1
|
Bian H, Chen L, Zhang Z, Wen AD, Zheng ZH, Song LQ, Yao MY, Liu YX, Zhang XJ, Dong HL, Lian JQ, Pan L, Liu Y, Gu X, Zhao H, Wang JW, Wang QY, Zhang K, Jia JF, Xie RH, Luo X, Fu XH, Jia YY, Hou JN, Tan QY, Chen XX, Yang LQ, Lin YL, Wang XX, Zhang L, Zeng QJ, Li WJ, Wang RX, Zhang Y, Sun XX, Wang B, Yang X, Jiang JL, Li L, Wu J, Yang XM, Zhang H, Shi Y, Chen XC, Tang H, Shi HW, Liu SS, Yang Y, Yang TY, Wei D, Chen ZN, Zhu P. Meplazumab, a CD147 antibody, for severe COVID-19: a double-blind, randomized, placebo-controlled, phase 3 clinical trial. Signal Transduct Target Ther 2025; 10:119. [PMID: 40222976 PMCID: PMC11994814 DOI: 10.1038/s41392-025-02208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Meplazumab, a humanized CD147 antibody, showed favorable safety and clinical benefits in phase 1 and phase 2/3 seamless clinical studies. Further evaluation of its therapeutic efficacy in patients with severe COVID-19 is needed. In this phase 3 add-on study, we randomized patients with severe COVID-19 in a 1:1 ratio to receive 0.2 mg/kg meplazumab or placebo via intravenous injection, and evaluated efficacy and safety within 56 days. Between February 2023 and November 2023, 108 patients with severe COVID-19 were randomized to two groups, with their baseline characteristics generally balanced. The primary endpoint, 28-day all-cause mortality was 1.96% in the meplazumab group vs 7.69% in the placebo group (P = 0.1703). Supplementary analysis using composite strategy indicated a significant reduction of 28-day all-cause mortality in meplazumab compared to placebo (3.92% vs 15.38%, P = 0.044). Meplazumab also significantly reduced the mortality in smoking subjects on day 28 (P = 0.047) compared to placebo in supplementary analysis. The secondary endpoint, 56-day all-cause mortality, was 1.96% in the meplazumab group and 11.54% in the placebo group (P = 0.048), which was 3.92% and 15.38%, respectively (P = 0.044) by supplementary analysis. Additional secondary endpoints showed potential benefits, including increased hospital discharge rates, improved clinical outcomes, and improved viral nucleotide conversion rate. Meplazumab demonstrated good safety and tolerability, with no grade ≥ 3 TEAEs observed. These promising results indicate that meplazumab reduces mortality and enhances clinical benefits in severe COVID-19 patients with a good safety profile, providing effective and specific therapeutics for severe COVID-19 (the trial was registered at ClinicalTrials.gov (NCT05679479)).
Collapse
Affiliation(s)
- Huijie Bian
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China.
| | - Liang Chen
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zheng Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhao-Hui Zheng
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Li-Qiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Meng-Ying Yao
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Xia Liu
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xi-Jing Zhang
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong-Lin Dong
- Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Qi Lian
- The Center for Diagnosis and Treatment of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xing Gu
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Xi'an, China
| | - Hui Zhao
- Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qing-Yi Wang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Kui Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Jun-Feng Jia
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Rong-Hua Xie
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Xing Luo
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Xiang-Hui Fu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Yan-Yan Jia
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun-Na Hou
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiu-Yue Tan
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Xia Chen
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liu-Qing Yang
- Department of Liver Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yuan-Long Lin
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiao-Xia Wang
- Department of Rheumatology and Immunology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qin-Jing Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen-Jie Li
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Xi'an, China
| | - Rui-Xuan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Xi'an, China
| | - Yang Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Xiu-Xuan Sun
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Bin Wang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Xu Yang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Jian-Li Jiang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Ling Li
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Jiao Wu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Xiang-Min Yang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Hai Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Ying Shi
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China
| | - Xiao-Chun Chen
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Hao Tang
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Hong-Wei Shi
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Shuang-Shuang Liu
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Yong Yang
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Tian-Yi Yang
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Ding Wei
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China.
| | - Zhi-Nan Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China.
| | - Ping Zhu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, China.
| |
Collapse
|
2
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
3
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
4
|
Liu Z, Du Y, Zhou T, Qin T, Yuan Y, Xu W, Fang M, Wang X, Chen B, Xu P. A Novel Engineering Cell Therapy Platform Mimicking the Immune Thrombocytopenia-Derived Platelets to Inhibit Cytokine Storm in Hemophagocytic Lymphohistiocytosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404571. [PMID: 39258712 PMCID: PMC11615807 DOI: 10.1002/advs.202404571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/12/2024] [Indexed: 09/12/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a common and highly fatal hyperinflammatory syndrome characterized by the aberrant activation of macrophages. To date, there is a lack of targeted therapies for HLH. It is validated that macrophages in HLH efficiently phagocytose anti-CD41-platelets (anti-CD41-PLTs) from immune thrombocytopenia (ITP) patients in previous research. Hence, the pathological mechanisms of ITP are mimicked and anti-CD41-PLTs are utilized to load the macrophage-toxic drug VP16 to construct macrophage-targetable engineered platelets anti-CD41-PLT-VP16, which is a novel targeted therapy against HLH. Both in vitro and in vivo studies demonstrate that anti-CD41-PLT-VP16 has excellent targeting and pro-macrophage apoptotic effects. In HLH model mice, anti-CD41-PLT-VP16 prevents hemophagocytosis and inhibits the cytokine storm. Mechanistic studies reveal that anti-CD41-PLT-VP16 increases the cytotoxicity of VP16, facilitating precise intervention in macrophages. Furthermore, it operates as a strategic "besieger" in diminishing hyperinflammation syndrome, which can indirectly prevent the abnormal activation of T cells and NK cells and reduce the Ab-dependent cell-mediated cytotoxicity effect. The first platelet-based clinical trial is ongoing. The results show that after treatment with anti-CD41-PLT-VP16, HLH patients have a threefold increase in the overall response rate compared to patients receiving conventional chemotherapy. In conclusion, anti-CD41-PLT-VP16 provides a general insight into hyperinflammation syndrome and offers a novel clinical therapeutic strategy for HLH.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of HematologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Ying Du
- Department of HematologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Tong Zhou
- Department of HematologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Ting Qin
- Department of HematologyNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjing210008China
| | - Yining Yuan
- Department of HematologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Weilu Xu
- Department of HematologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - MengKun Fang
- Department of HematologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Xuemei Wang
- School of Biological Science & Medical EngineeringSoutheast UniversityNanjing210096China
| | - Bing Chen
- Department of HematologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Peipei Xu
- Department of HematologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| |
Collapse
|
5
|
Gupta P, Dev K, Kaur G. Phytoconstituents as modulator of inflammatory pathways for COVID-19: A comprehensive review and recommendations. Phytother Res 2024; 38:5389-5416. [PMID: 39246209 DOI: 10.1002/ptr.8302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024]
Abstract
SARS-CoV-2 infection causes disruptions in inflammatory pathways, which fundamentally contribute to COVID-19 pathophysiology. The present review critically evaluates the gaps in scientific literature and presents the current status regarding the inflammatory signaling pathways in COVID-19. We propose that phytoconstituents can be used to treat COVID-19 associated inflammation, several already formulated in traditional medications. For this purpose, extensive literature analysis was conducted in the PubMed database to collect relevant in vitro, in vivo, and human patient studies where inflammation pathways were shown to be upregulated in COVID-19. Parallelly, scientific literature was screened for phytoconstituents with known cellular mechanisms implicated for inflammation or COVID-19 associated inflammation. Studies with insufficient evidence on cellular pathways for autophagy and mitophagy were considered out of scope and excluded from the study. The final analysis was visualized in figures and evaluated for accuracy. Our findings demonstrate the frequent participation of NF-κB, a transcription factor, in inflammatory signaling pathways linked to COVID-19. Moreover, the MAPK signaling pathway is also implicated in producing inflammatory molecules. Furthermore, it was also analyzed that the phytoconstituents with flavonoid and phenolic backbones could inhibit either the TLR4 receptor or its consecutive signaling molecules, thereby, decreasing NF-κB activity and suppressing cytokine production. Although, allopathy has treated the early phase of COVID-19, anti-inflammatory phytoconstituents and existing ayurvedic formulations may act on the COVID-19 associated inflammatory pathways and provide an additional treatment strategy. Therefore, we recommend the usage of flavonoids and phenolic phytoconstituents for the treatment of inflammation associated with COVID-19 infection and similar viral ailments.
Collapse
Affiliation(s)
- Pragati Gupta
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Department of Pharmacology & Toxicology, Wright State University, Dayton, Ohio, USA
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
- National Center cum Department of Human Genome Research Center and Studies, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
6
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
8
|
Soret L, Guerin CL, Goudot G, Guyonnet L, Diehl JL, Philippe A, Gaussem P, Smadja DM. The Onset of Intussusceptive Angiogenesis in COVID-19 Patients Might Come from the Mobilization of Stem Cell Sub-Populations Expressing the Hemangioblast Marker CD143. Stem Cell Rev Rep 2024; 20:1650-1655. [PMID: 38722523 DOI: 10.1007/s12015-024-10727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 08/13/2024]
Abstract
COVID-19 and infectious diseases have been included in strategic development goals (SDG) of United Nations (UN). The SARS-CoV-2 pandemic has unveiled complex pathophysiological mechanisms underpinning COVID-19, notably inducing a systemic acquired vascular hemopathy characterized by endothelial dysfunction and intussusceptive angiogenesis, a rapid vascular remodeling process identified as a hallmark in severe COVID-19 cases affecting pulmonary and cardiac tissues. Stem cell migration have been proposed as significant regulators of this neoangiogenic process. In a monocentric cross-sectional study, through spectral flow cytometry analysis of peripheral blood mononuclear cells, we identified a distinct stem cell subpopulation mobilized in critical COVID-19. Indeed, by an unsupervised analysis generating a UMAP representation we highlighted eleven different clusters in critical and non-critical COVID-19 patients. Only one cluster was significantly associated to critical COVID-19 compared to non-critical patients. This cluster expressed the markers: CD45dim, CD34+, CD117+, CD147+, and CD143+, and were negative for CD133. Higher level of expression of hemangioblast markers CD143 were found in critical COVID-19 patients. This population, indicative of hemangioblast-like cells, suggests a key role in COVID-19-related neoangiogenesis, potentially driving the severe vascular complications observed. Our findings underscore the need for further investigation into the contributions of adult stem cells in COVID-19 pathology, offering new insights into therapeutic targets and interventions.
Collapse
Affiliation(s)
- Lou Soret
- Université Paris-Cité, Innovative Therapies in Hemostasis, INSERM, Paris, F-75006, France
- Hematology Department, AP-HP, Saint louis Hospital, Paris, F-75010, France
| | - Coralie L Guerin
- Université Paris-Cité, Innovative Therapies in Hemostasis, INSERM, Paris, F-75006, France
- Cytometry Platform, Curie CoreTech, Institut Curie, Paris, F-75005, France
| | - Guillaume Goudot
- Université Paris-Cité, PARCC, INSERM, Paris, F-75015, France
- Vascular medicine Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Léa Guyonnet
- Cytometry Platform, Curie CoreTech, Institut Curie, Paris, F-75005, France
| | - Jean-Luc Diehl
- Université Paris-Cité, Innovative Therapies in Hemostasis, INSERM, Paris, F-75006, France
- Intensive Care Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Aurélien Philippe
- Université Paris-Cité, Innovative Therapies in Hemostasis, INSERM, Paris, F-75006, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Pascale Gaussem
- Université Paris-Cité, Innovative Therapies in Hemostasis, INSERM, Paris, F-75006, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - David M Smadja
- Université Paris-Cité, Innovative Therapies in Hemostasis, INSERM, Paris, F-75006, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France.
- Innovative Therapies in Hemostasis, Hematology Department in Georges Pompidou, Paris-Cité University, INSERM, European Hospital, 20 rue Leblanc, 75015, Paris, France.
| |
Collapse
|
9
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
10
|
Sukadeetad K, Sripanidkulchai B, Tangsukworakhun S, Payomchuen R, Sakulchatrungroj A, Supmoon S, Punkvang A. Thai traditional medicines reduce CD147 levels in lung cells: Potential therapeutic candidates for cancers, inflammations, and COVID-19. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118042. [PMID: 38493907 DOI: 10.1016/j.jep.2024.118042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cluster of differentiation 147 (CD147) is identified as the signaling protein relevant importantly in various cancers, inflammations, and coronavirus disease 2019 (COVID-19) via interacting with extracellular cyclophilin A (CypA). The reduction of CD147 levels inhibits the progression of CD147-associated diseases. Thai traditional medicines (TTMs): Keaw-hom (KH), Um-ma-ruek-ka-wa-tee (UM), Chan-ta-lee-la (CT), and Ha-rak (HR) have been used as anti-pyretic and anti-respiratory syndromes caused from various conditions including cancers, inflammations, and infections. Thus, these medicines would play a crucial role in the reduction of CD147 levels. AIM OF THE STUDY This article aimed to investigate the effects of KH, UM, CT, and HR for reducing the CD147 levels through in vitro study. Additionally, in silico study was employed to screen the active compounds reflexing the reduction of CD147 levels. MATERIALS AND METHODS The immunofluorescent technique was used to evaluate the reduction of CD147 levels in human lung epithelial cells (BEAS-2B) stimulated with CypA for eight extracts of KH, UM, CT, and HR obtained from water decoction (D) and 70% ethanol maceration (M) including, KHD, UMD, CTD, HRD, KHM, UMM, CTM, and HRM. RESULTS UM extracts showed the most efficiency for reduction of CD147 levels in the cytoplasm and perinuclear of BEAS-2B cells stimulated with CypA. Phenolic compounds composing polyphenols, polyphenol sugars, and flavonoids were identified as the major chemical components of UMD and UMM. Further, molecular docking calculations identified polyphenol sugars as CypA inhibitors. CONCLUSIONS UMD and UMM are potential for reduction of CD147 levels which provide a useful information for further development of UM as potential therapeutic candidates for CD147-associated diseases such as cancers, inflammations, and COVID-19.
Collapse
Affiliation(s)
- Kannika Sukadeetad
- Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Ronnachai Payomchuen
- Thai Traditional and Alternative Medicine, Nakhon Phanom Hospital, Nakhon Phanom, 48000, Thailand
| | - Apichat Sakulchatrungroj
- Thai Traditional and Alternative Medicine, Nakhon Phanom Hospital, Nakhon Phanom, 48000, Thailand
| | - Sasithon Supmoon
- Thai Traditional and Alternative Medicine, Nakhon Phanom Hospital, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand.
| |
Collapse
|
11
|
Li S, Li H, Lian R, Xie J, Feng R. New perspective of small-molecule antiviral drugs development for RNA viruses. Virology 2024; 594:110042. [PMID: 38492519 DOI: 10.1016/j.virol.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.
Collapse
Affiliation(s)
- Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruiya Lian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
12
|
Zheng S, Wang Z, Cao X, Wang L, Gao X, Shen Y, Du J, Liu P, Zhuang Y, Guo X. Insights into the effects of chronic combined chromium-nickel exposure on colon damage in mice through transcriptomic analysis and in vitro gastrointestinal digestion assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116458. [PMID: 38759536 DOI: 10.1016/j.ecoenv.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.
Collapse
Affiliation(s)
- Shuangyan Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zilong Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luqi Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yufan Shen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Du
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
13
|
Bai X, Yang W, Zhao Y, Cao T, Lin R, Jiao P, Li H, Li H, Min J, Jia X, Zhang H, Fan W, Jia X, Bi Y, Liu W, Sun L. The extracellular cyclophilin A-integrin β2 complex as a therapeutic target of viral pneumonia. Mol Ther 2024; 32:1510-1525. [PMID: 38454605 PMCID: PMC11081868 DOI: 10.1016/j.ymthe.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The acute respiratory virus infection can induce uncontrolled inflammatory responses, such as cytokine storm and viral pneumonia, which are the major causes of death in clinical cases. Cyclophilin A (CypA) is mainly distributed in the cytoplasm of resting cells and released into the extracellular space in response to inflammatory stimuli. Extracellular CypA (eCypA) is upregulated and promotes inflammatory response in severe COVID-19 patients. However, how eCypA promotes virus-induced inflammatory response remains elusive. Here, we observe that eCypA is induced by influenza A and B viruses and SARS-CoV-2 in cells, mice, or patients. Anti-CypA mAb reduces pro-inflammatory cytokines production, leukocytes infiltration, and lung injury in virus-infected mice. Mechanistically, eCypA binding to integrin β2 triggers integrin activation, thereby facilitating leukocyte trafficking and cytokines production via the focal adhesion kinase (FAK)/GTPase and FAK/ERK/P65 pathways, respectively. These functions are suppressed by the anti-CypA mAb that specifically blocks eCypA-integrin β2 interaction. Overall, our findings reveal that eCypA-integrin β2 signaling mediates virus-induced inflammatory response, indicating that eCypA is a potential target for antibody therapy against viral pneumonia.
Collapse
Affiliation(s)
- Xiaoyuan Bai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxian Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuna Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Tongtong Cao
- Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Runshan Lin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heqiao Li
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - He Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Jia
- The Biological Safety level-3 (BSL-3) Laboratory of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; The Biological Safety level-3 (BSL-3) Laboratory of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjun Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Gao F, Lin W, Wang X, Liao M, Zhang M, Qin N, Chen X, Xia L, Chen Q, Sha O. Identification of receptors and factors associated with human coronaviruses in the oral cavity using single-cell RNA sequencing. Heliyon 2024; 10:e28280. [PMID: 38560173 PMCID: PMC10981076 DOI: 10.1016/j.heliyon.2024.e28280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) ravaged the world, and Coronavirus Disease 2019 (COVID-19) exhibited highly prevalent oral symptoms that had significantly impacted the lives of affected patients. However, the involvement of four human coronavirus (HCoVs), namely SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E, in oral cavity infections remained poorly understood. We integrated single-cell RNA sequencing (scRNA-seq) data of seven human oral tissues through consistent normalization procedure, including minor salivary gland (MSG), parotid gland (PG), tongue, gingiva, buccal, periodontium and pulp. The Seurat, scDblFinder, Harmony, SingleR, Ucell and scCancer packages were comprehensively used for analysis. We identified specific cell clusters and generated expression profiles of SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) in seven oral regions, providing direction for predicting the tropism of four HCoVs for oral tissues, as well as for dental clinical treatment. Based on our analysis, it appears that various SCARFs, including ACE2, ASGR1, KREMEN1, DPP4, ANPEP, CD209, CLEC4G/M, TMPRSS family proteins (including TMPRSS2, TMPRSS4, and TMPRSS11A), and FURIN, are expressed at low levels in the oral cavity. Conversely, BSG, CTSB, and CTSL exhibit enrichment in oral tissues. Our study also demonstrates widespread expression of restriction factors, particularly IFITM1-3 and LY6E, in oral cells. Additionally, some replication, assembly, and trafficking factors appear to exhibit broad oral tissues expression patterns. Overall, the oral cavity could potentially serve as a high-risk site for SARS-CoV-2 infection, while displaying a comparatively lower degree of susceptibility towards other HCoVs (including SARS-CoV, MERS-CoV and HCoV-229E). Specifically, MSG, tongue, and gingiva represent potential sites of vulnerability for four HCoVs infection, with the MSG exhibiting a particularly high susceptibility. However, the expression patterns of SCARFs in other oral sites demonstrate relatively intricate and may only be specifically associated with SARS-CoV-2 infection. Our study sheds light on the mechanisms of HCoVs infection in the oral cavity as well as gains insight into the characteristics and distribution of possible HCoVs target cells in oral tissues, providing potential therapeutic targets for HCoVs infection in the oral cavity.
Collapse
Affiliation(s)
- Feng Gao
- School of Dentistry, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Institute of Dental Research, Shenzhen University, Shenzhen, China
| | - Weiming Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- The Chinese University of Hong Kong Shenzhen, School of Medicine, Shenzhen, China
| | - Mingfeng Liao
- The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Mingxia Zhang
- The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Nianhong Qin
- Department of Stomatology, Shenzhen People's Hospital, Shenzhen, China
| | - Xianxiong Chen
- School of Dentistry, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Lixin Xia
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ou Sha
- School of Dentistry, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Institute of Dental Research, Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Özçelik C, Araz CZ, Yılmaz Ö, Gülyüz S, Özdamar P, Salmanlı E, Özkul A, Şeker UÖŞ. Screening Peptide Drug Candidates To Neutralize Whole Viral Agents: A Case Study with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). ACS Pharmacol Transl Sci 2024; 7:1032-1042. [PMID: 38633598 PMCID: PMC11020059 DOI: 10.1021/acsptsci.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
The COVID-19 pandemic revealed the need for therapeutic and pharmaceutical molecule development in a short time with different approaches. Although boosting immunological memory by vaccination was the quickest and robust strategy, still medication is required for the immediate treatment of a patient. A popular approach is the mining of new therapeutic molecules. Peptide-based drug candidates are also becoming a popular avenue. To target whole pathogenic viral agents, peptide libraries can be employed. With this motivation, we have used the 12mer M13 phage display library for selecting SARS-CoV-2 targeting peptides as potential neutralizing molecules to prevent viral infections. Panning was applied with four iterative cycles to select SARS-CoV-2 targeting phage particles displaying 12-amino acid-long peptides. Randomly selected peptide sequences were synthesized by a solid-state peptide synthesis method. Later, selected peptides were analyzed by the quartz crystal microbalance method to characterize their molecular interaction with SARS-CoV-2's S protein. Finally, the neutralization activity of the selected peptides was probed with an in-house enzyme-linked immunosorbent assay. The results showed that scpep3, scpep8, and scpep10 peptides have both binding and neutralizing capacity for S1 protein as a candidate for therapeutic molecule. The results of this study have a translational potential with future in vivo and human studies.
Collapse
Affiliation(s)
- Cemile
Elif Özçelik
- UNAM—Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Cemre Zekiye Araz
- Synbiotik
Biotechnology and Biomedical Technology Bilkent Kümeevler, Çankaya, Ankara 06800, Turkey
| | - Özgür Yılmaz
- Material
Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470, Turkey
| | - Sevgi Gülyüz
- Material
Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470, Turkey
| | - Pınar Özdamar
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Ezgi Salmanlı
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Aykut Özkul
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM—Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Interdisciplinary
Program in Neuroscience, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
16
|
Huang Y, Zhou H, Wang Y, Xiao L, Qin W, Li L. A comprehensive investigation on the receptor BSG expression reveals the potential risk of healthy individuals and cancer patients to 2019-nCoV infection. Aging (Albany NY) 2024; 16:5412-5434. [PMID: 38484369 PMCID: PMC11006473 DOI: 10.18632/aging.205655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Coronavirus disease-2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a newly emerging coronavirus. BSG (basigin) is involved in the tumorigenesis of multiple tumors and recently emerged as a novel viral entry receptor for SARS-CoV-2. However, its expression profile in normal individuals and cancer patients are still unclear. METHODS We performed a comprehensive analysis of the expression and distribution of BSG in normal tissues, tumor tissues, and cell lines via bioinformatics analysis and experimental verification. In addition, we investigated the expression of BSG and its isoforms in multiple malignancies and adjacent normal tissues, and explored the prognostic values across pan-cancers. Finally, we conducted function analysis for co-expressed genes with BSG. RESULTS We found BSG was highly conserved in different species, and was ubiquitously expressed in almost all normal tissues and significantly increased in some types of cancer tissues. Moreover, BSG at mRNA expression level was higher than ACE2 in normal lung tissues, and lung cancer tissues. High expression of BSG indicated shorter overall survival (OS) in multiple tumors. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that BSG is mostly enriched in genes for mitochondria electron transport, oxidoreduction-driven active transmembrane transporter activity, mitochondrial inner membrane, oxidative phosphorylation, and genes involving COVID-19. CONCLUSIONS Our present work emphasized the value of targeting BSG in the treatment of COVID-19 and cancer, and also provided several novel insights for understanding the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Smadja DM, Philippe A, Ferreira EVM, Oliveira RKF, McCabe C, Zhao L. CD147 Plasma Levels in Hospitalised Patients with Covid-19 Pneumonia Predict Illness Severity and In-Hospital Mortality. Stem Cell Rev Rep 2024; 20:568-572. [PMID: 38038852 DOI: 10.1007/s12015-023-10660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
COVID-19 and infectious diseases have been included in strategic development goals (SDG) of United Nations (UN). The CD147 receptor is one of several receptors for the SARS-CoV-2 spike protein that could mediate Covid-19 viral infection of host cells. It has been recently proposed to regulate viral invasion and dissemination among lymphocytes and progenitor/stem cells. A soluble by-product of CD147 (sCD147) exists in plasma and has been previously identified as a marker of diabetes and platelet activation. We examined plasma sCD147 levels in 161 Covid-19 patients at hospital admission. We demonstrated significantly higher plasma sCD147 levels in Covid-19 patients, which correlated with plasma multiorgan dysfunction biomarkers interleukin-6, creatinine and Troponin I. Importantly, sCD147 admission levels were associated with Covid-19 severity and survival, carrying potential value as a biomarker in hospitalized patients with Covid-19 infection.
Collapse
Affiliation(s)
- David M Smadja
- Université Paris-Cité, Innovative Therapies in Hemostasis, INSERM, 75006, Paris, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, 20 Rue Leblanc, 75015, Paris, France.
| | - Aurélien Philippe
- Université Paris-Cité, Innovative Therapies in Hemostasis, INSERM, 75006, Paris, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, 20 Rue Leblanc, 75015, Paris, France
| | - Eloara V M Ferreira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Rudolf K F Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Colm McCabe
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 ONN, UK
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 ONN, UK.
| |
Collapse
|
18
|
Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Batiha GE. Covid-19 and risk of acute pancreatitis: What beyond. J Cell Mol Med 2024; 28:e18082. [PMID: 38102841 PMCID: PMC10805481 DOI: 10.1111/jcmm.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐Herdecke, Heusnerstrasse 40University of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
19
|
Yang F, Liu C, Li P, Wu A, Ma-Lauer Y, Zhang H, Su Z, Lu W, von Brunn A, Zhu D. Targeting Cyclophilin A and CD147 to Inhibit Replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and SARS-CoV-2-Induced Inflammation. Mol Pharmacol 2023; 104:239-254. [PMID: 37827578 DOI: 10.1124/molpharm.122.000587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 10/14/2023] Open
Abstract
Identification and development of effective therapeutics for coronavirus disease 2019 (COVID-19) are still urgently needed. The CD147-spike interaction is involved in the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 invasion process in addition to angiotensin-converting enzyme 2 (ACE2). Cyclophilin A (CyPA), the extracellular ligand of CD147, has been found to play a role in the infection and replication of coronaviruses. In this study, our results show that CyPA inhibitors such as cyclosporine A (CsA) and STG-175 can suppress the intracellular replication of SARS-CoV-2 by inhibiting the binding of CyPA to the SARS-CoV-2 nucleocapsid C-terminal domain (N-CTD), and the IC50 is 0.23 μM and 0.17 μM, respectively. Due to high homology, CsA also had inhibitory effects on SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), and the IC50 is 3.2 μM and 2.8 μM, respectively. Finally, we generated a formulation of phosphatidylserine (PS)-liposome-CsA for pulmonary drug delivery. These findings provide a scientific basis for identifying CyPA as a potential drug target for the treatment of COVID-19 as well as for the development of broad-spectrum inhibitors for coronavirus via targeting CyPA. Highlights: 1) SARS-CoV-2 infects cells via the binding of its S protein and CD147; 2) binding of SARS-CoV-2 N protein and CyPA is essential for viral replication; 3) CD147 and CyPA are potential therapeutic targets for SARS-CoV-2; and 4) CsA is a potential therapeutic strategy by interrupting CD147/CyPA interactions. SIGNIFICANCE STATEMENT: New severe acute respiratory syndrome coronavirus (SARS-CoV)-2 variants and other pathogenic coronaviruses (CoVs) are continually emerging, and new broad-spectrum anti-CoV therapy is urgently needed. We found that binding sites of cyclophilin A/cyclosporin A (CyPA/CsA) overlap with CyPA/N-CTD (nucleocapsid C-terminal domain), which shows the potential to target CyPA during SARS-CoV-2 infection. Here, we provide new evidence for targeting CyPA in the treatment of coronavirus disease 2019 (COVID-19) as well as the potential of developing CyPA inhibitors for broad-spectrum inhibition of CoVs.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Chenglong Liu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Pengyuan Li
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Aihua Wu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Yue Ma-Lauer
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Hao Zhang
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Zhuang Su
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Albrecht von Brunn
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| |
Collapse
|
20
|
Wu F, Lin C, Han Y, Zhou D, Chen K, Yang M, Xiao Q, Zhang H, Li W. Multi-omic analysis characterizes molecular susceptibility of receptors to SARS-CoV-2 spike protein. Comput Struct Biotechnol J 2023; 21:5583-5600. [PMID: 38034398 PMCID: PMC10681948 DOI: 10.1016/j.csbj.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
In the post COVID-19 era, new SARS-CoV-2 variant strains may continue emerging and long COVID is poised to be another public health challenge. Deciphering the molecular susceptibility of receptors to SARS-CoV-2 spike protein is critical for understanding the immune responses in COVID-19 and the rationale of multi-organ injuries. Currently, such systematic exploration remains limited. Here, we conduct multi-omic analysis of protein binding affinities, transcriptomic expressions, and single-cell atlases to characterize the molecular susceptibility of receptors to SARS-CoV-2 spike protein. Initial affinity analysis explains the domination of delta and omicron variants and demonstrates the strongest affinities between BSG (CD147) receptor and most variants. Further transcriptomic data analysis on 4100 experimental samples and single-cell atlases of 1.4 million cells suggest the potential involvement of BSG in multi-organ injuries and long COVID, and explain the high prevalence of COVID-19 in elders as well as the different risks for patients with underlying diseases. Correlation analysis validated moderate associations between BSG and viral RNA abundance in multiple cell types. Moreover, similar patterns were observed in primates and validated in proteomic expressions. Overall, our findings implicate important therapeutic targets for the development of receptor-specific vaccines and drugs for COVID-19.
Collapse
Affiliation(s)
- Fanjie Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenghao Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yutong Han
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Dingli Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kang Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Minglei Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qinyuan Xiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyue Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weizhong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Sun CP, Chiu CW, Wu PY, Tsung SI, Lee IJ, Hu CW, Hsu MF, Kuo TJ, Lan YH, Chen LY, Ng HY, Chung MJ, Liao HN, Tseng SC, Lo CH, Chen YJ, Liao CC, Chang CS, Liang JJ, Draczkowski P, Puri S, Chang YC, Huang JS, Chen CC, Kau JH, Chen YH, Liu WC, Wu HC, Danny Hsu ST, Wang IH, Tao MH. Development of AAV-delivered broadly neutralizing anti-human ACE2 antibodies against SARS-CoV-2 variants. Mol Ther 2023; 31:3322-3336. [PMID: 37689971 PMCID: PMC10638075 DOI: 10.1016/j.ymthe.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.
Collapse
Affiliation(s)
- Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Wen Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-I Tsung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - I-Jung Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Hu
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Jiun Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hua Lan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Yao Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Yee Ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Jhe Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ni Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Che Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Hui Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Jiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Shin Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Sarita Puri
- Department of Bioscience, University of Milan, Milan, Italy
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Siou Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Chun Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| | - I-Hsuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
23
|
Huang T, Jiang N, Song Y, Pan H, Du A, Yu B, Li X, He J, Yuan K, Wang Z. Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 on metabolic unhealthy obese patients. Front Mol Biosci 2023; 10:1274463. [PMID: 37877121 PMCID: PMC10591333 DOI: 10.3389/fmolb.2023.1274463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has posed a significant challenge to individuals' health. Increasing evidence shows that patients with metabolic unhealthy obesity (MUO) and COVID-19 have severer complications and higher mortality rate. However, the molecular mechanisms underlying the association between MUO and COVID-19 are poorly understood. Methods: We sought to reveal the relationship between MUO and COVID-19 using bioinformatics and systems biology analysis approaches. Here, two datasets (GSE196822 and GSE152991) were employed to extract differentially expressed genes (DEGs) to identify common hub genes, shared pathways, transcriptional regulatory networks, gene-disease relationship and candidate drugs. Results: Based on the identified 65 common DEGs, the complement-related pathways and neutrophil degranulation-related functions are found to be mainly affected. The hub genes, which included SPI1, CD163, C1QB, SIGLEC1, C1QA, ITGAM, CD14, FCGR1A, VSIG4 and C1QC, were identified. From the interaction network analysis, 65 transcription factors (TFs) were found to be the regulatory signals. Some infections, inflammation and liver diseases were found to be most coordinated with the hub genes. Importantly, Paricalcitol, 3,3',4,4',5-Pentachlorobiphenyl, PD 98059, Medroxyprogesterone acetate, Dexamethasone and Tretinoin HL60 UP have shown possibility as therapeutic agents against COVID-19 and MUO. Conclusion: This study provides new clues and references to treat both COVID-19 and MUO.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Bodakuntla S, Kuhn CC, Biertümpfel C, Mizuno N. Cryo-electron microscopy in the fight against COVID-19-mechanism of virus entry. Front Mol Biosci 2023; 10:1252529. [PMID: 37867557 PMCID: PMC10587472 DOI: 10.3389/fmolb.2023.1252529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Cryogenic electron microscopy (cryo-EM) and electron tomography (cryo-ET) have become a critical tool for studying viral particles. Cryo-EM has enhanced our understanding of viral assembly and replication processes at a molecular resolution. Meanwhile, in situ cryo-ET has been used to investigate how viruses attach to and invade host cells. These advances have significantly contributed to our knowledge of viral biology. Particularly, prompt elucidations of structures of the SARS-CoV-2 spike protein and its variants have directly impacted the development of vaccines and therapeutic measures. This review discusses the progress made by cryo-EM based technologies in comprehending the severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2), the virus responsible for the devastating global COVID-19 pandemic in 2020 with focus on the SARS-CoV-2 spike protein and the mechanisms of the virus entry and replication.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Laboratory of Structural Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Cyrus Kuhn
- Laboratory of Structural Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
26
|
Li H, Yang W, Li H, Bai X, Zhang H, Fan W, Liu W, Sun L. PROTAC targeting cyclophilin A controls virus-induced cytokine storm. iScience 2023; 26:107535. [PMID: 37636080 PMCID: PMC10448112 DOI: 10.1016/j.isci.2023.107535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Cytokine storms caused by viruses are associated with elevated cytokine levels and uncontrolled inflammatory responses that can lead to acute respiratory distress syndrome. Current antiviral therapies are not sufficient to prevent or treat these complications. Cyclophilin A (CypA) is a key factor that regulates the production of multiple cytokines and could be a potential therapeutic target for cytokine storms. Here, three proteolysis targeting chimeras (PROTACs) targeting CypA were designed. These PROTACs bind to CypA, enhance its ubiquitination, and promote its degradation in both cell lines and mouse organs. During influenza B virus (IBV) infection, PROTAC-mediated CypA depletion reduces P65 phosphorylation and NF-κB-mediated proinflammatory cytokine production in A549 cells. Moreover, Comp-K targeting CypA suppresses excessive secretion of proinflammatory cytokines in bronchoalveolar lavage fluid, reduces lung injury, and enhances survival rates of IBV-infected mice. Collectively, we provide PROTACs targeting CypA, which are potential candidates for the control of cytokine storms.
Collapse
Affiliation(s)
- Heqiao Li
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxian Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyuan Bai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - He Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjun Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Amezcua-Guerra LM, Guzmán-Martín CA, Montúfar-Robles I, Springall R, Hernández-Díazcouder A, Barbosa-Cobos RE, Sánchez-Muñoz F, Ramírez-Bello J. CD147 rs8259T>A Variant Confers Susceptibility to COVID-19 Infection within the Mexican Population. Microorganisms 2023; 11:1919. [PMID: 37630479 PMCID: PMC10458029 DOI: 10.3390/microorganisms11081919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical manifestations of COVID-19 range from mild flu-like symptoms to severe respiratory failure. Nowadays, extracellular matrix metalloproteinase inducer (EMMPRIN), also known as cluster of differentiation 147 (CD147) or BASIGIN, has been studied as enabling viral entry and replication within host cells. However, the impact of the CD147 rs8259T>A single nucleotide variant (SNV) on SARS-CoV-2 susceptibility remains poorly investigated. OBJECTIVE To investigate the impact of rs8259T>A on the CD147 gene in individuals from Mexico with COVID-19 disease. METHODS We genotyped the CD147 rs8359T>A SNV in 195 patients with COVID-19 and 185 healthy controls from Mexico. In addition, we also measured the expression levels of CD147 and TNF mRNA and miR-492 from whole blood of patients with COVID-19 through RT-q-PCR. RESULTS We observed a significant association between the CD147 rs8259T>A SNV and susceptibility to COVID-19: T vs. A; OR 1.36, 95% CI 1.02-1.81; p = 0.037; and TT vs. AA; OR 1.77, 95% CI 1.01-3.09; p = 0.046. On the other hand, we did not find differences in CD147, TNF or miR-492 expression levels when considering the genotypes of the CD147 rs8259T>A SNV. CONCLUSIONS Our results suggest that the CD147 rs8259T>A variant is a risk factor for COVID-19.
Collapse
Affiliation(s)
- Luis M. Amezcua-Guerra
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.A.-G.); (R.S.)
| | - Carlos A. Guzmán-Martín
- Postgraduate Doctoral Program in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico;
| | | | - Rashidi Springall
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.A.-G.); (R.S.)
| | - Adrián Hernández-Díazcouder
- Obesity and Asthma Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Rosa Elda Barbosa-Cobos
- Rheumatology Department, Hospital Juárez de México, Mexico City 07760, Mexico;
- The American British Cowdray Medical Center, Mexico City 05348, Mexico
| | - Fausto Sánchez-Muñoz
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.A.-G.); (R.S.)
| | - Julián Ramírez-Bello
- Endocrinology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| |
Collapse
|
28
|
Yang Z, Zhang Q, Wu X, Hao S, Hao X, Jones E, Zhang Y, Qiu J, Xu L. Repurposing Niclosamide as a Novel Anti-SARS-CoV-2 Drug by Restricting Entry Protein CD147. Biomedicines 2023; 11:2019. [PMID: 37509657 PMCID: PMC10377517 DOI: 10.3390/biomedicines11072019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the global coronavirus disease 2019 (COVID-19) pandemic, and the search for effective treatments has been limited. Furthermore, the rapid mutations of SARS-CoV-2 have posed challenges to existing vaccines and neutralizing antibodies, as they struggle to keep up with the increased viral transmissibility and immune evasion. However, there is hope in targeting the CD147-spike protein, which serves as an alternative point for the entry of SARS-CoV-2 into host cells. This protein has emerged as a promising therapeutic target for the development of drugs against COVID-19. Here, we demonstrate that the RNA-binding protein Human-antigen R (HuR) plays a crucial role in the post-transcriptional regulation of CD147 by directly binding to its 3'-untranslated region (UTR). We observed a decrease in CD147 levels across multiple cell lines upon HuR depletion. Furthermore, we identified that niclosamide can reduce CD147 by lowering the cytoplasmic translocation of HuR and reducing CD147 glycosylation. Moreover, our investigation revealed that SARS-CoV-2 infection induces an upregulation of CD147 in ACE2-expressing A549 cells, which can be effectively neutralized by niclosamide in a dose-dependent manner. Overall, our study unveils a novel regulatory mechanism of regulating CD147 through HuR and suggests niclosamide as a promising therapeutic option against COVID-19.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Qi Zhang
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
| | - Xiaoqing Wu
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xinbao Hao
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
29
|
Steenblock C, Toepfner N, Beuschlein F, Perakakis N, Mohan Anjana R, Mohan V, Mahapatra NR, Bornstein SR. SARS-CoV-2 infection and its effects on the endocrine system. Best Pract Res Clin Endocrinol Metab 2023; 37:101761. [PMID: 36907787 PMCID: PMC9985546 DOI: 10.1016/j.beem.2023.101761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) can infect multiple tissues, including endocrine organs, such as the pancreas, adrenal, thyroid, and adipose tissue. The main receptor for SARS-CoV-2, ACE2, is ubiquitously expressed in the cells of the endocrine organs and accordingly, the virus has been detected in various amounts in all endocrine tissues in post-mortem samples from COVID-19 patients. The infection with SARS-CoV-2 may directly lead to organ damage or dysfunction, such as hyperglycaemia or in rare cases, new-onset diabetes. Furthermore, an infection with SARS-CoV-2 may have indirect effects affecting the endocrine system. The exact mechanisms are not yet completely understood and have to be further investigated. Conversely, endocrine diseases may affect the severity of COVID-19 and emphasis has to be laid on reducing the prevalence, or enhance the treatment, of these often non-communicable diseases in the future.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Nicole Toepfner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Chennai, Tamil Nadu, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Chennai, Tamil Nadu, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
30
|
Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22:449-475. [PMID: 37076602 PMCID: PMC10113999 DOI: 10.1038/s41573-023-00672-y] [Citation(s) in RCA: 307] [Impact Index Per Article: 153.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic strategies that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or human proteins to control viral infection, encompassing hundreds of potential drugs and thousands of patients in clinical trials. So far, a few small-molecule antiviral drugs (nirmatrelvir-ritonavir, remdesivir and molnupiravir) and 11 monoclonal antibodies have been marketed for the treatment of COVID-19, mostly requiring administration within 10 days of symptom onset. In addition, hospitalized patients with severe or critical COVID-19 may benefit from treatment with previously approved immunomodulatory drugs, including glucocorticoids such as dexamethasone, cytokine antagonists such as tocilizumab and Janus kinase inhibitors such as baricitinib. Here, we summarize progress with COVID-19 drug discovery, based on accumulated findings since the pandemic began and a comprehensive list of clinical and preclinical inhibitors with anti-coronavirus activities. We also discuss the lessons learned from COVID-19 and other infectious diseases with regard to drug repurposing strategies, pan-coronavirus drug targets, in vitro assays and animal models, and platform trial design for the development of therapeutics to tackle COVID-19, long COVID and pathogenic coronaviruses in future outbreaks.
Collapse
Affiliation(s)
- Guangdi Li
- Xiangya School of Public Health, Central South University; Hunan Children's Hospital, Changsha, China.
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine & German Center for Infection Research (DZIF), University of Lübeck, Lübeck, Germany.
| | - Richard Whitley
- Department of Paediatrics, Microbiology, Medicine and Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Pandit NK, Mann SS, Mohanty A, Meena SS. e-Pharmacophore modeling and in silico study of CD147 receptor against SARS-CoV-2 drugs. Genomics Inform 2023; 21:e17. [PMID: 37415452 PMCID: PMC10326537 DOI: 10.5808/gi.23005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Coronavirus has left severe health impacts on the human population, globally. Still a significant number of cases are reported daily as no specific medications are available for its effective treatment. The presence of the CD147 receptor (human basigin) on the host cell facilitates the severe acute respiratory disease coronavirus 2 (SARS-CoV-2) infection. Therefore, the drugs that efficiently alter the formation of CD147 and spike protein complex could be the right drug candidate to inhibit the replication of SARS-CoV-2. Hence, an e-Pharmacophore model was developed based on the receptor-ligand cavity of CD147 protein which was further mapped against pre-existing drugs of coronavirus disease treatment. A total of seven drugs were found to be suited as pharmacophores out of 11 drugs screened which was further docked with CD147 protein using CDOCKER of Biovia discovery studio. The active site sphere of the prepared protein was 101.44, 87.84, and 97.17 along with the radius being 15.33 and the root-mean-square deviation value obtained was 0.73 Å. The protein minimization energy was calculated to be -30,328.81547 kcal/mol. The docking results showed ritonavir as the best fit as it demonstrated a higher CDOCKER energy (-57.30) with correspond to CDOCKER interaction energy (-53.38). However, authors further suggest in vitro studies to understand the potential activity of the ritonavir.
Collapse
Affiliation(s)
- Nisha Kumari Pandit
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab 144027, India
| | - Simranjeet Singh Mann
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab 144027, India
| | - Anee Mohanty
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab 144027, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab 144027, India
| |
Collapse
|
32
|
Ren Z, Shen C, Peng J. Status and Developing Strategies for Neutralizing Monoclonal Antibody Therapy in the Omicron Era of COVID-19. Viruses 2023; 15:1297. [PMID: 37376597 DOI: 10.3390/v15061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The monoclonal antibody (mAb)-based treatment is a highly valued therapy against COVID-19, especially for individuals who may not have strong immune responses to the vaccine. However, with the arrival of the Omicron variant and its evolving subvariants, along with the occurrence of remarkable resistance of these SARS-CoV-2 variants to the neutralizing antibodies, mAbs are facing tough challenges. Future strategies for developing mAbs with improved resistance to viral evasion will involve optimizing the targeting epitopes on SARS-CoV-2, enhancing the affinity and potency of mAbs, exploring the use of non-neutralizing antibodies that bind to conserved epitopes on the S protein, as well as optimizing immunization regimens. These approaches can improve the viability of mAb therapy in the fight against the evolving threat of the coronavirus.
Collapse
Affiliation(s)
- Zuning Ren
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
33
|
Gegunde S, Alfonso A, Cifuentes JM, Alvariño R, Pérez-Fuentes N, Vieytes MR, Botana LM. Cyclophilins modify their profile depending on the organ or tissue in a murine inflammatory model. Int Immunopharmacol 2023; 120:110351. [PMID: 37235965 DOI: 10.1016/j.intimp.2023.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Inflammation is the leading subjacent cause of many chronic diseases. Despite several studies in the last decades, the molecular mechanism involving its pathophysiology is not fully known. Recently, the implication of cyclophilins in inflammatory-based diseases has been demonstrated. However, the main role of cyclophilins in these processes remains elusive. Hence, a mouse model of systemic inflammation was used to better understand the relationship between cyclophilins and their tissue distribution. To induce inflammation, mice were fed with high-fat diet for 10 weeks. In these conditions, serum levels of interleukins 2 and 6, tumour necrosis factor-α, interferon-ϒ, and the monocyte chemoattractant protein 1 were elevated, evidencing a systemic inflammatory state. Then, in this inflammatory model, cyclophilins and CD147 profiles in the aorta, liver, and kidney were studied. The results demonstrate that, upon inflammatory conditions, cyclophilins A and C expression levels were increased in the aorta. Cyclophilins A and D were augmented in the liver, meanwhile, cyclophilins B and C were diminished. In the kidney, cyclophilins B and C levels were elevated. Furthermore, CD147 receptor was also increased in the aorta, liver, and kidney. In addition, when cyclophilin A was modulated, serum levels of inflammatory mediators were decreased, indicating a reduction in systemic inflammation. Besides, the expression levels of cyclophilin A and CD147 were also reduced in the aorta and liver, when cyclophilin A was modulated. Therefore, these results suggest that each cyclophilin has a different profile depending on the tissue, under inflammatory conditions.
Collapse
Affiliation(s)
- Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain.
| | - J Manuel Cifuentes
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain
| | - Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain.
| |
Collapse
|
34
|
Adimulam T, Arumugam T, Gokul A, Ramsuran V. Genetic Variants within SARS-CoV-2 Human Receptor Genes May Contribute to Variable Disease Outcomes in Different Ethnicities. Int J Mol Sci 2023; 24:8711. [PMID: 37240057 PMCID: PMC10218380 DOI: 10.3390/ijms24108711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic, with an alarming infectivity and mortality rate. Studies have examined genetic effects on SARS-CoV-2 disease susceptibility and severity within Eurasian populations. These studies identified contrasting effects on the severity of disease between African populations. Genetic factors can explain some of the diversity observed within SARS-CoV-2 disease susceptibility and severity. Single nucleotide polymorphisms (SNPs) within the SARS-CoV-2 receptor genes have demonstrated detrimental and protective effects across ethnic groups. For example, the TT genotype of rs2285666 (Angiotensin-converting enzyme 2 (ACE2)) is associated with the severity of SARS-CoV-2 disease, which is found at higher frequency within Asian individuals compared to African and European individuals. In this study, we examined four SARS-CoV-2 receptors, ACE2, Transmembrane serine protease 2 (TMPRSS2), Neuropilin-1 (NRP1), and Basigin (CD147). A total of 42 SNPs located within the four receptors were reviewed: ACE2 (12), TMPRSS2 (10), BSG (CD147) (5), and NRP1 (15). These SNPs may be determining factors for the decreased disease severity observed within African individuals. Furthermore, we highlight the absence of genetic studies within the African population and emphasize the importance of further research. This review provides a comprehensive summary of specific variants within the SARS-CoV-2 receptor genes, which can offer a better understanding of the pathology of the SARS-CoV-2 pandemic and identify novel potential therapeutic targets.
Collapse
Affiliation(s)
- Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Anmol Gokul
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
35
|
Bakhtiyari M, Haji Aghasi A, Banihashemi S, Abbassioun A, Tavakol C, Zalpoor H. CD147 and cyclophilin A: a promising potential targeted therapy for COVID-19 and associated cancer progression and chemo-resistance. Infect Agent Cancer 2023; 18:20. [PMID: 37016434 PMCID: PMC10072013 DOI: 10.1186/s13027-023-00501-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), as a worldwide serious issue has been shown to lead to progression and poor outcomes in cancer patients. The underlying mechanisms for SARS-CoV-2 infection's adverse effects on cancer patients have not been fully understood. We hypothesized that CD147 and Cyclophilin A (CyPA) not only can play a significant role in infection severity but also can contribute to cancer progression and chemotherapy resistance in cancer patients with COVID-19. In addition, we hypothesized that the expression of both CD147 and CyPA could be increased by Hypoxia-inducible Factor-1 alpha (HIF-1α) activation during hypoxic conditions that occurred during COVID-19. Therefore, this evidence can open a new window in the management of cancer patients during the pandemic and therapeutic approaches targeting CD147 and CyPA could be a potentially promising therapeutic approach for such patients.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Ayda Haji Aghasi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sara Banihashemi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Chanour Tavakol
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
36
|
Urbiola-Salvador V, Lima de Souza S, Grešner P, Qureshi T, Chen Z. Plasma Proteomics Unveil Novel Immune Signatures and Biomarkers upon SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:ijms24076276. [PMID: 37047248 PMCID: PMC10093853 DOI: 10.3390/ijms24076276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Several elements have an impact on COVID-19, including comorbidities, age and sex. To determine the protein profile changes in peripheral blood caused by a SARS-CoV-2 infection, a proximity extension assay was used to quantify 1387 proteins in plasma samples among 28 Finnish patients with COVID-19 with and without comorbidities and their controls. Key immune signatures, including CD4 and CD28, were changed in patients with comorbidities. Importantly, several unreported elevated proteins in patients with COVID-19, such as RBP2 and BST2, which show anti-microbial activity, along with proteins involved in extracellular matrix remodeling, including MATN2 and COL6A3, were identified. RNF41 was downregulated in patients compared to healthy controls. Our study demonstrates that SARS-CoV-2 infection causes distinct plasma protein changes in the presence of comorbidities despite the interpatient heterogeneity, and several novel potential biomarkers associated with a SARS-CoV-2 infection alone and in the presence of comorbidities were identified. Protein changes linked to the generation of SARS-CoV-2-specific antibodies, long-term effects and potential association with post-COVID-19 condition were revealed. Further study to characterize the identified plasma protein changes from larger cohorts with more diverse ethnicities of patients with COVID-19 combined with functional studies will facilitate the identification of novel diagnostic, prognostic biomarkers and potential therapeutic targets for patients with COVID-19.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Pomerania, Poland
| | - Suiane Lima de Souza
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
| | - Peter Grešner
- Department of Translational Oncology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, 80-211 Gdańsk, Pomerania, Poland
| | - Talha Qureshi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
- Correspondence:
| |
Collapse
|
37
|
Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H, Braud VM. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int J Mol Sci 2023; 24:ijms24076253. [PMID: 37047226 PMCID: PMC10094153 DOI: 10.3390/ijms24076253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.
Collapse
Affiliation(s)
- Manon Barthe
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Leslie Hertereau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
| | - Noura Lamghari
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Hanan Osman-Ponchet
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
- Correspondence: (H.O.-P.); (V.M.B.)
| | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- Correspondence: (H.O.-P.); (V.M.B.)
| |
Collapse
|
38
|
Fu J, Song B, Du J, Liu S, He J, Xiao T, Zhou B, Li D, Liu X, He T, Cheng J, Fu J. Impact of BSG/CD147 gene expression on diagnostic, prognostic and therapeutic strategies towards malignant cancers and possible susceptibility to SARS-CoV-2. Mol Biol Rep 2023; 50:2269-2281. [PMID: 36574092 PMCID: PMC9793814 DOI: 10.1007/s11033-022-08231-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND BSG (CD147) is a member of the immunoglobulin superfamily that shows roles for potential prognostics and therapeutics for metastatic cancers and SARS-CoV-2 invasion for COVID-19. The susceptibility of malignant cancers to SARS-CoV-2 as well as the correlations between disease outcome and BSG expression in tumor tissues have not been studied in depth. METHODS In this study, we explored the BSG expression profile, survival correlation, DNA methylation, mutation, diagnostics, prognostics, and tumor-infiltrating lymphocytes (TILs) from different types of cancer tissues with corresponding healthy tissues. In vitro studies for cordycepin (CD), N6-(2-hydroxyethyl) adenosine (HEA), N6, N6-dimethyladenosine (m62A) and 5'-uridylic acid (UMP) on BSG expression were also conducted. RESULTS We revealed that BSG is conserved among different species, and significantly upregulated in seven tumor types, including ACC, ESCA, KICH, LIHC, PAAD, SKCM and THYM, compared with matched normal tissues, highlighting the susceptibility of these cancer patients to SARS-CoV-2 invasion, COVID-19 severity and progression of malignant cancers. High expression in BSG was significantly correlated with a short OS in LGG, LIHC and OV patients, but a long OS in KIRP patients. Methylation statuses in the BSG promoter were significantly higher in BRCA, HNSC, KIRC, KIRP, LUSC, PAAD, and PRAD tumor tissues, but lower in READ. Four CpGs in the BSG genome were identified as potential DNA methylation biomarkers which could be used to predict malignant cancers from normal individuals. Furthermore, a total of 65 mutation types were found, in which SARC showed the highest mutation frequency (7.84%) and THYM the lowest (0.2%). Surprisingly, both for disease-free and progression-free survival in pan-cancers were significantly reduced after BSG mutations. Additionally, a correlation between BSG expression and immune lymphocytes of CD56bright natural killer cell, CD56dim natural killer cell and monocytes, MHC molecules of HLA-A, HLA-B, HLA-C and TAPBP, immunoinhibitor of PVR, PVRL2, and immunostimulators of TNFRSF14, TNFRSF18, TNFRSF25, and TNFSF9, was revealed in most cancer types. Moreover, BSG expression was downregulated by CD, HEA, m62A or UMP in cancer cell lines, suggesting therapeutic potentials for interfering entry of SARS-CoV-2. CONCLUSIONS Altogether, our study highlights the values of targeting BSG for diagnostic, prognostic and therapeutic strategies to fight malignant cancers and COVID-19. Small molecules CD, HEA, m62A and UMP imply therapeutic potentials in interfering with entry of SARS-CoV-2 and progression of malignant cancers.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Binghui Song
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Ting Xiao
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou, 511400 Guangdong China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Tao He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Institute for Cancer Medicine and Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|
39
|
Avdonin PP, Rybakova EY, Trufanov SK, Avdonin PV. SARS-CoV-2 Receptors and Their Involvement in Cell Infection. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023; 17:1-11. [PMID: 37008884 PMCID: PMC10050803 DOI: 10.1134/s1990747822060034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 03/30/2023]
Abstract
The new coronavirus infection (COVID-19) pandemic caused by SARS-CoV-2 has many times surpassed the epidemics caused by SARS-CoV and MERS-CoV. The reason for this was the presence of sites in the protein sequence of SARS-CoV-2 that provide interaction with a broader range of receptor proteins on the host cell surface. In this review, we consider both already known receptors common to SARS-CoV and SARS-CoV-2 and new receptors specific to SARS-CoV-2.
Collapse
Affiliation(s)
- P. P. Avdonin
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - E. Yu. Rybakova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - S. K. Trufanov
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - P. V. Avdonin
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
40
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
41
|
Meplazumab in hospitalized adults with severe COVID-19 (DEFLECT): a multicenter, seamless phase 2/3, randomized, third-party double-blind clinical trial. Signal Transduct Target Ther 2023; 8:46. [PMID: 36717539 PMCID: PMC9885411 DOI: 10.1038/s41392-023-01323-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Meplazumab, a humanized CD147 antibody, has shown favourable safety and efficacy in our previous clinical studies. In DEFLECT (NCT04586153), 167 patients with severe COVID-19 were enroled and randomized to receive three dosages of meplazumab and a placebo. Meplazumab at 0.12 mg/kg, compared to the placebo group, showed clinical benefits in significantly reducing mortality by 83.6% (2.4% vs. 14.6%, p = 0.0150), increasing the proportion of patients alive and discharged without supplemental oxygen (82.9% vs. 70.7%, p = 0.0337) and increasing the proportion of patients who achieved sustained clinical improvement (41.5% vs. 31.7%). The response rate in the 0.2 mg/kg group was relatively increased by 16.0% compared with the placebo group (53.7% vs. 46.3%). Meplazumab also reduced the viral loads and multiple cytokine levels. Compare with the placebo group, the 0.3 mg/kg significantly increased the virus negative rate by 40.6% (p = 0.0363) and reduced IL-8 level (p = 0.0460); the 0.2 mg/kg increased the negative conversion rate by 36.9%, and reduced IL-4 (p = 0.0365) and IL-8 levels (p = 0.0484). In this study, the adverse events occurred at a comparable rate across the four groups, with no unexpected safety findings observed. In conclusion, meplazumab promoted COVID-19 convalescence and reduced mortality, viral load, and cytokine levels in severe COVID-19 population with good safety profile.
Collapse
|
42
|
Geng J, Yang X, Wang K, Wang K, Chen R, Chen ZN, Qin C, Wu G, Wang Y, Xu K, Du P, Liu J, Chen S, Zhang T, Sun X, Guo T, Shi Y, Zhang Z, Wei D, Lin P, Wang Q, Yuan J, Qu J, Zou J, Liu Y, Lu H, Zhu P, Bian H, Chen L. Immunological and metabolic characteristics of the Omicron variants infection. Signal Transduct Target Ther 2023; 8:42. [PMID: 36681668 PMCID: PMC9860238 DOI: 10.1038/s41392-022-01265-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/11/2022] [Accepted: 11/22/2022] [Indexed: 01/22/2023] Open
Abstract
The Omicron variants of SARS-CoV-2, primarily authenticated in November 2021 in South Africa, has initiated the 5th wave of global pandemics. Here, we systemically examined immunological and metabolic characteristics of Omicron variants infection. We found Omicron resisted to neutralizing antibody targeting receptor binding domain (RBD) of wildtype SARS-CoV-2. Omicron could hardly be neutralized by sera of Corona Virus Disease 2019 (COVID-19) convalescents infected with the Delta variant. Through mass spectrometry on MHC-bound peptidomes, we found that the spike protein of the Omicron variants could generate additional CD8 + T cell epitopes, compared with Delta. These epitopes could induce robust CD8 + T cell responses. Moreover, we found booster vaccination increased the cross-memory CD8 + T cell responses against Omicron. Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells. Consistently, a greater fraction of memory CD8 + T cells existed in Omicron stimulated peripheral blood mononuclear cells (PBMCs). In addition, CD147 was also a receptor for the Omicron variants, and CD147 antibody inhibited infection of Omicron. CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia. Taken together, our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.
Collapse
Affiliation(s)
- Jiejie Geng
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xu Yang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Wang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ke Wang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruo Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Nan Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Guizhen Wu
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Preven- tion, Chinese Center for Disease Control and Prevention, Beijing, 100871, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Ke Xu
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Preven- tion, Chinese Center for Disease Control and Prevention, Beijing, 100871, China
| | - Peng Du
- Beijing Institute of Biotechnology, Beijing, 100871, China
| | - Jiangning Liu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Shirui Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiuxuan Sun
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Guo
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Shi
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ding Wei
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Lin
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qingyi Wang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Yuan
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
| | - Jiuxin Qu
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
| | - Jin Zou
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
| | - Yingxia Liu
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China.
| | - Hongzhou Lu
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China.
| | - Ping Zhu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Huijie Bian
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
43
|
Zhao X, Yang Z, Niu R, Tang Y, Wang H, Gao R, Zhao Y, Jing X, Wang D, Lin P, Guan H, Meng L. MIL-101(CuFe) Nanozymes with Excellent Peroxidase-like Activity for Simple, Accurate, and Visual Naked-Eye Detection of SARS-CoV-2. Anal Chem 2023; 95:1731-1738. [PMID: 36576944 PMCID: PMC9843630 DOI: 10.1021/acs.analchem.2c05043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
The COVID-19 pandemic has spread to every corner of the world and seriously affected our health and daily activities in the past three years; thereby, it is still urgent to develop various simple, quick, and accurate methods for early detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Nanozymes, a kind of nanomaterial with intrinsic enzyme-mimicking activity, have emerged as a suitable alternative for both therapy and diagnosis of SARS-CoV-2. Here, ultrasensitive and ultrafast MIL-101(CuFe)-CD147 biosensors are established for the detection of SARS-CoV-2 by a simple colorimetric method. A MIL-101(CuFe) metal-organic framework has excellent peroxidase-like activity due to the synergistic effect of Fe and Cu atoms. In addition, the MIL-101(CuFe)-CD147 biosensor shows great potential to detect the various variants of SARS-CoV-2 due to the universal receptor of CD147. The enzyme-based biosensor for the detection of SARS-CoV-2 achieves a very low limit of detection (about 3 PFU/mL) within 30 min. Therefore, the present method provides a new generation of an alternative approach for highly sensitive and visual diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xiaoping Zhao
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Zhiwei Yang
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an710049, P.R. China
| | - Ruoxin Niu
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Ye Tang
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Heng Wang
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Rui Gao
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Yizhen Zhao
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an710049, P.R. China
| | - Xunan Jing
- The
First Affiliated Hospital, Xi’an
Jiaotong University, Xi’an710061, P.R. China
| | - Daquan Wang
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Peng Lin
- National
Translational Science Center for Molecular Medicine & Department
of Cell Biology& Department of Burns and Cutaneous Surgery, Fourth Military Medical University, Xi’an710032, P.R. China
| | - Hao Guan
- National
Translational Science Center for Molecular Medicine & Department
of Cell Biology& Department of Burns and Cutaneous Surgery, Fourth Military Medical University, Xi’an710032, P.R. China
| | - Lingjie Meng
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
- The
First Affiliated Hospital, Xi’an
Jiaotong University, Xi’an710061, P.R. China
- Instrumental
Analysis Center of Xi’an Jiaotong University, Xi’an710049, P.R. China
| |
Collapse
|
44
|
Coagulation Disorders in Sepsis and COVID-19-Two Sides of the Same Coin? A Review of Inflammation-Coagulation Crosstalk in Bacterial Sepsis and COVID-19. J Clin Med 2023; 12:jcm12020601. [PMID: 36675530 PMCID: PMC9866352 DOI: 10.3390/jcm12020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a major cause of morbidity and mortality worldwide. Sepsis-associated coagulation disorders are involved in the pathogenesis of multiorgan failure and lead to a subsequently worsening prognosis. Alongside the global impact of the COVID-19 pandemic, a great number of research papers have focused on SARS-CoV-2 pathogenesis and treatment. Significant progress has been made in this regard and coagulation disturbances were once again found to underlie some of the most serious adverse outcomes of SARS-CoV-2 infection, such as acute lung injury and multiorgan dysfunction. In the attempt of untangling the mechanisms behind COVID-19-associated coagulopathy (CAC), a series of similarities with sepsis-induced coagulopathy (SIC) became apparent. Whether they are, in fact, the same disease has not been established yet. The clinical picture of CAC shows the unique feature of an initial phase of intravascular coagulation confined to the respiratory system. Only later on, patients can develop a clinically significant form of systemic coagulopathy, possibly with a consumptive pattern, but, unlike SIC, it is not a key feature. Deepening our understanding of CAC pathogenesis has to remain a major goal for the research community, in order to design and validate accurate definitions and classification criteria.
Collapse
|
45
|
Abstract
IL-17 cytokine family members have diverse biological functions, promoting protective immunity against many pathogens but also driving inflammatory pathology during infection and autoimmunity. IL-17A and IL-17F are produced by CD4+ and CD8+ T cells, γδ T cells, and various innate immune cell populations in response to IL-1β and IL-23, and they mediate protective immunity against fungi and bacteria by promoting neutrophil recruitment, antimicrobial peptide production and enhanced barrier function. IL-17-driven inflammation is normally controlled by regulatory T cells and the anti-inflammatory cytokines IL-10, TGFβ and IL-35. However, if dysregulated, IL-17 responses can promote immunopathology in the context of infection or autoimmunity. Moreover, IL-17 has been implicated in the pathogenesis of many other disorders with an inflammatory basis, including cardiovascular and neurological diseases. Consequently, the IL-17 pathway is now a key drug target in many autoimmune and chronic inflammatory disorders; therapeutic monoclonal antibodies targeting IL-17A, both IL-17A and IL-17F, the IL-17 receptor, or IL-23 are highly effective in some of these diseases. However, new approaches are needed to specifically regulate IL-17-mediated immunopathology in chronic inflammation and autoimmunity without compromising protective immunity to infection.
Collapse
Affiliation(s)
- Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
46
|
Bonetto V, Pasetto L, Lisi I, Carbonara M, Zangari R, Ferrari E, Punzi V, Luotti S, Bottino N, Biagianti B, Moglia C, Fuda G, Gualtierotti R, Blasi F, Canetta C, Montano N, Tettamanti M, Camera G, Grimoldi M, Negro G, Rifino N, Calvo A, Brambilla P, Biroli F, Bandera A, Nobili A, Stocchetti N, Sessa M, Zanier ER. Markers of blood-brain barrier disruption increase early and persistently in COVID-19 patients with neurological manifestations. Front Immunol 2022; 13:1070379. [PMID: 36591311 PMCID: PMC9798841 DOI: 10.3389/fimmu.2022.1070379] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is associated with disorders affecting the peripheral and the central nervous system. A high number of patients develop post-COVID-19 syndrome with the persistence of a large spectrum of symptoms, including neurological, beyond 4 weeks after infection. Several potential mechanisms in the acute phase have been hypothesized, including damage of the blood-brain-barrier (BBB). We tested weather markers of BBB damage in association with markers of brain injury and systemic inflammation may help in identifying a blood signature for disease severity and neurological complications. Methods Blood biomarkers of BBB disruption (MMP-9, GFAP), neuronal damage (NFL) and systemic inflammation (PPIA, IL-10, TNFα) were measured in two COVID-19 patient cohorts with high disease severity (ICUCovid; n=79) and with neurological complications (NeuroCovid; n=78), and in two control groups free from COVID-19 history, healthy subjects (n=20) and patients with amyotrophic lateral sclerosis (ALS; n=51). Samples from COVID-19 patients were collected during the first and the second wave of COVID-19 pandemic in Lombardy, Italy. Evaluations were done at acute and chronic phases of the COVID-19 infection. Results Blood biomarkers of BBB disruption and neuronal damage are high in COVID-19 patients with levels similar to or higher than ALS. NeuroCovid patients display lower levels of the cytokine storm inducer PPIA but higher levels of MMP-9 than ICUCovid patients. There was evidence of different temporal dynamics in ICUCovid compared to NeuroCovid patients with PPIA and IL-10 showing the highest levels in ICUCovid patients at acute phase. On the contrary, MMP-9 was higher at acute phase in NeuroCovid patients, with a severity dependency in the long-term. We also found a clear severity dependency of NFL and GFAP levels, with deceased patients showing the highest levels. Discussion The overall picture points to an increased risk for neurological complications in association with high levels of biomarkers of BBB disruption. Our observations may provide hints for therapeutic approaches mitigating BBB disruption to reduce the neurological damage in the acute phase and potential dysfunction in the long-term.
Collapse
Affiliation(s)
| | - Laura Pasetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Lisi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Carbonara
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosalia Zangari
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Erica Ferrari
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Veronica Punzi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Silvia Luotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicola Bottino
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bruno Biagianti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cristina Moglia
- “Rita Levi Montalcini”, Department of Neuroscience, University of Turin, Turin, Italy,AOU Città della Salute e della Scienza Hospital, Turin, Italy
| | - Giuseppe Fuda
- “Rita Levi Montalcini”, Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Francesco Blasi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ciro Canetta
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Montano
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Tettamanti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giorgia Camera
- Department of Neurology, Papa Giovanni XXIII Hospital, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Grimoldi
- Department of Neurology, Papa Giovanni XXIII Hospital, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giulia Negro
- Neurology Section, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicola Rifino
- Division of Neurology, University of Milano-Bicocca, Milan, Italy
| | - Andrea Calvo
- “Rita Levi Montalcini”, Department of Neuroscience, University of Turin, Turin, Italy,AOU Città della Salute e della Scienza Hospital, Turin, Italy
| | - Paolo Brambilla
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Biroli
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessandra Bandera
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Nino Stocchetti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,*Correspondence: Nino Stocchetti, ; Maria Sessa, ; Elisa R. Zanier,
| | - Maria Sessa
- Department of Neurology, Papa Giovanni XXIII Hospital, ASST Papa Giovanni XXIII, Bergamo, Italy,*Correspondence: Nino Stocchetti, ; Maria Sessa, ; Elisa R. Zanier,
| | - Elisa R. Zanier
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy,*Correspondence: Nino Stocchetti, ; Maria Sessa, ; Elisa R. Zanier,
| |
Collapse
|
47
|
Abstract
On 4 September, 2020, the US National Institutes of Health launched a new clinical trial, "A Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of Antithrombotic and Additional Strategies in Hospitalized Adults with COVID-19." This open-label, placebo-controlled, multicenter, adaptive platform study was designed to evaluate therapeutic options for patients hospitalized with mild, moderate, or severe COVID-19. A variety of drugs and drug classes were selected, including heparin, the monoclonal antibody crizanlizumab, sodium-glucose cotransporter-2 inhibitors, and purinergic signaling receptor Y12 inhibitors. These medications have been widely used in the treatment of other conditions, from sick cell disease to type 2 diabetes mellitus and some forms of cardiovascular disease, but their inclusion in a study of COVID-19 was somewhat unexpected. This article examines the rationale behind the use of these disparate agents in the treatment and prevention of adverse outcomes in patients with COVID-19 and explores how these strategies may be utilized in the future to address the severe acute respiratory syndrome coronavirus 2 pandemic.
Collapse
Affiliation(s)
- Matthew W McCarthy
- Department of Medicine, Weill Cornell Medicine, 525 East 68th Street, Box 130, New York, NY, 10065, USA.
| |
Collapse
|
48
|
CD147 contributes to SARS-CoV-2-induced pulmonary fibrosis. Signal Transduct Target Ther 2022; 7:382. [PMID: 36424379 PMCID: PMC9691700 DOI: 10.1038/s41392-022-01230-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/24/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
COVID-19 patients can develop clinical and histopathological features associated with fibrosis, but the pathogenesis of fibrosis remains poorly understood. CD147 has been identified as a universal receptor for SARS-CoV-2 and its variants, which could initiate COVID-19-related cytokine storm. Here, we systemically analyzed lung pathogenesis in SARS-CoV-2- and its delta variant-infected humanized CD147 transgenic mice. Histopathology and Transmission Electron Microscopy revealed inflammation, fibroblast expansion and pronounced fibrotic remodeling in SARS-CoV-2-infected lungs. Consistently, RNA-sequencing identified a set of fibrosis signature genes. Furthermore, we identified CD147 as a crucial regulator for fibroblast activation induced by SARS-CoV-2. We found conditional knockout of CD147 in fibroblast suppressed activation of fibroblasts, decreasing susceptibility to bleomycin-induced pulmonary fibrosis. Meplazumab, a CD147 antibody, was able to inhibit the accumulation of activated fibroblasts and the production of ECM proteins, thus alleviating the progression of pulmonary fibrosis caused by SARS-CoV-2. In conclusion, we demonstrated that CD147 contributed to SARS-CoV-2-triggered progressive pulmonary fibrosis and identified CD147 as a potential therapeutic target for treating patients with post-COVID-19 pulmonary fibrosis.
Collapse
|
49
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Vakil MK, Mansoori Y, Al‐Awsi GRL, Hosseinipour A, Ahsant S, Ahmadi S, Ekrahi M, Montaseri Z, Pezeshki B, Mohaghegh P, Sohrabpour M, Bahmanyar M, Daraei A, Dadkhah Jouybari T, Tavassoli A, Ghasemian A. Individual genetic variability mainly of Proinflammatory cytokines, cytokine receptors, and toll-like receptors dictates pathophysiology of COVID-19 disease. J Med Virol 2022; 94:4088-4096. [PMID: 35538614 PMCID: PMC9348290 DOI: 10.1002/jmv.27849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.
Collapse
Affiliation(s)
- Mohammad Kazem Vakil
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Yaser Mansoori
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Ghaidaa Raheem Lateef Al‐Awsi
- University of Al‐QadisiyahCollege of ScienceAl DiwaniyahIraq
- Department of Radiological TechniquesAl‐Mustaqbal University CollegeBabylonIraq
| | - Ali Hosseinipour
- Department of Internal MedicineFasa University of Medical SciencesFasaIran
| | - Samaneh Ahsant
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Sedigheh Ahmadi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Mohammad Ekrahi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Zahra Montaseri
- Department of Infectious DiseasesFasa University of Medical SciencesFasaIran
| | - Babak Pezeshki
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Poopak Mohaghegh
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Mojtaba Sohrabpour
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Maryam Bahmanyar
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of MedicineBabol University of Medical SciencesBabolIran
| | | | | | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|