghent, Belgium; (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Sarah Gerlo
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Biomolecular Medicine, Ghent University, 9820 Ghent, Belgium
| |
Collapse
|
13
|
Rotrosen E, Kupper TS. Assessing the generation of tissue resident memory T cells by vaccines. Nat Rev Immunol 2023; 23:655-665. [PMID: 37002288 PMCID: PMC10064963 DOI: 10.1038/s41577-023-00853-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Vaccines have been a hugely successful public health intervention, virtually eliminating many once common diseases of childhood. However, they have had less success in controlling endemic pathogens including Mycobacterium tuberculosis, herpesviruses and HIV. A focus on vaccine-mediated generation of neutralizing antibodies, which has been a successful approach for some pathogens, has been complicated by the emergence of escape variants, which has been seen for pathogens such as influenza viruses and SARS-CoV-2, as well as for HIV-1. We discuss how vaccination strategies aimed at generating a broad and robust T cell response may offer superior protection against pathogens, particularly those that have been observed to mutate rapidly. In particular, we consider here how a focus on generating resident memory T cells may be uniquely effective for providing immunity to pathogens that typically infect (or become reactivated in) the skin, respiratory mucosa or other barrier tissues.
Collapse
Affiliation(s)
- Elizabeth Rotrosen
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Mittra S, Harding SM, Kaech SM. Memory T Cells in the Immunoprevention of Cancer: A Switch from Therapeutic to Prophylactic Approaches. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:907-916. [PMID: 37669503 PMCID: PMC10491418 DOI: 10.4049/jimmunol.2300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 09/07/2023]
Abstract
Cancer immunoprevention, the engagement of the immune system to prevent cancer, is largely overshadowed by therapeutic approaches to treating cancer after detection. Vaccines or, alternatively, the utilization of genetically engineered memory T cells could be methods of engaging and creating cancer-specific T cells with superb memory, lenient activation requirements, potent antitumor cytotoxicity, tumor surveillance, and resilience against immunosuppressive factors in the tumor microenvironment. In this review we analyze memory T cell subtypes based on their potential utility in cancer immunoprevention with regard to longevity, localization, activation requirements, and efficacy in fighting cancers. A particular focus is on how both tissue-resident memory T cells and stem memory T cells could be promising subtypes for engaging in immunoprevention.
Collapse
Affiliation(s)
- Siddhesh Mittra
- University of Toronto Schools, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shane M. Harding
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Radiation Oncology and Immunology, University of Toronto; Toronto, Canada
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
16
|
Tada R, Yamazaki H, Nagai Y, Takeda Y, Ohshima A, Kunisawa J, Negishi Y. Intranasal administration of sodium nitroprusside augments antigen-specific mucosal and systemic antibody production in mice. Int Immunopharmacol 2023; 119:110262. [PMID: 37150015 PMCID: PMC10161703 DOI: 10.1016/j.intimp.2023.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
The coronavirus disease 2019, i.e., the COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has profoundly impacted global society. One approach to combat infectious diseases caused by pathogenic microbes is using mucosal vaccines, which can induce antigen-specific immune responses at both the mucosal and systemic sites. Despite its potential, the clinical implementation of mucosal vaccination is hampered by the lack of safe and effective mucosal adjuvants. Therefore, developing safe and effective mucosal adjuvants is essential for the fight against infectious diseases and the widespread clinical use of mucosal vaccines. In this study, we demonstrated the potent mucosal adjuvant effects of intranasal administration of sodium nitroprusside (SNP), a known nitric oxide (NO) donor, in mice. The results showed that intranasal administration of ovalbumin (OVA) in combination with SNP induced the production of OVA-specific immunoglobulin A in the mucosa and increased serum immunoglobulin G1 levels, indicating a T helper-2 (Th2)-type immune response. However, an analog of SNP, sodium ferrocyanide, which does not generate NO, failed to show any adjuvant effects, suggesting the critical role of NO generation in activating an immune response. In addition, SNPs facilitated the delivery of antigens to the lamina propria, where antigen-presenting cells are located, when co-administered with antigens, and also transiently elicited the expression of interleukin-6, interleukin-1β, granulocyte colony-stimulating factor, C-X-C motif chemokine ligand 1, and C-X-C motif chemokine ligand 2 in nasal tissue. These result suggest that SNP is a dual-functional formulation with antigen delivery capabilities to the lamina propria and the capacity to activate innate immunity. In summary, these results demonstrate the ability of SNP to induce immune responses via an antigen-specific Th2-type response, making it a promising candidate for further development as a mucosal vaccine formulation against infectious diseases.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Haruka Yamazaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuzuho Nagai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukino Takeda
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Ohshima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
17
|
Schmidt A, Paudyal B, Villanueva-Hernández S, Mcnee A, Vatzia E, Carr BV, Schmidt S, Mccarron A, Martini V, Schroedel S, Thirion C, Waters R, Salguero FJ, Gerner W, Tenbusch M, Tchilian E. Effect of mucosal adjuvant IL-1β on heterotypic immunity in a pig influenza model. Front Immunol 2023; 14:1181716. [PMID: 37153548 PMCID: PMC10159270 DOI: 10.3389/fimmu.2023.1181716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
T cell responses directed against highly conserved viral proteins contribute to the clearance of the influenza virus and confer broadly cross-reactive and protective immune responses against a range of influenza viruses in mice and ferrets. We examined the protective efficacy of mucosal delivery of adenoviral vectors expressing hemagglutinin (HA) and nucleoprotein (NP) from the H1N1 virus against heterologous H3N2 challenge in pigs. We also evaluated the effect of mucosal co-delivery of IL-1β, which significantly increased antibody and T cell responses in inbred Babraham pigs. Another group of outbred pigs was first exposed to pH1N1 as an alternative means of inducing heterosubtypic immunity and were subsequently challenged with H3N2. Although both prior infection and adenoviral vector immunization induced strong T-cell responses against the conserved NP protein, none of the treatment groups demonstrated increased protection against the heterologous H3N2 challenge. Ad-HA/NP+Ad-IL-1β immunization increased lung pathology, although viral load was unchanged. These data indicate that heterotypic immunity may be difficult to achieve in pigs and the immunological mechanisms may differ from those in small animal models. Caution should be applied in extrapolating from a single model to humans.
Collapse
Affiliation(s)
- Anna Schmidt
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Basudev Paudyal
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Adam Mcnee
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Eleni Vatzia
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Selma Schmidt
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Amy Mccarron
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | - Ryan Waters
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Wilhelm Gerner
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Matthias Tenbusch
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
18
|
Choi JP, Ayoub G, Ham J, Huh Y, Choi SE, Hwang YK, Noh JY, Kim SH, Song JY, Kim ES, Chang YS. Exercise With a Novel Digital Device Increased Serum Anti-influenza Antibody Titers After Influenza Vaccination. Immune Netw 2023; 23:e18. [PMID: 37179746 PMCID: PMC10166655 DOI: 10.4110/in.2023.23.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 05/15/2023] Open
Abstract
It has been reported that some exercise could enhance the anti-viral antibody titers after vaccination including influenza and coronavirus disease 2019 vaccines. We developed SAT-008, a novel digital device, consists of physical activities and activities related to the autonomic nervous system. We assessed the feasibility of SAT-008 to boost host immunity after an influenza vaccination by a randomized, open-label, and controlled study on adults administered influenza vaccines in the previous year. Among 32 participants, the SAT-008 showed a significant increase in the anti-influenza antibody titers assessed by hemagglutination-inhibition test against antigen subtype B Yamagata lineage after 4 wk of vaccination and subtype B Victoria lineage after 12 wk (p<0.05). There was no difference in the antibody titers against subtype "A." The SAT-008 also showed significant increase in the plasma cytokine levels of IL-10, IL-1β, and IL-6 at weeks 4 and 12 after the vaccination (p<0.05). A new approach using the digital device may boost host immunity against virus via vaccine adjuvant-like effects. Trial Registration ClinicalTrials.gov Identifier: NCT04916145.
Collapse
Affiliation(s)
- Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | | | - Jarang Ham
- S-Alpha Therapeutics, Inc., Seoul 06628, Korea
| | | | | | - Yu-Kyoung Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Eu Suk Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| |
Collapse
|
19
|
Gamma-Irradiated Non-Capsule Group B Streptococcus Promotes T-Cell Dependent Immunity and Provides a Cross-Protective Reaction. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium commonly found in the genitourinary tract and is also a leading cause of neonatal sepsis and pneumonia. Despite the current antibiotic prophylaxis (IAP), the disease burdens of late-onset disease in newborns and non-pregnant adult infections are increasing. Recently, inactivation of the pathogens via gamma radiation has been proven to eliminate their replication ability but cause less damage to the antigenicity of the key epitopes. In this study, the non-capsule GBS strain was inactivated via radiation (Rad-GBS) or formalin (Che-GBS), and we further determined its immunogenicity and protective efficacy as vaccines. Notably, Rad-GBS was more immunogenic and gave rise to higher expression of costimulatory molecules in BMDCs in comparison with Che-GBS. Flow cytometric analysis revealed that Rad-GBS induced a stronger CD4+ IFN-γ+ and CD4+IL-17A+ population in mice. The protective efficacy was measured through challenge with the highly virulent strain CNCTC 10/84, and the adoptive transfer results further showed that the protective role is reversed by functionally neutralizing antibodies and T cells. Finally, cross-protection against challenges with prevalent serotypes of GBS was induced by Rad-GBS. The higher opsonophagocytic killing activity of sera against multiple serotypes was determined in sera from mice immunized with Rad-GBS. Overall, our results showed that the inactivated whole-cell encapsulated GBS could be an alternative strategy for universal vaccine development against invasive GBS infections.
Collapse
|
20
|
García-Silva I, Govea-Alonso DO, Rosales-Mendoza S. Current status of mucosal vaccines against SARS-CoV2: a hope for protective immunity. Expert Opin Biol Ther 2023; 23:207-222. [PMID: 36594264 DOI: 10.1080/14712598.2022.2156284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The current vaccines used to fight against COVID-19 are effective, however the induction of protective immunity is a pending goal required to prevent viral transmission, prevent the generation of new variants, and ultimately eradicate SARS-CoV-2. Mucosal immunization stands as a promising approach to achieve protective immunity against SARS-CoV-2; therefore, it is imperative to innovate the current vaccines by developing mucosal candidates, focusing not only on their ability to prevent severe COVID-19 but to neutralize the virus before invasion of the respiratory system and other mucosal compartments. AREAS COVERED This review covers the current advances on the development of anti-COVID-19 mucosal vaccines. Biomedical literature, including PubMed and clinicaltrials.gov website, was analyzed to identify the state of the art for this field. The achievements in preclinical and clinical evaluations are presented and critically analyzed. EXPERT OPINION There is a significant advance on the development of mucosal vaccines against SARSCoV-2, which is a promise to increase the efficacy of immunization against this pathogen. Both preclinical and clinical evaluation for several candidates have been performed. The challenges in this road (e.g. low immunogenicity, a reduced number of adjuvants available, and inaccurate dosage) are identified and also critical perspectives for the field are provided.
Collapse
Affiliation(s)
- Ileana García-Silva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, San Luis Potosí, México.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, México
| | - Dania O Govea-Alonso
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, San Luis Potosí, México.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, México
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, San Luis Potosí, México.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, México
| |
Collapse
|
21
|
Zhao D, Chen X, Wang L, Zhang J, Lv R, Tan L, Chen Y, Tao R, Li X, Chen Y, He W, He J. Improvement influenza vaccine immune responses with traditional Chinese medicine and its active ingredients. Front Microbiol 2023; 14:1111886. [PMID: 36960292 PMCID: PMC10027775 DOI: 10.3389/fmicb.2023.1111886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
The current influenza vaccines are unable to provide effective protection in many cases, like influenza viruses strain antigenic drift or shift, and the influenza continues to cause significant annual morbidity and mortality. Improving the immune response to influenza vaccination is an unmet need. Traditional Chinese medicine (TCM) and its active ingredients are commonly known to have immunomodulatory properties. We therefore compared influenza vaccination alone or formulated with Astragali Radix (Huangqi in Chinese), and several representative ingredients of TCM, including lentinan (polysaccharide), panax notoginseng saponins (saponin), breviscapine (flavone), andrographolide (terpenoid), and a Chinese herbal compound (kangai) for their potential to enhance immune responses to influenza vaccine in mice. We found that all these TCM-adjuvants were able to increase hemagglutination inhibition (HAI) antibody titers, splenocyte proliferation, splenic T cell differentiation, bone marrow dendritic cell maturity, and both Th1 and Th2 cytokine secretion of influenza vaccine to varying degrees, and that had the characteristics of no excessive inflammatory responses and bidirectional regulation simultaneously. Taken together, our findings show that Astragali Radix exerts a more comprehensive effect on vaccine immunity, on both innate and adaptive immunity. The effects of lentinan and andrographolide on adaptive immunity were more significant, while the effects of breviscapine on innate immunity were stronger, and the other two TCM adjuvants were weaker. As the first report of a comprehensive evaluation of TCM adjuvants in influenza vaccines, the results suggest that TCM and their active ingredients are good candidates for enhancing the immune response of influenza vaccines, and that suitable TCMs can be selected based on the adjuvant requirements of different vaccines.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyun Tan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Lobby JL, Uddbäck I, Scharer CD, Mi T, Boss JM, Thomsen AR, Christensen JP, Kohlmeier JE. Persistent Antigen Harbored by Alveolar Macrophages Enhances the Maintenance of Lung-Resident Memory CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1778-1787. [PMID: 36162870 PMCID: PMC9588742 DOI: 10.4049/jimmunol.2200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/16/2022] [Indexed: 11/07/2022]
Abstract
Lung tissue-resident memory T cells are crucial mediators of cellular immunity against respiratory viruses; however, their gradual decline hinders the development of T cell-based vaccines against respiratory pathogens. Recently, studies using adenovirus (Ad)-based vaccine vectors have shown that the number of protective lung-resident CD8+ TRMs can be maintained long term. In this article, we show that immunization of mice with a replication-deficient Ad serotype 5 expressing influenza (A/Puerto Rico/8/34) nucleoprotein (AdNP) generates a long-lived lung TRM pool that is transcriptionally indistinct from those generated during a primary influenza infection. In addition, we demonstrate that CD4+ T cells contribute to the long-term maintenance of AdNP-induced CD8+ TRMs. Using a lineage tracing approach, we identify alveolar macrophages as a cell source of persistent NP Ag after immunization with AdNP. Importantly, depletion of alveolar macrophages after AdNP immunization resulted in significantly reduced numbers of NP-specific CD8+ TRMs in the lungs and airways. Combined, our results provide further insight to the mechanisms governing the enhanced longevity of Ag-specific CD8+ lung TRMs observed after immunization with recombinant Ad.
Collapse
Affiliation(s)
- Jenna L Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Ida Uddbäck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Tian Mi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| |
Collapse
|
23
|
Status and Challenges for Vaccination against Avian H9N2 Influenza Virus in China. Life (Basel) 2022; 12:life12091326. [PMID: 36143363 PMCID: PMC9505450 DOI: 10.3390/life12091326] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
In China, H9N2 avian influenza virus (AIV) has become widely prevalent in poultry, causing huge economic losses after secondary infection with other pathogens. Importantly, H9N2 AIV continuously infects humans, and its six internal genes frequently reassort with other influenza viruses to generate novel influenza viruses that infect humans, threatening public health. Inactivated whole-virus vaccines have been used to control H9N2 AIV in China for more than 20 years, and they can alleviate clinical symptoms after immunization, greatly reducing economic losses. However, H9N2 AIVs can still be isolated from immunized chickens and have recently become the main epidemic subtype. A more effective vaccine prevention strategy might be able to address the current situation. Herein, we analyze the current status and vaccination strategy against H9N2 AIV and summarize the progress in vaccine development to provide insight for better H9N2 prevention and control.
Collapse
|
24
|
Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022; 13:943331. [PMID: 36032142 PMCID: PMC9412965 DOI: 10.3389/fimmu.2022.943331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- *Correspondence: Zhijun Jie,
| |
Collapse
|
25
|
Zhang M, Lu C, Su L, Long F, Yang X, Guo X, Song G, An T, Chen W, Chen J. Toosendanin activates caspase-1 and induces maturation of IL-1β to inhibit type 2 porcine reproductive and respiratory syndrome virus replication via an IFI16-dependent pathway. Vet Res 2022; 53:61. [PMID: 35906635 PMCID: PMC9334981 DOI: 10.1186/s13567-022-01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent and endemic swine pathogen which causes significant economic losses in the global swine industry. Multiple vaccines have been developed to prevent PRRSV infection. However, they provide limited protection. Moreover, no effective therapeutic drugs are yet available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. Here we report that Toosendanin (TSN), a tetracyclic triterpene found in the bark or fruits of Melia toosendan Sieb. et Zucc., strongly suppressed type 2 PRRSV replication in vitro in Marc-145 cells and ex vivo in primary porcine alveolar macrophages (PAMs) at sub-micromolar concentrations. The results of transcriptomics revealed that TSN up-regulated the expression of IFI16 in Marc-145 cells. Furthermore, we found that IFI16 silencing enhanced the replication of PRRSV in Marc-145 cells and that the anti-PRRSV activity of TSN was dampened by IFI16 silencing, suggesting that the inhibition of TSN against PRRSV replication is IFI16-dependent. In addition, we showed that TSN activated caspase-1 and induced maturation of IL-1β in an IFI16-dependent pathway. To verify the role of IL-1β in PRRSV infection, we analyzed the effect of exogenous rmIL-1β on PRRSV replication, and the results showed that exogenous IL-1β significantly inhibited PRRSV replication in Marc-145 cells and PAMs in a dose-dependent manner. Altogether, our findings indicate that TSN significantly inhibits PRRSV replication at very low concentrations (EC50: 0.16–0.20 μM) and may provide opportunities for developing novel anti-PRRSV agents.
Collapse
Affiliation(s)
- Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chunni Lu
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Monash University, Clayton, VIC, 3168, Australia
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feixiang Long
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofeng Guo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Maier C, Fuchs J, Irrgang P, Wißing MH, Beyerlein J, Tenbusch M, Lapuente D. Mucosal immunization with an adenoviral vector vaccine confers superior protection against RSV compared to natural immunity. Front Immunol 2022; 13:920256. [PMID: 36003372 PMCID: PMC9394428 DOI: 10.3389/fimmu.2022.920256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are the leading cause of severe respiratory illness in early infancy. Although the majority of children and adults mount immune responses against RSV, recurrent infections are frequent throughout life. Humoral and cellular responses contribute to an effective immunity but also their localization at respiratory mucosae is increasingly recognized as an important factor. In the present study, we evaluate a mucosal vaccine based on an adenoviral vector encoding for the RSV fusion protein (Ad-F), and we investigate two genetic adjuvant candidates that encode for Interleukin (IL)-1β and IFN-β promoter stimulator I (IPS-1), respectively. While vaccination with Ad-F alone was immunogenic, the inclusion of Ad-IL-1β increased F-specific mucosal immunoglobulin A (IgA) and tissue-resident memory T cells (TRM). Consequently, immunization with Ad-F led to some control of virus replication upon RSV infection, but Ad-F+Ad-IL-1β was the most effective vaccine strategy in limiting viral load and weight loss. Subsequently, we compared the Ad-F+Ad-IL-1β-induced immunity with that provoked by a primary RSV infection. Systemic F-specific antibody responses were higher in immunized than in previously infected mice. However, the primary infection provoked glycoprotein G-specific antibodies as well eventually leading to similar neutralization titers in both groups. In contrast, mucosal antibody levels were low after infection, whereas mucosal immunization raised robust F-specific responses including IgA. Similarly, vaccination generated F-specific TRM more efficiently compared to a primary RSV infection. Although the primary infection resulted in matrix protein 2 (M2)-specific T cells as well, they did not reach levels of F-specific immunity in the vaccinated group. Moreover, the infection-induced T cell response was less biased towards TRM compared to vaccine-induced immunity. Finally, our vaccine candidate provided superior protection against RSV infection compared to a primary infection as indicated by reduced weight loss, virus replication, and tissue damage. In conclusion, our mucosal vaccine candidate Ad-F+Ad-IL-1β elicits stronger mucosal immune responses and a more effective protection against RSV infection than natural immunity generated by a previous infection. Harnessing mucosal immune responses by next-generation vaccines is therefore a promising option to establish effective RSV immunity and thereby tackle a major cause of infant hospitalization.
Collapse
Affiliation(s)
- Clara Maier
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jasmin Beyerlein
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany,*Correspondence: Matthias Tenbusch, ; Dennis Lapuente,
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany,*Correspondence: Matthias Tenbusch, ; Dennis Lapuente,
| |
Collapse
|
27
|
Zhou X, Lu H, Wu Z, Zhang X, Zhang Q, Zhu S, Zhu H, Sun H. Comparison of mucosal immune responses to African swine fever virus antigens intranasally delivered with two different viral vectors. Res Vet Sci 2022; 150:204-212. [DOI: 10.1016/j.rvsc.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
28
|
Hameed SA, Paul S, Dellosa GKY, Jaraquemada D, Bello MB. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 2022; 7:71. [PMID: 35764661 PMCID: PMC9239993 DOI: 10.1038/s41541-022-00485-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The mRNA vaccine platform has offered the greatest potential in fighting the COVID-19 pandemic owing to rapid development, effectiveness, and scalability to meet the global demand. There are many other mRNA vaccines currently being developed against different emerging viral diseases. As with the current COVID-19 vaccines, these mRNA-based vaccine candidates are being developed for parenteral administration via injections. However, most of the emerging viruses colonize the mucosal surfaces prior to systemic infection making it very crucial to target mucosal immunity. Although parenterally administered vaccines would induce a robust systemic immunity, they often provoke a weak mucosal immunity which may not be effective in preventing mucosal infection. In contrast, mucosal administration potentially offers the dual benefit of inducing potent mucosal and systemic immunity which would be more effective in offering protection against mucosal viral infection. There are however many challenges posed by the mucosal environment which impede successful mucosal vaccination. The development of an effective delivery system remains a major challenge to the successful exploitation of mucosal mRNA vaccination. Nonetheless, a number of delivery vehicles have been experimentally harnessed with different degrees of success in the mucosal delivery of mRNA vaccines. In this review, we provide a comprehensive overview of mRNA vaccines and summarise their application in the fight against emerging viral diseases with particular emphasis on COVID-19 mRNA platforms. Furthermore, we discuss the prospects and challenges of mucosal administration of mRNA-based vaccines, and we explore the existing experimental studies on mucosal mRNA vaccine delivery.
Collapse
Affiliation(s)
- Sodiq A. Hameed
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Stephane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Giann Kerwin Y. Dellosa
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Dolores Jaraquemada
- grid.7080.f0000 0001 2296 0625Universidad Autónoma de Barcelona, 08193 Cerdanyola, Spain
| | - Muhammad Bashir Bello
- grid.412771.60000 0001 2150 5428Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, 2346 Sokoto, Nigeria
| |
Collapse
|
29
|
Files MA, Naqvi KF, Saito TB, Clover TM, Rudra JS, Endsley JJ. Self-adjuvanting nanovaccines boost lung-resident CD4 + T cell immune responses in BCG-primed mice. NPJ Vaccines 2022; 7:48. [PMID: 35474079 PMCID: PMC9043212 DOI: 10.1038/s41541-022-00466-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Heterologous vaccine regimens could extend waning protection in the global population immunized with Mycobacterium bovis Bacille Calmette-Guerin (BCG). We demonstrate that pulmonary delivery of peptide nanofibers (PNFs) bearing an Ag85B CD4+ T cell epitope increased the frequency of antigen-specific T cells in BCG-primed mice, including heterogenous populations with tissue resident memory (Trm) and effector memory (Tem) phenotype, and functional cytokine recall. Adoptive transfer of dendritic cells pulsed with Ag85B-bearing PNFs further expanded the frequency and functional repertoire of memory CD4+ T cells. Transcriptomic analysis suggested that the adjuvanticity of peptide nanofibers is, in part, due to the release of damage-associated molecular patterns. A single boost with monovalent Ag85B PNF in BCG-primed mice did not reduce lung bacterial burden compared to BCG alone following aerosol Mtb challenge. These findings support the need for novel BCG booster strategies that activate pools of Trm cells with potentially diverse localization, trafficking, and immune function.
Collapse
Grants
- R01 AI130278 NIAID NIH HHS
- R21 AI115302 NIAID NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- Predoctoral Fellowship, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas 77555
- Predoctoral Fellowship, James W. McLaughlin Endowment, University of Texas Medical Branch, Galveston, Texas, 77555
- Washington University McKelvey School of Engineering, Department of Biomedical Engineering Commitment Funds (12-360-94361J)
Collapse
Affiliation(s)
- Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kubra F Naqvi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Tara M Clover
- Comprehensive Industrial Hygiene Laboratory (CIHL), Navy Environmental and Preventive Medicine Unit TWO (NEPMU-2), Department of the Navy, Norfolk, VA, 23551, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
30
|
McFall-Boegeman H, Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev Vaccines 2022; 21:453-469. [PMID: 35023430 PMCID: PMC8960355 DOI: 10.1080/14760584.2022.2029415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination can be effective defense against many infectious agents and the corresponding diseases. Discoveries elucidating the mechanisms of the immune system have given hopes to developing vaccines against diseases recalcitrant to current treatment/prevention strategies. One such finding is the ability of immunogenic biological nanoparticles to powerfully boost the immunogenicity of poorer antigens conjugated to them with virus-like particle (VLP)-based vaccines as a key example. VLPs take advantage of the well-defined molecular structures associated with sub-unit vaccines and the immunostimulatory nature of conjugate vaccines. AREAS COVERED In this review, we will discuss how advances in understanding the immune system can inform VLP-based vaccine design and how VLP-based vaccines have uncovered underlying mechanisms in the immune system. EXPERT OPINION As our understanding of mechanisms underlying the immune system increases, that knowledge should inform our vaccine design. Testing of proof-of-concept vaccines in the lab should seek to elucidate the underlying mechanisms of immune responses. The integration of these approaches will allow for VLP-based vaccines to live up to their promise as a powerful plug-and-play platform for next generation vaccine development.
Collapse
Affiliation(s)
- Hunter McFall-Boegeman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
31
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
32
|
Lapuente D, Fuchs J, Willar J, Vieira Antão A, Eberlein V, Uhlig N, Issmail L, Schmidt A, Oltmanns F, Peter AS, Mueller-Schmucker S, Irrgang P, Fraedrich K, Cara A, Hoffmann M, Pöhlmann S, Ensser A, Pertl C, Willert T, Thirion C, Grunwald T, Überla K, Tenbusch M. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nat Commun 2021; 12:6871. [PMID: 34836955 PMCID: PMC8626513 DOI: 10.1038/s41467-021-27063-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Willar
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Valentina Eberlein
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Nadja Uhlig
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Leila Issmail
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Mueller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Fraedrich
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | - Thomas Grunwald
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
33
|
Kim DH, Kim HY, Lee WW. Induction of Unique STAT Heterodimers by IL-21 Provokes IL-1RI Expression on CD8 + T Cells, Resulting in Enhanced IL-1β Dependent Effector Function. Immune Netw 2021; 21:e33. [PMID: 34796037 PMCID: PMC8568912 DOI: 10.4110/in.2021.21.e33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
IL-1β plays critical roles in the priming and effector phases of immune responses such as the differentiation, commitment, and memory formation of T cells. In this context, several reports have suggested that the IL-1β signal is crucial for CTL-mediated immune responses to viral infections and tumors. However, little is known regarding whether IL-1β acts directly on CD8+ T cells and what the molecular mechanisms underlying expression of IL-1 receptors (IL-1Rs) on CD8+ T cells and features of IL-1R+CD8+ T cells are. Here, we provide evidence that the expression of IL-1R type I (IL-1RI), the functional receptor of IL-1β, is preferentially induced by IL-21 on TCR-stimulated CD8+ T cells. Further, IL-1β enhances the effector function of CD8+ T cells expressing IL-21-induced IL-1RI by increasing cytokine production and release of cytotoxic granules containing granzyme B. The IL-21-IL-1RI-IL-1β axis is involved in an augmented effector function through regulation of transcription factors BATF, Blimp-1, and IRF4. Moreover, this axis confers a unique effector function to CD8+ T cells compared to conventional type 1 cytotoxic T cells differentiated with IL-12. Chemical inhibitor and immunoprecipitation assay demonstrated that IL-21 induces a unique pattern of STAT activation with the formation of both STAT1:STAT3 and STAT3:STAT5 heterodimers, which are critical for the induction of IL-1RI on TCR-stimulated CD8+ T cells. Taken together, we propose that induction of a novel subset of IL-1RI-expressing CD8+ T cells by IL-21 may be beneficial to the protective immune response against viral infections and is therefore important to consider for vaccine design.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
34
|
Van Den Eeckhout B, Huyghe L, Van Lint S, Burg E, Plaisance S, Peelman F, Cauwels A, Uzé G, Kley N, Gerlo S, Tavernier J. Selective IL-1 activity on CD8 + T cells empowers antitumor immunity and synergizes with neovasculature-targeted TNF for full tumor eradication. J Immunother Cancer 2021; 9:jitc-2021-003293. [PMID: 34772757 PMCID: PMC8593706 DOI: 10.1136/jitc-2021-003293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 01/31/2023] Open
Abstract
Background Clinical success of therapeutic cancer vaccines depends on the ability to mount strong and durable antitumor T cell responses. To achieve this, potent cellular adjuvants are highly needed. Interleukin-1β (IL-1β) acts on CD8+ T cells and promotes their expansion and effector differentiation, but toxicity and undesired tumor-promoting side effects hamper efficient clinical application of this cytokine. Methods This ‘cytokine problem’ can be solved by use of AcTakines (Activity-on-Target cytokines), which represent fusions between low-activity cytokine mutants and cell type-specific single-domain antibodies. AcTakines deliver cytokine activity to a priori selected cell types and as such evade toxicity and unwanted off-target side effects. Here, we employ subcutaneous melanoma and lung carcinoma models to evaluate the antitumor effects of AcTakines. Results In this work, we use an IL-1β-based AcTakine to drive proliferation and effector functionality of antitumor CD8+ T cells without inducing measurable toxicity. AcTakine treatment enhances diversity of the T cell receptor repertoire and empowers adoptive T cell transfer. Combination treatment with a neovasculature-targeted tumor necrosis factor (TNF) AcTakine mediates full tumor eradication and establishes immunological memory that protects against secondary tumor challenge. Interferon-γ was found to empower this AcTakine synergy by sensitizing the tumor microenvironment to TNF. Conclusions Our data illustrate that anticancer cellular immunity can be safely promoted with an IL-1β-based AcTakine, which synergizes with other immunotherapies for efficient tumor destruction.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Leander Huyghe
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Lint
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elianne Burg
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Frank Peelman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anje Cauwels
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gilles Uzé
- IRMB, University Montpellier, INSERM, CNRS, Montpellier, France
| | - Niko Kley
- Orionis Biosciences Inc, Waltham, Massachusetts, USA
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Orionis Biosciences Inc, Waltham, Massachusetts, USA
| |
Collapse
|
35
|
Ritzau-Jost J, Hutloff A. T Cell/B Cell Interactions in the Establishment of Protective Immunity. Vaccines (Basel) 2021; 9:vaccines9101074. [PMID: 34696182 PMCID: PMC8536969 DOI: 10.3390/vaccines9101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) are the T cell subset providing help to B cells for the generation of high-affinity antibodies and are therefore of key interest for the development of vaccination strategies against infectious diseases. In this review, we will discuss how the generation of Tfh cells and their interaction with B cells in secondary lymphoid organs can be optimized for therapeutic purposes. We will summarize different T cell subsets including Tfh-like peripheral helper T cells (Tph) capable of providing B cell help. In particular, we will highlight the novel concept of T cell/B cell interaction in non-lymphoid tissues as an important element for the generation of protective antibodies directly at the site of pathogen invasion.
Collapse
|
36
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Hamaguchi I. Nasal alum-adjuvanted vaccine promotes IL-33 release from alveolar epithelial cells that elicits IgA production via type 2 immune responses. PLoS Pathog 2021; 17:e1009890. [PMID: 34460865 PMCID: PMC8432758 DOI: 10.1371/journal.ppat.1009890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Aluminum hydroxide salts (alum) have been added to inactivated vaccines as safe and effective adjuvants to increase the effectiveness of vaccination. However, the exact cell types and immunological factors that initiate mucosal immune responses to alum adjuvants are unclear. In this study, the mechanism of action of alum adjuvant in nasal vaccination was investigated. Alum has been shown to act as a powerful and unique adjuvant when added to a nasal influenza split vaccine in mice. Alum is cytotoxic in the alveoli and stimulates the release of damage-associated molecular patterns, such as dsDNA, interleukin (IL)-1α, and IL-33. We found that Ag-specific IgA antibody (Ab) production was markedly reduced in IL-33-deficient mice. However, no decrease was observed in Ag-specific IgA Ab production with DNase I treatment, and no decrease was observed in IL-1α/β or IL-6 production in IL-33-deficient mice. From the experimental results of primary cultured cells and immunofluorescence staining, although IL-1α was secreted by alveolar macrophage necroptosis, IL-33 release was observed in alveolar epithelial cell necroptosis but not in alveolar macrophages. Alum- or IL-33-dependent Ag uptake enhancement and elevation of OX40L expression were not observed. By stimulating the release of IL-33, alum induced Th2 immunity via IL-5 and IL-13 production in group 2 innate lymphoid cells (ILC2s) and increased MHC class II expression in antigen-presenting cells (APCs) in the lung. Our results suggest that IL-33 secretion by epithelial cell necroptosis initiates APC- and ILC2-mediated T cell activation, which is important for the enhancement of Ag-specific IgA Ab production by alum. Aluminum salts have been used as adjuvants in many vaccines. Aluminum salts induce Th2 immunity and vaccine antigen-specific antibody production aluminum salts elicit adjuvant action via cytokine production. Currently, the mechanisms underlying aluminum salt function in nasal vaccination are unknown, and elucidation of the mechanism is important for the development of particulate adjuvants. This study focused on the cytokines released from dead cells as induced by aluminum salt. This study found that aluminum adjuvant caused release of the cytokine interleukin (IL)-33 from alveolar epithelial cells by inducing necrosis. IL-33 is also crucial for antigen-specific IgA antibody production by nasal vaccination. Aluminum adjuvant also induces alveolar macrophage necrosis, which is not accompanied by IL-33 release. Aluminum salt-induced IL-33 acts as an activator for group 2 innate lymphoid cells and antigen-presenting cells in the lung. This means that by developing an adjuvant that targets the release of IL-33, it may be possible to develop a highly effective nasal vaccine. IL-33 significantly contributes to the efficacy of nasal vaccines and provides new insights into the mechanisms underlying aluminum adjuvants, showing that lung parenchymal tissue, rather than macrophages and lymphocytes, is the source of IL-33.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
- * E-mail: (ES); (TM)
| | - Hideki Asanuma
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
- * E-mail: (ES); (TM)
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| |
Collapse
|
37
|
Bacillus subtilis Spore-Trained Dendritic Cells Enhance the Generation of Memory T Cells via ICAM1. Cells 2021; 10:cells10092267. [PMID: 34571913 PMCID: PMC8469252 DOI: 10.3390/cells10092267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Immunological memory is a cardinal feature of the immune system. The intestinal mucosa is the primary exposure and entry site of infectious organisms. For an effective and long-lasting safeguard, a robust immune memory system is required, especially by the mucosal immunity. It is well known that tissue-resident memory T cells (Trms) provide a first response against infections reencountered at mucosal tissues surfaces, where they accelerate pathogen clearance. However, their function in intestinal immunization remains to be investigated. Here, we report enhanced local mucosal and systemic immune responses through oral administration of H9N2 influenza whole inactivated virus (H9N2 WIV) plus Bacillus subtilis spores. Subsequently, H9N2 WIV plus spores led to the generation of CD103+ CD69+ Trms, which were independent of circulating T cells during the immune period. Meanwhile, we also found that Bacillus subtilis spores could stimulate Acrp30 expression in 3T3-L1 adipocytes. Moreover, spore-stimulated adipocyte supernatant also upregulated the expression of intercellular adhesion molecule-1 (ICAM1) in dendritic cells (DCs). Furthermore, the proportion of HA-tetramer+ cells was severely curtailed upon suppressed ICAM1 expression, which also depended on HA-loaded DCs. Taken together, our data demonstrated that spore-promoted H9N2 WIV induced an immune response by enhancing Trms populations, which were associated with the activation of ICAM1 in DCs.
Collapse
|
38
|
Theobald SJ, Simonis A, Georgomanolis T, Kreer C, Zehner M, Eisfeld HS, Albert M, Chhen J, Motameny S, Erger F, Fischer J, Malin JJ, Gräb J, Winter S, Pouikli A, David F, Böll B, Koehler P, Vanshylla K, Gruell H, Suárez I, Hallek M, Fätkenheuer G, Jung N, Cornely OA, Lehmann C, Tessarz P, Altmüller J, Nürnberg P, Kashkar H, Klein F, Koch M, Rybniker J. Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19. EMBO Mol Med 2021; 13:e14150. [PMID: 34133077 PMCID: PMC8350892 DOI: 10.15252/emmm.202114150] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1β (IL-1β) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1β secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.
Collapse
Affiliation(s)
- Sebastian J Theobald
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Alexander Simonis
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Theodoros Georgomanolis
- Faculty of Medicine and University Hospital of CologneCologne Center for Genomics (CCG)University of CologneCologneGermany
| | - Christoph Kreer
- Laboratory of Experimental ImmunologyInstitute of VirologyFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Matthias Zehner
- Laboratory of Experimental ImmunologyInstitute of VirologyFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Hannah S Eisfeld
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Marie‐Christine Albert
- Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH)University of CologneCologneGermany
| | - Jason Chhen
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Susanne Motameny
- Faculty of Medicine and University Hospital of CologneCologne Center for Genomics (CCG)University of CologneCologneGermany
| | - Florian Erger
- Faculty of Medicine and University Hospital of CologneCologne Center for Genomics (CCG)University of CologneCologneGermany
- Faculty of MedicineInstitute of Human GeneticsUniversity Hospital CologneCologneGermany
| | - Julia Fischer
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- German Center for Infection Research (DZIF), Partner Site Bonn‐CologneCologneGermany
| | - Jakob J Malin
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Jessica Gräb
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Sandra Winter
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Andromachi Pouikli
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
| | - Friederike David
- Faculty of Medicine and University Hospital of CologneCologne Center for Genomics (CCG)University of CologneCologneGermany
| | - Boris Böll
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Philipp Koehler
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Kanika Vanshylla
- Laboratory of Experimental ImmunologyInstitute of VirologyFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Henning Gruell
- Laboratory of Experimental ImmunologyInstitute of VirologyFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Isabelle Suárez
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Center for Infection Research (DZIF), Partner Site Bonn‐CologneCologneGermany
| | - Michael Hallek
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Gerd Fätkenheuer
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Center for Infection Research (DZIF), Partner Site Bonn‐CologneCologneGermany
| | - Norma Jung
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Center for Infection Research (DZIF), Partner Site Bonn‐CologneCologneGermany
| | - Oliver A Cornely
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- German Center for Infection Research (DZIF), Partner Site Bonn‐CologneCologneGermany
| | - Clara Lehmann
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- German Center for Infection Research (DZIF), Partner Site Bonn‐CologneCologneGermany
| | - Peter Tessarz
- Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
| | - Janine Altmüller
- Faculty of Medicine and University Hospital of CologneCologne Center for Genomics (CCG)University of CologneCologneGermany
| | - Peter Nürnberg
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCologne Center for Genomics (CCG)University of CologneCologneGermany
| | - Hamid Kashkar
- Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH)University of CologneCologneGermany
| | - Florian Klein
- Laboratory of Experimental ImmunologyInstitute of VirologyFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Center for Infection Research (DZIF), Partner Site Bonn‐CologneCologneGermany
| | - Manuel Koch
- Medical FacultyInstitute for Dental Research and Oral Musculoskeletal BiologyUniversity of CologneCologneGermany
- Medical FacultyCenter for BiochemistryUniversity of CologneCologneGermany
| | - Jan Rybniker
- Department I of Internal MedicineFaculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of CologneCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- German Center for Infection Research (DZIF), Partner Site Bonn‐CologneCologneGermany
| |
Collapse
|
39
|
Lu H, Zhou X, Wu Z, Zhang X, Zhu L, Guo X, Zhang Q, Zhu S, Zhu H, Sun H. Comparison of the mucosal adjuvanticities of two Toll-like receptor ligands for recombinant adenovirus-delivered African swine fever virus fusion antigens. Vet Immunol Immunopathol 2021; 239:110307. [PMID: 34399310 DOI: 10.1016/j.vetimm.2021.110307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
The mucosal immunity plays an important role against African swine fever virus (ASFV) infection and the efficacy of mucosal vaccination is highly dependent on the adjuvant. However, the mucosal adjuvant for ASFV vaccination is poorly studied. Toll-like receptor (TLR) ligands such as the FlaB flagellin from Vibrio vulnificus and the heat shock protein 70 from Mycobacterium tuberculosis (mHsp70) hold a great promise as novel vaccine adjuvant. However, the mucosal adjuvanticities of such TLR ligands have not been studied in pigs. In this study, three recombinant Adenovirus (rAd) vectors, namely rAd-F1, rAd-FlaB-F1 and rAd-F1-Hsp70, were constructed by fusing the FlaB or mHsp70 to ASFV CD2v-p30-p54 fusion antigen. Western blotting showed that the three fusion proteins expressed in rAd-infected cells reacted positively with ASFV antibodies. After intranasal immunization of pigs with the three rAd vectors, the antigen-specific IgG antibodies were detectable from day 7 after primary immunization, which were significantly boosted by the secondary immunization. Strong Th1/Th2 cytokine responses were detected in the peripheral blood mononuclear cells. Compared to immunization with the control rAd-F1, significantly higher levels of the antigen-specific IgA antibodies were detected in the nasal fluids, tracheal washes and lung lavages.1 Compared to immunization with rAd-Flab-F1, immunization with rAd-F1-Hsp70 induced significantly stronger mucosal IgA antibody response. Cytokine detection of the pig lung lavages showed that the elevated IgA antibody responses were correlated mainly with IL-4, IL-10 and IFN-α, which were confirmed by the significantly increased antigen-recall cytokine expression in the porcine alveolar macrophages. These data suggest that mHsp70 has potent mucosal adjuvanticity in pigs, and the fusion rAd vector can be used for ASFV mucosal vaccine development.
Collapse
Affiliation(s)
- Huipeng Lu
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohui Zhou
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Zhi Wu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xinyu Zhang
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Liqi Zhu
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Guo
- The Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Quan Zhang
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Hongfei Zhu
- The Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huaichang Sun
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China.
| |
Collapse
|
40
|
Knight FC, Wilson JT. Engineering Vaccines for Tissue-Resident Memory T Cells. ADVANCED THERAPEUTICS 2021; 4:2000230. [PMID: 33997268 PMCID: PMC8114897 DOI: 10.1002/adtp.202000230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/01/2023]
Abstract
In recent years, tissue-resident memory T cells (TRM) have attracted significant attention in the field of vaccine development. Distinct from central and effector memory T cells, TRM cells take up residence in home tissues such as the lung or urogenital tract and are ideally positioned to respond quickly to pathogen encounter. TRM have been found to play a role in the immune response against many globally important infectious diseases for which new or improved vaccines are needed, including influenza and tuberculosis. It is also increasingly clear that TRM play a pivotal role in cancer immunity. Thus, vaccines that can generate this memory T cell population are highly desirable. The field of immunoengineering-that is, the application of engineering principles to study the immune system and design new and improved therapies that harness or modulate immune responses-is ideally poised to provide solutions to this need for next-generation TRM vaccines. This review covers recent developments in vaccine technologies for generating TRM and protecting against infection and cancer, including viral vectors, virus-like particles, and synthetic and natural biomaterials. In addition, it offers critical insights on the future of engineering vaccines for tissue-resident memory T cells.
Collapse
Affiliation(s)
- Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
41
|
Kingstad-Bakke B, Toy R, Lee W, Pradhan P, Vogel G, Marinaik CB, Larsen A, Gates D, Luu T, Pandey B, Kawaoka Y, Roy K, Suresh M. Polymeric Pathogen-Like Particles-Based Combination Adjuvants Elicit Potent Mucosal T Cell Immunity to Influenza A Virus. Front Immunol 2021; 11:559382. [PMID: 33767689 PMCID: PMC7986715 DOI: 10.3389/fimmu.2020.559382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Eliciting durable and protective T cell-mediated immunity in the respiratory mucosa remains a significant challenge. Polylactic-co-glycolic acid (PLGA)-based cationic pathogen-like particles (PLPs) loaded with TLR agonists mimic biophysical properties of microbes and hence, simulate pathogen-pattern recognition receptor interactions to safely and effectively stimulate innate immune responses. We generated micro particle PLPs loaded with TLR4 (glucopyranosyl lipid adjuvant, GLA) or TLR9 (CpG) agonists, and formulated them with and without a mucosal delivery enhancing carbomer-based nanoemulsion adjuvant (ADJ). These adjuvants delivered intranasally to mice elicited high numbers of influenza nucleoprotein (NP)-specific CD8+ and CD4+ effector and tissue-resident memory T cells (TRMs) in lungs and airways. PLPs delivering TLR4 versus TLR9 agonists drove phenotypically and functionally distinct populations of effector and memory T cells. While PLPs loaded with CpG or GLA provided immunity, combining the adjuvanticity of PLP-GLA and ADJ markedly enhanced the development of airway and lung TRMs and CD4 and CD8 T cell-dependent immunity to influenza virus. Further, balanced CD8 (Tc1/Tc17) and CD4 (Th1/Th17) recall responses were linked to effective influenza virus control. These studies provide mechanistic insights into vaccine-induced pulmonary T cell immunity and pave the way for the development of a universal influenza and SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Randall Toy
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Woojong Lee
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Pallab Pradhan
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Gabriela Vogel
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Chandranaik B Marinaik
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Autumn Larsen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Daisy Gates
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Tracy Luu
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Bhawana Pandey
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Yoshihoro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
42
|
Uddbäck I, Kohlmeier JE, Thomsen AR, Christensen JP. Harnessing Cross-Reactive CD8 + T RM Cells for Long-Standing Protection Against Influenza A Virus. Viral Immunol 2021; 33:201-207. [PMID: 32286174 PMCID: PMC7185354 DOI: 10.1089/vim.2019.0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ida Uddbäck
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 2021; 13:v13020199. [PMID: 33525620 PMCID: PMC7911237 DOI: 10.3390/v13020199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.
Collapse
|
44
|
Van Den Eeckhout B, Tavernier J, Gerlo S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol 2021; 11:621931. [PMID: 33584721 PMCID: PMC7873566 DOI: 10.3389/fimmu.2020.621931] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The three-signal paradigm tries to capture how the innate immune system instructs adaptive immune responses in three well-defined actions: (1) presentation of antigenic peptides in the context of MHC molecules, which allows for a specific T cell response; (2) T cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines in the priming environment, thereby specializing T cell immunity. The three-signal model provides an empirical framework for innate instruction of adaptive immunity, but mainly discusses STAT-dependent cytokines in T cell activation and differentiation, while the multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often neglected. IL-1α and IL-1β are pro-inflammatory cytokines, produced following damage to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both DCs and T cells can further shape the adaptive immune response with variable outcomes. IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical polarizing cytokines, influences T cell differentiation under different conditions. The activities of IL-1 form a direct bridge between innate and adaptive immunity and could therefore be clinically translatable in the context of prophylactic and therapeutic strategies to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity during T cell activation thus could hold major implications for rational development of the next generation of vaccine adjuvants.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Zhu W, Dong C, Wei L, Wang BZ. Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics 2021; 13:pharmaceutics13010068. [PMID: 33430259 PMCID: PMC7825707 DOI: 10.3390/pharmaceutics13010068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.
Collapse
|
46
|
van der Gracht ET, Schoonderwoerd MJ, van Duikeren S, Yilmaz AN, Behr FM, Colston JM, Lee LN, Yagita H, van Gisbergen KP, Hawinkels LJ, Koning F, Klenerman P, Arens R. Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer. J Immunother Cancer 2020; 8:e001133. [PMID: 33293355 PMCID: PMC7725098 DOI: 10.1136/jitc-2020-001133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination with adenoviral vectors is promising in this respect, however, their specific mechanisms of action are not fully understood. Here, we assessed the development and maintenance of vaccine-induced tumor-specific CD8+ T cells elicited upon immunization with adenoviral vectors. METHODS Adenoviral vaccine vectors encoding the full-length E7 protein from human papilloma virus (HPV) or the immunodominant epitope from E7 were generated, and mice were immunized intravenously with different quantities (107, 108 or 109 infectious units). The magnitude, kinetics and tumor protection capacity of the induced vaccine-specific T cell responses were evaluated. RESULTS The adenoviral vaccines elicited inflationary E7-specific memory CD8+ T cell responses in a dose-dependent manner. The magnitude of these vaccine-specific CD8+ T cells in the circulation related to the development of E7-specific CD8+ tissue-resident memory T (TRM) cells, which were maintained for months in multiple tissues after vaccination. The vaccine-specific CD8+ T cell responses conferred long-term protection against HPV-induced carcinomas in the skin and liver, and this protection required the induction and accumulation of CD8+ TRM cells. Moreover, the formation of CD8+ TRM cells could be enhanced by temporal targeting CD80/CD86 costimulatory interactions via CTLA-4 blockade early after immunization. CONCLUSIONS Together, these data show that adenoviral vector-induced CD8+ T cell inflation promotes protective TRM cell populations, and this can be enhanced by targeting CTLA-4.
Collapse
Affiliation(s)
| | - Mark Ja Schoonderwoerd
- Department of Gasteroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne van Duikeren
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ayse N Yilmaz
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Julia M Colston
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lian N Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Klaas Pjm van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Lukas Jac Hawinkels
- Department of Gasteroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Sayedahmed EE, Elkashif A, Alhashimi M, Sambhara S, Mittal SK. Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8040574. [PMID: 33019589 PMCID: PMC7712206 DOI: 10.3390/vaccines8040574] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
48
|
Tannig P, Peter AS, Lapuente D, Klessing S, Schmidt A, Damm D, Tenbusch M, Überla K, Temchura V. Genetic Co-Administration of Soluble PD-1 Ectodomains Modifies Immune Responses against Influenza A Virus Induced by DNA Vaccination. Vaccines (Basel) 2020; 8:vaccines8040570. [PMID: 33019546 PMCID: PMC7712647 DOI: 10.3390/vaccines8040570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
Due to the low efficacy and the need for seasonal adaptation of currently licensed influenza A vaccines, the importance of alternative vaccination strategies is increasingly recognized. Considering that DNA vaccines can be rapidly manufactured and readily adapted with novel antigen sequences, genetic vaccination is a promising immunization platform. However, the applicability of different genetic adjuvants to this approach still represents a complex challenge. Immune checkpoints are a class of molecules involved in adaptive immune responses and germinal center reactions. In this study, we immunized mice by intramuscular electroporation with a DNA-vaccine encoding hemagglutinin (HA) and nucleoprotein (NP) of the influenza A virus. The DNA-vaccine was applied either alone or in combination with genetic adjuvants encoding the soluble ectodomains of programmed cell death protein-1 (sPD-1) or its ligand (sPD-L1). Co-administration of genetic checkpoint adjuvants did not significantly alter immune responses against NP. In contrast, sPD-1 co-electroporation elevated HA-specific CD4+ T cell responses, decreased regulatory CD4+ T cell pools, and modulated the IgG2a-biased HA antibody pattern towards an isotype-balanced IgG response with a trend to higher influenza neutralization in vitro. Taken together, our data demonstrate that a genetic DNA-adjuvant encoding soluble ectodomains of sPD-1 was able to modulate immune responses induced by a co-administered influenza DNA vaccine.
Collapse
|
49
|
Van Den Eeckhout B, Van Hoecke L, Burg E, Van Lint S, Peelman F, Kley N, Uzé G, Saelens X, Tavernier J, Gerlo S. Specific targeting of IL-1β activity to CD8 + T cells allows for safe use as a vaccine adjuvant. NPJ Vaccines 2020; 5:64. [PMID: 32714571 PMCID: PMC7378068 DOI: 10.1038/s41541-020-00211-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/19/2020] [Indexed: 11/08/2022] Open
Abstract
Annual administration and reformulation of influenza vaccines is required for protection against seasonal infections. However, the induction of strong and long-lasting T cells is critical to reach broad and potentially lifelong antiviral immunity. The NLRP3 inflammasome and its product interleukin-1β (IL-1β) are pivotal mediators of cellular immune responses to influenza, yet, overactivation of these systems leads to side effects, which hamper clinical applications. Here, we present a bypass around these toxicities by targeting the activity of IL-1β to CD8+ T cells. Using this approach, we demonstrate safe inclusion of IL-1β as an adjuvant in vaccination strategies, leading to full protection of mice against a high influenza virus challenge dose by raising potent T cell responses. In conclusion, this paper proposes a class of IL-1β-based vaccine adjuvants and also provides further insight in the mechanics of cellular immune responses driven by IL-1β.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lien Van Hoecke
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elianne Burg
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sandra Van Lint
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Frank Peelman
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Niko Kley
- Orionis Biosciences Inc, Waltham, MA 02451 USA
| | - Gilles Uzé
- CNRS 5235, University of Montpellier, 34090 Montpellier, France
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Orionis Biosciences Inc, Waltham, MA 02451 USA
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
50
|
Choi A, Ibañez LI, Strohmeier S, Krammer F, García-Sastre A, Schotsaert M. Non-sterilizing, Infection-Permissive Vaccination With Inactivated Influenza Virus Vaccine Reshapes Subsequent Virus Infection-Induced Protective Heterosubtypic Immunity From Cellular to Humoral Cross-Reactive Immune Responses. Front Immunol 2020; 11:1166. [PMID: 32582220 PMCID: PMC7296151 DOI: 10.3389/fimmu.2020.01166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
Conventional influenza vaccines aim at the induction of virus-neutralizing antibodies that provide with sterilizing immunity. However, influenza vaccination often confers protection from disease but not from infection. The impact of infection-permissive vaccination on the immune response elicited by subsequent influenza virus infection is not well-understood. Here, we investigated to what extent infection-permissive immunity, in contrast to virus-neutralizing immunity, provided by a trivalent inactivated virus vaccine (TIV) modulates disease and virus-induced host immune responses after sublethal vaccine-matching H1N1 infection in a mouse model. More than one TIV vaccination was needed to induce a serum HI titer and provide sterilizing immunity upon homologous virus infection. However, single TIV administration provided infection-permissive immunity, characterized by lower viral lung titers and faster recovery. Despite the presence of replicating virus, single TIV vaccination prevented induction of pro-inflammatory cyto- and chemokines, alveolar macrophage depletion as well as the establishment of lung-resident B and T cells after infection. To investigate virus infection-induced cross-protective heterosubtypic immune responses in vaccinated and unvaccinated animals, mice were re-infected with a lethal dose of H3N2 virus 4 weeks after H1N1 infection. Single TIV vaccination did not prevent H1N1 virus infection-induced heterosubtypic cross-protection, but shifted the mechanism of cross-protection from the cellular to the humoral branch of the immune system. These results suggest that suboptimal vaccination with conventional influenza vaccines may still positively modulate disease outcome after influenza virus infection, while promoting humoral heterosubtypic immunity after virus infection.
Collapse
Affiliation(s)
- Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lorena I Ibañez
- Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|