1
|
Lu Y, Liu Y, Cao J, Zhang Y, Zheng Y, Wang F. Waterborne ammonia toxicity damages crustacean hemocytes via lysosome-dependent autophagy: a case study of swimming crabs Portunus trituberculatus. ENVIRONMENTAL RESEARCH 2025:120985. [PMID: 39983961 DOI: 10.1016/j.envres.2025.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Waterborne ammonia is a threat to animal health and its accumulation is typical of aquatic ecosystems. Autophagy serves as a safeguard of intracellular homeostasis, yet its role in maintaining the health of hemocytes, the master regulators of crustacean immunity, remains unclear. Herein, the swimming crab (Portunus trituberculatus) is employed as a case study to illustrate the impact of ammonia on hemocyte health via autophagy. This study showed the occurrence of abnormal cellular structure and significant accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) (P <0.05), demonstrating that severe ammonia stress can damage hemocytes. This was accompanied by significant increase of autophagy hemocytes fraction and apoptosis (P <0.05). Meanwhile, there was a significant increase in the expression of Beclin1 and microtubule-associated protein 1 light chain 3 (LC3-II) (P <0.05). This suggests an ammonia-induced autophagy initiation. However, ammonia stress significantly decreased lysosomal fluorescence intensity (P <0.05) and expression of the marker gene lysosomal-associated membrane protein 1 (LAMP1) (P <0.05). These imply an ammonia-induced repression of lysosome-dependent autophagy degradation, which may underlie the pronounced increase in apoptosis (P <0.05). After the administration of the autophagy activator rapamycin (Rap), rather than the inhibitor 3-Methyladenine (3-MA), the levels of apoptosis, ROS and the fraction of autophagic cells were significantly decreased (P <0.05), demonstrating a mitigation of the ammonia-induced cell damage through lysosome-dependent autophagy degradation. This study sheds light on how crustaceans respond to ammonia exposure by demonstrating the significance of lysosome-dependent autophagy in maintaining hemocyte health.
Collapse
Affiliation(s)
- Yunliang Lu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianwei Cao
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yueqi Zhang
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuan Zheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Fang Wang
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Tiwari SK, Chandrasekharan A, Lupitha SS, Mathew KA, Jancy SV, Halikar AM, Sanjeev VS, Sivakumar KC, Prasad T, Anurup KG, Rather AA, Tiffee P J J, Jayaprasad AG, Sivasailam A, Santhoshkumar TR. Hypoxia induced mitophagy generates reversible metabolic and redox heterogeneity with transient cell death switch driving tumorigenesis. Free Radic Biol Med 2025; 230:190-208. [PMID: 39947492 DOI: 10.1016/j.freeradbiomed.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Tumor hypoxia determines tumor growth, metastasis, drug resistance, and tumor heterogeneity through multiple mechanisms, largely dependent on the extent of hypoxia, further modulated by re-oxygenation events. In order to track the cell fates under hypoxia and re-oxygenation, we have developed a sensor cell for real-time tracking of apoptotic, necrotic, and surviving mitophagy cells under hypoxia and re-oxygenation. The study using this sensor revealed a cell death switch from apoptosis to necrosis by hypoxia-exposed cells under re-oxygenation, where mitophagy plays a key role in acquiring temporally evolving functional phenotypes, including metabolic heterogeneity and mitochondrial redox heterogeneity. RNA transcriptomics also revealed a temporally evolving genomic landscape supporting the complex transcriptional plasticity of cells as a non-genetic adaptive event. Interestingly, cells regained from these distinct stages retained their metastatic potential despite slow growth in animal models. Overall, the study demonstrated that cells acquire distinct functions by tumor hypoxia and re-oxygenation, secondarily acquiring transient functional traits and metabolic heterogeneity governed by cell inherent mitochondrial dynamics. Such cell autonomous temporal alterations in cell states governed by organelle integrity with distinct cell proliferation and apoptosis-necrosis switch may be advantageous for the growing tumor to evolve under complex microenvironmental stress, further contributing to tumorigenesis.
Collapse
Affiliation(s)
- Shivanshu Kumar Tiwari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Aneesh Chandrasekharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Santhik Subhasingh Lupitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Krupa Ann Mathew
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Shine Varghese Jancy
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aman Munirpasha Halikar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vishnu S Sanjeev
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - K C Sivakumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Tilak Prasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - K G Anurup
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aijaz Ahmad Rather
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Jain Tiffee P J
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Aparna Geetha Jayaprasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aswathy Sivasailam
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Research Centre, University of Kerala, Thiruvananthapuram, Kerala, 695534, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
3
|
Stanigut AM, Tuta L, Pana C, Alexandrescu L, Suceveanu A, Blebea NM, Vacaroiu IA. Autophagy and Mitophagy in Diabetic Kidney Disease-A Literature Review. Int J Mol Sci 2025; 26:806. [PMID: 39859520 PMCID: PMC11766107 DOI: 10.3390/ijms26020806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations. Diabetic nephropathy (DN) is traditionally defined as a specific form of kidney disease caused by long-standing diabetes, characterized by the classic histological lesions in the kidney, including mesangial expansion, glomerular basement membrane thickening, nodular glomerulosclerosis (Kimmelstiel-Wilson nodules), and podocyte injury. Clinical markers for DN are albuminuria and the gradual decline in glomerular filtration rate (GFR). Diabetic kidney disease (DKD) is a broader and more inclusive term, for all forms of chronic kidney disease (CKD) in individuals with diabetes, regardless of the underlying pathology. This includes patients who may have diabetes-associated kidney damage without the typical histological findings of diabetic nephropathy. It also accounts for patients with other coexisting kidney diseases (e.g., hypertensive nephrosclerosis, ischemic nephropathy, tubulointerstitial nephropathies), even in the absence of albuminuria, such as a reduction in GFR.
Collapse
Affiliation(s)
- Alina Mihaela Stanigut
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Liliana Tuta
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Camelia Pana
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Luana Alexandrescu
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Gastroenterology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Adrian Suceveanu
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Gastroenterology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Nicoleta-Mirela Blebea
- Department of Pharmacotherapy, Faculty of Pharmacy, Ovidius University of Constanta, Aleea Universitatii Nr. 1, 900470 Constanta, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Nephrology, Sf. Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania
| |
Collapse
|
4
|
Tian HY, Lei YX, Zhou JT, Liu LJ, Yang T, Zhou Y, Ge JW, Xu C, Mei ZG. Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke. Front Mol Neurosci 2025; 17:1482015. [PMID: 39846000 PMCID: PMC11751022 DOI: 10.3389/fnmol.2024.1482015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay. While mounting evidence hints at a crosstalk between these two processes in IS, the underlying mechanisms remain elusive. Therefore, this review delves into and dissects the intricate mechanisms that underpin the intersection of PANoptosis and autophagy in this devastating condition. In conclusion, the crosstalk between PANoptosis and autophagy in IS presents a promising target for the development of novel stroke therapies. Understanding the interplay between these two pathways offers a much-needed insight into the underlying mechanisms of IS and opens the possibility for new therapeutic strategies.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Yun-Xing Lei
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Jing-Tao Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Long-Jun Liu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Chen Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG, Fenta MD. Comprehensive review of drug resistance in mammalian cancer stem cells: implications for cancer therapy. Cancer Cell Int 2024; 24:406. [PMID: 39695669 DOI: 10.1186/s12935-024-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer remains a significant global challenge, and despite the numerous strategies developed to advance cancer therapy, an effective cure for metastatic cancer remains elusive. A major hurdle in treatment success is the ability of cancer cells, particularly cancer stem cells (CSCs), to resist therapy. These CSCs possess unique abilities, including self-renewal, differentiation, and repair, which drive tumor progression and chemotherapy resistance. The resilience of CSCs is linked to certain signaling pathways. Tumors with pathway-dependent CSCs often develop genetic resistance, whereas those with pathway-independent CSCs undergo epigenetic changes that affect gene regulation. CSCs can evade cytotoxic drugs, radiation, and apoptosis by increasing drug efflux transporter activity and activating survival mechanisms. Future research should prioritize the identification of new biomarkers and signaling molecules to better understand drug resistance. The use of cutting-edge approaches, such as bioinformatics, genomics, proteomics, and nanotechnology, offers potential solutions to this challenge. Key strategies include developing targeted therapies, employing nanocarriers for precise drug delivery, and focusing on CSC-targeted pathways such as the Wnt, Notch, and Hedgehog pathways. Additionally, investigating multitarget inhibitors, immunotherapy, and nanodrug delivery systems is critical for overcoming drug resistance in cancer cells.
Collapse
Affiliation(s)
- Bemrew Admassu Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | - Tirunesh Tsegaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayew Demessie
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Kalkidan Getnet
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Belete Bitew
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnakew Mulaw Beirhun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Kuang W, Xu J, Xu F, Huang W, Majid M, Shi H, Yuan X, Ruan Y, Hu X. Current study of pathogenetic mechanisms and therapeutics of chronic atrophic gastritis: a comprehensive review. Front Cell Dev Biol 2024; 12:1513426. [PMID: 39720008 PMCID: PMC11666564 DOI: 10.3389/fcell.2024.1513426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic atrophic gastritis (CAG) is a prevalent digestive system disease characterized by atrophy of the gastric mucosa and the disappearance of inherent gastric glands. According to the theory of Correa's cascade, CAG is an important pathological stage in the transformation from normal condition to gastric carcinoma. In recent years, the global incidence of CAG has been increasing due to pathogenic factors, including Helicobacter pylori infection, bile reflux, and the consumption of processed meats. In this review, we comprehensively described the etiology and clinical diagnosis of CAG. We focused on elucidating the regulatory mechanisms and promising therapeutic targets in CAG, with the expectation of providing insights and theoretical support for future research on CAG.
Collapse
Affiliation(s)
- Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jialin Xu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Fenting Xu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Weizhen Huang
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Muhammad Majid
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Hui Shi
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Xia Yuan
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Acupuncture, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
7
|
Shi K, Wang XY, Huang LD, Guo Q, Yuan W, Lv Y, Li D. Biological functions and molecular mechanisms of LINC01116 in cancer. Heliyon 2024; 10:e38490. [PMID: 39512466 PMCID: PMC11539247 DOI: 10.1016/j.heliyon.2024.e38490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
LINC01116, a long non-coding RNA (lncRNA), serves as an important regulator in the progression of cancer cells and has attracted increased attention in biological fields. It is overexpressed in various cancer cells and is significantly correlated with cancer development and poor prognosis in cancer patients. Moreover, LINC01116 regulates the gene expression of various cancers through intricate pathways, such as sponging the microRNAs or other non-genic manners. These signaling pathways greatly affect the cancer's biological functions, including cell growth, migration, invasion, and chemoresistance. Hence, LINC01116 may serve as a prognostic biomarker and therapeutic target for human cancer. This paper summarizes the current evidence regarding the biological functions and molecular mechanisms of LINC01116 in the progression of cancer, providing theoretical references for LINC01116-related cancer treatment in the future.
Collapse
Affiliation(s)
- Ke Shi
- Department of Thoracic Surgery, Beilun District People's Hospital of Ningbo, Ningbo City, China
| | - Xue-Ying Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
- Department of Basic Medicine, Hubei University of Medicine, Shiyan City, China
| | - Li-De Huang
- Department of Pain management, People's Hospital of Shiyan City, Hubei Medical University, Shiyan City, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
| | - Wei Yuan
- Department of Basic Medicine, Hubei University of Medicine, Shiyan City, China
| | - Yan Lv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Li
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
8
|
Xu X, Yan Y, Yang Z, Zhang T. Down-regulation of RIPK3 prevents depression-like behaviors by restoring the synaptic plasticity and suppressing neuronal loss. J Affect Disord 2024; 365:213-221. [PMID: 39154980 DOI: 10.1016/j.jad.2024.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The excessive secretion of glucocorticoids resulting from the overactivation of the hypothalamic-pituitary-adrenal axis is a crucial factor in the pathogenesis of depression. RIPK3 plays a significant role in apoptosis and necroptosis. Glucocorticoids have been implicated in directly regulating the expression of RIPK3, leading to apoptosis and necroptosis of osteoblasts. This suggests that RIPK3 may contribute to cell death induced by glucocorticoids. However, the precise involvement of RIPK3 in glucocorticoid-induced depression remains poorly understood. METHODS In this study, a mouse model of depression was established by repeated corticosterone injections to examine the impact of RIPK3 knockdown on depression-like behavior. Additionally, a corticosterone-induced HT22 injury model was also established to investigate the role of RIPK3 in corticosterone-induced neuronal cell death and underlying mechanisms. RESULTS Our findings demonstrate that hippocampal RIPK3 knockdown effectively ameliorated depression-related symptoms and restored synaptic plasticity impairment caused by corticosterone. Furthermore, treatment with the RIPK3 inhibitor GSK872 in vitro successfully mitigated corticosterone-induced HT22 cell death. Additionally, the administration of a free radical scavenger alleviated neuronal death and effectively suppressed the expression of corticosterone-induced RIPK3. LIMITATIONS The limitation of this study is that only the changes of RIPK3 in the hippocampus of depressed male animals were studied. CONCLUSIONS These results suggest that corticosterone may induce RIPK3-dependent neuronal cell death and impair synaptic plasticity through the generation of high levels of oxidative stress, ultimately leading to depression-like behavior.
Collapse
Affiliation(s)
- Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300130 Tianjin, China; College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yuxing Yan
- College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
9
|
Mullasseril A, Lam AB, Mitta A, Morton D, McIntosh A, Patel S, Thai T, Annan A, Ayanambakkam A. Spontaneous regression of metastatic clear cell renal cell carcinoma: A report of a rare case and a review of the literature. Urol Case Rep 2024; 57:102868. [PMID: 39559476 PMCID: PMC11570451 DOI: 10.1016/j.eucr.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024] Open
Abstract
Renal cell carcinoma (RCC) is the seventh most common cancer in the United States; clear cell RCC (ccRCC) is the most common subtype. We report a case of spontaneous regression of metastatic ccRCC and discuss possible underlying mechanisms informed by a literature review. While regression of metastatic RCC has been described following nephrectomy or treatment of the primary tumor, spontaneous regression is rare. Postulated underlying causes include tumor necrosis and immune-mediated responses. Of 29 identified cases of spontaneous regression, only ours occurred after only a biopsy. Better understanding of the pathophysiology of spontaneous regression in RCC will improve its management.
Collapse
Affiliation(s)
- Anoushka Mullasseril
- Department of Internal Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Anh B. Lam
- Department of Internal Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Alekhya Mitta
- Department of Radiation Oncology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Daniel Morton
- Department of Pediatrics, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Andrew McIntosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
- Department of Urology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Sanjay Patel
- Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
- Department of Urology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Theresa Thai
- Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
- Department of Radiological Sciences, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Anand Annan
- Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Adanma Ayanambakkam
- Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
- Department of Internal Medicine, Division of Hematology & Oncology, University of Oklahoma Health Sciences, Oklahoma City, USA
| |
Collapse
|
10
|
Na MJ, Lee WY, Park HJ. Difenoconazole Induced Damage of Bovine Mammary Epithelial Cells via ER Stress and Inflammatory Response. Cells 2024; 13:1715. [PMID: 39451231 PMCID: PMC11506304 DOI: 10.3390/cells13201715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Difenoconazole (DIF) is a fungicide used to control various fungi. It is absorbed on the surface of different plants and contributes significantly to increased crop production. However, DIF is reported to exhibit toxicity to fungi and to aquatic plants, fish, and mammals, including humans, causing adverse effects. However, research on the impact of DIF on the mammary epithelial cells of herbivorous bovines is limited. DIF-induced damage and accumulation in the mammary glands can have direct and indirect effects on humans. Therefore, we investigated the effects and mechanisms of DIF toxicity in MAC-T cells. The current study revealed that DIF reduces cell viability and proliferation while triggering apoptotic cell death through the upregulation of pro-apoptotic proteins, including cleaved caspase 3 and Bcl-2-associated X protein (BAX), and the downregulation of leukemia type 2 (BCL-2). DIF also induced endoplasmic reticulum (ER) stress by increasing the expression of genes or proteins of Bip/GRP78, protein disulfide isomerase (PDI), activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and endoplasmic reticulum oxidoreductase 1 Alpha (ERO1-Lα). We demonstrated that DIF induces mitochondria-mediated apoptosis in MAC-T cells by activating ER stress pathways. This cellular damage resulted in a significant increase in the expression of inflammatory response genes and proteins, including cyclooxygenase 2 (COX2), transforming growth factor beta 3 (TGFB3), CCAAT enhancer binding protein delta (CEBPD), and iNOS, in DIF-treated groups. In addition, spheroid formation by MAC-T cells was suppressed by DIF treatment. Our findings suggest that DIF exposure in dairy cows may harm mammary gland function and health and may indirectly affect human consumption of milk.
Collapse
Affiliation(s)
- Myoung-Jun Na
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea;
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
11
|
Huda F, Bashari MH, Satria D, Hermawan A, Hasibuan PAZ, Dwiwina RG, Hermawan R. Cancer Chemotherapeutic Effect of Vernonia Amygdalina Delile on Glioblastoma Brain Cancer Cell. Asian Pac J Cancer Prev 2024; 25:3589-3595. [PMID: 39471026 PMCID: PMC11711350 DOI: 10.31557/apjcp.2024.25.10.3589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVE This study is targeted at assessing the chemotherapy factor of the ethanol extract of Vernonia amygdalina Delile (VAD). METHODS U87 glioblastoma cells were treated with extract and a fraction of Vernonia amygdalina Delile (VAD) was harvested from the herbarium. Cytotoxicity was evaluated to determine the IC50 through microscopic observation followed by an MTT assay. Subsequently, flow cytometry with a FACS type was employed to conduct cell cycle and apoptosis analyses. Annexin V/PI and PI markers were used to assess apoptosis and cell cycle progression. RESULT The ethanol extract and ethyl acetate fraction of VAD showed promising effects as cancer chemotherapy in glioblastoma cells. The IC50 values for the extract and fraction were notably low, at 37.65 µg/ml and 10.12 µg/ml, respectively, for U87 cells. Analysis of apoptosis using FACS revealed a more pronounced apoptotic effect of the 15 µg/ml fraction of VAD on both early and late apoptosis compared to the 75 µg/ml extract of VAD. Although some differences in cell cycle properties were observed, there were no significant differences in cell cycle analysis between the extract and fraction. CONCLUSION These findings underscore the efficacy of VAD's ethanol extract and ethyl acetate fraction as chemotherapeutic agents against U87 cancer cells. The low IC50 values and significant induction of early apoptosis highlight the cytotoxic effects of these treatments on U87 cells.
Collapse
Affiliation(s)
- Fathul Huda
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia.
| | - Adam Hermawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia.
| | - Poppy Anjelisa Zaitun Hasibuan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Resti Gradia Dwiwina
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Rohim Hermawan
- Medical Doctor Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| |
Collapse
|
12
|
Wang Z, Guo P, Hu L, Hua G, Yang Y, Zheng H, Fang H, Xia Q, Zhao P. Fibroinase plays a vital role in silk gland degeneration by regulating autophagy and apoptosis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134312. [PMID: 39084448 DOI: 10.1016/j.ijbiomac.2024.134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The silkworm is an incredibly valuable insect that produces silk through its silk gland. Within this organ, Fibroinase has been identified and named due to its ability to fibroin degradation. The expression of Fibroinase in the silk gland significantly increases during the larval-pupal stage, which might be associated with the degeneration of the silk gland. In this study, Fibroinase was overexpressed and knocked down specifically both in the middle and posterior silk glands, respectively, using transgenic technology. The investigation of silk gland development in these transgenic silkworms showed that Fibroinase plays a direct role in accelerating silk gland degeneration. The staining analyses performed in the silk glands of transgenic silkworms suggest that Fibroinase is involved in the processes of autophagy and apoptosis during silk gland degeneration. Further experiments demonstrated that Fibroinase, acting as a lysosomal regulator, negatively regulates autophagy via the mTOR (mechanistic target of rapamycin) pathway. Moreover, during apoptosis, Fibroinase could activate Caspase3 by increasing the activity of BmCaspase1, ultimately accelerating the apoptosis process. These findings enhance our understanding of the physiological role of Fibroinase in promoting silk gland degeneration, which plays a role in breaking down proteins in the silk gland and coordinating the regulation of autophagy and apoptosis.
Collapse
Affiliation(s)
- Zhan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Lan Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guosheng Hua
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Huan Fang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Swathi Pon Sakthi Sri V, Aron Santhosh Kumar Y, Savurirajan M, Jha DK, Vinithkumar NV, Dharani G. Anticancer efficacy of magnetite nanoparticles synthesized using aqueous extract of brown seaweed Rosenvingea intricata, South Andaman, India. Sci Rep 2024; 14:20255. [PMID: 39215065 PMCID: PMC11364866 DOI: 10.1038/s41598-024-67820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a global issue and hence various efforts are being made. Iron oxide is considered a significant biochemical agent in the biomedical arena for cancer treatment. Marine macroalgae-mediated iron oxides especially, magnetite (Fe3O4) nanoparticles (NPs) are a prospective alternative to diagnose and treat cancer owing to their fluorescent and magnetic properties. We intend to appraise the usability of the aqueous extract of Rosenvingea intricata (R. intricata) in Fe3O4 NPs synthesis and to study their cytotoxic effects against human hepatocarcinoma (Hep3B) and pancreatic (PANC1) cancer cells. In the present study, R. intricata were collected from the coastal region of South Andaman, India. Aqueous extracts of R. intricata were utilized to synthesize Fe3O4 NPs via the co-precipitation method. Phycosynthesized Fe3O4 NPs exhibited wide peak at 400-600 nm from ultraviolet-visible diffused reflectance spectroscopic analysis which validated the formation of NPs. Band edge emission peak at 660 nm in fluorescent spectra confirmed the quantum confinement in Fe3O4 NPs. Fourier transform infrared spectroscopy confirmed the role of R. intricata as a capping and reducing agent with functional groups such as O-H, C-H, C=O, N=O, C=C, C-O, C-N, and C-S arising from amino acids, polysaccharides, aliphatic hydrocarbons, esters, amides, lignins, alkanes, aliphatic amines, and sulfates. Physicochemical properties such as crystallite size (14.36 nm), hydrodynamic size (84.6 nm), irregular morphology, elemental composition, particle size (125 nm), crystallinity, and saturation magnetization (0.90007 emu/g) were obtained from x-ray diffractometer, dynamic light scattering, scanning electron microscopy, energy dispersive x-ray spectrometer, high-resolution transmission electron microscopy, selected area electron diffraction and vibrating sample magnetometer techniques, respectively. The cell viability showed dose-dependent cytotoxic effects and enhanced the apoptosis against Hep3B and PANC1 cancer cells. R. intricata extract capped Fe3O4 NPs could be the most appropriate and effective nanomaterial for cancer treatment and management.
Collapse
Affiliation(s)
- V Swathi Pon Sakthi Sri
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India.
| | - Y Aron Santhosh Kumar
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - M Savurirajan
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - Dilip Kumar Jha
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - N V Vinithkumar
- Marine Biotechnology Division, Ministry of Earth Sciences, National Institute of Ocean Technology (NIOT), Goverment of India, Pallikaranai, Chennai, India
| | - G Dharani
- Marine Biotechnology Division, Ministry of Earth Sciences, National Institute of Ocean Technology (NIOT), Goverment of India, Pallikaranai, Chennai, India
| |
Collapse
|
14
|
Beigi S, Salehzadeh A, Habibollahi H, Shandiz SAS, Safa F. The Effect of ZnO Nanoparticles Functionalized with Glutamine and Conjugated with Thiosemicarbazide on Triggering of Apoptosis in the Adenocarcinoma Gastric Cell Line. Adv Biomed Res 2024; 13:72. [PMID: 39434942 PMCID: PMC11493220 DOI: 10.4103/abr.abr_412_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Gastric carcinoma is the fourth most common malignancy worldwide. Conjugation of metal nanoparticles with thiosemicarbazones has shown considerable anti-cancer potential. Materials and Methods Zinc oxide nanoparticles (ZnO NPs) were synthesized, functionalized by glutamine, and conjugated with thiosemicarbazide (ZnO@Gln-TSC). Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy imaging, energy-dispersive X-ray, DLS, and zeta potential were used to characterize the NPs. The toxicity of ZnO NPs, TSC, ZnO@Gln-TSC NPs, and oxaliplatin in AGS cells and ZnO NPs and ZnO@Gln-TSC NPs in HEK293 cells was investigated by MTT assay. Cell apoptosis was evaluated by flow cytometry, caspase-3 activity, and Hoechst staining assays. The intra-cellular reactive oxygen species level and expression level of the CASP3 gene in AGS cells treated with ZnO@Gln-TSC NPs were evaluated. Results The NPs were in the size range of 20 to 70 nm. The DLS and zeta potential were 374 nm and -31.7 mV, respectively. In MTT, the IC50 of ZnO, TSC, oxaliplatin, and ZnO@Gln-TSC NPs for AGS cells were 130, 80.5, 67.7, and 9.8 μg/mL, respectively, and the IC50 of ZnO and ZnO@Gln-TSC NPs for HEK293 cells were 215 and 150.5 μg/mL, respectively. Flow cytometry showed higher apoptosis in the cell treated with the NPs and TSC. Apoptotic features, including cell shrinkage, were recognized. A significant increase of 5.9 folds in the level of ROS was noticed. The activity of caspase-3 and the expression level of the CASP3 gene were increased by1.83 and 1.6 folds after exposure to ZnO@Gln-TSC NPs, respectively. Conclusions This study revealed the anti-cancer potential of ZnO@Gln-TSC NPs to be used for gastric cancer treatment after further in vitro and in vivo assays.
Collapse
Affiliation(s)
- Sadaf Beigi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hadi Habibollahi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Fariba Safa
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
15
|
Miceli R, Allen NG, Subramaniam B, Carmody L, Dordick JS, Corr DT, Cotten M, Gross RA. Synergistic Treatment of Breast Cancer by Combining the Antimicrobial Peptide Piscidin with a Modified Glycolipid. ACS OMEGA 2024; 9:33408-33424. [PMID: 39130564 PMCID: PMC11308023 DOI: 10.1021/acsomega.3c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 08/13/2024]
Abstract
Piscidin 3 (P3), a peptide produced by fish, and a hexyl ester-modified sophorolipid (SL-HE), have individually shown promise as antimicrobial and anticancer drugs. A recent report by our team revealed that combining P3 with SL-HE in a 1:8 molar ratio resulted in an 8-fold enhancement in peptide activity, while SL-HE improved by 25-fold its antimicrobial activity against the Gram-positive microorganism Bacillus cereus. Extending these findings, the same P3/SL-HE combination was assessed on two breast cancer cell lines: BT-474, a hormonally positive cell line, and MDA-MB-231, an aggressive triple-negative cell line. The results demonstrated that the 1:8 molar ratio of P3/SL-HE synergistically enhances the anticancer effects against both tumorigenic breast cell lines. Mechanistic studies indicate the activation of an intrinsic apoptotic cell death mechanism through an increase in reactive oxygen species and mitochondrial dysfunction and a secondary programmed necrotic pathway that involves pore formation in the plasma membrane. When a fibroblast cell line, CCD1065SK HDF, was utilized to determine selectivity, the synergistic SL-HE/P3 combination exhibited a protective property compared to the use of SL-HE alone and therefore afforded vastly improved selectivity indices. Given the promising results reported herein, the synergistic combination of P3/SL-HE constitutes a novel strategy that merits further study for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rebecca
T. Miceli
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Noah G. Allen
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bhagyashree Subramaniam
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Livia Carmody
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Jonathan S. Dordick
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T. Corr
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Myriam Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Richard A. Gross
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
16
|
Wang X, Wu W, Yang G, Yang XW, Ma X, Zhu DD, Ahmad K, Khan K, Wang YZ, Sui AR, Guo SY, Kong Y, Yuan B, Luo TY, Liu CK, Zhang P, Zhang Y, Li QF, Wang B, Wu Q, Wu XF, Xiao ZC, Ma QH, Li S. Cell-specific Nav1.6 knockdown reduced astrocyte-derived Aβ by reverse Na +-Ca 2+ transporter-mediated autophagy in alzheimer-like mice. J Adv Res 2024:S2090-1232(24)00309-6. [PMID: 39079584 DOI: 10.1016/j.jare.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Nav1.6 is closely related to the pathology of Alzheimer's Disease (AD), and astrocytes have recently been identified as a significant source of β-amyloid (Aβ). However, little is known about the connection between Nav1.6 and astrocyte-derived Aβ. OBJECTIVE This study explored the crucial role of Nav1.6 in mediated astrocyte-derived Aβ in AD and knockdown astrocytic Nav1.6 alleviates AD progression by promoting autophagy and lysosome-APP fusion. METHODS A mouse model for astrocytic Nav1.6 knockdown was constructed to study the effects of astrocytic Nav1.6 on amyloidosis. The role of astrocytic Nav1.6 on autophagy and lysosome-APP(amyloid precursor protein) fusion was used by transmission electron microscope, immunostaining, western blot and patch clamp. Glial cell activation was detected using immunostaining. Neuroplasticity and neural network were assessed using patch-clamp, Golgi stain and EEG recording. Behavioral experiments were performed to evaluate cognitive defects. RESULTS Astrocytic Nav1.6 knockdown reduces amyloidosis, alleviates glial cell activation and morphological complexity, improves neuroplasticity and abnormal neural networks, as well as promotes learning and memory abilities in APP/PS1 mice. Astrocytic Nav1.6 knockdown reduces itself-derived Aβ by promoting lysosome- APP fusion, which is related to attenuating reverse Na+-Ca2+ exchange current thus reducing intracellular Ca2+ to facilitate autophagic through AKT/mTOR/ULK pathway. CONCLUSION Our findings unveil the crucial role of astrocyte-specific Nav1.6 in reducing astrocyte-derived Aβ, highlighting its potential as a cell-specific target for modulating AD progression.
Collapse
Affiliation(s)
- Xin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Wei Wu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Guang Yang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Wei Yang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xu Ma
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Dan-Dan Zhu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Kabir Ahmad
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Khizar Khan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ying-Zi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bo Yuan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Tian-Yuan Luo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Cheng-Kang Liu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Peng Zhang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yue Zhang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qi-Fa Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qiong Wu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xue-Fei Wu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhi-Cheng Xiao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Quan-Hong Ma
- Institute of Neuroscience & Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China; Department of Neurology and Clinical Research Center of Neurological Disease, the second affilitated Hospital of Soochow University, Suzhou, Jiangsu 215021, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
17
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
18
|
Zhang X, Xing T, Zhang L, Zhao L, Gao F. Hypoxia-mediated programmed cell death is involved in the formation of wooden breast in broilers. J Anim Sci Biotechnol 2024; 15:77. [PMID: 38840220 PMCID: PMC11155070 DOI: 10.1186/s40104-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major (PM) muscle. However, the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated. This study aimed to investigate the potential role of hypoxia-mediated programmed cell death (PCD) in the formation of WB myopathy. RESULTS Histological examination and biochemical analysis were performed on the PM muscle of the control (CON) and WB groups. A significantly increased thickness of the breast muscle in the top, middle, and bottom portions (P<0.01) was found along with pathological structure damage of myofibers in the WB group. The number of capillaries per fiber in PM muscle, and the levels of pO2 and sO2 in the blood, were significantly decreased (P < 0.01), while the levels of pCO2 and TCO2 in the blood were significantly increased (P < 0.05), suggesting hypoxic conditions in the PM muscle of the WB group. We further evaluated the PCD-related pathways including autophagy, apoptosis, and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB. The ratio of LC3 II to LC3 I, and the autophagy-related factors HIF-1α, BNIP3, Beclin1, AMPKα, and ULK1 at the mRNA and protein levels, were all significantly upregulated (P < 0.05), showing that autophagy occurred in the PM muscle of the WB group. The apoptotic index, as well as the expressions of Bax, Cytc, caspase 9, and caspase 3, were significantly increased (P < 0.05), whereas Bcl-2 was significantly decreased (P < 0.05) in the WB-affected PM muscle, indicating the occurrence of apoptosis mediated by the mitochondrial pathway. Additionally, the expressions of necroptosis-related factors RIP1, RIP3, and MLKL, as well as NF-κB and the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, were all significantly enhanced (P < 0.05) in the WB-affected PM muscle. CONCLUSIONS The WB myopathy reduces blood supply and induces hypoxia in the PM muscle, which is closely related to the occurrence of PCD including apoptosis, autophagy, and necroptosis within myofibers, and finally leads to abnormal muscle damage and the development of WB in broilers.
Collapse
Affiliation(s)
- Xinrui Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China.
| |
Collapse
|
19
|
Li W, Shi J, Yu Z, Garcia-Gabilondo M, Held A, Huang L, Deng W, Ning M, Ji X, Rosell A, Wainger BJ, Lo EH. SLC22A17 as a Cell Death-Linked Regulator of Tight Junctions in Cerebral Ischemia. Stroke 2024; 55:1650-1659. [PMID: 38738428 DOI: 10.1161/strokeaha.124.046736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jingfei Shi
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Aaron Held
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lena Huang
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wenjun Deng
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mingming Ning
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xunming Ji
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eng H Lo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
20
|
Bi Y, Wei H, Yu T, Li X, Xu S. New insights into resveratrol attenuates hepatotoxicity in emamectin benzoate-exposed grass carp (Ctenopharyngodon idella) via NO system/NF-κB signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105941. [PMID: 38879332 DOI: 10.1016/j.pestbp.2024.105941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 07/02/2024]
Abstract
Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including β-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Tingting Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
21
|
Rubio-Vargas DA, Morais TPD, Randi MAF, Filipak Neto F, Ortolani-Machado CF, Martins CDC, Oliveira AP, Nazário MG, Ferreira FCADS, Opuskevitch I, Penner D, Esquivel-Muelbert J, Mela Prodocimo M, de Souza C, Choueri RB, de Oliveira Ribeiro CA. Multispecies and multibiomarker assessment of fish health from Iguaçu River reservoir, Southern Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:564. [PMID: 38773003 DOI: 10.1007/s10661-024-12720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.
Collapse
Affiliation(s)
- Dámaso Angel Rubio-Vargas
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Tobias Pereira de Morais
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Marco Antonio Ferreira Randi
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Cláudia Feijó Ortolani-Machado
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - César de Castro Martins
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP, CEP 05508-120, Brazil
| | - Andrea Pinto Oliveira
- Departamento de Química. Setor de Ciências Exatas, Centro Politécnico, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Mariana Gallucci Nazário
- Laboratório de Análises Ambientais, Setor Litoral, Universidade Federal Do Paraná, Matinhos, Paraná, CEP 83.260-000, Brasil
| | | | - Iracema Opuskevitch
- Copel GeT-SOS/DNGT, Rua José Izidoro Biazetto, No. 18. Bloco A, Curitiba, Paraná, CEP, 81200-240, Brazil
| | - Dieter Penner
- Copel GeT-SOS/DNGT, Rua José Izidoro Biazetto, No. 18. Bloco A, Curitiba, Paraná, CEP, 81200-240, Brazil
| | - Juan Esquivel-Muelbert
- Piscicultura Panamá, Estrada Geral Bom Retiro, Paulo Lopes, Santa Catarina, CEP, 88490-000, Brasil
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Claudemir de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Rodrigo Brasil Choueri
- Laboratório de Toxicologia Marinha, Departamento de Ciências Do Mar, Universidade Federal de São Paulo, Instituto do Mar, Rua Maria Máximo 168, Santos, São Paulo, CEP, 11030-100, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil.
| |
Collapse
|
22
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
23
|
Merlino F, Pecoraro A, Longobardi G, Donati G, Di Leva FS, Brignola C, Piccarducci R, Daniele S, Martini C, Marinelli L, Russo G, Quaglia F, Conte C, Russo A, La Pietra V. Development and Nanoparticle-Mediated Delivery of Novel MDM2/MDM4 Heterodimer Peptide Inhibitors to Enhance 5-Fluorouracil Nucleolar Stress in Colorectal Cancer Cells. J Med Chem 2024; 67:1812-1824. [PMID: 38285632 DOI: 10.1021/acs.jmedchem.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Colorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (1), the only known peptide acting through this mechanism. The new peptides, notably 3 and 9, showed lower IC50 values than 1. When incorporated into tumor-targeted biodegradable nanoparticles, these exhibited cytotoxicity against three different CRC cell lines. Notably, NPs/9 caused a significant increase in p53 levels associated with a strong increment of its main downstream target p21 inducing apoptosis. Also, the combined treatment of 9 with 5-FU caused the activation of nucleolar stress and a synergic apoptotic effect. Hence, the co-delivery of MDM2/4 heterodimer disruptors with 5-FU through nanoparticles might be a promising strategy to overcome drug resistance in CRC.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | | | - Chiara Brignola
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| |
Collapse
|
24
|
Meng L, Yang J, Gao Y, Cao Q, Jiang S, Xiao Y, Wang H, Liu W, Yuan A, Li Y, Huang H. Biomimetic Nanomedicine Targeting Orchestrated Metabolism Coupled with Regulatory Factors to Disrupt the Metabolic Plasticity of Breast Cancer. ACS NANO 2024; 18:4360-4375. [PMID: 38277483 DOI: 10.1021/acsnano.3c10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Targeting nutrient metabolism has been proposed as an effective therapeutic strategy to combat breast cancer because of its high nutrient requirements. However, metabolic plasticity enables breast cancer cells to survive under unfavorable starvation conditions. The key mammalian target regulators rapamycin (mTOR) and hypoxia-inducible-factor-1 (HIF-1) tightly link the dynamic metabolism of glutamine and glucose to maintain nutrient flux. Blocking nutrient flow also induces autophagy to recycle nutrients in the autophagosome, which exacerbates metastasis and tumor progression. Compared to other common cancers, breast cancer is even more dependent on mTOR and HIF-1 to orchestrate the metabolic network. Therefore, we develop a cascade-boosting integrated nanomedicine to reprogram complementary metabolism coupled with regulators in breast cancer. Glucose oxidase efficiently consumes glucose, while the delivery of rapamycin inside limits the metabolic flux of glutamine and uncouples the feedback regulation of mTOR and HIF-1. The hydroxyl radical generated in a cascade blocks the later phase of autophagy without nutrient recycling. This nanomedicine targeting orchestrated metabolism can disrupt the coordination of glucose, amino acids, nucleotides, lipids, and other metabolic pathways in breast cancer tissues, effectively improving the durable antitumor effect and prognosis of breast cancer. Overall, the cascade-boosting integrated system provides a viable strategy to address cellular plasticity and efficient enzyme delivery.
Collapse
Affiliation(s)
- Lingtong Meng
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jingpeng Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Gao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Qinyan Cao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Shunjie Jiang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuyang Xiao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Haoran Wang
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Wenzheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ahu Yuan
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Yanan Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - He Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
25
|
Han LL, Pan W, He SL, Tang MY, Cheng XL, Cao XQ, Shen SL, Pang XH, Zhu Y. Carbazole-based mitochondria-targeted fluorescent probes for in vivo viscosity and cyanide detection in cells and zebrafish. Bioorg Chem 2024; 143:107023. [PMID: 38091719 DOI: 10.1016/j.bioorg.2023.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Cells of most eukaryotic species contain mitochondria, which play a role in physiological processes such as cellular senescence, metabolism, and autophagy. Viscosity is considered a key marker for many illnesses and is involved in several crucial physiological processes. Cyanide (CN-) can target cytochrome-c oxidase, disrupting the mitochondrial electron transport chain and causing cell death through asphyxiation. In this study, a fluorescent probe named HL-1, which targets mitochondria and measures viscosity and CN- levels, was designed and synthesized. HL-1 is viscosity-sensitive, with a linear correlation coefficient of up to 0.992. In addition, HL-1 was found to change color substantially during a nucleophilic addition reaction with CN-, which has a low detection limit of 47 nM. HL-1 not only detects viscosity and exogenous CN- in SKOV-3 cells and zebrafish but also monitors viscosity changes during mitochondrial autophagy in real time. Furthermore, HL-1 has been used successfully to monitor changes in mitochondrial membrane potential during apoptosis. Endogenous CN- in plant samples was quantified. HL-1 provides new ideas for studying viscosity and CN-.
Collapse
Affiliation(s)
- Lin-Lin Han
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Wei Pan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Shu-Long He
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Meng-Yu Tang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Xue-Li Cheng
- School of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong 271000, PR China
| | - Xiao-Qun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Shi-Li Shen
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Xian-Hong Pang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, PR China.
| | - Yan Zhu
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, PR China.
| |
Collapse
|
26
|
Nivetha S, Srivalli T, Sathya PM, Mohan H, Karthi N, Muralidharan K, Ramalingam V. Nickel-doped vanadium pentoxide (Ni@V 2O 5) nanocomposite induces apoptosis targeting PI3K/AKT/mTOR signaling pathway in skin cancer: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2024; 234:113763. [PMID: 38262106 DOI: 10.1016/j.colsurfb.2024.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
In the present study, the vanadium pentoxide (V2O5) nickel-doped vanadium pentoxide (Ni@V2O5) was prepared and determined for in vitro anticancer activity. The structural characterization of the prepared V2O5 and Ni@V2O5 was determined using diverse morphological and spectroscopic analyses. The DRS-UV analysis displayed the absorbance at 215 nm for V2O5 and 331 nm for Ni@V2O5 as the primary validation of the synthesis of V2O5 and Ni@V2O5. The EDS spectra exhibited the presence of 30% of O, 69% of V, and 1% of Ni and the EDS mapping showed the constant dispersion. The FE-SEM and FE-TEM analysis showed the V2O5 nanoparticles are rectangle-shaped and nanocomposites have excellent interfaces between nickel and V2O5. The X-ray photoelectron spectroscopy (XPS) investigation of Ni@V2O5 nanocomposite endorses the occurrence of elements V, O, and Ni. The in vitro MTT assay clearly showed that the V2O5 and Ni@V2O5 have significantly inhibited the proliferation of B16F10 skin cancer cells. In addition, the nanocomposite produces the endogenous reactive oxygen species in the mitochondria, causes the mitochondrial membrane and nuclear damage, and consequently induces apoptosis by caspase 9/3 enzymatic activity in skin cancer cells. Also, the western blot analysis showed that the nanocomposite suppresses the oncogenic marker proteins such as PI3K, Akt, and mTOR in the skin cancer cells. Together, the results showed that Ni@V2O5 can be used as an auspicious anticancer agent against skin cancer.
Collapse
Affiliation(s)
- Selvaraju Nivetha
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women, Perambalur 621212, Tamil Nadu, India
| | - Thimmarayan Srivalli
- PG and Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur-635601, Affiliated to Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Jeonbuk, South Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Jeonbuk, South Korea
| | - Natesan Karthi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea; School of Allied Health Sciences, REVA University, Kattigenahalli, Bengaluru - 560064, Karnataka, India
| | - Kathirvel Muralidharan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
28
|
Chattopadhyay M, Chanda A, Pal B. Unravelling the Nexus: Mitochondrial Oxidative Stress, Tumour Microenvironment, and Escape from Immune Surveillance. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:255-286. [DOI: 10.1007/978-3-031-66421-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
29
|
Kiruthiga C, Niharika K, Devi KP. Phytol and α-Bisabolol Synergy Induces Autophagy and Apoptosis in A549 Cells and Additional Molecular Insights through Comprehensive Proteome Analysis via Nano LC-MS/MS. Anticancer Agents Med Chem 2024; 24:773-788. [PMID: 38415491 DOI: 10.2174/0118715206289038240214102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) is a malignancy with a significant prevalence and aggressive nature, posing a considerable challenge in terms of therapeutic interventions. Autophagy and apoptosis, two intricate cellular processes, are integral to NSCLC pathophysiology, each affecting the other through shared signaling pathways. Phytol (Phy) and α-bisabolol (Bis) have shown promise as potential anticancer agents individually, but their combined effects in NSCLC have not been extensively investigated. OBJECTIVE The present study was to examine the synergistic impact of Phy and Bis on NSCLC cells, particularly in the context of autophagy modulation, and to elucidate the resulting differential protein expression using LCMS/ MS analysis. METHODS The A549 cell lines were subjected to the patented effective concentration of Phy and Bis, and subsequently, the viability of the cells was evaluated utilizing the MTT assay. The present study utilized real-time PCR analysis to assess the expression levels of crucial apoptotic genes, specifically Bcl-2, Bax, and Caspase-9, as well as autophagy-related genes, including Beclin-1, SQSTM1, Ulk1, and LC3B. The confirmation of autophagy marker expression (Beclin-1, LC3B) and the autophagy-regulating protein SQSTM1 was achieved through the utilization of Western blot analysis. Differentially expressed proteins were found using LC-MS/MS analysis. RESULTS The combination of Phy and Bis demonstrated significant inhibition of NSCLC cell growth, indicating their synergistic effect. Real-time PCR analysis revealed a shift towards apoptosis, with downregulation of Bcl-2 and upregulation of Bax and Caspase-9, suggesting a shift towards apoptosis. Genes associated with autophagy regulation, including Beclin-1, SQSTM1 (p62), Ulk1, and LC3B, showed significant upregulation, indicating potential induction of autophagy. Western blot analysis confirmed increased expression of autophagy markers, such as Beclin-1 and LC3B, while the autophagy-regulating protein SQSTM1 exhibited a significant decrease. LC-MS/MS analysis revealed differential expression of 861 proteins, reflecting the modulation of cellular processes. Protein-protein interaction network analysis highlighted key proteins involved in apoptotic and autophagic pathways, including STOML2, YWHAB, POX2, B2M, CDA, CAPN2, TXN, ECHS1, PEBP1, PFN1, CDC42, TUBB1, HSPB1, PXN, FGF2, and BAG3, emphasizing their crucial roles. Additionally, PANTHER pathway analysis uncovered enriched pathways associated with the differentially expressed proteins, revealing their involvement in a diverse range of biological processes, encompassing cell signaling, metabolism, and cellular stress responses. CONCLUSION The combined treatment of Phy and Bis exerts a synergistic inhibitory effect on NSCLC cell growth, mediated through the interplay of apoptosis and autophagy. The differential protein expression observed, along with the identified proteins and enriched pathways, provides valuable insights into the underlying molecular mechanisms. These findings offer a foundation for further exploration of the therapeutic potential of Phy and Bis in the management of NSCLC.
Collapse
Affiliation(s)
| | - Kambati Niharika
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
30
|
Navratilova P, Emmer J, Tomas T, Ryba L, Burda J, Loja T, Veverkova J, Valkova L, Pavkova Goldbergova M. Plastic response of macrophages to metal ions and nanoparticles in time mimicking metal implant body environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4111-4129. [PMID: 38097843 DOI: 10.1007/s11356-023-31430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
The paradigm of using metal biomaterials could be viewed from two sides - treatment of wide spectrum of degenerative diseases, and debris release from materials. After implant insertion, metal nanoparticles (NPs) and ions are released not only upon the first contact with cells/tissues, but in continual manner, which is immediately recognized by immune cells. In this work, the effects of metal nanoparticles (TiO2, Ni) and ions (Ni2+, Co2+, Cr3+, Mo6+) on primary human M0 macrophages from the blood samples of osteoarthritic patients undergoing total arthroplasty were studied in order to monitor immunomodulatory effects on the cells in a real-time format. The highest NiNPs concentration of 10 µg/ml had no effect on any of macrophage parameters, while the Ni2+ ions cytotoxicity limit for the cells is 0.5 mM. The cytotoxic effects of higher Ni2+ concentration revealed mitochondrial network fragmentation leading to mitochondrial dysfunction, accompanied by increased lysosomal activity and changes in pro-apoptotic markers. The suppression of M2 cell formation ability was connected to presence of Ni2+ ions (0.5 mM) and TiO2NPs (10 µg/ml). The immunomodulatory effect of Mo6+ ions, controversially, inhibit the formation of the cells with M1 phenotype and potentiate the thread-like shape M2s with increased chaotic cell movement. To summarize, metal toxicity depends on the debris form. Both, metal ions and nanoparticles affect macrophage size, morphological and functional parameters, but the effect of ions is more complex and likely more harmful, which has potential impact on healing and determines post-implantation reactions.
Collapse
Affiliation(s)
- Polina Navratilova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jan Emmer
- 1st Department of Orthopaedics, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Tomas Tomas
- 1st Department of Orthopaedics, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Ludek Ryba
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Jan Burda
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Tomas Loja
- Centre for Molecular Medicine, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jana Veverkova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Lucie Valkova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | | |
Collapse
|
31
|
Guez JS, Lacroix PY, Château T, Vial C. Deep in situ microscopy for real-time analysis of mammalian cell populations in bioreactors. Sci Rep 2023; 13:22045. [PMID: 38086908 PMCID: PMC10716407 DOI: 10.1038/s41598-023-48733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An in situ microscope based on pulsed transmitted light illumination via optical fiber was combined to artificial-intelligence to enable for the first time an online cell classification according to well-known cellular morphological features. A 848 192-image database generated during a lab-scale production process of antibodies was processed using a convolutional neural network approach chosen for its accurate real-time object detection capabilities. In order to induce different cell death routes, hybridomas were grown in normal or suboptimal conditions in a stirred tank reactor, in the presence of substrate limitation, medium addition, pH regulation problem or oxygen depletion. Using such an optical system made it possible to monitor real-time the evolution of different classes of animal cells, among which viable, necrotic and apoptotic cells. A class of viable cells displaying bulges in feast or famine conditions was also revealed. Considered as a breakthrough in the catalogue of process analytical tools, in situ microscopy powered by artificial-intelligence is also of great interest for research.
Collapse
Affiliation(s)
- Jean-Sébastien Guez
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France.
| | - Pierre-Yves Lacroix
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
- Logiroad.AI, 63 178, Aubière, France
| | - Thierry Château
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
- Logiroad.AI, 63 178, Aubière, France
| | - Christophe Vial
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
| |
Collapse
|
32
|
Yadav VK, Choudhary N, Gacem A, Verma RK, Abul Hasan M, Tarique Imam M, Almalki ZS, Yadav KK, Park HK, Ghosh T, Kumar P, Patel A, Kalasariya H, Jeon BH, Ali AlMubarak H. Deeper insight into ferroptosis: association with Alzheimer's, Parkinson's disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep 2023; 28:2269331. [PMID: 38010378 PMCID: PMC11001282 DOI: 10.1080/13510002.2023.2269331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia (KSA)
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hassan Ali AlMubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Mut-Salud N, Guardia JJ, Fernández A, Blancas I, Zentar H, Garrido JM, Álvarez-Manzaneda E, Chahboun R, Rodríguez-Serrano F. Discovery of a synthetic taiwaniaquinoid with potent in vitro and in vivo antitumor activity against breast cancer cells. Biomed Pharmacother 2023; 168:115791. [PMID: 37924793 DOI: 10.1016/j.biopha.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Taiwaniaquinoids are a unique family of diterpenoids predominantly isolated from Taiwania cryptomerioides Hayata. Previously, we evaluated the antiproliferative effect of several synthetic taiwaniaquinoids against human lung (A-549), colon (T-84), and breast (MCF-7) tumor cell lines. Herein, we report the in vitro and in vivo antitumor activity of the most potent compounds. Their cytotoxic activity against healthy peripheral blood mononuclear cells (PBMCs) has also been examined. We underscore the limited toxicity of compound C36 in PBMCs and demonstrate that it exerts its antitumor effect in MCF-7 cells (IC50 = 1.8 µM) by triggering an increase in reactive oxygen species, increasing the cell population in the sub-G1 phase of the cell cycle (90 %), and ultimately activating apoptotic (49.6 %) rather than autophagic processes. Western blot results suggested that the underlying mechanism of the C36 apoptotic effects was linked to caspase 9 activation and a rise in the Bax/Bcl-2 ratio. In vivo analyses showed normal behavior and hematological parameters in C57BL/6 mice post C36 treatment. Moreover, no significant impact was observed on the biochemical parameters of these animals, indicating that C36 did not induce liver toxicity. Furthermore, C36 demonstrated a significant reduction in tumor growth in immune-competent C57BL/6 mice implanted with E0771 mouse mammary tumor cells, effectively improving survival rates. These findings position taiwaniaquinoids, particularly compound C36, as promising therapeutic candidates for human breast cancer.
Collapse
Affiliation(s)
- Nuria Mut-Salud
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain
| | - Juan J Guardia
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Antonio Fernández
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Isabel Blancas
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Department of Medicine, School of Medicine, University of Granada, Granada 18016, Spain; Department of Medical Oncology, San Cecilio University Hospital, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain
| | - Houda Zentar
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - José M Garrido
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain; Department of Surgery and Surgical Specialties, University of Granada, Granada 18016, Spain
| | | | - Rachid Chahboun
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | - Fernando Rodríguez-Serrano
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain.
| |
Collapse
|
34
|
Han B, Kamogashira T, Kikuta S, Yamasoba T. Endoplasmic reticulum stress associated with lead (Pb)-induced olfactory epithelium toxicity in an olfactory dark basal cell line. FEBS Open Bio 2023; 13:2162-2171. [PMID: 37803507 PMCID: PMC10699098 DOI: 10.1002/2211-5463.13714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
Lead (Pb) can damage organs and also have undesirable effects on neural development. To explore the effects of Pb on olfactory cells, we investigated Pb-induced cell toxicity in the DBC1.2 olfactory cell line, with a focus on endoplasmic reticulum (ER) stress, apoptosis, and necroptosis. Representative markers of ER stress, apoptosis, and necroptosis were analyzed by quantitative PCR. The mRNA expression levels of GRP94, GRP78, spliced XBP1, PERK, and ATF6 increased significantly after Pb exposure in a dose-dependent manner. The expression of Caspase 3 and Caspase 12 did not increase after Pb exposure, which suggested that apoptosis-induced cell death was not activated after Pb exposure. However, the mRNA of RIPK3 and MLKL showed increases in expression, which indicated that necroptosis-induced cell death was activated after Pb exposure. These results indicate that Pb exposure induced dose-dependent cytotoxicity through ER stress and necroptosis pathways in DBC1.2 cells, whereas the apoptosis pathway was not significantly stimulated. HEPES buffer showed a partial protective effect in terms of ER stress, apoptosis, and necroptosis. In summary, the necroptosis pathway plays a crucial rule in Pb exposure-induced cytotoxicity in olfactory cells.
Collapse
Affiliation(s)
- Bing Han
- Department of Otolaryngology and Head and Neck Surgery, Faculty of MedicineUniversity of TokyoTokyoJapan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Faculty of MedicineUniversity of TokyoTokyoJapan
| | - Shu Kikuta
- Department of Otolaryngology and Head and Neck Surgery, Faculty of MedicineUniversity of TokyoTokyoJapan
- Department of Otolaryngology and Head and Neck SurgeryNihon UniversityTokyoJapan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of MedicineUniversity of TokyoTokyoJapan
| |
Collapse
|
35
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
36
|
Shen J, San W, Zheng Y, Zhang S, Cao D, Chen Y, Meng G. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother 2023; 168:115802. [PMID: 37918258 DOI: 10.1016/j.biopha.2023.115802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease caused by disorders of insulin secretion and utilization. Long-term hyperglycemia, insulin resistance, and disorders of glucose and lipid metabolism cause vascular endothelial cell damage. Endothelial dysfunction is a key feature of diabetic vascular complications such as diabetic nephropathy, retinopathy, neuropathy, and atherosclerosis. Importantly, cell death is thought to be a key factor contributing to vascular endothelial injury. Morphologically, cell death can be divided into three forms: type I apoptosis, type II autophagy, and type III necrosis. According to the difference in function, cell death can be divided into accidental cell death (ACD) and regulated cell death (RCD). RCD is a controlled process involving numerous proteins and precise signaling cascades. Multiple subroutines covered by RCD may be involved in diabetic endothelial dysfunction, including apoptosis, autophagy, necroptosis, pyroptosis, entosis, ferroptosis, ferroautophagy, parthanatos, netotic cell death, lysosome-dependent cell death, alkaliptosis, oxeiptosis, cuproptosis, and PANoptosis. This article briefly reviews the mechanism and significance of cell death associated with diabetic endothelial dysfunction, which will help deepen the understanding of diabetic endothelial cell death and provide new therapeutic ideas.
Collapse
Affiliation(s)
- Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Danyi Cao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
37
|
Zhu M, Liu D, Liu G, Zhang M, Pan F. Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules 2023; 13:1715. [PMID: 38136586 PMCID: PMC10741419 DOI: 10.3390/biom13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a complex disease and the cause of one of the highest cancer-related mortalities in men worldwide. Annually, more than 1.2 million new cases are diagnosed globally, accounting for 7% of newly diagnosed cancers in men. Programmed cell death (PCD) plays an essential role in removing infected, functionally dispensable, or potentially neoplastic cells. Apoptosis is the canonical form of PCD with no inflammatory responses elicited, and the close relationship between apoptosis and PCa has been well studied. Necroptosis and pyroptosis are two lytic forms of PCD that result in the release of intracellular contents, which induce inflammatory responses. An increasing number of studies have confirmed that necroptosis and pyroptosis are also closely related to the occurrence and progression of PCa. Recently, a novel form of PCD named PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis, revealed the attached connection among them and may be a promising target for PCa. Apoptosis, necroptosis, pyroptosis, and PANoptosis are good examples to better understand the mechanism underlying PCD in PCa. This review aims to summarize the emerging roles and therapeutic potential of apoptosis, necroptosis, pyroptosis, and PANoptosis in PCa.
Collapse
Affiliation(s)
- Minggang Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Guoqiang Liu
- Urology Department of Guangzhou First People’s Hospital, Guangzhou 510000, China;
| | - Mingrui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| |
Collapse
|
38
|
Gu H, Shu Q, Dai M, Zou H, Wang Y, Cheng J, Su Y, Li F, Li B. Low concentration chlorantraniliprole-promoted Ca 2+ release drives a shift from autophagy to apoptosis in the silk gland of Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105585. [PMID: 37945221 DOI: 10.1016/j.pestbp.2023.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 11/12/2023]
Abstract
The novel pesticide chlorantraniliprole (CAP) is widely used for pest control in agriculture, and the safety for non-target organisms of trace residues in the environment has received widespread attention. In the present study, exposure to low concentrations of CAP resulted in abnormal silk gland development in the B. mori, and induced the release of intracellular Ca2+ in addition to the triggering of Ca2+-dependent gene transcription. Moreover, the CAP treatment group exhibited down-regulation of oxidative phosphorylation and antioxidant enzyme-related genes in the silk gland, resulting in peroxide accumulation. Furthermore, transcript levels of autophagy-related genes were significantly up-regulated and protein levels of LC3-I and LC3-II were up-regulated, indicating an increase in autophagy. The protein levels of ATG5 and NtATG5 were also significantly up-regulated. While the protein levels of caspase3 and active caspase3 were significantly up-regulated consistent with the transcript levels of key genes in the apoptotic signaling pathway, ultimately affecting silk protein synthesis. Overall, these findings indicate that low concentration CAP induced abnormal development in the silk gland of B. mori by causing intracellular Ca2+ overload, which inhibits oxidative phosphorylation pathway and the removal of reactive oxygen species, leading to a driving a shift from autophagy to apoptosis. The findings herein provided a basis for evaluating the safety of CAP environmental residues on non-target organisms.
Collapse
Affiliation(s)
- Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Hongbin Zou
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Jialu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yue Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China; Sericulture Institute of Soochow University, Soochow University, Suzhou, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China; Sericulture Institute of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
39
|
Lin HLH, Mermillod P, Grasseau I, Brillard JP, Gérard N, Reynaud K, Chen LR, Blesbois E, Carvalho AV. Is glycerol a good cryoprotectant for sperm cells? New exploration of its toxicity using avian model. Anim Reprod Sci 2023; 258:107330. [PMID: 37734123 DOI: 10.1016/j.anireprosci.2023.107330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Glycerol is a cryoprotectant used widely for the cryopreservation of animal sperm, but it is linked to a decrease in fertility. The mechanism underlying the negative effects of glycerol remains unclear. Therefore, in this study, we aimed to gain a better understanding by using the chicken model. First, we investigated the impact of increasing the concentration of glycerol during insemination on hen fertility. Our findings revealed that 2% glycerol resulted in partial infertility, while 6% glycerol led to complete infertility. Subsequently, we examined the ability of sperm to colonize sperm storage tubules (SST) during in vivo insemination and in vitro incubation. The sperm used in the experiment were stained with Hoechst and contained 0, 2, or 6% glycerol. Furthermore, we conducted perivitelline membrane lysis tests and investigated sperm motility, mitochondrial function, ATP concentration, membrane integrity, and apoptosis after 60 min of incubation with different glycerol concentrations (0%, 1%, 2%, 6%, and 11%) at two temperatures to simulate pre-freezing (4 °C) and post-insemination (41 °C) conditions. Whereas 2% glycerol significantly reduced 50% of sperm containing SST, 6% glycerol completely inhibited SST colonization in vivo. On the other hand, in vitro incubation of sperm with SST revealed no effect of 2% glycerol, and 6% glycerol showed only a 17% reduction in sperm-filled SST. Moreover, glycerol reduced sperm-egg penetration rates and also affected sperm motility, bioenergetic metabolism, and cell death at 4 °C. These effects were observed when the concentration of glycerol exceeded 6%. Furthermore, at 41 °C, glycerol caused even greater damage, particularly in terms of reducing sperm motility. These data altogether reveal important effects of glycerol on sperm biology, sperm migration, SST colonization, and oocyte penetration. This suggests that glycerol plays a role in reducing fertility and presents opportunities for improving sperm cryopreservation.
Collapse
Affiliation(s)
- Hsiu-Lien Herbie Lin
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France; Division of Physiology, LRI, COA, 71246 Tainan, Taiwan
| | - Pascal Mermillod
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | | | | | - Nadine Gérard
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Karine Reynaud
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Lih-Ren Chen
- Division of Physiology, LRI, COA, 71246 Tainan, Taiwan
| | | | | |
Collapse
|
40
|
Shi X, Ding H, Tao J, Zhu Y, Zhang X, He G, Yang J, Wu X, Liu X, Yu X. Comprehensive evaluation of cell death-related genes as novel diagnostic biomarkers for breast cancer. Heliyon 2023; 9:e21341. [PMID: 38027811 PMCID: PMC10643282 DOI: 10.1016/j.heliyon.2023.e21341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Breast cancer (BRCA) ranks first among cancers in terms of incidence and mortality rates in women, primarily owing to metastasis, chemo-resistance, and heterogeneity. To predict long-term prognosis and design novel therapies for BRCA, more sensitive markers need to be explored. Methods Data from 1089 BRCA patients were downloaded from TCGA database. Pearson's correlation analysis and univariate and multivariate Cox regression analyses were performed to assess the role of cell death-related genes (CDGs) in predicting BRCA prognosis. Kaplan-Meier survival curves were generated to compare the overall survival in the two subgroups. A nomogram was constructed using risk scores based on the five CDGs and other clinicopathological features. CCK-8, EdU incorporation, and colony formation assays were performed to verify the inhibitory effect of NFKBIA on BRCA cell proliferation. Transwell assay, flow cytometry, and immunohistochemistry analyses were performed to ascertain the biological function of NFKBIA. Results Five differentially expressed CDGs were detected among 156 CDGs. The risk score for each patient was then calculated based on the expression levels of the five CDGs. Distinct differences in immune infiltration, expression of immune-oncological targets, mutation status, and half-maximal inhibitory concentration values of some targeted drugs were observed between the high- and low-risk groups. Finally, in vitro cell experiments verified that NFKBIA overexpression suppresses the proliferation and migration of BRCA cells. Conclusions Our study revealed that some CDGs, especially NFKBIA, could serve as sensitive markers for predicting the prognosis of patients with BRCA and designing more personalized clinical therapies.
Collapse
Affiliation(s)
- Xiaoyue Shi
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hao Ding
- Department of Breast Surgery, Baoying Maternal and Child Health Hospital, 120 Anyi East Road, Yangzhou, Jiangsu 225800, People's Republic of China
| | - Jing Tao
- Department of Thyroid-Breast Surgery, Nanjing Pukou Hospital, The Fourth Affiliated Hospital of Nanjing Medical University, 18 Puyuan Road, Nanjing, Jiangsu 210031, People's Republic of China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoqiang Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Gao He
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Junzhe Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xian Wu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
41
|
Liang BB, Liu Q, Liu B, Yao HG, He J, Tang CF, Peng K, Su XX, Zheng Y, Ding JY, Shen J, Cao Q, Mao ZW. A Golgi-Targeted Platinum Complex Plays a Dual Role in Autophagy Regulation for Highly Efficient Cancer Therapy. Angew Chem Int Ed Engl 2023; 62:e202312170. [PMID: 37710398 DOI: 10.1002/anie.202312170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Regulating autophagy to control the homeostatic recycling process of cancer cells is a promising anticancer strategy. Golgi apparatus is a substrate of autophagy but the Golgi-autophagy (Golgiphagy) mediated antitumor pathway is rarely reported. Herein, we have developed a novel Golgi-targeted platinum (II) complex Pt3, which is ca. 20 times more cytotoxic to lung carcinoma than cisplatin and can completely eliminate tumors after intratumoral administration in vivo. Its nano-encapsulated system for tail vein administration also features a good anti-tumor effect. Mechanism studies indicate that Pt3 induces substantial Golgi stress, indicated by the fragmentation of Golgi structure, down-regulation of Golgi proteins (GM130, GRASP65/55), loss of Golgi-dependent transport and glycosylation. This triggers Golgiphagy but blocks the subsequent fusion of autophagosomes with lysosomes, that is a dual role in autophagy regulation, resulting in loss of proteostasis and apoptotic cell death. As far as we know, Pt3 is the first Golgi-targeted Pt complex that can trigger Golgi stress-mediated dual-regulation of autophagic flux and autophagy-apoptosis crosstalk for highly efficient cancer therapy.
Collapse
Affiliation(s)
- Bing-Bing Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qian Liu
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, 325000, China
| | - Bin Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hua-Gang Yao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Juan He
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Cheng-Fei Tang
- Wenshan University, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan Province, 532600, China
| | - Kun Peng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xu-Xian Su
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yue Zheng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jia-Yi Ding
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, 325000, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, 325000, China
| | - Qian Cao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
42
|
Liu H, Xie T, Liu Y. Ginsenoside Rg3 inhibits the malignant progression of cervical cancer cell by regulating AKT2 expression. Heliyon 2023; 9:e19045. [PMID: 37664735 PMCID: PMC10469050 DOI: 10.1016/j.heliyon.2023.e19045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Although ginsenoside Rg3 has been shown to exert anticancer effects in various malignancies, the effects and molecular mechanisms of ginsenoside Rg3 in cervical cancer (CC) remain unclear. This study explored the effect of ginsenoside Rg3 on CC development at the cellular level. The effect of ginsenoside Rg3 on cell proliferation was measured using colony formation and Cell Counting Kit-8 assays. Migration, invasion, and in vitro angiogenesis of CC cells were detected using wound healing, transwell, and tube formation assays, respectively. In addition, we explored the target genes and molecular mechanisms of ginsenoside Rg3 in CC cells overexpressing AKT serine/threonine kinase 2 (AKT2). The results indicated that ginsenoside Rg3 suppressed proliferation, migration, invasion, and tube formation of CC cells in vitro. In addition, ginsenoside Rg3 treatment decreased the expression of AKT2 in CC cells. Moreover, ginsenoside Rg3 treatment partially reversed AKT2 overexpression-mediated reduction in cell proliferation, migration, invasion, and tube formation. In conclusion, the above findings suggested that ginsenoside Rg3 inhibits CC progression via regulation of AKT2 expression, which might provide a potential therapeutic target for tumor therapy.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmacy, Shangqiu First People's Hospital, Shangqiu, 476000, China
| | - Tingting Xie
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General hospital, Beijing, 10000, China
| | - Yuan Liu
- Department of Pharmacy, Shangqiu First People's Hospital, Shangqiu, 476000, China
| |
Collapse
|
43
|
Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT. Diversity and complexity of cell death: a historical review. Exp Mol Med 2023; 55:1573-1594. [PMID: 37612413 PMCID: PMC10474147 DOI: 10.1038/s12276-023-01078-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bosung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, UNIST, Ulsan, 44919, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
44
|
Sato A, Shimotsuma A, Miyoshi T, Takahashi Y, Funayama N, Ogino Y, Hiramoto A, Wataya Y, Kim HS. Extracellular Leakage Protein Patterns in Two Types of Cancer Cell Death: Necrosis and Apoptosis. ACS OMEGA 2023; 8:25059-25065. [PMID: 37483236 PMCID: PMC10357420 DOI: 10.1021/acsomega.3c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Dead cells release fragments of DNA, RNA, and proteins (including peptides) into the extracellular space. Two major forms of cell death during cancer development have been identified: necrosis and apoptosis. Our group investigated the mechanisms that regulate cell death during the treatment of mouse tumor FM3A cells with the anticancer drug floxuridine (FUdR). In the original strain F28-7, FUdR induced necrosis, whereas in the variant F28-7-A, it induced apoptosis. Here, we report that the extracellular leakage proteome (i.e., the secretome) is involved in these cell death phenomena. The secretome profile, which was analyzed via shotgun proteomic analysis, revealed that altered protein leakage was involved in signal transduction, transcription, RNA processing, translation, and cell death. Notably, the characteristic secretory proteins high mobility group box 1 and 2 were detected in the culture medium of both necrotic and apoptotic cells. Overall, these results indicate that unique cellular events mediated by secretory proteins may be involved in necrosis and apoptosis.
Collapse
Affiliation(s)
- Akira Sato
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akira Shimotsuma
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Tetsuya Miyoshi
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yui Takahashi
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naoki Funayama
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoko Ogino
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Department
of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akiko Hiramoto
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Wataya
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hye-Sook Kim
- Division
of International Infectious Diseases Control, Faculty of Pharmaceutical
Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
45
|
Bhatia D, Choi ME. Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 2023; 325:F1-F21. [PMID: 37167272 PMCID: PMC10292977 DOI: 10.1152/ajprenal.00012.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
46
|
Wu L, Lin Y, Gao S, Wang Y, Pan H, Wang Z, Pozzolini M, Yang F, Zhang H, Yang Y, Xiao L, Xu Y. Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling. Front Pharmacol 2023; 14:1200843. [PMID: 37346292 PMCID: PMC10279868 DOI: 10.3389/fphar.2023.1200843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is one of the most prominent neoplasm disorders and lacks efficacious treatments yet. Luteolin (3',4',5,7-tetrahydroxyflavone), a natural flavonoid commonly presented in plants, has been reported to delay the progression of TNBC. However, the precise mechanism is still elusive. We aimed to elucidate the inhibition and molecular regulation mechanism of luteolin on TNBC. Methods: The effects of luteolin on the biological functions of TNBC cells were first evaluated using the corresponding assays for cell counting kit-8 assay, flow cytometry, wound-healing assay, and transwell migration assay, respectively. The mechanism of luteolin on TNBC cells was then analyzed by RNA sequencing and verified by RT-qPCR, Western blot, transmission electron microscopy, etc. Finally, in vivo mouse tumor models were constructed to further confirm the effects of luteolin on TNBC. Results: Luteolin dramatically suppressed cell proliferation, invasion, and migration while favoring cell apoptosis in a dose- and time-dependent manner. In TNBC cells treated with luteolin, SGK1 and AKT3 were significantly downregulated while their downstream gene BNIP3 was upregulated. According to the results of 3D modeling, the direct binding of luteolin to SGK1 was superior to that of AKT3. The inhibition of SGK1 promoted FOXO3a translocation into the nucleus and led to the transcription of BNIP3 both in vitro and in vivo, eventually facilitating the interaction between BNIP3 and apoptosis and autophagy protein. Furthermore, the upregulation of SGK1, induced by luteolin, attenuated the apoptosis and autophagy of the TNBC. Conclusion: Luteolin inhibits TNBC by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling.
Collapse
Affiliation(s)
- Ling Wu
- Medical College of Yangzhou University, Yangzhou, China
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yingda Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Songyu Gao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhaozhi Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Fengling Yang
- Department of Healthcare, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Haiyan Zhang
- Department of Healthcare, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yi Yang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Abuhijjleh RK, Al Saeedy DY, Ashmawy NS, Gouda AE, Elhady SS, Al-Abd AM. Chemomodulatory Effect of the Marine-Derived Metabolite "Terrein" on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells. Mar Drugs 2023; 21:md21050271. [PMID: 37233465 DOI: 10.3390/md21050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Terrein (Terr) is a bioactive marine secondary metabolite that possesses antiproliferative/cytotoxic properties by interrupting various molecular pathways. Gemcitabine (GCB) is an anticancer drug used to treat several types of tumors such as colorectal cancer; however, it suffers from tumor cell resistance, and therefore, treatment failure. METHODS The potential anticancer properties of terrein, its antiproliferative effects, and its chemomodulatory effects on GCB were assessed against various colorectal cancer cell lines (HCT-116, HT-29, and SW620) under normoxic and hypoxic (pO2 ≤ 1%) conditions. Further analysis via flow cytometry was carried out in addition to quantitative gene expression and 1HNMR metabolomic analysis. RESULTS In normoxia, the effect of the combination treatment (GCB + Terr) was synergistic in HCT-116 and SW620 cell lines. In HT-29, the effect was antagonistic when the cells were treated with (GCB + Terr) under both normoxic and hypoxic conditions. The combination treatment was found to induce apoptosis in HCT-116 and SW620. Metabolomic analysis revealed that the change in oxygen levels significantly affected extracellular amino acid metabolite profiling. CONCLUSIONS Terrein influenced GCB's anti-colorectal cancer properties which are reflected in different aspects such as cytotoxicity, cell cycle progression, apoptosis, autophagy, and intra-tumoral metabolism under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Reham Khaled Abuhijjleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Dalia Yousef Al Saeedy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Naglaa S Ashmawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11591, Egypt
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed E Gouda
- Life Science Unit, Biomedical Research Division, Nawah Scientific, Al-Mokkatam, Cairo 11571, Egypt
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Mohamed Al-Abd
- Life Science Unit, Biomedical Research Division, Nawah Scientific, Al-Mokkatam, Cairo 11571, Egypt
- National Research Centre, Department of Pharmacology, Medical and Clinical Research Institute, Cairo 12622, Egypt
| |
Collapse
|
48
|
Mahmoud HA, Horany HEE, Aboalsoud M, Abd-Ellatif RN, Sheikh AAE, Aboalsoud A. Targeting Oxidative Stress, Autophagy, and Apoptosis by Quercetin to Ameliorate Cisplatin-induced Peripheral Neuropathy in Rats. J Microsc Ultrastruct 2023; 11:107-114. [PMID: 37448816 PMCID: PMC10337675 DOI: 10.4103/jmau.jmau_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 07/15/2023] Open
Abstract
Background Quercetin is a flavonoid, with antioxidant and autophagy-modulating activities. Cisplatin is one of the platinum-based anticancer drugs. Early development of peripheral neuropathy as an adverse effect of cisplatin interferes with the continuation of therapy. Oxidative stress and autophagy impairment may play a role. Aim This study aimed to explore the possible protective effects of quercetin against cisplatin-induced peripheral neuropathy. Methods Twenty-four male Wistar rats were divided into three groups: Group 1 (control group) and Group 2 (cisplatin group) where peripheral neuropathy was induced using single ip injection of cisplatin. Group 3 (cisplatin + quercetin group) received single ip injection of cisplatin and was then treated with quercetin for 14 days. At the end of the experiment, nociception was evaluated by tail immersion test, and then, blood was collected for analysis of nerve growth factor. Sciatic nerve was used to assess histopathological changes and light chain 3-II by immunohistochemical staining. Reduced glutathione, malondialdehyde, mTOR, and caspase-3 were estimated in sciatic nerve tissue homogenate. Results This research work revealed that quercetin significantly improved cisplatin-induced nociceptive impairment, attenuated cisplatin-induced oxidative stress, autophagy, and apoptosis to protect against neuronal death. Conclusion From the current study, quercetin can act as a promising protective agent against cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Heba A. Mahmoud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hemat E. El Horany
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Biochemistry, College of Medicine, Hail University, Hail, Dammam, Saudi Arabia
| | - Marwa Aboalsoud
- Department of Clinical Oncology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Amal Ahmed El Sheikh
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Alshimaa Aboalsoud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
49
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
50
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|