1
|
Meier TB, Savitz J, España LY, Goeckner BD, Kent Teague T, Jan van der Horn H, Tugan Muftuler L, Mayer AR, Brett BL. Association of concussion history with psychiatric symptoms, limbic system structure, and kynurenine pathway metabolites in healthy, collegiate-aged athletes. Brain Behav Immun 2024; 123:S0889-1591(24)00656-1. [PMID: 39414174 DOI: 10.1016/j.bbi.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Psychiatric outcomes are commonly observed in individuals with repeated concussions, though their underlying mechanism is unknown. One potential mechanism linking concussion with psychiatric symptoms is inflammation-induced activation of the kynurenine pathway, which is thought to play a role in the pathogenesis of mood disorders. Here, we investigated the association of prior concussion with multiple psychiatric-related outcomes in otherwise healthy male and female collegiate-aged athletes (N = 212) with varying histories of concussion recruited from the community. Specially, we tested the hypotheses that concussion history is associated with worse psychiatric symptoms, limbic system structural abnormalities (hippocampal volume, white matter microstructure assessed using neurite orientation dispersion and density imaging; NODDI), and elevations in kynurenine pathway (KP) metabolites (e.g., Quinolinic acid; QuinA). Given known sex-effects on concussion risk and recovery, psychiatric outcomes, and the kynurenine pathway, the moderating effect of sex was considered for all analyses. More concussions were associated with greater depression, anxiety, and anhedonia symptoms in female athletes (ps ≤ 0.005) and greater depression symptoms in male athletes (p = 0.011). More concussions were associated with smaller bilateral hippocampal tail (ps < 0.010) and left hippocampal body (p < 0.001) volumes across male and female athletes. Prior concussion was also associated with elevations in the orientation dispersion index (ODI) and lower intracellular volume fraction in several white matter tracts including the in uncinate fasciculus, cingulum-gyrus, and forceps major and minor, with evidence of female-specific associations in select regions. Regarding serum KP metabolites, more concussions were associated with elevated QuinA in females and lower tryptophan in males (ps ≤ 0.010). Finally, serum levels of QuinA were associated with elevated ODI (male and female athletes) and worse anxiety symptoms (females only), while higher ODI in female athletes and smaller hippocampal volumes in male athletes were associated with more severe anxiety and depression symptoms (ps ≤ 0.05). These data suggest that cumulative concussion is associated with psychiatric symptoms and limbic system structure in healthy athletes, with increased susceptibility to these effects in female athletes. Moreover, the associations of outcomes with serum KP metabolites highlight the KP as one potential molecular pathway underlying these observations.
Collapse
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, the United States of America.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, the United States of America; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, the United States of America
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - T Kent Teague
- Department of Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Surgery, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135, the United States of America
| | - Harm Jan van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; University of Groningen, University Medical Center Groningen, the Netherlands
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, the United States of America; Department of Psychology, University of New Mexico, Albuquerque, NM, the United States of America
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| |
Collapse
|
2
|
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024; 16:3380. [PMID: 39408347 PMCID: PMC11478743 DOI: 10.3390/nu16193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Tryptophan is widely present in foods such as peanuts, milk, and bananas, playing a crucial role in maintaining metabolic homeostasis in health and disease. Tryptophan metabolism is involved in the development and progression of immune, nervous, and digestive system diseases. Although some excellent reviews on tryptophan metabolism exist, there has been no systematic scientometric study as of yet. METHODS This review provides and summarizes research hotspots and potential future directions by analyzing annual publications, topics, keywords, and highly cited papers sourced from Web of Science spanning 1964 to 2022. RESULTS This review provides a scientometric overview of tryptophan metabolism disorder-triggered diseases, mechanisms, and therapeutic strategies. CONCLUSIONS The gut microbiota regulates gut permeability, inflammation, and host immunity by directly converting tryptophan to indole and its derivatives. Gut microbial metabolites regulate tryptophan metabolism by activating specific receptors or enzymes. Additionally, the kynurenine (KYN) pathway, activated by indoleamine-2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase, affects the migration and invasion of glioma cells and the development of COVID-19 and depression. The research and development of IDO inhibitors help to improve the effectiveness of immunotherapy. Tryptophan metabolites as potential markers are used for disease therapy, guiding clinical decision-making. Tryptophan metabolites serve as targets to provide a new promising strategy for neuroprotective/neurotoxic imbalance affecting brain structure and function. In summary, this review provides valuable guidance for the basic research and clinical application of tryptophan metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Yu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu-Jiao Song
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
4
|
Green M, Trivedi MH, Foster JA. Microbes and mood: innovative biomarker approaches in depression. Trends Mol Med 2024:S1471-4914(24)00241-7. [PMID: 39353744 DOI: 10.1016/j.molmed.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Although the field of psychiatry has made gains in biomarker discovery, our ability to change long-term outcomes remains inadequate. Matching individuals to the best treatment for them is a persistent clinical challenge. Moreover, the development of novel treatments has been hampered in part due to a limited understanding of the biological mechanisms underlying individual differences that contribute to clinical heterogeneity. The gut microbiome has become an area of intensive research in conditions ranging from metabolic disorders to cancer. Innovation in these spaces has led to translational breakthroughs, offering novel microbiome-informed approaches that may improve patient outcomes. In this review we examine how translational microbiome research is poised to advance biomarker discovery in mental health, with a focus on depression.
Collapse
Affiliation(s)
- Miranda Green
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada; Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Yang S, Han J, Ye Z, Zhou H, Yan Y, Han D, Chen S, Wang L, Feng Q, Zhao X, Kang C. The correlation of inflammation, tryptophan-kynurenine pathway, and suicide risk in adolescent depression. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02579-4. [PMID: 39287643 DOI: 10.1007/s00787-024-02579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Accumulating evidence suggests a role for the tryptophan-kynurenine pathway (TKP) in the psychopathology of major depressive disorder (MDD). Abnormal inflammatory profile and production of TKP neurotoxic metabolites appear more pronounced in MDD with suicidality. Progress in understanding the neurobiology of MDD in adolescents lags significantly behind that in adults due to limited empirical evidence. Aims of this study was to investigate the association between inflammation, TKP, and suicidality in adolescent depression. Seventy-three adolescents with MDD were assessed for serum levels of interleukin (IL)-1β, IL-6, IL-18, IL-10, tumor necrosis factor-α (TNF-α), tryptophan (TRP), kynurenine (KYN), 3-hydroxykynurenine (3-HK), and kynurenine acid (KA). Correlations between cytokines and TKP measures were examined. Patients were divided into high- (n = 42) and non-high-suicide-risk groups (n = 31), and serum levels of cytokines and TKP metabolites were compared. Significant negative correlations were found between TRP and IL-8 (r = - 0.27, P < 0.05) and IL-10 (r = - 0.23, P < 0.05), while a significant positive correlation was observed between 3-HK and IL-8 (r = 0.39, P < 0.01) in depressed adolescents. The KYN/TPR (index of indoleamine 2,3-dioxygenase, IDO) was positively correlated with IL-1β (r = 0.34), IL-6 (r = 0.32), IL-10 (r = 0.38) and TNF-α (r = 0.35) levels (P < 0.01); and 3-HK/KYN (index of kynurenine3-monooxidase, KMO) was positively correlated with IL-8 level (r = 0.31, P < 0.01). Depressed adolescents at high suicide risk exhibited significantly higher levels of IL-1β (Z = 2.726, P < 0.05), IL-10 (Z = 2.444, P < 0.05), and TNF-α (Z = 2.167, P < 0.05) and lower levels of 3-HK (Z = 2.126, P < 0.05) compared to their non-high suicide risk counterparts. Our findings indicated that serum inflammatory cytokines were robustly associated with IDO and KMO activity, along with significantly decreased serum level of TRP, increased level of 3-HK, and higher suicide risk in adolescent depression.
Collapse
Affiliation(s)
- Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jingjing Han
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huizhi Zhou
- 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, 650000, Kunming, China
| | - Yangye Yan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Shi Chen
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lu Wang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qiang Feng
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xudong Zhao
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Clinical Research Center for Mental Disorders, School of Medicine, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
6
|
Williams ME, Asia LK, Lindeque Z, Jansen van Vuren E. The association between HIV-1 Tat and Vif amino acid sequence variation, inflammation and Trp-Kyn metabolism: an exploratory investigation. BMC Infect Dis 2024; 24:943. [PMID: 39251983 PMCID: PMC11385500 DOI: 10.1186/s12879-024-09874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND HIV-1 has well-established mechanisms to disrupt essential pathways in people with HIV, such as inflammation and metabolism. Moreover, diversity of the amino acid sequences in fundamental HIV-1 proteins including Tat and Vif, have been linked to dysregulating these pathways, and subsequently influencing clinical outcomes in people with HIV. However, the relationship between Tat and Vif amino acid sequence variation and specific immune markers and metabolites of the tryptophan-kynurenine (Trp-Kyn) pathway remains unclear. Therefore, this study aimed to investigate the relationship between Tat/Vif amino acid sequence diversity and Trp-Kyn metabolites (quinolinic acid (QUIN), Trp, kynurenic acid (KA), Kyn and Trp/Kyn ratio), as well as specific immune markers (sCD163, suPAR, IL-6, NGAL and hsCRP) in n = 67 South African cART-naïve people with HIV. METHODS Sanger sequencing was used to determine blood-derived Tat/Vif amino acid sequence diversity. To measure Trp-Kyn metabolites, a LC-MS/MS metabolomics platform was employed using a targeted approach. To measure immune markers, Enzyme-linked immunosorbent assays and the Particle-enhanced turbidimetric assay was used. RESULTS After adjusting for covariates, sCD163 (p = 0.042) and KA (p = 0.031) were higher in participants with Tat signatures N24 and R57, respectively, and amino acid variation at position 24 (adj R2 = 0.048, β = -0.416, p = 0.042) and 57 (adj R2 = 0.166, β = 0.535, p = 0.031) of Tat were associated with sCD163 and KA, respectively. CONCLUSIONS These preliminary findings suggest that amino acid variation in Tat may have an influence on underlying pathogenic HIV-1 mechanisms and therefore, this line of work merits further investigation.
Collapse
Affiliation(s)
- Monray E Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Levanco K Asia
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- South African Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
Swann P, Mirza-Davies A, O'Brien J. Associations Between Neuropsychiatric Symptoms and Inflammation in Neurodegenerative Dementia: A Systematic Review. J Inflamm Res 2024; 17:6113-6141. [PMID: 39262651 PMCID: PMC11389708 DOI: 10.2147/jir.s385825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Background Neuropsychiatric symptoms are common in dementia and linked to adverse outcomes. Inflammation is increasingly recognized as playing a role as a driver of early disease progression in Alzheimer's disease (AD) and related dementias. Inflammation has also been linked to primary psychiatric disorders, however its association with neuropsychiatric symptoms in neurodegenerative dementias remains uncertain. Methods We conducted a systematic literature review investigating associations between inflammation and neuropsychiatric symptoms in neurodegenerative dementias, including AD, Lewy body, Frontotemporal, Parkinson's (PD) and Huntington's disease dementias. Results Ninety-nine studies met our inclusion criteria, and the majority (n = 59) investigated AD and/or mild cognitive impairment (MCI). Thirty-five studies included PD, and only 6 investigated non-AD dementias. Inflammation was measured in blood, CSF, by genotype, brain tissue and PET imaging. Overall, studies exhibited considerable heterogeneity and evidence for specific inflammatory markers was inconsistent, with lack of replication and few longitudinal studies with repeat biomarkers. Depression was the most frequently investigated symptom. In AD, some studies reported increases in peripheral IL-6, TNF-a associated with depressive symptoms. Preliminary investigations using PET measures of microglial activation found an association with agitation. In PD, studies reported positive associations between TNF-a, IL-6, CRP, MCP-1, IL-10 and depression. Conclusion Central and peripheral inflammation may play a role in neuropsychiatric symptoms in neurodegenerative dementias; however, the evidence is inconsistent. There is a need for multi-site longitudinal studies with detailed assessments of neuropsychiatric symptoms combined with replicable peripheral and central markers of inflammation.
Collapse
Affiliation(s)
- Peter Swann
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Anastasia Mirza-Davies
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - John O'Brien
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
8
|
Pedraz-Petrozzi B, Insan S, Spangemacher M, Reinwald J, Lamadé EK, Gilles M, Deuschle M, Sartorius A. Association between rTMS-induced changes in inflammatory markers and improvement in psychiatric diseases: a systematic review. Ann Gen Psychiatry 2024; 23:31. [PMID: 39192245 DOI: 10.1186/s12991-024-00514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has recently gained relevance in treating different psychiatric disorders. Limited evidence suggests that the beneficial effects of rTMS on psychopathology could be at least partly mediated through changes in inflammatory response. This systematic review summarizes the literature on whether rTMS can modulate inflammatory markers and thus positively influence the course of psychiatric illnesses. MATERIALS AND METHODS A systematic review of rTMS and inflammatory markers in psychiatric diseases was conducted according to PRISMA guidelines. Information on the association between rTMS treatment response and changes of inflammatory markers was extracted. The quality of the studies was assessed using the National Heart, Lung, and Blood Institute for human studies and the Systematic Review Center for Laboratory Animal Experimentation for animal studies. RESULTS This review includes 17 studies (2 animal and 15 human studies) on the relationship between rTMS treatment response and changes of inflammatory markers. Positive changes in microglial activity and anti-inflammatory effects were associated with behavioral improvement in animal models of depression. However, these findings have not been consistently replicated in human studies focusing on treatment-resistant depression. While several studies reported rTMS-induced alterations in peripheral inflammatory markers, only two could demonstrate their association to clinical treatment response. Notably, most studies showed poor or moderate quality in the bias assessment. CONCLUSIONS While certain human studies suggest an association between rTMS-induced anti-inflammatory effects and improvement in psychopathology, heterogeneity, and underpowered analyses constrain the generalizability of these results. The discrepancy between animal and human findings highlights the need for larger, standardized human studies. TRIAL REGISTRATION (PROSPERO Registration: CRD42023492732).
Collapse
Affiliation(s)
- Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany.
- Research Group of Stress-related Disorders, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany.
| | - Shrabon Insan
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Moritz Spangemacher
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Jonathan Reinwald
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
- Research Group of Translational Imaging, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Research Group Systems Neuroscience and Mental Health, Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Eva Kathrin Lamadé
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Research Group of Stress-related Disorders, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Research Group of Stress-related Disorders, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Research Group of Stress-related Disorders, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
- Research Group of Translational Imaging, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
9
|
Brenner P, Askling J, Hägg D, Brandt L, Stang P, Reutfors J. Association between inflammatory joint disease and severe or treatment-resistant depression: population-based cohort and case-control studies in Sweden. Gen Hosp Psychiatry 2024; 89:23-31. [PMID: 38714100 DOI: 10.1016/j.genhosppsych.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE To investigate whether the association between depression and inflammatory joint disease (IJD; rheumatoid arthritis [RA], psoriatic arthritis [PsA], ankylosing spondylitis/spondyloarthropathies [AS], and juvenile idiopathic arthritis [JIA]) is affected by the severity or treatment-resistance of depression. METHOD Parallel cohort studies and case-control studies among 600,404 patients with a depressive episode identified in Swedish nationwide administrative registers. Prospective and retrospective risk for IJD in patients with depression was compared to matched population comparators, and the same associations were investigated in severe or treatment-resistant depression. Analyses were adjusted for comorbidities and sociodemographic covariates. RESULTS Patients with depression had an increased risk for later IJD compared to population comparators (adjusted hazard ratio (aHR) for any IJD 1.34 [95% CI 1.30-1.39]; for RA 1.27 [1.15-1.41]; PsA 1.45 [1.29-1.63]; AS 1.32 [1.15-1.52]). In case-control studies, patients with depression more frequently had a history of IJD compared to population controls (adjusted odds ratio (aOR) for any IJD 1.43 [1.37-1.50]; RA 1.39 [1.29-1.49]; PsA 1.59 [1.46-1.73]; AS 1.49 [1.36-1.64]; JIA 1.52 [1.35-1.71]). These associations were not significantly different for severe depression or TRD. CONCLUSION IJD and depression are bidirectionally associated, but this association does not seem to be influenced by the severity or treatment resistance of depression.
Collapse
Affiliation(s)
- Philip Brenner
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Norra stationsgatan 69, 113 64 Stockholm, Sweden.
| | - Johan Askling
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | - David Hägg
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | - Lena Brandt
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | - Paul Stang
- Janssen Research and Development, Titusville, NJ, 08560,USA
| | - Johan Reutfors
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
10
|
Ye Z, Yang S, Lu L, Zong M, Fan L, Kang C. Unlocking the potential of the 3-hydroxykynurenine/kynurenic acid ratio: a promising biomarker in adolescent major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01815-x. [PMID: 38819463 DOI: 10.1007/s00406-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
Metabolites disruptions in tryptophan (TRP) and kynurenine pathway (KP) are believed to disturb neurotransmitter homeostasis and contribute to depressive symptoms. This study aims to investigate serum levels of KP metabolites in adolescent major depressive disorder (AMDD), and examine their relationship with depression severities. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze serum levels of TRP, kynurenic acid (KYNA), kynurenine (KYN), and 3-hydroxy-kynurenine (3-HK) in 143 AMDD participants and 98 healthy controls (HC). Clinical data, including Children's Depression Inventory (CDI) scores, were collected and analyzed using statistical methods, such as ANOVA, logistic regression, Receiver operating characteristic curve analysis and a significance level of p < 0.05 was used for all analyses. AMDD showed significantly decreased serum levels of KYNA (-25.5%), KYN (-14.2%), TRP (-11.0%) and the KYNA/KYN ratio (-11.9%) compared to HC (p < 0.01). Conversely, significant increases were observed in 3-HK levels (+50.4%), the 3-HK/KYNA ratio (+104.3%) and the 3-HK/KYN ratio (+93.0%) (p < 0.01). Logistic regression analysis identified increased level of 3-HK as a contributing factor to AMDD, while increased level of KYNA acted as a protective factor against AMDD. The 3-HK/KYNA ratio demonstrated an area under the curve (AUC) of 0.952. This study didn't explore AMDD's inflammatory status and its metabolites relationship explicitly. These findings indicate that metabolites of TRP and KP may play a crucial role in the pathogenesis of AMDD, emphasizing the potential of the 3-HK/KYNA ratio as a laboratory biomarker for early detection and diagnosis of AMDD.
Collapse
Affiliation(s)
- Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Liu Lu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China.
| |
Collapse
|
11
|
Mohammadgholi-Beiki A, Sheibani M, Jafari-Sabet M, Motevalian M, Rahimi-Moghaddam P. Anti-inflammatory and protective effects of Aripiprazole on TNBS-Induced colitis and associated depression in rats: Role of kynurenine pathway. Int Immunopharmacol 2024; 133:112158. [PMID: 38691917 DOI: 10.1016/j.intimp.2024.112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The prevalence of depression is higher in patients with inflammatory bowel disease (IBD) than in the general population. Inflammatory cytokines and the kynurenine pathway (KP) play important roles in IBD and associated depression. Aripiprazole (ARP), an atypical antipsychotic, shows various anti-inflammatory properties and may be useful in treating major depressive disorder. This study aimed to evaluate the protective effects of ARP on TNBS-induced colitis and subsequent depression in rats, highlighting the role of the KP. MATERIAL AND METHODS Fifty-six male Wistar rats were used, and all groups except for the normal and sham groups received a single dose of intra-rectal TNBS. Three different doses of ARP and dexamethasone were injected intraperitoneally for two weeks in treatment groups. On the 15th day, behavioral tests were performed to evaluate depressive-like behaviors. Colon ulcer index and histological changes were assessed. The tissue levels of inflammatory cytokines, KP markers, lipopolysaccharide (LPS), nuclear factor-kappa-B (NF-κB), and zonula occludens (ZO-1) were evaluated in the colon and hippocampus. RESULTS TNBS effectively induced intestinal damages and subsequent depressive-like symptoms in rats. TNBS treatment significantly elevated the intestinal content of inflammatory cytokines and NF-κB expression, dysregulated the KP markers balance in both colon and hippocampus tissues, and increased the serum levels of LPS. However, treatment with ARP for 14 days successfully reversed these alterations, particularly at higher doses. CONCLUSION ARP could alleviate IBD-induced colon damage and associated depressive-like behaviors mainly via suppressing inflammatory cytokines activity, serum LPS concentration, and affecting the NF-κB/kynurenine pathway.
Collapse
Affiliation(s)
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
12
|
Suneson K, Söderberg Veibäck G, Lindahl J, Tjernberg J, Ståhl D, Ventorp S, Ängeby F, Lundblad K, Wolkowitz OM, Lindqvist D. Omega-3 fatty acids for inflamed depression - A match/mismatch study. Brain Behav Immun 2024; 118:192-201. [PMID: 38432599 DOI: 10.1016/j.bbi.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Despite decades of research on the pathophysiology of depression, the development of new therapeutic interventions has been slow, and no biomarkers of treatment response have been clinically implemented. Several lines of evidence suggest that the clinical and biological heterogeneity among patients with major depressive disorder (MDD) has hampered progress in this field. MDD with low-grade inflammation - "inflamed depression" - is a subtype of depression that may be associated with a superior antidepressant treatment response to anti-inflammatory compounds. Omega-3 fatty acid eicosapentaenoic acid (EPA) has anti-inflammatory properties, and preliminary data suggest that it may be particularly efficacious in inflamed depression. In this study we tested the hypothesis that add-on EPA has greater antidepressant efficacy in MDD patients with high baseline high-sensitivity C-reactive protein (hs-CRP) compared to MDD patients with low hs-CRP. All subjects received 2.2 g EPA, 400 mg docosahexaenoic acid and 800 mg of other fatty acids daily for 8 weeks, added to stable ongoing antidepressant treatment. The primary outcome was change in the 17-item Hamilton Depression Rating Scale (HAMD-17). Patients and raters were blind to baseline hs-CRP status. In an intention-to-treat analysis including all subjects with at least one post baseline visit (n = 101), ahs-CRPcut-off of ≥1 mg/L, but not ≥3 mg/L, was associated with a greater improvement in HAMD-17 total score. In addition to a general antidepressant effect among patients with hs-CRP ≥ 1 mg/L, adjuvant EPA treatment improved symptoms putatively related to inflamed depression such as fatigue and sleep difficulties. This adds to the mounting evidence that delineation of MDD subgroups based on inflammation may be clinically relevant to predict treatment response to anti-inflammatory interventions.
Collapse
Affiliation(s)
- Klara Suneson
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Department of Adult Psychiatry, Office for Psychiatry, Habilitation and Technical Aids, Malmö, Sweden
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Department of Gastroenterology and Nutrition, Department of Clinical Sciences, Skåne University Hospital, Malmö, Sweden
| | - Jesper Lindahl
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Department of Adult Psychiatry, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden
| | - Johanna Tjernberg
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Psychiatry Research Skåne, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden
| | - Darya Ståhl
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University
| | - Simon Ventorp
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University
| | - Filip Ängeby
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Department of Adult Psychiatry, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden
| | - Karl Lundblad
- Department of Adult Psychiatry, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden; Office for Psychiatry, Norra Stockholm Psykiatri, Region Stockholm, Sweden
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Psychiatry Research Skåne, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden.
| |
Collapse
|
13
|
Cash E, Albert C, Palmer I, Polzin B, Kabithe A, Crawford D, Bumpous JM, Sephton SE. Depressive Symptoms, Systemic Inflammation, and Survival Among Patients With Head and Neck Cancer. JAMA Otolaryngol Head Neck Surg 2024; 150:405-413. [PMID: 38546616 PMCID: PMC10979366 DOI: 10.1001/jamaoto.2024.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/03/2024] [Indexed: 04/01/2024]
Abstract
Importance Patients with head and neck cancer experience high rates of depression. Depression and systemic inflammation have been found to be associated in numerous cancer types, often independently from disease status. Depression-related inflammation may elevate the risks for poor tumor response to treatment and early mortality, and comprises a mechanism by which depression is associated with survival in head and neck cancer. Objective To assess mediation pathways incorporating pretreatment depressive symptoms, pretreatment inflammation, and tumor response posttreatment on overall survival among patients with head and neck cancer. Design, Setting, and Participants This was a prospective observational cohort study of patients with head and neck cancer treated in a single multidisciplinary head and neck cancer clinic from May 10, 2013, to December 30, 2019, and followed up for 2 years. Data analysis was performed from June 29, 2022, to June 23, 2023. Exposures Patient-reported depressive symptoms using the Patient Health Questionnaire-9 item (PHQ-9) at treatment planning; pretreatment hematology workup for systemic inflammation index (SII) score; and clinical data review for tumor response (complete vs incomplete) and overall survival. Main Outcomes Two-year overall survival. Results The total study cohort included 394 patients (mean [SD] age, 62.5 [11.5] years; 277 [70.3%] males) with head and neck cancer. Among 285 patients (72.3%) who scored below the clinical cutoff for depression on the PHQ-9, depressive symptoms were significantly associated with inflammation (partial r, 0.168; 95% CI, 0.007-0.038). In addition, both depression and inflammation were associated with early mortality (PHQ-9: hazard ratio [HR], 1.04; 95% CI, 1.02-1.07; SII: HR, 1.36; 95% CI, 1.08-1.71). The depression-survival association was fully mediated by inflammation (HR, 1.28; 95% CI, 1.00-1.64). Depressive symptoms were also associated with poorer tumor response (odds ratio, 1.05; 95% CI, 1.01-1.08), and the depression-survival association was partially mediated by tumor response (HR, 9.44; 95% CI, 6.23-14.32). Systemic inflammation was not associated with tumor response. Conclusions In this cohort study, systemic inflammation emerged as a novel candidate mechanism of the association of depression with mortality. Tumor response partially mediated effects of depression on mortality, replicating prior work. Thus, depression stands out as a highly feasible target for renewed clinical attention. Even mild symptoms of depression during the treatment-planning phase may be associated with higher systemic inflammation in addition to poorer tumor response to treatment and survival outcomes; therefore, depression should be clinically addressed.
Collapse
Affiliation(s)
- Elizabeth Cash
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, Kentucky
- University of Louisville Healthcare−Brown Cancer Center, Louisville, Kentucky
| | - Christy Albert
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, Kentucky
| | - Iona Palmer
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Baylee Polzin
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Alyssa Kabithe
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Devaughn Crawford
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jeffrey M. Bumpous
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, Kentucky
- University of Louisville Healthcare−Brown Cancer Center, Louisville, Kentucky
| | - Sandra E. Sephton
- Department of Psychology, Brigham Young University, Provo, Utah
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky
| |
Collapse
|
14
|
Chang J, Jiang T, Shan X, Zhang M, Li Y, Qi X, Bian Y, Zhao L. Pro-inflammatory cytokines in stress-induced depression: Novel insights into mechanisms and promising therapeutic strategies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110931. [PMID: 38176531 DOI: 10.1016/j.pnpbp.2023.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Stress-mediated depression is one of the common psychiatric disorders with a high prevalence and suicide rate, there is a lack of effective treatment. Accordingly, effective treatments with few adverse effects are urgently needed. Pro-inflammatory cytokines (PICs) may play a key role in stress-mediated depression. Thereupon, both preclinical and clinical studies have found higher levels of IL-1β, TNF-α and IL-6 in peripheral blood and brain tissue of patients with depression. Recent studies have found PICs cause depression by affecting neuroinflammation, monoamine neurotransmitters, hypothalamic pituitary adrenal axis and neuroplasticity. Moreover, they play an important role in the symptom, development and progression of depression, maybe a potential diagnostic and therapeutic marker of depression. In addition, well-established antidepressant therapies have some relief on high levels of PICs. Importantly, anti-inflammatory drugs relieve depressive symptoms by reducing levels of PICs. Collectively, reducing PICs may represent a promising therapeutic strategy for depression.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Tingcan Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mingxing Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, 300121, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
15
|
Sun L, Bai Y, Kang F, Lei Y. Biosignals in the Gut-Brain Axis Transmission: Function and Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38572786 DOI: 10.1021/acsami.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The gut-brain axis (GBA) is an important information pathway connecting the brain, the central nervous system (CNS), and the gastrointestinal (GI) tract. On the one hand, gut microbiota can influence the function brain through GBA; on the other hand, the brain can also change the structural composition of gut microbiota via GBA. It contains a myriad of biosignals, such as monoamines, inflammatory cytokines, and macro-biomolecules, as the information carriers. Highly selective, sensitive, and reliable sensing techniques are essential to resolve the specific function of individual biosignals. This review summarizes the widely reported biosignals related to GBA and their functions, and organizes the latest sensing tools to provide feasible characterization ideas for GBA-related work. In addition, these low-cost, fast-responding sensors can also be used for early identification and diagnosis of GBA-related diseases (e.g., depression). Finally, the problems and deficiencies in this field are pointed out to provide a reference for the orientation of researchers in the sensing field.
Collapse
Affiliation(s)
- Linxuan Sun
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yichao Bai
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Feiyu Kang
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yu Lei
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
16
|
Guo Z, Long T, Yao J, Li Y, Xiao L, Chen M. Potential antidepressant effects of Traditional Chinese botanical drug formula Chaihu-Shugan-San and its active ingredients. Front Pharmacol 2024; 15:1337876. [PMID: 38628641 PMCID: PMC11019007 DOI: 10.3389/fphar.2024.1337876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Depression is a severe mental disorder that poses a significant threat to both the physical and mental wellbeing of individuals. Currently, there are various methods for treating depression, including traditional Chinese herbal formulations like Chaihu-Shugan-San (CSS), which have shown effective antidepressant effects in both clinical and animal research. Objective: This review aims to provide a comprehensive synthesis of evidence related to CSS, considering both preclinical and clinical studies, to uncover its potential multi-level, multi-pathway, and multi-target mechanisms for treating depression and identify its active ingredients. Methods: A thorough search was conducted in electronic databases, including PubMed, MEDLINE, Web of Science, Google Scholar, CNKI, and Wanfang, using keywords such as "Chaihu Shugan" and "depression" to retrieve relevant literature on CSS and its active ingredients. The review process adhered to the PRISMA guidelines. Results: This review consolidates the mechanisms underlying antidepressant effects of CSS and its active ingredients. It emphasizes its involvement in the regulation of monoaminergic neurotransmitter systems, synaptic plasticity, and the hypothalamic-pituitary-adrenal axis, among other aspects. Conclusion: CSS exerts a pivotal role in treating depression through various pathways, including the monoaminergic neurotransmitter system, the hypothalamic-pituitary-adrenal axis, synaptic plasticity, inflammation, brain-derived neurotrophic factor levels, and the brain-gut axis. This review facilitates a comprehensive understanding of the current state of CSS research, fostering an in-depth exploration of the etiological mechanisms of depression and the potential discovery of novel antidepressant drugs.
Collapse
Affiliation(s)
- Ziyi Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Tianjian Long
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianping Yao
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Xiao
- Zunyi Medical University, Zhuhai, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
| |
Collapse
|
17
|
Comai S, Nunez N, Atkin T, Ghabrash MF, Zakarian R, Fielding A, Saint-Laurent M, Low N, Sauber G, Ragazzi E, Hillard CJ, Gobbi G. Dysfunction in endocannabinoids, palmitoylethanolamide, and degradation of tryptophan into kynurenine in individuals with depressive symptoms. BMC Med 2024; 22:33. [PMID: 38273283 PMCID: PMC10809514 DOI: 10.1186/s12916-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The endocannabinoid (eCB) system and the serotonin (5-HT) are both implicated in the severity of the depression. 5-HT is synthesized from the amino acid tryptophan (Trp), which is also a precursor for kynurenine (Kyn) whose production is increased at the expense of 5-HT in depressed patients. No clinical studies have investigated the crosstalk between the eCB system and the Trp/5-HT/Kyn pathways. Here, we hypothesized that the eCB system is associated with an enhanced Kyn production in relation to the severity of depressive symptoms. METHODS Eighty-two subjects (51 patients with a diagnosis of depressive disorder (DSM-5) and 31 healthy volunteers), were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Scale, and Global Clinical Impression. Serum concentrations of eCBs (N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)); structurally related fatty acyl compounds 2-oleoylglycerol (2-OG), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA); Trp, Kyn, Kyn/Trp ratio (an index of Trp degradation into Kyn) and 5-HT were also determined. RESULTS Following a principal component analysis including the severity of depression, Kyn and the Kyn/Trp ratio appear to be directly associated with 2-AG, AEA, and PEA. Interestingly, these biomarkers also permitted to distinguish the population into two main clusters: one of individuals having mild/severe depressive symptoms and the other with an absence of depressive symptoms. Using parametric analysis, higher serum levels of 2-AG, Kyn, and the ratio Kyn/Trp and lower levels of Trp and 5-HT were found in individuals with mild/severe depressive symptoms than in those without depressive symptoms. While in asymptomatic people, PEA was directly associated to Trp, and OEA indirectly linked to 5-HT, in individuals with depressive symptoms, these correlations were lost, and instead, positive correlations between AEA and 2-AG, PEA and AEA, and PEA vs 2-AG and OEA concentrations were found. CONCLUSIONS Parametric and non-parametric analyses suggest a possible association between eCBs, tryptophan/kynurenine biomarkers, and severity of depression, confirming a likely interplay among inflammation, stress, and depression. The enhanced relationships among the biomarkers of the 2-AG and AEA pathways and related lipids seen in individuals with depressive symptoms, but not in asymptomatics, suggest an altered metabolism of the eCB system in depression.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nicolas Nunez
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tobias Atkin
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Rita Zakarian
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Allan Fielding
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Marie Saint-Laurent
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Nancy Low
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Garrett Sauber
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
18
|
Ali M, Husnudinov R, Wollenhaupt-Aguiar B, Frey BN. The association of blood biomarkers with cerebral white matter and myelin content in bipolar disorder: a systematic review. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2023; 46:e20233267. [PMID: 38712923 PMCID: PMC11189111 DOI: 10.47626/1516-4446-2023-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 05/08/2024]
Abstract
OBJECTIVES Evidence from diffusion tensor imaging (DTI) and postmortem studies has demonstrated white-matter (WM) deficits in bipolar disorder (BD). Changes in peripheral blood biomarkers have also been observed; however, studies evaluating the potential relationship between brain alterations and the periphery are scarce. The objective of this systematic review is to investigate the relationship between blood-based biomarkers and WM in BD. METHODS PubMed, Embase, and PsycINFO were used to conduct literature searches. Cross-sectional or longitudinal studies reporting original data which investigated both a blood-based biomarker and WM (by neuroimaging) in BD were included. RESULTS Of 3,750 studies retrieved, 23 were included. Several classes of biomarkers were found to have a significant relationship with WM in BD. These included cytokines and growth factors (interleukin-8 [IL-8], tumor necrosis factor alpha [TNF-a], and insulin-like growth factor binding protein 3 [IGFBP-3]), innate immune system (natural killer cells [NK]), metabolic markers (lipid hydroperoxidase, cholesterol, triglycerides), the kynurenine (Kyn) pathway (5-hydroxyindoleacetic acid, kynurenic acid [Kyna]), and various gene polymorphisms (serotonin-transporter-linked promoter region). CONCLUSION This systematic review revealed that blood-based biomarkers are associated with markers of WM deficits observed in BD. Longitudinal studies investigating the potential clinical utility of these specific biomarkers are encouraged.
Collapse
Affiliation(s)
- Mohammad Ali
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- Centre for Clinical Neurosciences, McMaster University, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Renata Husnudinov
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bianca Wollenhaupt-Aguiar
- Centre for Clinical Neurosciences, McMaster University, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Benicio N. Frey
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
19
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
20
|
Liu M, Ma W, He Y, Sun Z, Yang J. Recent Progress in Mass Spectrometry-Based Metabolomics in Major Depressive Disorder Research. Molecules 2023; 28:7430. [PMID: 37959849 PMCID: PMC10647556 DOI: 10.3390/molecules28217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness with a heavy social burden, but its underlying molecular mechanisms remain unclear. Mass spectrometry (MS)-based metabolomics is providing new insights into the heterogeneous pathophysiology, diagnosis, treatment, and prognosis of MDD by revealing multi-parametric biomarker signatures at the metabolite level. In this comprehensive review, recent developments of MS-based metabolomics in MDD research are summarized from the perspective of analytical platforms (liquid chromatography-MS, gas chromatography-MS, supercritical fluid chromatography-MS, etc.), strategies (untargeted, targeted, and pseudotargeted metabolomics), key metabolite changes (monoamine neurotransmitters, amino acids, lipids, etc.), and antidepressant treatments (both western and traditional Chinese medicines). Depression sub-phenotypes, comorbid depression, and multi-omics approaches are also highlighted to stimulate further advances in MS-based metabolomics in the field of MDD research.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
21
|
Patel VD, Shamsi SA, Miller A, Liu A, Powell M. Simultaneous separation and detection of nine kynurenine pathway metabolites by reversed-phase liquid chromatography-mass spectrometry: Quantitation of inflammation in human cerebrospinal fluid and plasma. Anal Chim Acta 2023; 1278:341659. [PMID: 37709424 PMCID: PMC10813655 DOI: 10.1016/j.aca.2023.341659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The kynurenine pathway (KP) generates eight tryptophan (TRP) metabolites collectively called kynurenines, which have gained enormous interest in clinical research. The importance of KP for different disease states calls for developing a low-cost and high-throughput chromatography-mass spectrometry method to evaluate the potential of different kynurenines. Simultaneous separation of TRP and its eight metabolites is challenging because they have substantial polarity differences (log P = -2.5 to +1.3). RESULTS A low-cost, reversed-phase LC-MS/MS method based on polarity partitioning was established to simultaneously separate and quantitate all nine kynurenine pathway metabolites (KPMs) in a single run for the first time in the open literature. Based on stationary phase screening and ternary mobile phase optimization strategy, high polarity KPMs were retained while medium and low polarity KPMs were eluted in a shorter time. After method validation, we demonstrated the applicability of this LC/MS/MS method by quantitative measurement of all nine KPM in cerebrospinal fluid (CSF) and plasma among two groups of human subjects diagnosed with depression. Furthermore, we measured the differential KPMs in these two groups of low and high inflammation and correlated the results with CRP or TNF-α markers for depression. SIGNIFICANCE Our proposed LC-MS/MS provides a new metabolite assay that can be easily applied in various clinical applications to simultaneously quantify multiple biomarkers in KP dysfunction.
Collapse
Affiliation(s)
- Vijay D Patel
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Shahab A Shamsi
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| | - Andrew Miller
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Mark Powell
- Agilent Technologies, Wilmington, DE, 19808, USA
| |
Collapse
|
22
|
Bakker L, Köhler S, Eussen SJPM, Choe K, van den Hove DLA, Kenis G, Rutten BPF, Ulvik A, Ueland PM, Verhey FRJ, Ramakers IHGB. Correlations between kynurenines in plasma and CSF, and their relation to markers of Alzheimer's disease pathology. Brain Behav Immun 2023; 111:312-319. [PMID: 37149106 DOI: 10.1016/j.bbi.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
INTRODUCTION Altered levels of kynurenines in blood and cerebrospinal fluid (CSF) have been reported in Alzheimer's disease (AD). However, it is still largely unknown whether peripheral kynurenine concentrations resemble those found in CSF and how they relate to AD pathology. We therefore studied correlations between kynurenines in plasma and CSF and their associations with CSF amyloid-beta (Aβ1-42) and tau levels in patients from the memory clinic spanning the whole cognitive spectrum. METHODS The Biobank Alzheimer Center Limburg study is a prospective cohort study of consecutive patients referred to the memory clinic of the Alzheimer Center Limburg. Plasma and CSF concentrations of tryptophan (TRP), eight kynurenines and neopterin from 138 patients were determined by means of LC-MS/MS. Additionally, CSF Aβ1-42, total-tau (t-tau) and phosphorylated tau (p-tau) concentrations were determined using commercially available single-parameter ELISA methods. Partial correlations were used to analyze cross-sectional associations between kynurenines in plasma and CSF and their relation to AD related CSF-biomarkers adjusted for age, sex, educational level, and kidney function. RESULTS Moderate to strong correlations were observed between plasma and CSF levels for quinolinic acid (QA; r = 0.63), TRP (r = 0.47), anthranilic acid (r = 0.59), picolinic acid (r = 0.55), and the kynurenine (KYN)/TRP ratio (KTR; r = 0.55; all p < 0.0001), while other kynurenines correlated only weakly with their corresponding CSF values. No correlations were found between plasma and CSF levels of KA/QA. Several kynurenines were also weakly correlated with Aβ1-42, t-tau or p-tau. Plasma levels of KA/QA were negatively correlated with Aβ1-42 (r = -0.21, p < 0.05). Plasma levels of TRP were negatively correlated with t-tau (r = -0.19) and levels of KYN with p-tau (r = -0.18; both p < 0.05). CSF levels of KYN (r = 0.20, p < 0.05), KA (r = 0.23, p < 0.01), and KTR (r = 0.18, p < 0.05) were positively correlated with Aβ1-42. Finally, TRP and KYN were negatively (r = -0.22 and r = -0.18, respectively), and neopterin positively (r = 0.19) correlated with p-tau (all p < 0.05). CONCLUSIONS Plasma concentrations of TRP, KP metabolites, KTR, and neopterin all significantly correlated positively with their corresponding CSF concentrations, but many correlations were weak. Additionally, our results suggest a relation between higher kynurenine levels and lower AD pathology load. These results need verification in future studies and require more research into (shared) underlying mechanisms.
Collapse
Affiliation(s)
- Lieke Bakker
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, 6229 ER Maastricht, the Netherlands.
| | - Sebastian Köhler
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, 6229 ER Maastricht, the Netherlands.
| | - Simone J P M Eussen
- Department of Epidemiology, Maastricht University, 6229 HA Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM) and Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 ER Maastricht, the Netherlands.
| | - Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, 6229 ER Maastricht, the Netherlands.
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, 6229 ER Maastricht, the Netherlands.
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, 6229 ER Maastricht, the Netherlands.
| | | | | | - Frans R J Verhey
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, 6229 ER Maastricht, the Netherlands.
| | - Inez H G B Ramakers
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
23
|
Dos Santos RAL, de Lima Reis SR, Gibbert PC, de Arruda CM, Doneda DL, de Matos YAV, Viola GG, Rios Santos F, de Lima E, da Silva Buss Z, Vandresen-Filho S. Guanosine treatment prevents lipopolysaccharide-induced depressive-like behavior in mice. J Psychiatr Res 2023; 164:296-303. [PMID: 37392719 DOI: 10.1016/j.jpsychires.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Guanosine is a purinergic nucleoside that has been shown to have neuroprotective effects, mainly through its ability to modulate the glutamatergic system. An increase in pro-inflammatory cytokine levels triggers the activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), leading to glutamatergic excitotoxicity, which has important roles in the pathophysiology of depression. The aim of this study was to investigate the possible antidepressant-like effects and underlying mechanisms of action of guanosine against lipopolysaccharide (LPS)-induced depression in a mouse model. Mice were orally pre-treated with saline (0.9% NaCl), guanosine (8 or 16 mg/kg), or fluoxetine (30 mg/kg) for 7 days before LPS (0.5 mg/kg, intraperitoneal) injection. One day after LPS injection, mice were subjected to the forced swim test (FST), tail suspension test (TST), and open field test (OFT). After the behavioral tests, mice were euthanized and the levels of tumor necrosis factor-α (TNF-α), IDO-1, glutathione, and malondialdehyde in the hippocampus were measured. Pretreatment with guanosine was able to prevent LPS- induced depressive-like behaviors in the TST and FST. In the OFT, no locomotor changes were observed with any treatment. Both guanosine (8 and 16 mg/kg/day) and fluoxetine treatment prevented the LPS-induced increase in TNF-α and IDO expression and lipid peroxidation as well as decrease of reduced glutathione levels in the hippocampus. Taken together, our findings suggest that guanosine may have neuroprotective effects against LPS-induced depressive-like behavior through preventing oxidative stress and the expression of IDO-1 and TNF-α in the hippocampus.
Collapse
Affiliation(s)
- Rozielly Aparecida Lemes Dos Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Silvia Regina de Lima Reis
- Laboratório de Investigação, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Patrícia Cristiane Gibbert
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Cristina Maria de Arruda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Diego Luiz Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Yohan Alves Victor de Matos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | | | - Fabrício Rios Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Eliângela de Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Ziliani da Silva Buss
- Laboratório de Pesquisa em Imunologia, Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Samuel Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil.
| |
Collapse
|
24
|
Shen W, Tao Y, Zheng F, Zhou H, Wu H, Shi H, Huang F, Wu X. The alteration of gut microbiota in venlafaxine-ameliorated chronic unpredictable mild stress-induced depression in mice. Behav Brain Res 2023; 446:114399. [PMID: 36963638 DOI: 10.1016/j.bbr.2023.114399] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
Depression is associated with intestinal dysbiosis. Venlafaxine is a commonly used antidepressant in clinical practice as a serotonin and noradrenaline reuptake inhibitor. However, its effects on gut bacteria in depression remain unclear. Here, we established a mouse model of depression induced by chronic unpredictable mild stress (CUMS), and investigated the alterations of venlafaxine on the gut microbiota and potential key bacteria. Our data show that venlafaxine exerts antidepressant effects by restoring the serotonin (5-HT) system and glutamate (Glu) levels in CUMS mice. Moreover, we revealed that venlafaxine altered the diversity of gut bacteria in CUMS mice, and at genus level, Blautia, Oscillibacter, Tyzzerella, Butyricicoccus, and Enterorhabdus are the key bacteria responsible for venlafaxine-ameliorated depression in mice. Among these potential key bacteria, Blautia, Oscillibacter, and Butyricicoccus are correlated significantly with the 5-HT and 5-hydroxyindoleacetic acid levels; while Tyzzerella is correlated markedly with Glu levels. We further show that venlafaxine affected multiple functional metabolic pathways of gut bacteria in mice with CUMS-induced depression. Our results suggest that venlafaxine possibly ameliorates depression via modulating gut bacteria, and found the potential targets of its antidepressant effects.
Collapse
Affiliation(s)
- Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fang Zheng
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
25
|
Nettis MA, Lombardo G, Hastings C, Zajkowska Z, Mariani N, Nikkheslat N, Sforzini L, Worrell C, Begum A, Brown M, Cleare AJ, Young AH, Pariante CM, Mondelli V. The interaction between kynurenine pathway, suicidal ideation and augmentation therapy with minocycline in patients with treatment-resistant depression. J Psychopharmacol 2023:2698811231173588. [PMID: 37183855 DOI: 10.1177/02698811231173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS We investigated kynurenine pathway (KP) metabolites levels and their association with suicidal ideation in patients with treatment-resistant depression (TRD) and elevated peripheral inflammation. The effect of antidepressant augmentation with minocycline on KP metabolites was tested. METHODS We analysed data from MINocycline in DEPression, a 4-week, randomized, placebo controlled (1:1) trial of minocycline added to antidepressant treatment in 39 TRD patients (n = 18 minocycline; n = 21 placebo) with C-reactive protein (CRP) ⩾1 mg/L. At baseline and at week 4, we collected data on suicidality (Beck Depression Inventory) and blood samples to measure inflammatory markers and KP metabolites. We tested (1) the association of KP metabolites ratios with inflammatory markers and suicidal ideation at baseline and (2) the role of suicidality and treatment (minocycline vs placebo) in affecting KP changes over time. RESULTS At baseline, kynurenine/tryptophan (KYN/TRP) ratio positively correlated with high-sensitivity CRP (Spearman's ρ = 0.35, p = 0.02) and IL-10, (ρ = 0.41, p = 0.009); and tumour necrosis factor was positively correlated with quinolinic acid/3-hydroxykynurenine ratio (ρ = 0.55, p < 0.001). Moreover, participants with suicidal ideation showed higher levels of KYN/TRP (U = 143.000, p = 0.02) than those without suicidal ideation. There was no significant effect of minocycline on KP metabolites changes from baseline to week 4. However, in the minocycline group, the number of participants with suicidal thoughts decreased from 44.4% (8/18) to 22.2% (4/18). CONCLUSION Increased KP neurotoxic metabolites are associated with elevated peripheral inflammation in depressed individuals, particularly in those with suicidal ideation. Targeting KP in this population could be a potential effective personalized approach. Whether this includes minocycline should be investigated in future larger trials.
Collapse
Affiliation(s)
- Maria Antonietta Nettis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Giulia Lombardo
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Caitlin Hastings
- Wellcome Trust, Mental Health Team, Research Programmes, London, UK
| | - Zuzanna Zajkowska
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Nicole Mariani
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Naghmeh Nikkheslat
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Luca Sforzini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Courtney Worrell
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Amina Begum
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Mollie Brown
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Anthony J Cleare
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
26
|
Suneson K, Grudet C, Ventorp F, Malm J, Asp M, Westrin Å, Lindqvist D. An inflamed subtype of difficult-to-treat depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110763. [PMID: 37037323 DOI: 10.1016/j.pnpbp.2023.110763] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Chronic low-grade inflammation may play a role in the pathophysiology of depression, at least in a subset of patients. High-sensitivity C-reactive protein (hs-CRP) has been used to define an inflamed subgroup of depression with specific clinical characteristics and symptoms. In this study we investigated biochemical and clinical characteristics in patients with difficult-to-treat depression with and without chronic low-grade inflammation. METHOD We assayed plasma levels of interferon-gamma, tumor necrosis factor-alpha, Interleukin (IL)-10, IL-6, IL-8, and vitamin D in a clinically well-characterized sample of patients with difficult-to-treat depression (n = 263) and healthy controls (n = 46). Serum hs-CRP levels were available in the patient group and were used to define "inflamed depression" (hs-CRP > 3 mg/L). Based on previous studies correlating specific depressive symptoms to inflammatory markers, we calculated a composite score of inflammatory depressive symptoms (Infl-Dep score). A principal component analysis (PCA) was performed to identify patterns of variance in cytokines and vitamin D among patients. RESULTS Mean levels of IL-6 and IL-8 were significantly higher in depressed patients compared to controls, also after adjusting for sex, smoking, BMI, and age. None of the other inflammatory markers differed significantly between depressed patients and controls. Two components were extracted using PCA; one showed general cytokine elevations and one represented a pattern where IL-6 and IL-8 were inversely related to vitamin D (IL6-IL8-VitD component). The inflamed subgroup (hs-CRP > 3, n = 51) exhibited significantly higher BMI, higher Infl-Dep scores and higher IL6-IL8-VitD component scores than uninflamed patients (hs-CRP ≤ 3, n = 212). There were no significant differences in overall depression severity or suicidality between the inflamed and uninflamed groups. CONCLUSION Our results support the hypothesis of an inflamed subgroup of depression as a meaningful construct. This subgroup may have certain biological and clinical characteristics and more studies are needed to determine potential clinical implications.
Collapse
Affiliation(s)
- Klara Suneson
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden; Office for Psychiatry and Habilitation, Psychiatric Clinic Helsingborg, Region Skåne, 252 23 Helsingborg, Sweden
| | - Cécile Grudet
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden
| | - Filip Ventorp
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden; Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, 221 85 Lund, Sweden
| | - Johan Malm
- Department of Translational Medicine, Lund University, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Marie Asp
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden; Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, 221 85 Lund, Sweden
| | - Åsa Westrin
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden; Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, 221 85 Lund, Sweden
| | - Daniel Lindqvist
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden; Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, 221 85 Lund, Sweden.
| |
Collapse
|
27
|
Balter LJ, Li X, Schwieler L, Erhardt S, Axelsson J, Olsson MJ, Lasselin J, Lekander M. Lipopolysaccharide-induced changes in the kynurenine pathway and symptoms of sickness behavior in humans. Psychoneuroendocrinology 2023; 153:106110. [PMID: 37075653 DOI: 10.1016/j.psyneuen.2023.106110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Metabolites of the kynurenine pathway are hypothesized to be implicated in inflammation-associated depression, but there is a lack of experimental studies in humans assessing the kinetics of kynurenine metabolites in relation to experimentally-induced sickness. The aim of the present study was to assess changes in the kynurenine pathway and to explore its relation to symptoms of sickness behavior during an acute experimental immune challenge. This double-blind placebo-controlled randomized cross-over study included 22 healthy human participants (n = 21 both sessions, Mage = 23.4, SD = 3.6, nine women) who received an intravenous injection of 2.0 ng/kg lipopolysaccharide (LPS) and saline (placebo) on two different occasions in a randomized order. Blood samples (0 h, 1 h, 1.5 h, 2 h, 3 h, 4 h, 5 h, 7 h post-injection) were analyzed for kynurenine metabolites and inflammatory cytokines. The intensity of symptoms of sickness behavior was assessed using the 10-item Sickness Questionnaire at 0 h, 1.5 h, 3 h, 5 h, and 7 h post-injection. LPS induced significantly lower concentrations of plasma tryptophan (at 2 h, 4 h, 5 h, and 7 h post-injection), kynurenine (at 2 h, 3 h, 4 h, and 5 h post-injection), nicotinamide (at 4 h, 5 h, and 7 h post-injection), and higher levels for quinolinic acid at 5 h post-injection as compared to placebo. LPS did not affect kynurenic acid, 3-hydroxykynurenine, and picolinic acid. The development of the sickness symptoms was largely similar across items, with the highest levels around 1.5-3 h post-injection. Changes in plasma levels of kynurenine metabolites seem to coincide rather than precede or follow changes in subjective sickness. Exploratory analyses indicate that higher Sickness Questionnaire total scores at 1.5-5 h post-injection were correlated with lower kynurenic acid and nicotinamide levels. These results lend further support for LPS-induced changes in the kynurenine pathway, but may not, as interpreted from blood levels, causally link to LPS-induced acute symptoms of sickness behavior. Future research may consider a larger sample to further scrutinize the role of the kynurenine pathway in the sickness response.
Collapse
Affiliation(s)
- Leonie Jt Balter
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden.
| | - Xueqi Li
- Department of Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lilly Schwieler
- Department of Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Mats J Olsson
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lasselin
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Mats Lekander
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| |
Collapse
|
28
|
Newton A, McCann L, Huo L, Liu A. Kynurenine Pathway Regulation at Its Critical Junctions with Fluctuation of Tryptophan. Metabolites 2023; 13:metabo13040500. [PMID: 37110158 PMCID: PMC10143591 DOI: 10.3390/metabo13040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The kynurenine pathway (KP) is the primary route for the catabolism of the essential amino acid tryptophan. The central KP metabolites are neurologically active molecules or biosynthetic precursors to critical molecules, such as NAD+. Within this pathway are three enzymes of interest, HAO, ACMSD, and AMSDH, whose substrates and/or products can spontaneously cyclize to form side products such as quinolinic acid (QA or QUIN) and picolinic acid. Due to their unstable nature for spontaneous autocyclization, it might be expected that the levels of these side products would be dependent on tryptophan intake; however, this is not the case in healthy individuals. On top of that, the regulatory mechanisms of the KP remain unknown, even after a deeper understanding of the structure and mechanism of the enzymes that handle these unstable KP metabolic intermediates. Thus, the question arises, how do these enzymes compete with the autocyclization of their substrates, especially amidst increased tryptophan levels? Here, we propose the formation of a transient enzyme complex as a regulatory mechanism for metabolite distribution between enzymatic and non-enzymatic routes during periods of increased metabolic intake. Amid high levels of tryptophan, HAO, ACMSD, and AMSDH may bind together, forming a tunnel to shuttle the metabolites through each enzyme, consequently regulating the autocyclization of their products. Though further research is required to establish the formation of transient complexation as a solution to the regulatory mysteries of the KP, our docking model studies support this new hypothesis.
Collapse
Affiliation(s)
- Ashley Newton
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Luree McCann
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lu Huo
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
29
|
Bruncsics B, Hullam G, Bolgar B, Petschner P, Millinghoffer A, Gecse K, Eszlari N, Gonda X, Jones DJ, Burden ST, Antal P, Deakin B, Bagdy G, Juhasz G. Genetic risk of depression is different in subgroups of dietary ratio of tryptophan to large neutral amino acids. Sci Rep 2023; 13:4976. [PMID: 36973313 PMCID: PMC10042855 DOI: 10.1038/s41598-023-31495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Manipulation of intake of serotonin precursor tryptophan has been exploited to rapidly induce and alleviate depression symptoms. While studies show that this latter effect is dependent on genetic vulnerability to depression, the effect of habitual tryptophan intake in the context of predisposing genetic factors has not been explored. Our aim was to investigate the effect of habitual tryptophan intake on mood symptoms and to determine the effect of risk variants on depression in those with high and low tryptophan intake in the whole genome and specifically in serotonin and kynurenine pathways. 63,277 individuals in the UK Biobank with data on depressive symptoms and tryptophan intake were included. We compared two subpopulations defined by their habitual diet of a low versus a high ratio of tryptophan to other large amino acids (TLR). A modest protective effect of high dietary TLR against depression was found. NPBWR1 among serotonin genes and POLI in kynurenine pathway genes were significantly associated with depression in the low but not in the high TLR group. Pathway-level analyses identified significant associations for both serotonin and kynurenine pathways only in the low TLR group. In addition, significant association was found in the low TLR group between depressive symptoms and biological process related to adult neurogenesis. Our findings demonstrate a markedly distinct genetic risk profile for depression in groups with low and high dietary TLR, with association with serotonin and kynurenine pathway variants only in case of habitual food intake leading to low TLR. Our results confirm the relevance of the serotonin hypothesis in understanding the neurobiological background of depression and highlight the importance of understanding its differential role in the context of environmental variables such as complexity of diet in influencing mental health, pointing towards emerging possibilities of personalised prevention and intervention in mood disorders in those who are genetically vulnerable.
Collapse
Grants
- BME NC TKP2020, BME IE-BIO TKP2020, Artificial Intelligence National Laboratory Programme NRDI Fund based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology
- TKP2021-EGA-02 National Research, Development, and Innovation Fund of Hungary
- OTKA 139330 National Research, Development and Innovation Office, Hungary
- ÚNKP-21-5-BME-362 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-21-4-II-BME-143 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-22-3-II-SE-27 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-22-4-II-SE-1 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- NAP2022-I-4/2022 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- P20809 Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research in Japan, standard program)
- TKP2021-EGA-25 Thematic Excellence Programme, Ministry of Innovation and Technology in Hungary, from the National Research, Development and Innovation Fund
Collapse
Affiliation(s)
- Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
| | - Bence Bolgar
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Andras Millinghoffer
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Debra J Jones
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Sorrel T Burden
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
30
|
Michal M, Schulz A, Wild PS, Koeck T, Münzel T, Schuster AK, Strauch K, Lackner K, Süssmuth SD, Niessen HG, Borta A, Allers KA, Zahn D, Beutel ME. Tryptophan catabolites and depression in the general population: results from the Gutenberg Health Study. BMC Psychiatry 2023; 23:27. [PMID: 36631760 PMCID: PMC9835277 DOI: 10.1186/s12888-023-04520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Previous studies reported significantly altered tryptophan catabolite concentrations in major depression. Thus, tryptophan catabolites were considered as potential biomarkers of depression and their modulators as potential targets for psychopharmacotherapy. However, the results were based mainly on studies with small sample sizes limiting their generalizability. Against this background, we investigated the relationship of peripheral tryptophan catabolites with depression in a population-based sample with n = 3,389 participants (with fasting status ≥ 8 h and C-reactive protein < 10 mg/L). N = 248 had clinically significant depression according to a PHQ-9 score of ≥ 10, n = 1,101 subjects had mild depressive symptoms with PHQ-9 scores between 5 and 9, and n = 2,040 had no depression. After multivariable adjustment, clinically significant depression was associated with lower kynurenine and kynurenic acid. Spearman correlation coefficients of the tryptophan catabolites with the severity of depression were very small (rho ≤ 0.080, p ≤ 0.015). None of the tryptophan catabolites could diagnostically separate depressed from not depressed persons. Concerning linear associations, kynurenine and kynurenic acid were associated only with the severity and the cognitive dimension of depression but not its somatic dimension. Tryptophan catabolites were not associated with persistence or recurrence of depression at the 5 year follow-up. The results replicated the association between kynurenine and kynurenic acid with depression. However, the associations were small raising doubts about their clinical utility. Findings underline the complexity of the relationships between depression and tryptophan catabolites. The search for subgroups of depression with a potentially higher impact of depression might be warranted.
Collapse
Affiliation(s)
- Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg University, 55131, Langenbeckstr. 1, Mainz, Germany.
| | - Andreas Schulz
- grid.410607.4Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Philipp S. Wild
- grid.410607.4German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg University, 55131, Langenbeckstr. 1, Mainz, Germany ,grid.410607.4Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Koeck
- grid.410607.4German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg University, 55131, Langenbeckstr. 1, Mainz, Germany ,grid.410607.4Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Münzel
- grid.410607.4Center for Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander K. Schuster
- grid.410607.4Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Konstantin Strauch
- grid.5802.f0000 0001 1941 7111Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Karl Lackner
- grid.410607.4Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sigurd D. Süssmuth
- Clinical Development, uniQure NV, Allschwil, Switzerland ,grid.410712.10000 0004 0473 882XDepartment of Neurology, Univeristy Hospital of Ulm University, Ulm, Germany
| | - Heiko G. Niessen
- grid.420061.10000 0001 2171 7500Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an Der Riss, Germany
| | - Andreas Borta
- Clinical Development, uniQure NV, Allschwil, Switzerland
| | - Kelly A. Allers
- grid.420061.10000 0001 2171 7500CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an Der Riss, Germany
| | - Daniela Zahn
- grid.410607.4Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manfred E. Beutel
- grid.410607.4Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
31
|
Wu X, Hu R, Jiang S, Di Z, Chen Y, Shi M, Chen B, He K, Qian K, Guo Q, Ma R. Electroacupuncture attenuates LPS-induced depression-like behavior through kynurenine pathway. Front Behav Neurosci 2023; 16:1052032. [PMID: 36703718 PMCID: PMC9871460 DOI: 10.3389/fnbeh.2022.1052032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background A growing body of evidence suggests that inflammation and changes in glutamate neurotransmission are two pathophysiological mechanisms underlying depression. Electroacupuncture (EA) is a common therapeutic tool for the treatment of depression. However, the potential antidepressant mechanism of EA remains obscure. The change of the kynurenine pathway (KP) is the research priority of antidepressant mechanisms. This study will investigate the role of EA on lipopolysaccharide (LPS)-induced depression-like behavior and explore its possible mechanism of action. Methods Lipopolysaccharide was used to induce depression-like behavior, and EA was given at Hegu (L14) and Taichong (LR3) acupoints in C57BL/6J mice. Depression-like behaviors were measured by behavioral tests, including tail suspension test (TST), sucrose preference test (SPT), force swim test (FST), and open field test (OFT). The levels of inflammatory cytokines IL-1β, IL-6, and TNF-α, and KP enzyme IDO1 were measured by qPCR and enzyme-linked immunosorbent assay (ELISA), while high-performance liquid chromatography (HPLC) was performed to detect the content of prefrontal cortex and hippocampal as well as serum glutamate, tryptophan (TRP), kynurenic (KYN), and quinolinic acid (QA). Results The results showed that (1) as evidenced by increased spontaneous locomotor activities, decreased immobility duration, and a stronger preference for sucrose in the sucrose preference test, EA reversed LPS-challenged depressive-like behavior. (2) EA at L14 and LR3 decreased the levels of inflammatory cytokines, inhibited IDO1, and regulated KP metabolisms, as well as lowered the concentration of glutamate. (3) EA may exert anti-depression effects by acting on the kynurenine pathway. Conclusion This study evaluated the effects of EA on depression-like behaviors induced by lipopolysaccharide (LPS) and its regulation of inflammation and the glutamatergic system. Our results suggest that EA can ameliorate depression-like behaviors, lower the level of inflammation, and reduce the release of glutamate, possibly through the regulation of the kynurenine pathway in the brain.
Collapse
Affiliation(s)
- Xingying Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Jiang
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Di
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Shi
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Bowen Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Kelin He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kecheng Qian
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Guo
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Qin Guo,
| | - Ruijie Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China,Ruijie Ma,
| |
Collapse
|
32
|
Cheng D, Qin ZS, Zheng Y, Xie JY, Liang SS, Zhang JL, Feng YB, Zhang ZJ. Minocycline, a classic antibiotic, exerts psychotropic effects by normalizing microglial neuroinflammation-evoked tryptophan-kynurenine pathway dysregulation in chronically stressed male mice. Brain Behav Immun 2023; 107:305-318. [PMID: 36332817 DOI: 10.1016/j.bbi.2022.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of tryptophan-kynurenine pathway (TKP) is extensively involved in the pathophysiology of Alzheimer's disease, depression, and neurodegenerative disorders. Minocycline, a classic antibiotic, may exert psychotropic effects associated with the modulation of TKP. In this study, we examined the effects of minocycline in improving behaviour and modulating TKP components in chronically stressed male mice. Following repeated treatment with 22.5 mg/kg and 45 mg/kg minocycline for 27 days, the stressed mice particularly with higher dose displayed significant improvement on cognitive impairment, depression- and anxiety-like behaviour. Minocycline suppressed stress-induced overexpression of pro-inflammatory cytokines and restored anti-inflammatory cytokines. Chronic stress dramatically suppressed blood and prefrontal cortical levels of the primary substrate tryptophan (TRP), the neuroprotective metabolite kynurenic acid (KYNA), and KYNA/KYN ratio, but increased the intermediate kynurenine (KYN), 3-hydroxykynurenine (3-HK), KYN/TRP ratio, and the neurotoxic metabolite quinolinic acid (QUIN). Minocycline partially or completely reversed changes in these components. Minocycline also inhibited stress-induced overexpression of QUIN-related enzymes, indoleamine 2, 3-dioxygenase 1(iDO-1), kynureninase (KYNU), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilate 3,4-dioxygenase (3-HAO), but rescued the decreased expression of kynurenine aminotransferase (KAT) in brain regions. Behavioral improvements were correlated with multiple TKP metabolites and enzymes. These results suggest that the psychotropic effects of minocycline are mainly associated with the restoration of biodistribution of the primary substrate in the brain and normalization of neuroinflammation-evoked TKP dysregulation.
Collapse
Affiliation(s)
- Dan Cheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jun-Ya Xie
- Department of Statistics and Actuarial Science, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Sui-Sha Liang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jia-Ling Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi-Bin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.
| |
Collapse
|
33
|
Mingoti MED, Bertollo AG, de Oliveira T, Ignácio ZM. Stress and Kynurenine-Inflammation Pathway in Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:163-190. [PMID: 36949310 DOI: 10.1007/978-981-19-7376-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depressive disorder (MDD) is one of the most prevalent disorders and causes severe damage to people's quality of life. Lifelong stress is one of the major villains in triggering MDD. Studies have shown that both stress and MDD, especially the more severe conditions of the disorder, are associated with inflammation and neuroinflammation and the relationship to an imbalance in tryptophan metabolism towards the kynurenine pathway (KP) through the enzymes indoleamine-2,3-dioxygenase (IDO), which is mainly stimulated by pro-inflammatory cytokines and tryptophan-2,3-dioxygenase (TDO) which is activated primarily by glucocorticoids. Considering that several pathophysiological mechanisms of MDD underlie or interact with biological processes from KP metabolites, this chapter addresses and discusses the function of these mechanisms. Activities triggered by stress and the hypothalamic-pituitary-adrenal (HPA) axis and immune and inflammatory processes, in addition to epigenetic phenomena and the gut-brain axis (GBA), are addressed. Finally, studies on the function and mechanisms of physical exercise in the KP metabolism and MDD are pointed out and discussed.
Collapse
Affiliation(s)
- Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Tácio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
34
|
Felger JC. Increased Inflammation and Treatment of Depression: From Resistance to Reuse, Repurposing, and Redesign. ADVANCES IN NEUROBIOLOGY 2023; 30:387-416. [PMID: 36928859 DOI: 10.1007/978-3-031-21054-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Based on mounting clinical and translational evidence demonstrating the impact of exogenously administered inflammatory stimuli on the brain and behavior, increased endogenous inflammation has received attention as one pathophysiologic process contributing to psychiatric illnesses and particularly depression. Increased endogenous inflammation is observed in a significant proportion of depressed patients and has been associated with reduced responsiveness to standard antidepressant therapies. This chapter presents recent evidence that inflammation affects neurotransmitters and neurocircuits to contribute to specific depressive symptoms including anhedonia, motor slowing, and anxiety, which may preferentially improve after anti-cytokine therapies in patients with evidence of increased inflammation. Existing and novel pharmacological strategies that target inflammation or its downstream effects on the brain and behavior will be discussed in the context of a need for intelligent trial design in order to meaningfully translate these concepts and develop more precise therapies for depressed patients with increased inflammation.
Collapse
|
35
|
Suneson K, Ängeby F, Lindahl J, Söderberg G, Tjernberg J, Lindqvist D. Efficacy of eicosapentaenoic acid in inflammatory depression: study protocol for a match-mismatch trial. BMC Psychiatry 2022; 22:801. [PMID: 36536364 PMCID: PMC9761617 DOI: 10.1186/s12888-022-04430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Most antidepressant treatment studies have included patients strictly based on the Diagnostic and Statistical Manual of Mental Disorders definition of Major Depressive Disorder (MDD). Given the heterogeneity of MDD, this approach may have obscured inter-patient differences and hampered the development of novel and targeted treatment strategies. An alternative strategy is to use biomarkers to delineate endophenotypes of depression and test if these can be targeted via mechanism-based interventions. Several lines of evidence suggest that "inflammatory depression" is a clinically meaningful subtype of depression. Preliminary data indicate that omega-3 fatty acids, with their anti-inflammatory and neuroprotective properties, may be efficacious in this subtype of depression, and this study aims to test this hypothesis. METHOD We conduct a match-mismatch-trial to test if add-on omega-3 fatty acid eicosapentaenoic acid (EPA) reduces depressive symptoms in patients with MDD and systemic low-grade inflammation. MDD patients on a stable antidepressant treatment are stratified at baseline on high sensitivity-C-reactive protein (hs-CRP) levels to a high-inflammation group (hs-CRP ≥ 3 mg/L) or a low-inflammation group (hs-CRP < 3 mg/L). Both groups receive add-on EPA (2 g per day) for 8 weeks with three study visits, all including blood draws. Patients and raters are blind to inflammation status. Primary outcome measure is change in Hamilton Depression Rating Scale score between baseline and week 8. We hypothesize that the inflammation group has a superior antidepressant response to EPA compared to the non-inflammation group. Secondary outcomes include a composite score of "inflammatory depressive symptoms", quality of life, anxiety, anhedonia, sleep disturbances, fatigue, cognitive performance and change in biomarkers relating to inflammation, oxidative stress, metabolomics and cellular aging. DISCUSSION In this study we will, for the first time using a match-mismatch trial design, test if omega-3 is an efficacious treatment for inflammatory depression. If our study is successful, it could add to the field of precision psychiatry. TRIAL REGISTRATION This trial was registered May 8, 2017 on clinicaltrials.gov under the reference number NCT03143075.
Collapse
Affiliation(s)
- Klara Suneson
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85, Lund, Sweden. .,Office for Psychiatry and Habilitation, Psychiatric Clinic Helsingborg, Region Skåne, 252 23, Helsingborg, Sweden.
| | - Filip Ängeby
- grid.426217.40000 0004 0624 3273Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, 221 85 Lund, Sweden
| | - Jesper Lindahl
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden ,grid.426217.40000 0004 0624 3273Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, 221 85 Lund, Sweden
| | - Gustav Söderberg
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Gastroenterology, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Johanna Tjernberg
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden ,grid.426217.40000 0004 0624 3273Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, 221 85 Lund, Sweden
| | - Daniel Lindqvist
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden ,grid.426217.40000 0004 0624 3273Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, 221 85 Lund, Sweden
| |
Collapse
|
36
|
Aronica R, Enrico P, Squarcina L, Brambilla P, Delvecchio G. Association between Diffusion Tensor Imaging, inflammation and immunological alterations in unipolar and bipolar depression: A review. Neurosci Biobehav Rev 2022; 143:104922. [PMID: 36272579 DOI: 10.1016/j.neubiorev.2022.104922] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder Depression (BDD) are common psychiatric illnesses characterized by structural and functional brain alterations and signs of neuroinflammation. In line with the neuroinflammatory pathogenesis of depressive syndromes, recent studies have demonstrated how white matter (WM) microstructural impairments detected by Diffusion Tensor Imaging, are correlated to peripheral immunomarkers in depressed patients. In this context, we performed a comprehensive systematic search on PubMed, Medline and Scopus of the original studies published till June 2022, exploring the association between immunomarkers and WM alteration patterns in patients affected by MDD or BDD. Overall, the studies included in this review showed a consistent association between blood proinflammatory and counter-regulatory immunomarkers, including regulatory T cells and natural killer cells markers, as well as measures of demyelination and dysmyelination in both MDD and BDD patients. These pathogenetic insights could outline an integrated clinical perspective to affective disorders, helping psychiatrists to develop novel biotype-to-phenotype models of depression and opening the way to tailored approaches in treatments.
Collapse
Affiliation(s)
- Rosario Aronica
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Giuseppe Delvecchio
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy.
| |
Collapse
|
37
|
Aarsland TIM, Instanes JT, Posserud MBR, Ulvik A, Kessler U, Haavik J. Changes in Tryptophan-Kynurenine Metabolism in Patients with Depression Undergoing ECT-A Systematic Review. Pharmaceuticals (Basel) 2022; 15:1439. [PMID: 36422569 PMCID: PMC9694349 DOI: 10.3390/ph15111439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway of tryptophan (Trp) metabolism generates multiple biologically active metabolites (kynurenines) that have been implicated in neuropsychiatric disorders. It has been suggested that modulation of kynurenine metabolism could be involved in the therapeutic effect of electroconvulsive therapy (ECT). We performed a systematic review with aims of summarizing changes in Trp and/or kynurenines after ECT and assessing methodological issues. The inclusion criterium was measures of Trp and/or kynurenines before and after ECT. Animal studies and studies using Trp administration or Trp depletion were excluded. Embase, MEDLINE, PsycInfo and PubMed were searched, most recently in July 2022. Outcomes were levels of Trp, kynurenines and ratios before and after ECT. Data on factors affecting Trp metabolism and ECT were collected for interpretation and discussion of the reported changes. We included 17 studies with repeated measures for a total of 386 patients and 27 controls. Synthesis using vote counting based on the direction of effect found no evidence of effect of ECT on any outcome variable. There were considerable variations in design, patient characteristics and reported items. We suggest that future studies should include larger samples, assess important covariates and determine between- and within-subject variability. PROSPERO (CRD42020187003).
Collapse
Affiliation(s)
| | | | - Maj-Britt Rocio Posserud
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5020 Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
38
|
Wu X, Chen B, Di Z, Jiang S, Xu H, Shi M, Hu R, Sun S, Song Z, Liu J, Ma R, Guo Q. Involvement of kynurenine pathway between inflammation and glutamate in the underlying etiopathology of CUMS-induced depression mouse model. BMC Neurosci 2022; 23:62. [DOI: 10.1186/s12868-022-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
AbstractInflammation and glutamate (GLU) are widely thought to participate in the pathogenesis of depression, and current evidence suggests that the development of depression is associated with the activation of the kynurenine pathway (KP). However, the exact mechanism of KP among the inflammation, GLU and depression remain poorly understood. In this study, we examined the involvement of KP, inflammation and GLU in depressive phenotype induced by chronic unpredictable mild stress (CUMS) in C57B/6 J mice. Our results showed that CUMS caused depressive like-behavior in the sucrose preference test, tail suspension test and forced swimming test. From a molecular perspective, CUMS upregulated the peripheral and central inflammatory response and activated indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of KP, which converts tryptophan (TRP) into kynurenine (KYN). KYN is a precursor for QA in microglia, which could activate the N-methyl-D-aspartate receptor (NMDAR), increasing the GLU release, mirrored by increased IDO activity, quinolinic acid and GLU levels in the hippocampus, prefrontal cortex and serum. However, intervention with IDO inhibitor 1-methyl-DL-tryptophan (50 mg/kg/s.c.) and 1-methyl-L-tryptophan (15 mg/kg/i.p.) reversed the depressive-like behaviors and adjusted central and peripheral KP’s metabolisms levels as well as GLU content, but the inflammation levels were not completely affected. These results provide certain evidence that KP may be a vital pathway mediated by IDO linking inflammation and glutamate, contributing to depression.
Collapse
|
39
|
Anderson EW, Jin Y, Shih A, Arazi A, Goodwin S, Roeser J, Furie RA, Aranow C, Volpe B, Diamond B, Mackay M. Associations between circulating interferon and kynurenine/tryptophan pathway metabolites: support for a novel potential mechanism for cognitive dysfunction in SLE. Lupus Sci Med 2022; 9:e000808. [PMID: 36384965 PMCID: PMC9670923 DOI: 10.1136/lupus-2022-000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Quinolinic acid (QA), a kynurenine (KYN)/tryptophan (TRP) pathway metabolite, is an N-methyl-D-aspartate receptor agonist that can produce excitotoxic neuron damage. Type I and II interferons (IFNs) stimulate the KYN/TRP pathway, producing elevated QA/kynurenic acid (KA), a potential neurotoxic imbalance that may contribute to SLE-mediated cognitive dysfunction. We determined whether peripheral blood interferon-stimulated gene (ISG) expression associates with elevated serum KYN:TRP and QA:KA ratios in SLE. METHODS ISG expression (whole-blood RNA sequencing) and serum metabolite ratios (high-performance liquid chromatography) were measured in 72 subjects with SLE and 73 healthy controls (HCs). ISG were identified from published gene sets and individual IFN scores were derived to analyse associations with metabolite ratios, clinical parameters and neuropsychological assessments. SLE analyses were grouped by level of ISG expression ('IFN high', 'IFN low' and 'IFN similar to HC') and level of monocyte-associated gene expression (using CIBERSORTx). RESULTS Serum KYN:TRP and QA:KA ratios were higher in SLE than in HC (p<0.01). 933 genes were differentially expressed ≥2-fold in SLE versus HC (p<0.05). 70 of the top 100 most highly variant genes were ISG. Approximately half of overexpressed genes that correlated with KYN:TRP and QA:KA ratios (p<0.05) were ISG. In 36 IFN-high subjects with SLE, IFN scores correlated with KYN:TRP ratios (p<0.01), but not with QA:KA ratios. Of these 36 subjects, 23 had high monocyte-associated gene expression, and in this subgroup, the IFN scores correlated with both KY:NTRP and QA:KA ratios (p<0.05). CONCLUSIONS High ISG expression correlated with elevated KYN:TRP ratios in subjects with SLE, suggesting IFN-mediated KYN/TRP pathway activation, and with QA:KA ratios in a subset with high monocyte-associated gene expression, suggesting that KYN/TRP pathway activation may be particularly important in monocytes. These results need validation, which may aid in determining which patient subset may benefit from therapeutics directed at the IFN or KYN/TRP pathways to ameliorate a potentially neurotoxic QA/KA imbalance.
Collapse
Affiliation(s)
- Erik W Anderson
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ying Jin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Andrew Shih
- Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Arnon Arazi
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Julien Roeser
- Charles River Laboratories, South San Francisco, California, USA
| | - Richard A Furie
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Rheumatology, Northwell Health, Great Neck, New York, USA
| | - Cynthia Aranow
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Bruce Volpe
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betty Diamond
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Meggan Mackay
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| |
Collapse
|
40
|
Savitz J, Ford BN, Yeh HW, Akeman E, Cosgrove K, Clausen AN, Martell C, Kirlic N, Santiago J, Teague TK, Irwin MR, Paulus MP, Aupperle RL. Behavioral activation therapy for depression is associated with a reduction in the concentration of circulating quinolinic acid. Psychol Med 2022; 52:2500-2509. [PMID: 33234171 PMCID: PMC8144244 DOI: 10.1017/s0033291720004389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND An inflammation-induced imbalance in the kynurenine pathway (KP) has been reported in major depressive disorder but the utility of these metabolites as predictive or therapeutic biomarkers of behavioral activation (BA) therapy is unknown. METHODS Serum samples were provided by 56 depressed individuals before BA therapy and 29 of these individuals also provided samples after 10 weeks of therapy to measure cytokines and KP metabolites. The PROMIS Depression Scale (PROMIS-D) and the Sheehan Disability Scale were administered weekly and the Beck depression inventory was administered pre- and post-therapy. Data were analyzed with linear mixed-effect, general linear, and logistic regression models. The primary outcome for the biomarker analyses was the ratio of kynurenic acid to quinolinic acid (KynA/QA). RESULTS BA decreased depression and disability scores (p's < 0.001, Cohen's d's > 0.5). KynA/QA significantly increased at post-therapy relative to baseline (p < 0.001, d = 2.2), an effect driven by a decrease in QA post-therapy (p < 0.001, uncorrected, d = 3.39). A trend towards a decrease in the ratio of kynurenine to tryptophan (KYN/TRP) was also observed (p = 0.054, uncorrected, d = 0.78). Neither the change in KynA/QA, nor baseline KynA/QA were associated with response to BA therapy. CONCLUSION The current findings together with previous research show that electronconvulsive therapy, escitalopram, and ketamine decrease concentrations of the neurotoxin, QA, raise the possibility that a common therapeutic mechanism underlies diverse forms of anti-depressant treatment but future controlled studies are needed to test this hypothesis.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK
- Oxley College of Health Sciences, The University of Tulsa, Tulsa OK
| | - Bart N. Ford
- Laureate Institute for Brain Research, Tulsa, OK
| | | | | | - Kelly Cosgrove
- Laureate Institute for Brain Research, Tulsa, OK
- Department of Psychology, The University of Tulsa, Tulsa OK
| | - Ashley N. Clausen
- Kansas City VA Healthcare System, Kansas City, MO
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, MO
| | - Christopher Martell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst
| | - Namik Kirlic
- Laureate Institute for Brain Research, Tulsa, OK
| | | | - T. Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK
| | - Michael R. Irwin
- Cousins Center for Psychoneuroimmunology at UCLA, Semel Institute for Neuroscience and UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martin P. Paulus
- Laureate Institute for Brain Research, Tulsa, OK
- Oxley College of Health Sciences, The University of Tulsa, Tulsa OK
| | - Robin L. Aupperle
- Laureate Institute for Brain Research, Tulsa, OK
- Oxley College of Health Sciences, The University of Tulsa, Tulsa OK
| |
Collapse
|
41
|
Zheng H, Teague TK, Yeh FC, Burrows K, Figueroa-Hall LK, Aupperle RL, Khalsa SS, Paulus MP, Savitz J. C-Reactive protein and the kynurenic acid to quinolinic acid ratio are independently associated with white matter integrity in major depressive disorder. Brain Behav Immun 2022; 105:180-189. [PMID: 35853557 PMCID: PMC9983279 DOI: 10.1016/j.bbi.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Kynurenic acid (KynA) and quinolinic acid (QA) are neuroactive kynurenine pathway (KP) metabolites that have neuroprotective and neurotoxic properties, respectively. At least partly as a result of immune activation, the ratio of KynA to QA in the blood is reduced in major depressive disorder (MDD) and has been reported to be positively correlated with gray matter volume in depression. This study examined whether the inflammatory mediator, C-reactive protein (CRP) and the putative neuroprotective index, KynA/QA, were associated with white matter integrity in MDD, and secondly, whether any such associations were independent of each other or whether the effect of CRP was mediated by KynA/QA. One hundred and sixty-six participants in the Tulsa 1000 study with a DSM-V diagnosis of MDD completed diffusion tensor imaging and provided a serum sample for the quantification of CRP, KynA, and QA. Correlational tractography was performed using DSI Studio to map the specific white matter pathways that correlated with CRP and KynA/QA. CRP was negatively related to KynA/QA (standardized beta coefficient, SBC = -0.35 with standard error, Std.E = 0.13, p < 0.01) after controlling for nine possible confounders, i.e., age, sex, body mass index (BMI), medication status, lifetime alcohol use, severity of depression, severity of anxiety, length of illness, and smoking status. Higher concentrations of CRP were associated with decreased white matter integrity (fractional anisotropy, FA) of the bilateral cingulum and fornix after controlling for the nine potential confounders (SBC = -0.43, Std.E = 0.13, p = 0.002). Greater serum KynA/QA was associated with increased white matter integrity of the bilateral fornix, bilateral superior thalamic radiations, corpus callosum, and bilateral cingulum bundles after controlling for the same possible confounders (SBC = 0.26, Std.E = 0.09, p = 0.005). The relationship between CRP and FA was not mediated by KynA/QA. Exploratory analyses also showed that KynA/QA but not CRP was associated with self-reported positive affect, attentiveness, and fatigue measured with the PANASX (SBCs = 0.17-0.23). Taken together, these results are consistent with the hypothesis that within a subgroup of MDD patients, a higher level of systemic inflammation alters the balance of KP metabolism but also raise the possibility that CRP and neuroactive KP metabolites represent independent molecular mechanisms underlying white matter alterations in MDD.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA.
| |
Collapse
|
42
|
Chen Y, Zhang J, Yang Y, Xiang K, Li H, Sun D, Chen L. Kynurenine‐3‐monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression. J Cell Physiol 2022; 237:4339-4355. [DOI: 10.1002/jcp.30876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yanmei Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Jiahui Zhang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Yueying Yang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Ke Xiang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Hua Li
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
- College of Pharmacy Fujian University of Traditional Chinese Medicine Fuzhou China
| | - Dejuan Sun
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Lixia Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| |
Collapse
|
43
|
Byrne JF, Healy C, Mongan D, Susai SR, Zammit S, Fӧcking M, Cannon M, Cotter DR. Transdiagnostic inflammatory subgroups among psychiatric disorders and their relevance to role functioning: a nested case-control study of the ALSPAC cohort. Transl Psychiatry 2022; 12:377. [PMID: 36085284 PMCID: PMC9463145 DOI: 10.1038/s41398-022-02142-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Individuals with psychotic disorders and depressive disorder exhibit altered concentrations of peripheral inflammatory markers. It has been suggested that clinical trials of anti-inflammatory therapies for psychiatric disorders should stratify patients by their inflammatory profile. Hence, we investigated whether different subgroups of individuals exist across psychiatric disorders, based on their inflammatory biomarker signatures. We measured the plasma concentrations of 17 inflammatory markers and receptors in 380 participants with psychotic disorder, depressive disorder or generalised anxiety disorder and 399 controls without psychiatric symptoms from the ALSPAC cohort at age 24. We employed a semi-supervised clustering algorithm, which discriminates multiple clusters of psychiatric disorder cases from controls. The best fit was for a two-cluster model of participants with psychiatric disorders (Adjusted Rand Index (ARI) = 0.52 ± 0.01) based on the inflammatory markers. Permutation analysis indicated the stability of the clustering solution performed better than chance (ARI = 0.43 ± 0.11; p < 0.001), and the clusters explained the inflammatory marker data better than a Gaussian distribution (p = 0.021). Cluster 2 exhibited marked increases in sTNFR1/2, suPAR, sCD93 and sIL-2RA, compared to cluster 1. Participants in the cluster exhibiting higher inflammation were less likely to be in employment, education or training, indicating poorer role functioning. This study found evidence for a novel pattern of inflammatory markers specific to psychiatric disorders and strongly associated with a transdiagnostic measure of illness severity. sTNFR1/2, suPAR, sCD93 and sIL-2RA could be used to stratify clinical trials of anti-inflammatory therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Jonah F Byrne
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Melanie Fӧcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
44
|
ROLE OF GUT MICROBIOTA IN DEPRESSION: UNDERSTANDING MOLECULAR PATHWAYS, RECENT RESEARCH, AND FUTURE DIRECTION. Behav Brain Res 2022; 436:114081. [PMID: 36037843 DOI: 10.1016/j.bbr.2022.114081] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Gut microbiota, also known as the "second brain" in humans because of the regulatory role it has on the central nervous system via neuronal, chemical and immune pathways. It has been proven that there exists a bidirectional communication between the gut and the brain. Increasing evidence supports that this crosstalk is linked to the etiology and treatment of depression. Reports suggest that the gut microbiota control the host epigenetic machinery in depression and gut dysbiosis causes negative epigenetic modifications via mechanisms like histone acetylation, DNA methylation and non-coding RNA mediated gene inhibition. The gut microbiome can be a promising approach for the management of depression. The diet and dietary metabolites like kynurenine, tryptophan, and propionic acid also greatly influence the microbiome composition and thereby, the physiological activities. This review gives a bird-eye view on the pathological updates and currently used treatment approaches targeting the gut microbiota in depression.
Collapse
|
45
|
Giron CG, Lin TTZ, Kan RLD, Zhang BBB, Yau SY, Kranz GS. Non-Invasive Brain Stimulation Effects on Biomarkers of Tryptophan Metabolism: A Scoping Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23179692. [PMID: 36077088 PMCID: PMC9456364 DOI: 10.3390/ijms23179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal activation of the kynurenine and serotonin pathways of tryptophan metabolism is linked to a host of neuropsychiatric disorders. Concurrently, noninvasive brain stimulation (NIBS) techniques demonstrate high therapeutic efficacy across neuropsychiatric disorders, with indications for modulated neuroplasticity underlying such effects. We therefore conducted a scoping review with meta-analysis of eligible studies, conforming with the PRISMA statement, by searching the PubMed and Web of Science databases for clinical and preclinical studies that report the effects of NIBS on biomarkers of tryptophan metabolism. NIBS techniques reviewed were electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS). Of the 564 search results, 65 studies were included with publications dating back to 1971 until 2022. The Robust Bayesian Meta-Analysis on clinical studies and qualitative analysis identified general null effects by NIBS on biomarkers of tryptophan metabolism, but moderate evidence for TMS effects on elevating serum serotonin levels. We cannot interpret this as evidence for or against the effects of NIBS on these biomarkers, as there exists several confounding methodological differences in this literature. Future controlled studies are needed to elucidate the effects of NIBS on biomarkers of tryptophan metabolism, an under-investigated question with substantial implications to clinical research and practice.
Collapse
Affiliation(s)
- Cristian G. Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim T. Z. Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rebecca L. D. Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bella B. B. Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|
46
|
Kamishikiryo T, Okada G, Itai E, Masuda Y, Yokoyama S, Takamura M, Fuchikami M, Yoshino A, Mawatari K, Numata S, Takahashi A, Ohmori T, Okamoto Y. Left DLPFC activity is associated with plasma kynurenine levels and can predict treatment response to escitalopram in major depressive disorder. Psychiatry Clin Neurosci 2022; 76:367-376. [PMID: 35543406 PMCID: PMC9544423 DOI: 10.1111/pcn.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 11/27/2022]
Abstract
AIM To establish treatment response biomarkers that reflect the pathophysiology of depression, it is important to use an integrated set of features. This study aimed to determine the relationship between regional brain activity at rest and blood metabolites related to treatment response to escitalopram to identify the characteristics of depression that respond to treatment. METHODS Blood metabolite levels and resting-state brain activity were measured in patients with moderate to severe depression (n = 65) before and after 6-8 weeks of treatment with escitalopram, and these were compared between Responders and Nonresponders to treatment. We then examined the relationship between blood metabolites and brain activity related to treatment responsiveness in patients and healthy controls (n = 36). RESULTS Thirty-two patients (49.2%) showed a clinical response (>50% reduction in the Hamilton Rating Scale for Depression score) and were classified as Responders, and the remaining 33 patients were classified as Nonresponders. The pretreatment fractional amplitude of low-frequency fluctuation (fALFF) value of the left dorsolateral prefrontal cortex (DLPFC) and plasma kynurenine levels were lower in Responders, and the rate of increase of both after treatment was correlated with an improvement in symptoms. Moreover, the fALFF value of the left DLPFC was significantly correlated with plasma kynurenine levels in pretreatment patients with depression and healthy controls. CONCLUSION Decreased resting-state regional activity of the left DLPFC and decreased plasma kynurenine levels may predict treatment response to escitalopram, suggesting that it may be involved in the pathophysiology of major depressive disorder in response to escitalopram treatment.
Collapse
Affiliation(s)
- Toshiharu Kamishikiryo
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Eri Itai
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Yoshikazu Masuda
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Takamura
- Department of Neurology, Faculty of MedicineShimane UniversityIzumo‐shiJapan
| | - Manabu Fuchikami
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical ScienceTokushima University Graduate SchoolTokushimaJapan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Tetsuro Ohmori
- Department of Psychiatry, Institute of Biomedical ScienceTokushima University Graduate SchoolTokushimaJapan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
47
|
Coras R, Martino C, Gauglitz JM, Cedola F, Tripathi A, Jarmusch AK, Alharthi M, Fernandez‐Bustamante M, Agustin‐Perez M, Singh A, Choi S, Rivera T, Nguyen K, Shekhtman T, Holt T, Lee S, Golshan S, Dorrestein PC, Knight R, Guma M. Baseline microbiome and metabolome are associated with response to ITIS diet in an exploratory trial in patients with rheumatoid arthritis. Clin Transl Med 2022; 12:e959. [PMID: 35802808 PMCID: PMC9269999 DOI: 10.1002/ctm2.959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/30/2023] Open
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
| | - Cameron Martino
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of EngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of Pediatrics, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA,Bioinformatics and Systems Biology ProgramUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Julia M. Gauglitz
- Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoSan DiegoCaliforniaUSA,Collaborative Mass Spectrometry Innovation CenterUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Francesca Cedola
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Anupriya Tripathi
- Department of Pediatrics, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoSan DiegoCaliforniaUSA,Graduate Program in Biological Sciences, School of Biological Sciences, UCSDDivision of Biological SciencesUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Alan K. Jarmusch
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of EngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of Pediatrics, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Maram Alharthi
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | | | - Meritxell Agustin‐Perez
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Abha Singh
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Soo‐In Choi
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Tania Rivera
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Katherine Nguyen
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Tatyana Shekhtman
- Department of PsychiatryUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Tiffany Holt
- Department of PsychiatryUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Susan Lee
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Shahrokh Golshan
- Department of PsychiatryUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Pieter C. Dorrestein
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of EngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of Pediatrics, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoSan DiegoCaliforniaUSA,Collaborative Mass Spectrometry Innovation CenterUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Rob Knight
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of EngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of Pediatrics, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of Computer Science and EngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of BioengineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Monica Guma
- Department of Medicine, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA,Department of MedicineAutonomous University of BarcelonaBarcelonaSpain,Department of MedicineVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| |
Collapse
|
48
|
Kucukkarapinar M, Yay-Pence A, Yildiz Y, Buyukkoruk M, Yaz-Aydin G, Deveci-Bulut TS, Gulbahar O, Senol E, Candansayar S. Psychological outcomes of COVID-19 survivors at sixth months after diagnose: the role of kynurenine pathway metabolites in depression, anxiety, and stress. J Neural Transm (Vienna) 2022; 129:1077-1089. [PMID: 35796878 PMCID: PMC9261222 DOI: 10.1007/s00702-022-02525-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/20/2022] [Indexed: 10/31/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has resulted in long-term psychiatric symptoms because of the immunologic response to the virus itself as well as fundamental life changes related to the pandemic. This immune response leads to altered tryptophan (TRP)-kynurenine (KYN) pathway (TKP) metabolism, which plays an essential role in the pathophysiology of mental illnesses. We aimed to define TKP changes as a potential underlying mechanism of psychiatric disorders in post-COVID-19 patients. We measured plasma levels of several TKP markers, including KYN, TRP, kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN), as well as the TRP/KYN, KYNA/3-HK, and KYNA/QUIN ratios, in 90 post-COVID-19 patients (on the first day of hospitalization) and 59 healthy controls (on the first admission to the Check-Up Center). An online questionnaire that included the Depression, Anxiety and Stress Scale-21 (DASS-21) was used 6 months after the initial assessment in both groups. A total of 32.2% of participants with COVID-19 showed depressive symptoms, 21.1% exhibited anxiety, and 33.3% had signs of stress at follow-up, while 6.6% of healthy controls exhibited depressive and anxiety symptoms and 18.6% had signs of stress. TRP and 3-HK were negative predictors of anxiety and stress, but KYN positively predicted anxiety and stress. Moreover, TRP negatively predicted depression, while KYNA/3-HK was a negative predictor of anxiety. The correlation between depression, anxiety, and stress and TKP activation in COVID-19 could provide prospective biomarkers, especially the reduction in TRP and 3HK levels and the increase in KYN. Our results suggest that the alteration of TKP is not only a potential biomarker of viral infection-related long-term psychiatric disorders but also that the therapy targets future viral infections related to depression and anxiety.
Collapse
Affiliation(s)
- Melike Kucukkarapinar
- Psychiatry Department, Faculty of Medicine, Gazi University, Emniyet Mah., Yenimahalle, 06560, Ankara, Turkey.
| | - Aysegul Yay-Pence
- Psychiatry Department, Faculty of Medicine, Gazi University, Emniyet Mah., Yenimahalle, 06560, Ankara, Turkey
| | - Yesim Yildiz
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Merve Buyukkoruk
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gizem Yaz-Aydin
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Tuba S Deveci-Bulut
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Esin Senol
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Selcuk Candansayar
- Psychiatry Department, Faculty of Medicine, Gazi University, Emniyet Mah., Yenimahalle, 06560, Ankara, Turkey
| |
Collapse
|
49
|
Tateishi H, Setoyama D, Kato TA, Kang D, Matsushima J, Nogami K, Mawatari S, Kojima R, Fujii Y, Sakemura Y, Shiraishi T, Imamura Y, Maekawa T, Asami T, Mizoguchi Y, Monji A. Changes in the metabolites of cerebrospinal fluid induced by rTMS in treatment-resistant depression: A pilot study. Psychiatry Res 2022; 313:114636. [PMID: 35594657 DOI: 10.1016/j.psychres.2022.114636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) improves depressive symptoms in treatment-resistant depression (TRD). This study aimed to analyze changes in cerebrospinal fluid (CSF) metabolites in patients with TRD after rTMS. Five patients with TRD were enrolled in a high frequency (10-Hz) rTMS study. The concentration of 72 CSF metabolites were measured at baseline and at the end of the 6-week rTMS treatment. rTMS significantly increased CSF niacinamide, kynurenine, and creatinine levels and significantly decreased CSF cystine levels, but not the levels of the other 68 CSF metabolites. This is the first CSF metabolomics study on patients with TRD who underwent rTMS.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan.
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka, 812-8582, Japan.
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka, 812-8582, Japan
| | - Jun Matsushima
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Kojiro Nogami
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Seiji Mawatari
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Ryohei Kojima
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Yuka Fujii
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Yuta Sakemura
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Takumi Shiraishi
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Toshihiko Maekawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka, 812-8582, Japan
| | - Toyoko Asami
- Department of Rehabilitation Medicine, Saga University Hospital, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| |
Collapse
|
50
|
Schäfer AA, Santos LP, Manosso LM, Quadra MR, Meller FO. Relationship between sleep duration and quality and mental health before and during COVID-19 pandemic: Results of population-based studies in Brazil. J Psychosom Res 2022; 158:110910. [PMID: 35427941 PMCID: PMC8993422 DOI: 10.1016/j.jpsychores.2022.110910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aimed to evaluate the association between sleep duration and quality and mental health before and amid the COVID-19 pandemic. METHODS Data from two population-based cross-sectional studies conducted in 2019 and 2020 with adults in Criciúma, Southern Brazil. The Patient Health Questionnaire-9 (PHQ-9) was used to screen major depressive episodes, while the perceived stress scale was used to assess perceived stress. Sleep was evaluated through self-reported duration and quality. Crude and adjusted Poisson regression models were used to assess the association between sleep and mental health disorders. RESULTS A total of 820 (in 2019) and 863 subjects (in 2020) were assessed. Sleep quality presented significant associations with depression and stress in both years, and the magnitude of the association with depression increased amid COVID-19 pandemic. In individuals with poor/very poor sleep quality, the risk of depression in 2019 was 2.14 (95%IC 1.48;3.09) higher when compared to those with good/very good sleep quality. This risk increased to 2.26 (95%IC 1.49;3.40) in 2020. The risk of stress was 1.90 (95%IC 1.42;2.55) in 2019 and 1.66 (95%IC1.34;2.07) in 2020. The sleep duration was not associated with mental health disorders in the adjusted analyses. CONCLUSION The results provide important evidence that sleep quality can influence mental health of adults. The COVID-19 pandemic seems to have had a considerable impact on this association.
Collapse
Affiliation(s)
- Antônio Augusto Schäfer
- Postgraduate Program in Public Health, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil.
| | - Leonardo Pozza Santos
- Nutrition College, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | | | - Micaela Rabelo Quadra
- Postgraduate Program in Public Health, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil.
| | - Fernanda Oliveira Meller
- Postgraduate Program in Public Health, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil.
| |
Collapse
|